
 

Energies 2020, 13, 5479; doi:10.3390/en13205479 www.mdpi.com/journal/energies 

Article 

Analysing the Material Suitability and Concentration 
Ratio of a Solar-Powered Parabolic Trough Collector 
(PTC) Using Computational Fluid Dynamics 
Mohammad Akrami 1,*, Husain Alsari 1, Akbar A. Javadi 1, Mahdieh Dibaj 1, Raziyeh Farmani 1, 
Hassan E.S. Fath 2, Alaa H. Salah 3 and Abdelazim Negm 4,* 

1 Department of Engineering, University of Exeter, Exeter EX4 4QF, UK; ha370@exeter.ac.uk (H.A.); 
a.a.javadi@exeter.ac.uk (A.A.J.); md529@exeter.ac.uk (M.D.); R.Farmani@exeter.ac.uk (R.F.)  

2 Ex-Environmental Engineering Department, School of Energy Resources, Environment, Chemical and 
Petrochemical Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt; 
h_elbanna_f@yahoo.com 

3 City of Scientific Research and Technological Applications (SRTA), Alexandria 21934, Egypt; 
alaa.h.salah@gmail.com 

4 Water and Water structures Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 
44519, Egypt  

* Correspondence: M.AKRAMI@EXETER.AC.UK (M.A.); amnegm85@yahoo.com or amnegm@zu.edu.eg 
(A.N.)  

Received: 9 June 2020; Accepted: 15 October 2020; Published: 20 October 2020 

Abstract: Solar-powered desalination is a sustainable solution for countries experiencing water 
scarcity. Several studies have presented different solutions to provide cleaner production in 
desalination systems. Parabolic trough collector (PTC) is one of these solutions that has proven to 
be superior among solar concentrators. Furthermore, a number of studies have investigated the use 
of PTC for distillation of saline water in response to water scarcity. In this study, a modified PTC 
model was developed, in which the heat exchanger was replaced by a condensation tube to reduce 
the energy consumption, and a black layer was introduced to the surface of the receiver to enhance 
its absorptance. As a reference case, the system productivity according to average solar intensities 
in Zagazig, located at 30°34′N 31°30′E in the North East of Egypt, is estimated. The results indicated 
that the maximum production rate that can be attained is 1.72 kg/hr. Then, the structure of the 
system is evaluated with the aid of Computational Fluid Dynamics (CFD) modelling, in order to 
enhance its productivity. Many materials are examined and the results recognised copper as the 
most suitable material amongst marine grade metals (i.e., aluminium, galvanised steel and stainless 
steel) to construct the receiver tube. This is due to its superior thermal performance, satisfactory 
corrosion resistance, and acceptable cost. Afterwards, the selected receiver tube was employed to 
identify the optimal Concentration Ratio (CR). Consequently, a CR of 90.56 was determined to be 
the optimum value for Zagazig and regions with similar solar radiation. As a result, the system’s 
productivity was enhanced drastically, as it was estimated that a maximum production rate of 6.93 
kg/hr can be achieved. 

Keywords: parabolic trough collector; desalination; clean production; renewable energy; 
sustainable; CFD; solar energy 

 

1. Introduction 

Freshwater represents only 3% of Earth’s water, whereas the remaining 97% is saline. Most of 
the freshwater resources are used for agriculture and plant cultivation. Population growth and 
industrialisation has caused overexploitation of the freshwater resources in some regions, such as the 
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Middle East and North Africa, and this has led to the emergence of water scarcity [1]. Lack of 
freshwater has resulted in exponential desertification alongside an increase in water prices. The rise 
of water scarcity has encouraged the search for a technology that could compensate for the water 
shortage in these regions. Desalination of saline water could be an effective method for addressing 
the water scarcity problem. Desalination is the process of extracting minerals from saline water in 
order to produce potable water with standards for human consumption and irrigation. Conventional 
desalination is achieved by either employing thermal energy in order to allow the water to evaporate, 
and hence separate it from the minerals, or by the use of a membrane to execute the salt removal [2]. 
However, both methods require a significant amount of energy in order to carry out the process, 
which is primarily obtained from burning fossil-fuel. As a result, countries with limited resources 
will be unable to employ these techniques because of the high cost of natural energy resources (i.e., 
natural gas and diesel). Due to resource limitation, the long-term operation of the processes would 
be unsustainable. The use of solar energy as a renewable source for desalination has been widely 
researched, given the significant solar intensity, and the availability of solar energy throughout the 
year in the Middle East and North Africa [3].  

However, despite its significant potential, solar energy has not been properly utilised in the 
Middle East and North Africa for power generation and desalination [4–6]. This is attributed to these 
regions’ heavy reliance on conventional desalination processes, as well as the availability of fossil 
fuels [7]. Nevertheless, a number of studies have been conducted concerning the employment of solar 
energy for desalination [7–15], and the results are promising. The availability of solar energy enables 
countries to utilise solar thermal technologies to acquire freshwater with minimal operational costs 
in comparison to conventional processes, and with less carbon footprint and a cleaner technology 
[16,17]. The conventional desalination methods such as Multi-stage Flash Distillation, Multiple Effect 
Distillation (MED) and Reverse Osmosis (RO) need 15.5kWh (thermal energy and electricity), 7.5kWh 
(thermal energy and electricity) and 3kWh (electricity), respectively, to produce 1 m3 of potable water 
which corresponds to carbon footprints of 2.716, 1.164, 2.238 kg CO2 [18]. Therefore, cleaner solutions 
with reduced carbon footprints are required for desalination.  

Qiblawey and Banat [19] studied the feasibility of thermal solar desalination by comparing 
different existing solar collection methods. Their evaluation was focussed upon the use of salinity-
gradient ponds, flat plate collectors (FPC), evacuated tube collectors (ETC), and parabolic trough 
collectors (PTC). They concluded that the use of PTC is preferred due to its ability to raise the 
temperature drastically, whilst the other methods have a restricted capacity. Salinity ponds were 
identified as the second favoured technique in regions where land is inexpensive, as it is capable of 
developing and storing heat energy.  

The use of photovoltaics (PV) to power reverse osmosis (RO) (without the use of batteries) has 
been investigated experimentally and computationally [20,21]. A maximum rate of 46.21 kg/hr 
production was reported when the prototype was tested in the UK, and also estimated (using a 
MATLAB-Simulink model) a doubled rate in regions near the equator when a PV array of only 2.4 
kWP is employed. In contrast, Kalogirou [22] studied the merger of solar collectors with conventional 
phase-change desalination procedures. His work was focussed on the incorporation of solar 
collectors with multiple-effect boiling (MEB). This selection was influenced by Porteous [23], who 
compared the MEB process with other desalination methods. Kalogirou utilised parabolic trough 
collectors (PTC) for steam generation, due to their maximal efficiency at high inlet temperatures when 
compared to other collectors [22]. This system was modelled according to Cyprus’ daily solar 
radiation of 1000–2000 kWh/m2 to predict its productivity with respect to the area occupied by the 
solar collectors. In this study, for areas of 10, 60, 540, and 2160 m2, maximum amounts of 0.26, 1.82, 
20.32 and 83.54 kg/hr were produced, respectively. 

Zarza et al. [24] conducted a comparative study between the use of photovoltaics to power the 
RO process and the incorporation of the PTC in the MEB system. In addition, the incorporation of 
solar energy with phase-change desalination in regions of high pollution was investigated as the 
boiling process guarantees the absence of micro-germs in the product. 



Energies 2020, 13, 5479 3 of 18 

 

Al-Othman et al. [25] examined the merger of PTC and solar ponds with the multi-stage-flash 
(MSF) process in the UAE, where the solar intensity average is 6.3 kWh/m2 per day [26]. The study 
achieved a production rate of 57,914.11kg/hr of freshwater from 1,232,215.09 kg/hr seawater feed. The 
obtained results indicated that 76% of the MSF energy requirements were satisfied by two PTCs with 
a total aperture area of 3160 m2, whilst the remainder was fulfilled by a four-meter depth solar pond 
with a surface area of 0.53 km2. 

Nafaa et al. [27] evaluated the performance of a PV desalination system with the aid of 
MATLAB/Simulink software. The system comprised a solar cell, a DC/AC converter, a resistor load 
(evaporator) and a condenser connected to the evaporator. The PV converts the radiation into direct 
current, which then flows through the converter and leaves with an amplified voltage. Afterwards, 
it enters the resistor and the heater wire, respectively, in order to execute the evaporation process. 
Finally, vapour condenses in the heat exchanger. This model was simulated under different solar 
intensities; however, the highest flow rate of 2.952 kg/hr of desalinated water was recorded at 1000 
W/m2.  

The use of solar stills for distilled water production was the first manifestation of direct solar 
desalination [28–31]. Nevertheless, Kabeel and Abdelgaied [3] reported a yield range of 0.08 to 0.15 
kg/hr for every m2. This motivated them to evaluate the incorporation of solar collectors with solar 
stills for the purpose of performance enhancement. They constructed a system with an improved 
solar still that comprised an oil heat exchanger and a phase change material (PCM) integrated with a 
parabolic trough concentrator (PTC) [3]. Oil was circulated through the collector and the heat 
exchanger in a closed loop, while the PCM was installed to perform as both latent and sensible heat 
storage. As the system operated, the saline water experienced an increase in its temperature due to 
the solar radiation absorbed by the absorber plate, as well as the high temperature oil flowing in the 
heat exchanger. The experimental data demonstrated an increase in the freshwater productivity of 
140.4%, indicating a yield of 0.33 kg/hr for every m2 for the enhanced solar still against a production 
rate of 0.14 kg/hr for every m2 for the conventional solar still for solar intensity values between 360 
and 1150 W/m2. 

Behnam and Shafii [32] investigated the performance of a solar desalination system with an air 
bubble, column humidifier, evacuated tube collectors (ETC) and thermosyphon heat pipes (HP) in 
Tehran (solar intensity 3.5–4.5 kWh/m2 [33]). Their system was oriented to allow the ETC to increase 
the temperature of the HP and hence execute the humidification process. To enhance the heat and 
mass transfer, air bubbles were generated within the saline water contained by the humidifier. As air 
becomes saturated, it travels through an insulated duct into the dehumidifier, where it condenses 
against the coils that convey the cooling fluid. Additionally, they studied the performance of the 
system against the water level within the humidifier, the air flow and the fluid used to occupy the 
space between the ETC and the HP. Their conclusion was that the addition of oil to the space results 
in a production rate increase of 0.26 kg/hr.m2 and an improved efficiency of 65%, while the other 
parameters had a negligible impact on the performance. 

Schwarzer et al. [34] conducted a study on a parabolic trough concentrator with solar stills 
without a tracking system in solar intensities ranging between 200–1050 W/m2. They achieved a 
production rate of 0.46–0.55 kg/m2/hr, which can increase to 1000–2000 litres of distilled water per 
day in large-scale units. Saettone [35] analysed the use of parabolic trough collectors solely for water 
desalination by testing them in solar radiation ranges between 700 and 850 W/m2. This system 
comprised a PTC with a length of 2.5 m, a 1m long absorber cavity made of black aluminium to 
guarantee the reception of reflected radiation, a copper tube and a heat exchanger. The test was 
performed upon three cavities: uninsulated, one-sided insulation layer and two-sided insulation with 
a glass cover for wind protection. Furthermore, a PV panel was used to power the heat exchange 
process. During operation, saline water flows through the absorber cavity at a controlled level, 
ensuring that the receiver is not completely full in order to maintain the structural integrity of the 
cavity. As a result, the saline water evaporates, and the vapour is extracted through the copper tube 
to the heat exchanger to execute the condensation process. The three tested cavities indicated 
production rates of 0.1, 0.17 and 0.2 kg/hr of freshwater, demonstrating an improved performance 
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for the thermally insulated and wind protected cavity. A similar system was also examined by Arun 
and Sreekumar [36] at solar intensities ranging from 415 to 715 W/m2. Initially, they investigated the 
performance of the system with a stainless steel receiver tube and glass covered copper by measuring 
the inlet and outlet temperatures. The results indicated a maximum outlet temperature of 75 °C for 
the stainless steel receiver, and an outlet temperature of 103 °C for the glass covered copper tube. 
Therefore, the latter was then employed during the testing of the system’s productivity and thermal 
efficiency. They achieved a yield of 2.3 kg/hr (tested from 11:00am to 3:00pm) and 12.74% efficiency 
(obtained for the maximum outlet temperature value). Narayanan and Vijay [37] studied the 
desalination of saline water by the use of parabolic trough collectors in India, where the solar 
radiation average is 5 kWh/m2/day. They employed an evacuated tube as a receiver and introduced 
a solar tracking system to the PTC for maximal radiation capture. Their results indicated an average 
production rate of 0.68 kg/hr with a water quality that satisfies drinkable water standards. 

Chaouchi et al. [38] performed an investigation on the performance of a solar desalination 
system utilising a solar parabolic dish. This type of collector can induce a greater increase in the fluid 
temperature due to its significant geometric concentration ratio (CR). They initially estimated the 
production rate theoretically by analysing the heat balance on the water mass and the receiver with 
the aid of the Gauss–Newton method. This indicated a maximum yield of 1.45 kg/hr, corresponding 
to a solar radiation of 465 W/m2, whereas the experimental data demonstrated a maximum 
production rate of 1.27 kg/hr, corresponding to the same solar intensity value.  

Although the great potential of using PTC solely as a sustainable desalination procedure has 
been realised in several studies, prototypes were similar in terms of employing a heat exchanger to 
execute the condensation process. However, employing such principle can reduce the efficiency of 
this system, as an additional source of energy is required to operate the condenser. Furthermore, only 
Arun and Sreekumar [36] examined the utilisation of different materials for the receiver tube. Their 
work demonstrated an enhanced thermal performance for the evacuated copper tube while the 
stainless steel tube showed a lower efficiency. Nevertheless, the impact of seawater upon the 
examined materials was not explored to verify their suitability for freshwater production. 
Additionally, previous studies did not examine the effect of PTC’s geometric concentration ratio (CR) 
with respect to solar irradiation on the productivity of the system.  

The aim of this study is to examine the feasibility of using PTC solely to desalinate water. The 
studied model will be similar to previous systems in terms of operation principle. However, the heat 
exchanger will be replaced by a large tube that surrounds the end of the receiver tube to allow the 
condensation to occur upon its surface. This is done to eliminate additional energy requirements. 
Subsequently, a combination of different materials to construct the receiver tube is assessed to test 
their effect on the system performance. This is achieved by Computational Fluid Dynamics (CFD) 
simulation. In addition, the required concentration ratio of the parabolic trough collector (PTC) to 
enhance the performance is identified by varying the receiver tube surface temperature using CFD 
modelling. 

2. Materials and Methods  

Figure 1 illustrates a conceptual configuration of a modified solar PTC desalination system. This 
system collects solar radiation and focusses it on the receiver tube to increase the temperature of the 
saline water in order to accelerate the evaporation of saline water flowing through it. The system 
allows the extraction of vapour induced from the receiver tube to execute the condensation process. 
In this system, saline water is directed into the collection tank by a submersible pump. This flow is 
controlled by a ball valve to eliminate overflow issues. The brine level within the tank achieves a 
certain level set by the level controller to ensure the receiver tube is filled to half only. This was done 
according to Saettone’s [35] methodology to prevent saltwater from entering the condensation tube. 
Afterwards, the circulated seawater experiences an increase in its temperature due to the high surface 
temperature of the receiver tube, caused by the concentrated radiation. Consequently, evaporation 
occurs, and the vapour escapes from the receiver tube through the four holes that are positioned 1.6 
m from the inlet. Finally, the steam enters the condensation tube surrounding the holes and 
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condenses against its surface, while the remaining brine within the tube returns to the reservoir to be 
recirculated. In this system, condensation tube is naturally cooled with ambient air. Therefore, 
eliminating energy needed form cooling. 

 

Figure 1. A Schematic presentation the Parabolic Trough Collector (PTC) operation. 

In this system, the largest size available aluminium tube (152 mm) was chosen for the parabola 
to attain the highest concentration possible. Aluminium was selected due to its corrosion resistance 
when placed in the atmosphere, and its significant melting temperature. This helps to increase the 
durability of the collector, and to eliminate failures due to undesired radiation absorption. In 
addition, it was also selected to construct the condensation tube because of its relatively insignificant 
absorptivity, causing a negligible temperature increase due to radiation, and thus guaranteeing a 
satisfactory condensation rate. Flexible mirrors were placed inside the parabolic trough to allow the 
reflection of sunrays [39]. Additionally, a black layer was applied on the surface of the receiver tube 
to enhance its absorptivity. The condensation tube was designed based on the size (area) of the 
receiver tube where the holes are located in order to extract the water vapour and allow it to condense 
against its surface. This methodology is adopted to enhance the system’s efficiency by reducing the 
energy consumption (and hence a cleaner production), whereas studies explored in the literature 
review required an additional power source to operate the incorporated condenser. Table 1 portrays 
the initial PTC model’s specifications. 

Table 1. Initial designed PTC model. 

Feature/Parameter 
𝑨𝑷𝑻𝑪  
(m2) 

𝑨𝒓𝒕  
(m2) Receiver Tube Size 𝑪𝑹 𝝆𝒄 𝜶 𝝉 𝑺 

𝜼𝒐𝒑𝒕𝒊𝒄𝒂𝒍 
(maximum) 

Value 0.36 0.15 
m2 

Outer diameter: 32 
mm, thickness: 4 mm 2.4 0.9  

[40] 
0.886  
[41] 1 0.58 0.47 

Parabolic Trough Collectors (PTCs) are designed to direct the solar radiation on to a single line 
along the receiver tube. The collector’s area is directly proportional to the magnification of solar 
energy received by the tube, whereas the receiver tube surface area is inversely proportional. This 
amplification is represented by the concentration ratio (CR) [42].  𝐶𝑅 = 𝐴𝐴  (1) 

According to Bellos and Tzivanidis [43], the amount of available solar beam irradiation (𝑄 ) is a 
function of the collector area (𝐴 ), as well as the direct beam solar irradiation (𝐼 ). 



Energies 2020, 13, 5479 6 of 18 

 

𝑄 = 𝐴 × 𝐼  (2) 

This expression can be utilised to identify the amount of heat the receiver absorbs with the aid 
of the following equation: 𝑄 = 𝑄 × 𝜂  (3) 

To simplify the calculation process, the optical efficiency value that will be substituted in 
Equation (4) will be the maximum optical efficiency. 𝜂 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚) = 𝛼 × 𝜏 × 𝜌 × 𝑆 (4) 

where 

𝑆 = 𝐴 − 𝐴𝐴  (5) 

Kalogirou [22] and Alarcón et al. [44] reported maximum thermal efficiency values between 40% 
and 65% for PTC. Harris and Lenz [45] found a maximum thermal efficiency of 60%–70% in their 
Parabolic dish concentrator system. This will be employed to predict the amount of useful heat 
energy in the system. Moreover, greater efficiency values will also be utilised to examine the system’s 
productivity when the losses are minimised. 𝜂 = 𝑄𝑄 = 𝑄 −  𝑄𝑄  (6) 

After the estimation of useful heat energy, the saline water outlet temperature can be computed 
using the equation below. 𝑄 = 𝑚 𝑐 (𝑇 − 𝑇 ) (7) 

The outer surface temperature can then be obtained by substituting the acquired outlet 
temperature:  𝑄 = 𝑈𝐴(𝑇 − 𝑇 ) (8) 

According to the theoretical method proposed by Chaouchi et al.’s [38] to calculate the 
distillation rate, the absorbed heat is equivalent to the evaporation heat flow (𝑄 ) and the heat loss 
(i.e., convective and radiative). The latter was approximated in Equation (7) to identify the useful 
heat, which can be employed to determine 𝑄  as demonstrated below. 𝑄 − 𝑄 = 0 (9) 

where 𝑄 = 𝑚 × 𝐿  (10) 

The aforementioned theory is primarily employed to estimate the production rate of the system. 
For the construction of the receiver tube, the impact of seawater on the materials’ performance was 
considered using Computational Fluid Dynamics (CFD) modelling. After a suitable material was 
chosen for the condenser, the CFD model was used for the enhancement process. To conduct this 
analysis, the geometry of the system was constructed in SolidWorks (Dassault Systèmes, SolidWorks 
Corp., USA) and then imported to ANSYS Fluent 19.0 (ANSYS Inc., USA). The 3D geometry was 
meshed, and the material properties and boundary conditions were set. Prior to performing a CFD 
simulation, it is essential to conduct a mesh dependency study on the receiver tube to ensure grid 
independent results. Ideally, such a study is performed upon the analysed 3D model; however, the 
lack of computational resources imposed the use of a 2D model instead Initially, the elements size 
was varied from 15mm to 5mm until the convergence was realised as demonstrated in Figure 2. Then, 
another study was conducted to determine the required number of inflation layers to achieve grid 
independent results (Figure 3). Therefore, 8mm element size (for cells) alongside 7 inflation layers 
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were selected to be applied upon the 3D model. The receiver tube that was constructed in SolidWorks 
(see Figure 4) was imported into ANSYS Design Modeller to define the domains with the details in 
Table 2. 

Table 2. Seawater thermophysical properties at 34 °C. 

Parameter Value 𝜌 (at 34 °C) 1020 kg/m3 𝑐  (at 34 °C) 4011 kJ/kgK  𝜇 (at 34 °C) 0.00087 Ns/m2  ℎ 1765.82 W/m2K 𝐿  334 kJ/kg 
 

 
Figure 2. Mesh convergence study by varying elements’ size from 15 mm to 5 mm. 

 
Figure 3. Inflation layer convergence study by varying number of layers from 1 to 9. 
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(a)                                  (b) 

Figure 4. Parabolic trough Collector in (a) 3D and (b) 2D with dimensions in mm. 

Firstly, the inner surface of the pipe was filled to allow the analysis of fluids within the receiver. 
Afterwards, the generated domain was divided to facilitate the assignment of both saline water and 
air regions. Finally, the boundary conditions (i.e., seawater inlet and outlet, water vapour outlets and 
outer surface of the receiver tube) were set in order that they could be adjusted during the simulation 
setup. The selection of a multiphase model was governed by the physics of the flow within the 
receiver tube, in which it is classified as an open channel flow. Therefore, the (Volume of Fluid) VOF 
model was chosen due to its superiority in terms of analysing such problems. Additionally, k-omega 
Shear Stress Transport (SST) turbulence model was selected to perform the CFD simulation of the 
receiver tube. This is attributed to its ability of solving a variety of problems accurately [46], as it 
converts the k-epsilon model into k-omega in the near-wall regions, whilst fully turbulent regions far 
from walls are analysed with aid of the standard k-epsilon model [47]. Furthermore, it is extensively 
employed to model heat transfer systems and recommended to be used alongside the VOF model 
[46]. Tables 3 and 4 summarise the post-processing procedure adopted to perform the simulation. 

Table 3. Multiphase modelling set-up. 

Multiphase 
Model 

Volume fraction 
parameters 

(Formulation) 

Body force 
formulation 

VOF sub-
models 

Interface 
modelling 

Surface tension 
coefficient 

(n/m) 

Volume of 
Fluid (VOF) 

Implicit Implicit body 
force 

Open 
channel 

flow 
Sharp 0.07 [48] 

Table 4. Turbulence modelling set-up. 

Turbulence Model Turbulence intensity (%) Turbulence viscosity ratio 
k-omega SST 5 10 

The daily solar irradiation in Zagazig was identified to facilitate the estimation of the distillation 
rate (Figure 5).  
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Figure 5. Annual solar irradiation for Zagazig [49]. 

Prior to performing the test, identifying the thermophysical properties of saline water is essential 
for both the theoretical calculations and the CFD simulation (see Table 4). The velocity of saline water 
is assumed to be 0.354 m/s, indicating a fully developed turbulent flow within the receiver tube. 

3. Results and Discussion 

As a reference case, parameters that are shown in Table 1, seawater parameters indicated in 
Table 4 and average beam solar intensities of the case study of Zagazig were utilised to evaluate 
system productivity due to its high solar intensity [48]. This is achieved by firstly obtaining 𝑄  using 
Equation (2), then employing Equation (6) to identify 𝑄  at the lowest thermal efficiency reported in 
literature (40%) for a PTC system [22,41]. This was done to ensure an acceptable and comparable 
results in respect to the literature. Finally, Equations (9) and (10) were utilised to estimate the distilled 
flow rate (see Figure 6). 

In addition, to analyse the functionality of the system, the receiver tube material was assessed 
using the CFD model for different marine grade metals: stainless steel, galvanised steel, aluminium 
and copper. This is done by inputting an arbitrary surface temperature of 100°C to observe the 
increase in the seawater temperature, and then examining the thermal performance against the 
materials’ corrosivity when subjected to saline water as well as their cost. This then allowed the 
selection of most suitable receiver tube material. 

Furthermore, using the CFD model, the surface temperature of the receiver tube is varied from 
75 to 200 °C with an interval of 25 °C to identify the most suitable material for the receiver tube. This 
is performed to investigate the maximum vapour volume fraction induced within the domain and 
the brine outlet temperature as the surface temperature changes to compute 𝑄 . It is then employed 
to determine 𝑄  at the lowest thermal efficiency that was previously reported (40%). Then, the 𝐴  
was calculated using the average direct solar intensities of the case study of Zagazig, in Egypt, in 
order to obtain CR, therefore allowing the determination of the required CR to induce a maximum 
vapour volume fraction that approach 1 while eliminating excessive increase in the vapour 
temperature. The latter is an essential factor to ensure that the condensation tube performs optimally.  
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Figure 6. Freshwater production rate variation throughout the year according to a thermal efficiency 
of 40% for the reference case. 

Figure 6 allowed the observation of the production rate variation throughout the year in 
Zagazig. Moreover, it resulted in identifying 1.72 kg/hr as the maximum production rate that can be 
attained in the reference case. Moreover, the thermal performance (i.e., brine outlet temperature and 
maximum vapour volume fraction) was assessed using the CFD model (see Figures 7 and 8), whereas 
corrosivity parameters were acquired from previous studies (corrosion parameters: length: 50 mm, 
seawater temperature: 60 °C, experiment duration for corrosion potential: 24hrs and corrosion rate 
experimental duration: 1 year) (Table 5). The evaluated materials demonstrated a comparable thermal 
performance. Nevertheless, copper was regarded as superior as a result of achieving a marginally 
greater brine outlet temperature and maximum vapour volume fraction. Furthermore, aluminium 
and galvanised steel indicated a poor performance in terms of corrosivity in contrast to stainless steel 
(grade 316) and copper. Therefore, employing them to construct the receiver tube was not considered 
despite their insignificant costs. Stainless steel (grade 316) showed the greatest corrosion resistance 
and cost among the examined metals, whereas copper possessed slightly less corrosion resistance 
and a moderate cost. Thus, copper receiver tube was deemed as the most suitable choice for such a 
system. The CR values indicated in Table 6 correspond to the optimum receiver tube (copper) surface 
temperature. Moreover, the examination of Figure 9 allowed the identification of 90.56 as an optimal 
CR value for Zagazig, as well as regions with similar solar intensities. This is attributed to its ability 
of realising a maximum vapour volume fraction that approaches 1 (0.94) at an outlet temperature of 
111 °C. In contrast, lower CR values failed to generate a satisfactory vapour volume fraction. Whilst 
significantly greater CR figures achieved a comparable maximal vapour dryness; however, an 
excessive increase in the outlet temperature was observed. Nevertheless, this statement is valid only 
if the receiver tube is constructed of copper, and its size is equivalent to the size of the pipe employed 
in this investigation. 
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Figure 7. Temperature contours corresponding to surface temperature (100 °C) for different receiver tube materials. 
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Figure 8 Vapour volume fraction contours corresponding to an outer surface temperature of 100 °C for different receiver tube materials.
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Figure 9. Evaluation of the obtained CR integers with respect to the maximum vapour volume fraction 
and outlet temperature to determine the optimal CR, for Zagazig. 

Table 5. Comparative analysis between marine grade metals to construct the receiver tube according 
to the thermal performance, corrosivity, and cost. 

Material 
Brine Outlet 
Temperature 

(°C) 

Maximum 
Vapour 
Volume 
Fraction 

Corrosion 
Potential 

(mV) 

Corrosion 
Rate 

(miles/year) 

Receiver 
Tube Cost 

($) 

Stainless steel 
(grade 316) 

62.5  0.00523  −180 [50] 0.59 [51] 149.38 

Aluminium 
(Al 6061) 67.7 0.065  −1035 [52] 3.1496 [51] 23.55 

Copper 67.74 0.072  −330 [53] 1 [53] 33.38 
Galvanised 

steel 
67.42 0.0428  −1055.9 [54] 7.6 [54] 14.48 

Table 6. Concentration Ratio (CR) values required for different outer surface temperatures according 
to Zagazig solar intensities. 

Outer Surface Temperature (°C) Required CR in Zagazig 
75 34.67 
100 55.54 
125 75.56 
150 90.36 
175 117.30 
200 181.56 

The improvement process resulted in alteration of the reference case design according to the 
targeted region (see Table 7).  

However, parameters such as 𝜌 , α and 𝜏 remained unchanged. Furthermore, the maximal 
distilled flow rate of the improved system was estimated to be 6.93 kg/hr, indicating a significant 
enhancement by 403% to the system’s performance for Zagazig.  
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However, productivities of the initial and improved system were estimated theoretically and 
therefore testing this system is vital to determine the reliability of the adopted theoretical model. 
Furthermore, experimenting the proposed design principle is essential in order to evaluate the 
functionality of utilising the condensation tube instead of the heat exchanger to execute the 
condensation process. The reference case could potentially produce 1.72 litres/hr at the observed 
thermal efficiency in Zagazig, surpassing the maximal yield reported by Chaouchi et al. [38] (1.27 
litres/hr), with minimal carbon footprint. Nevertheless, the maximal productivity of this system was 
inferior to Nafaa et al. [27] and Arun and Sreekumar’s [36] highest production rates (2.952 kg/hr and 
2.3 kg/hr, respectively), because of design’s CR and the utilisation of stainless steel (grade 316) as a 
receiver tube. However, the improvement procedure resulted in enhancing the system’s productivity 
drastically. This was realised by observing Figure 10, as the lowest output estimated for the enhanced 
design was greater than maximal yields reported in the literature for direct solar desalination 
systems. 

 
Figure 10. Improved system distilled flow rate variation with respect to average beam solar radiation. 

Table 7. Improved PTC desalination system design specifications for Zagazig. 

Feature/Parameter 
𝐴   
(m2) 

𝐴   
(m2) Receiver Tube Size 𝐶𝑅 𝜌  𝛼 𝜏 𝑆 

𝜂  
(maximum) 

Value 13.630 0.150 

Outer diameter: 32 
mm, 

thickness:4mm 
90.360 0.9  

[40] 
0.886  
[41] 

1 0.989 0.789 

The developed model showed that the proposed design can be effortlessly operated to distil 
seawater, thus facilitating the utilisation of this technology in regions that suffer from water scarcity, 
instead of or conjointly with solar stills.  

In addition, the proposed system’s sustainability can be improved by addressing environmental 
problems resulting from disposal of the rejected water (brine) into the sea. Therefore, future research 
could evaluate the merger of salinity ponds with this technology. 
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This investigation developed a PTC system model to distil seawater in the Middle East and 
North Africa using a cleaner sustainable technology in response to water scarcity. The designed 
model differed from previous systems in terms of the replacement of the heat exchanger by a 
condensation tube and the introduction of a black layer to the receiver tube. This was done to enhance 
the system’s efficiency and increase the receiver tube absorptance, respectively. It was estimated that 
the model can achieve a maximum production rate of 1.72 kg/hr in the case study area at the reference 
case. However, CFD modelling was employed to improve its productivity in order to surpass direct 
desalination systems yields. Firstly, copper was identified as the most suitable material to construct 
the receiver tube due to its superior thermal performance, insignificant corrosivity and acceptable 
price. Then, a CR value of 90.56 was recognised as optimum as it was able to induce a maximum 
vapour volume fraction that approaches 1 without causing excessively increasing in the vapour outlet 
temperature. Consequently, the system’s production rate was improved dramatically, as a maximal 
production rate of 6.93 kg/hr was estimated to be attained in Zagazig. 

Nomenclature ρ: Saline water density (kg/m3) V: Saline water velocity (m/s) D: Receiver tube inner diameter (m) μ: Dynamic viscosity of saline water (kg/m.s) c : Specific heat capacity (J/K) k : Saline water thermal conductivity (W/m K) A : Surface area of the collector (m2) A : Surface area of the receiver tube (m) P: Pressure (Pa) S : External forces (N) S : External forces (N) S : External forces (N) Φ: Dissipation function to describe viscous stresses effects S : External forces (N) m → : Mass transfer from the liquid phase to the vapour phase (kg/s/m3) r: Mass transfer intensity factor (s-1) α : Phase volume fraction ρ : Density of the fluid (kg/m3) T: Temperature of the liquid (°C) 
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