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Abstract 23 

Social network analysis is a suite of approaches for exploring relational data. Two approaches 24 

commonly used to analyse animal social network data are permutation-based tests of significance 25 

and exponential random graph models. However, the performance of these approaches when 26 

analysing different types of network data has not been simultaneously evaluated. Here we test both 27 

approaches to determine their performance when analysing a range of biologically realistic 28 

simulated animal social networks. We examined the false positive and false negative error rate of an 29 

effect of a two-level explanatory variable (e.g. sex) on the number and combined strength of an 30 

individual’s network connections. We measured error rates for two types of simulated data 31 

collection methods in a range of network structures, and with/without a confounding effect and 32 

missing observations. Both methods performed consistently well in networks of dyadic interactions, 33 

and worse on networks constructed using observations of individuals in groups. Exponential random 34 

graph models had a marginally lower rate of false positives than permutations in most cases. 35 

Phenotypic assortativity had a large influence on the false positive rate, and a smaller effect on the 36 

false negative rate for both methods in all network types. Aspects of within- and between-group 37 

network structure influenced error rates, but not to the same extent. In grouping-event based 38 

networks, increased sampling effort marginally decreased rates of false negatives, but increased 39 

rates of false positives for both analysis methods. These results provide guidelines for biologists 40 

analysing and interpreting their own network data using these methods.  41 

 42 

Key words: social network analysis, permutation, randomisation, exponential random graph model 43 

  44 
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Introduction 45 

Essentially all animals engage in some form of social interaction, ranging from interacting with large 46 

numbers of individuals while living in groups, to mating and competitive interactions among 47 

otherwise solitary organisms (Frank 2007). Social interactions are key for various aspects of organism 48 

biology, such as development (Berman and Kapsalis 1999; Bautista et al. 2015), movement and 49 

dispersal (Sumpter 2006; Strandburg-Peshkin et al. 2017), and mating (Clutton-Brock et al. 1997; 50 

Cheney et al. 2016). As such, the development of methods that quantify social interactions in a wide 51 

range of taxa and enable accurate inference of the underlying causes of variation in social 52 

connectivity is key (Krause et al. 2014).  53 

Studying the social lives of animals can be challenging, as the nature of their associations, 54 

interactions and relationships can be difficult to observe and quantify in a manner consistent across 55 

species and contexts. In the last two decades much headway has been made by incorporating the 56 

techniques of social network analysis (SNA) into ecological and evolutionary studies (Webber and 57 

Vander Wal 2019). In a social network, individuals (“nodes”) interact with others (connected by 58 

“edges”) forming a network, which can be represented as a pairwise adjacency matrix. Initially 59 

developed in sociology to study human interactions (Wasserman and Faust 1994), SNA has now 60 

been widely applied to the interactions of mammals such as primates (Sade 1972), cetaceans 61 

(Lusseau 2003) and elephants (Wittemyer et al. 2005), as well as birds (Myers 1983), lizards (Leu et 62 

al. 2010), fish (Croft et al. 2004) and insects (Fewell 2003).  63 

Social network data often violate assumptions of conventional statistical approaches 64 

through being non-independent as a result of the relational nature of the data being analysed 65 

(James et al. 2009; Croft et al. 2011). Additionally social network data can often contain biases 66 

imposed by the method of data collection (Franks et al. 2010), such as when observations are 67 

skewed towards the most detectable individuals and/or in the environments that are the easiest to 68 

make observations in. As a result, some methods of data collection can imbue even randomly 69 

generated networks with seemingly biological patterns (Franks et al. 2010). While association 70 

measures have been developed that can control for some of these biases (Whitehead and James 71 

2015), it remains important to control for them in subsequent analyses (James et al. 2009; Croft et 72 

al. 2011). In addition, response variables obtained from social networks are frequently non-73 

Gaussian, and often zero-inflated, which increases the complexity of the statistical modelling 74 

required (Krivitsky 2012, 2015). Finally, individuals may often be missed, or interactions not 75 

detected, which can influence both individual network metrics but also whole-network structure 76 

(Franks et al. 2010; Silk et al. 2015; Davis et al. 2018). 77 
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To deal with this challenging data analysis, a suite of methods has been developed 78 

specifically for SNA (Wasserman and Faust 1994). We focus on two common choices for analysing 79 

the social networks of animals. The first of these are permutation-based approaches (Bejder et al. 80 

1998; Anderson et al. 1999; also referred to as “randomisation-based approaches” or simply 81 

“randomisations”). Here, the observed data (either raw data prior to constructing the network or the 82 

network itself) are permuted, with analytical outputs from the resulting randomised networks 83 

compared to equivalent outputs from the observed data to test for statistical significance. The 84 

advantages of this are twofold. First, using a permutation-based approach does not make the same 85 

assumptions about the independence or normality of model residuals as more conventional 86 

statistical approaches do. Second, by constraining the permutations in particular ways it is possible 87 

to control for biases generated by methods of data collection (Bejder et al. 1998; James et al. 2009; 88 

Croft et al. 2011), which is particularly important when social relationships are inferred from data on 89 

spatio-temporal co-occurrence or group membership (Whitehead and Dufault 1999; Franks et al. 90 

2010).  91 

The most basic permutation methods perform swaps on the network itself by swapping the 92 

identity of nodes or edges. However, more complex approaches permute the collected data prior to 93 

construction of the network (the “datastream”), and can offer greater ability to control for biases in 94 

data collection especially for methods which infer social relationships from group membership (Croft 95 

et al. 2008; Farine and Whitehead 2015; Farine 2017). By permuting the identities of the individuals 96 

within observed groups, or by shuffling edges among individuals observed in the same location at 97 

the same time, one can generate a large number of permuted networks that have the same 98 

structural biases as the collected data but lack any biological processes that would cause additional 99 

non-random patterns. The difference in the number of connections (degree) of males and females, 100 

for example, could be compared between the observed and randomised networks, indicating 101 

whether males are interacting with more other individuals than females, given their distribution 102 

among groups. These permutations can be further constrained to account for patterns of 103 

interactions that might arise from heterogeneously distributed resources (Ramos-Fernández et al. 104 

2006), or other factors not related specifically to the social tendencies of individuals. Such 105 

permutations are very common, and well described in primers and “How-to” guides (Farine 2013, 106 

2017; Farine and Whitehead 2015). 107 

An alternative approach is to fit statistical models developed for use in networks directly to 108 

the observed network data. Examples of these models include exponential random graph models 109 

(ERGMs; Lusher, Koskinen, & Robins, 2012; Robins, Pattison, Kalish, & Lusher, 2007) and stochastic 110 

actor-oriented models (Snijders et al. 2010; Ilany et al. 2015; Fisher et al. 2017a), which have both 111 
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been applied previously to analyse animal networks. With these approaches, terms, similar to those 112 

fitted in a linear model, are specified to model the probability or weight of edges in the networks. 113 

These terms can explicitly relate to other links in the network, hence directly modelling the non-114 

independence of network data. An additional benefit is that the nature of the dependence 115 

assumption made can be specified within the model (Robins et al. 2007; Lusher et al. 2012), 116 

although this does add complexity to model implementation. Further terms can be fitted that 117 

represent factors that may underly differences in social behaviour, for example, for individuals of a 118 

certain type (e.g. individuals of the same sex) to associate more or less (Silk and Fisher 2017). Using 119 

ERGM parameters for explanatory variables in the model are estimated simultaneously, for example 120 

estimating the difference in the number of connections between males and females, while 121 

accounting for the fact that individuals may be in different groups or live varying distances apart. 122 

Simultaneous estimation allows one to evaluate multiple competing hypotheses for the formation of 123 

animal social structure, while controlling for potentially confounding factors (Desmarais and 124 

Cranmer 2012). In addition, because ERGMs are fitted to the observed network itself, they provide a 125 

more direct measure of the importance of combinations of covariates in explaining social structure. 126 

However, some authors have suggested that ERGM parameter estimates may be sensitive to missing 127 

data (Shalizi and Rinaldo 2013), and their performance when analysing data collected through 128 

group-membership has not yet been thoroughly tested (Farine 2017; Silk and Fisher 2017). 129 

Permutation and ERGM approaches are distinct approaches, yet often can be used in the 130 

same way to test hypotheses about the structure of animal social networks. Despite this, they have 131 

not been simultaneously evaluated in the context of analysing animal social network data. This 132 

means that there is a paucity of information on how relatively well each approach performs for 133 

different types of network, methods of data collection, or questions in animal SNA. On one hand, 134 

generative network models such as ERGMs have been designed for studies of human social 135 

networks. This means that ERGMs may not be appropriate to model some animal social network 136 

data, as such networks are often based on inferred relationships, missing data can be a considerable 137 

problem, and there may be great biases generated by the method of data collection. On the other 138 

hand, permutation-based approaches require appropriate, and often system-specific, null models 139 

and their performance might depend on other features of the network in ways that are challenging 140 

to predict. 141 

We assessed the performance of both permutation-based and ERGM approaches to test 142 

hypotheses relating individual traits to the strength of social network connections in simulated 143 

network data. The relationship between individual traits and network connectivity is a common 144 

research question in studies of animal social networks for which both of these approaches are 145 
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appropriate. For some network-related hypotheses (e.g. the consistency of individual position within 146 

networks for different behaviours or time periods, or when the network trait is a predictor variable), 147 

ERGMs are less applicable and other approaches should be used.  We used simulated data, rather 148 

than real data, for two key reasons: a) we could control the “biological” signal in the datasets, and so 149 

we knew the true effect and could assess whether either method accurately recovered it (e.g. 150 

Bonnet and Postma 2016); and b) we had a close underlying understanding of the generative 151 

processes underlying our emergent network structures, meaning that we could more effectively 152 

explain variation in model performance.  153 

We simulated networks that varied considerably in their structure and sampling 154 

methodology to recreate a diversity of network types likely to be encountered in animal network 155 

analysis. We simulated two broad types of network: dyadic-based (for interaction or contact 156 

networks) and grouping-event based (sometimes termed association) networks. Our aim was not to 157 

compare these different kinds of network, but to simultaneously evaluate the performance of both 158 

ERGMs and permutation-based approaches when analysing them. Our dyadic-based networks 159 

represent the types of networks constructed by researchers using data from proximity loggers or 160 

direct observations of behavioural interactions between individuals. Such data might be gathered by 161 

researchers collecting data on terrestrial mammals using proximity loggers, or aggressive 162 

interactions between individually marked fiddler crabs. Our grouping-event based networks 163 

represent the types of networks constructed by researchers using the Gambit of the Group 164 

assumption (Whitehead and Dufault 1999), where individuals overlapping in space and time are 165 

deemed to have associated. Such data might be gathered by researchers observing flocks of ringed 166 

birds or shoals of tagged fish. We also manipulated other parameters in our network generation 167 

process, enabling us to vary other key aspects of animal network structure such as modular structure 168 

(common in group-living or fission-fusion societies) and the importance of space in determining 169 

connectivity in the network.  170 

Once we had simulated these dyadic- and grouping event-based data, we then sampled 171 

them with a range of sampling intensities, to give us data sets analogous to those collected by 172 

animal social network researchers. We looked for a sex effect on an individual’s network “strength”, 173 

which is the sum of all an individual’s weighted edges in the network. Using strength as a response 174 

variable represents a researcher testing a biologically plausible hypothesis (e.g. females have more 175 

and/or stronger connections than males). We used a range of parameter values that resulted in 176 

either no difference between the sexes, more gregarious males, or more gregarious females. We 177 

also added various confounding effects to our networks, for instance the presence of positive or 178 

negative assortativity by sex, or stronger or weaker effects of distance between individuals. We then 179 
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analysed the networks with each approach and measured the frequency of false positive (type I) and 180 

false negative (type II) errors. We predicted that permutation-based approaches would outperform 181 

ERGM-based approaches in networks with a high density of edges, in particular in grouping event 182 

based networks with sampling error (Farine 2017). However, we anticipated that ERGM approaches 183 

would perform better in dyadic networks, especially those with lower edge densities, as a result of 184 

directly incorporating confounding effects. 185 

 186 

Methods 187 

Our methods comprised of three stages: initial network generation to generate the underlying social 188 

structure of the population, network sampling to generate the two different types of social network 189 

data, and network analysis. 190 

 191 

1. Network generation 192 

We simulated social networks to emulate patterns of interactions seen in real networks. The 193 

frequency of interactions depended on the sexes of both members of the dyad. Males could be 194 

generally more, equally or less social than females (Wolf et al. 2007). Detecting this effect was our 195 

test of the models’ performance. Frequency of interactions between individuals could also depend 196 

on whether individuals were the same sex, part of the same social group and on the distance 197 

between their groups. Intra-sex interactions could therefore be more, the same, or less strong than 198 

inter-sex interactions. Similarly, within-group interactions could be as or more common than among-199 

group interactions (Weber et al. 2013), and interactions between closer individuals could be as or 200 

more common than those further apart (Best et al. 2014). These non-random elements of our 201 

simulations create confounding signal within the networks which may influence the analysis.  202 

 203 

Detailed methods: 204 

For each network we generated a population of 100 individuals of random sex, randomly sorted into 205 

10 groups of 10. Each group was assigned a random location in space. Distance between these 206 

locations was normalised so that the greatest possible distance was 1. Dyadic associations were 207 

potentially generated between all individuals in the population based on their sex, whether the 208 

interaction was within or between groups and the distance between the groups. Specifically, for 209 

each dyad, edge weight was the sum of two integers, each drawn randomly from the following 210 

negative binomial distribution: 211 

 212 

𝑁𝐵(𝑠𝑖𝑧𝑒 =  (𝑚. 𝑖. 𝑒𝑓𝑓 +  𝑔. 𝑑𝑒𝑛𝑠) × 𝑑𝑖𝑠𝑡𝑑.𝑒𝑓𝑓, 𝑝𝑟𝑜𝑏 = 0.3) 213 
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 214 

Where m.i.eff is the effect of being male (always 0 for females), g.dens is controls the baseline 215 

strength of interactions, the value of which is dependent on whether an interaction is within a group 216 

(i.dens in Table 1) or between groups (o.dens in Table 1). dist is the inverted distance between 217 

groups (so that 1 is within the same group and 0.001 is the greatest distance between groups) and 218 

d.eff is modifier for the effect of distance. Each individual in a dyad therefore has a value generated 219 

from their own negative binomial distribution (see supplementary Figs. S1 & S2). These values are 220 

then summed to obtain the weight of the edge connecting that dyad. The weights of edges between 221 

the same sex were then multiplied by an additional term, sex.eff to increase or decrease the 222 

frequency of same sex interactions. For each combination of these parameters (a total of 243, see 223 

Table 1) we generated 100 undirected, weighted adjacency matrices. We refer to these as the “true” 224 

networks (Figure 1). 225 

 226 

2. Network sampling 227 

Having generated the true network, we then simulated two different methods by which researchers 228 

might attempt to measure these relationships. First, we simulated dyad-based networks, as might be 229 

generated by observations of behavioural interactions (e.g. grooming), or bio-logging data (e.g. 230 

proximity loggers). Secondly, we simulated grouping event-based networks, in which all individuals 231 

observed associating in a single grouping event are assumed to have engaged in a biologically 232 

meaningful social interaction (Whitehead and Dufault 1999).  233 

Social network data collected on animals are often far from complete: unidentified 234 

individuals often make up considerable portions of populations, and many interactions and grouping 235 

events simply go unobserved (Franks et al. 2009, 2010; Farine 2014; Silk et al. 2015; Davis et al. 236 

2018). We therefore simulated our measurements at differing accuracies, governed by an 237 

observation effort parameter. The observation effect parameter had the values of 0.3, 0.6, 0.9 and 1, 238 

where 1 is considered complete sampling of either the network or the series of grouping events used 239 

to construct it (See Fig. 1 for a network diagram showing the effect of differing observation effects 240 

and network types). Introducing sampling effects may create opportunities for spurious effects to be 241 

detected (e.g. incomplete data may create the impression that individuals prefer to associate with 242 

individuals with a same number of connections as them, when no such effect exists in the network), 243 

but also prevent real effects from being detected.  244 

 245 
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Detailed methods: 246 

Dyad-based networks: 247 

Dyad-based networks were generated by adding noise to the true network. For each edge, a new 248 

edge weight was randomly selected from a sequence ranging from zero to the “true” edge weight, 249 

using a probability distribution where the higher the observation effort, the greater the probability 250 

that the value selected would be closer to the true edge weight. Edge weights (for permutation 251 

based and ERGM approaches) therefore remained un-scaled counts of interactions as would be 252 

expected from networks of dyadic interactions or counts of contacts based on proximity. The 253 

simulated error may represent hardware problems or missed observations. For graphical illustration 254 

of how observation effort affects the likelihood of choosing the true edge weight, see 255 

supplementary Fig. S3. 256 

 257 

Grouping event-based networks: 258 

For each true network we generated a group-by-individual matrix (GBI: recording which individuals 259 

were recorded in a given grouping event) consisting of 1000 grouping events (n.b. grouping events 260 

are distinct from the group membership of individuals in the underlying network of true social 261 

relationships). To generate a grouping event, a random individual was chosen from the population to 262 

act as the “seed” of the grouping event (Fig. S4a). Edge weights were rescaled between 0 and 1 – 263 

where 1 was the greatest edge weight in the true network. The squared, rescaled dyadic edge 264 

weights of the “seed” individual with all other members of the population were used as the 265 

probability of success in a random binomial trial. Any individuals with successes were added to the 266 

grouping event (Fig. S4b). As we defined a grouping event as consisting of at least two members, this 267 

process was repeated until at least one other individual was added to the event. 268 

After generating a grouping event, each member of the event was then used (one at a time, 269 

in a random order) as focal individual (Fig. S4c). Further members were added to the event based on 270 

the strength of their connections with the focal individual. Unlike when generating the event, here it 271 

was possible for no individuals to be added to the event when considering a focal individual. At this 272 

stage, if a potential joiner had an edge of weight zero with any individual already in the event, the 273 

probability of the potential joiner being added to the event was reduced to 0.01, regardless of the 274 

strength of the connection to the current focal individual (Fig. S4c and d). This represents the 275 

potential individual being unlikely to be part of this grouping event due to the presence of members 276 

with whom they have no connection in the true network, but with a small chance that these 277 

individuals could occur within the same group. Each group member added to an event was treated 278 

as a focal individual themselves until every member had been treated as a focal individual (Fig. S4d). 279 
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Once all 1000 grouping events had been generated, a proportion of these events were randomly 280 

discarded depending on observation effort (the proportion equalling 1 – obs.eff). These 281 

represented unobserved grouping events. The remaining GBI matrices were then converted into 282 

adjacency matrices, with edge weight being the number of grouping events two individuals co-283 

occurred in. For the permutation-based analysis of the grouping event-based networks edge weights 284 

consisted of the simple ratio index (Cairns and Schwager 1987) - the number of grouping events in 285 

which a pair of individuals were observed together was divided by the sum of the number of events 286 

each individual was observed in. For the ERGM-based analysis edge weights consisted of the number 287 

of groups individuals were seen in together, to be consistent with the type of ERGM we fitted.  288 

Networks generated using grouping event-based approaches can create subtly differently 289 

structured networks (Franks et al. 2010). We confirmed that both the group-based and dyad-based 290 

networks generated using our algorithm were broadly representative of the true network using 291 

Mantel tests (Mantel 1967) during the development of these simulations (see Fig. S5 for results of 292 

these Mantel tests, Fig. 1 for a network diagram comparing the true network with the sampled 293 

network and Figs. S6 – 8 for similar figures for further parameter sets). 294 

 295 

3. Network analyses 296 

We assume for the purposes of this analysis that the researcher approaching these network data is 297 

not specifically interested in how individuals are assorted within vs. among groups, or within vs. 298 

between the sexes, but that they acknowledge that this occurs in their study system. Instead, they 299 

wish to determine whether males and females differ in their frequency and strength of their social 300 

relationships.  301 

 ERGMs treat the network as a response variable and fit parameter by finding values that 302 

produce sets of edges with similar properties to those in the observed network (Robins et al. 2007; 303 

Hunter et al. 2008). Initially they were developed to model the presence/absence of edges as binary 304 

response variables, but subsequent developments have facilitated the development of ERGMs for 305 

weighted networks (Lusher et al. 2012). For our ERGMS, we fitted a count ERGM to the networks 306 

(Krivitsky 2012, 2015), as our association strengths are integers. For the dyadic networks, we fitted a 307 

term for “sex assortativity”, modelling the tendency for individuals of the same sex to interact more 308 

or less frequently, and “same-group”, modelling the tendency for individuals within the same group 309 

to interact more frequently. We also fit the distance between each dyad (based on the location of 310 

their groups), an n x n matrix, as a dyadic covariate, modelling the tendency for individuals living 311 

further apart to interact less. For the grouping event-based networks, as the data were collected by 312 

observing many grouping events and “true” group membership was assumed to be unknown, we did 313 
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not fit a term for shared group membership but did include a dyadic covariate that consisted of a 314 

distance matrix for home range centroids. Each individual’s home range centroid was calculated as 315 

the mean location of the groups the individual was observed in. To detect the biological signal of 316 

interest in both types of network, we included a term for sex-degree to investigate the tendency for 317 

the sexes to have a different level of gregariousness. We confirmed a subset of models had 318 

converged and fitted the networks appropriately following Lusher et al. (2012). We considered the 319 

model to have detected an effect when p < 0.05. 320 

 For the permutation-based approach, we generated permuted networks in one of two ways. 321 

For each dyad-based network, we simulated 10,000 networks where the rows and columns of the 322 

dyad-based network were shuffled using the “rmperm” function in the R package sna (Butts 2008). 323 

For the grouping-event based networks, we created 10,000 permutations of each network using the 324 

function “network_swap” in the package asnipe (Farine 2013). This permutes the data stream by 325 

swapping individuals between grouping events 10,000 times, resulting in 10,000 randomised 326 

networks. We constrained these swaps to only occur between individuals within the same location, 327 

to account for of the effect of space on network structure. We then constructed a new network for 328 

each permutation. 329 

In each of our dyad- and grouping event-based networks and the permuted versions of 330 

these, we compared the weighted degree of males and females using a (G)LMs. We used a Poisson 331 

error distribution for dyad-based networks and a Gaussian error distribution for grouping event-332 

based networks due to the differences in edge weights between the two (edge weights of dyad-333 

based networks were counts and edge weights of grouping-event based networks used the simple 334 

ratio index for the permutation-based analysis). We compared the distribution of effect sizes from 335 

the permuted networks to the effect size from the observed network (Farine 2017). P-values were 336 

calculated as the proportion of effect sizes in the permuted networks that were smaller than the 337 

effect size in the observed network. We considered the model to have detected an effect when p < 338 

0.05 (in a two-tailed test). These comparisons allowed us to determine whether the differences in 339 

weighted degree between the sexes, differed from that expected in the permuted networks To 340 

calculate the rate of false positives, for the 100 networks in each parameter set, where the effect of 341 

being male was set at 0, we counted the number of times the model detected a difference between 342 

the sexes in weighted degree. This gives a failure rate out of 100. To calculate the rate of false 343 

negatives, for the 100 networks in each parameter set where the effect of being male was not 0, we 344 

counted the number of times the model failed to detect a difference between the sexes in weighted 345 

degree. This also gives a failure rate out of 100.  We examined how the rates of false positives and 346 

negatives vary depending on each level of our other parameters (the sex effect, within-group edge 347 
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density, between-group edge density, distance effect and observation effort). For all parameters 348 

other than the observation effort, we only consider cases when the observation effort was 1.  349 

 350 

Results 351 

We provide an overview of key findings in the main text based on graphs of the error rates of the 352 

two methods under different scenarios. For the number and percentage of simulations with error 353 

rates over 5% and 10% for each of the levels of the parameters plotted here, please see Tables S2-S5 354 

in the supplementary materials. 355 

 356 

False positives 357 

Both ERGMs and our permutation-based approach were relatively prone to false positives in dyad-358 

based and grouping event-based networks (Fig. 2, columns a and b). False positive rates (at α = 0.05) 359 

were typically lower for ERGMs than for permutations, and lower in dyadic networks than in 360 

grouping event-based networks. 361 

 362 

Dyadic networks 363 

The difference in false positives was marginal for dyadic networks, with false positive rates typically 364 

lower for ERGMs than for permutations (Fig. 2a). The presence of a confounding effect of 365 

assortativity by sex had the greatest effect on rates of false positives compared with other 366 

parameters tested. The permutation-based approached performed relatively well when there was 367 

no assortment by sex but poorly otherwise. In contrast, ERGMs performed best when the network 368 

was negatively assorted by sex, and worst when positively assorted by sex (Fig. 2a i). While the 369 

performance of ERGMs was unaffected by any other parameters, including the density of within 370 

group interactions (Fig. 2a ii) the permutation-based approach performed worse when there was a 371 

higher density of between-group connections (Fig. 2a iii) or with a distance effect of zero (Fig. 2a iv), 372 

i.e. in situations when the group structure of the network was less clear. 373 

 374 

Grouping event-based networks 375 

Both ERGMs and permutation-based methods produced a high false positive rate of around 40% in 376 

grouping-event-based networks (Fig. 2b). ERGMs showed a much more variable error rate than the 377 

permutation-based approach, which was quite consistent. Similar to the results for dyad-based 378 

networks, ERGMs performed best with negative assortativity by sex and worst with positive 379 
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assortativity, while permutations performed best with no assortativity by sex (Fig. 2b i). However, 380 

unlike the results for dyad-based networks, permutations also performed well when there was 381 

negative assortativity, while ERGMs performed nearly as poorly under no assortativity as under 382 

positive assortativity. Changes to network structure had different impacts on false positive rates for 383 

ERGMs and permutations. Increasing both the within- and between-group edge density increased 384 

the false positive rate for ERGMs (Figs. 2b ii and 2b iii). For permutations there was a smaller effect, 385 

with a slight reduction in false positive rates when within-group density increased (Figs. 2b ii and 2b 386 

iii). Increasing the distance effect had relatively little effect on the rates of false positives for both 387 

ERGMs and permutations (Fig. 2b iv).  388 

 389 

False negatives 390 

Both ERGMs and our permutation-based approach were much less prone to false negatives than 391 

false positives. The rates of false negatives were especially low in dyad-based networks and higher in 392 

grouping event-based networks (Fig. 2, columns c and d). False negative rates were typically lower 393 

for ERGMs than for permutations. 394 

 395 

Dyad-based networks 396 

Both methods were highly effective at detecting differences in weighted degree between the sexes 397 

and had very low rates of false negatives in dyad-based networks (Fig. 2c). This was generally true 398 

whether the assortativity effect was positive, negative or absent, although both methods, especially 399 

the permutation-based approach, showed an increase in false negative rates when the networks 400 

were negatively assorted by sex (Fig. 2c i). Both methods had higher false negative rates when the 401 

within-group edge density was lower (Fig. 2c ii), but between-group edge density had no clear effect 402 

(Fig. 2c iii). When distance had a stronger negative effect on between group edges (i.e. connections 403 

among members of distant groups were highly unlikely) both methods had slightly reduced 404 

performance (Fig. 2c iv).  405 

 406 

Grouping event-based networks 407 

Both methods produced false negative rates of approximately 10% for ERGMs and 20% for 408 

permutations, higher than for dyad-based networks (Fig. 2d). False negative rates for ERGMs and 409 

permutations were much higher when networks were negatively assorted by sex than when they 410 

were not assorted or positively assorted (Fig. 2d i). Networks with stronger within-group connections 411 
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had lower rates of false negatives for both methods (Fig. 2d ii), with stronger between-group 412 

connections having a similar but smaller effect on the false negative rate of ERGMs only (Fig. 2d iii). 413 

As for dyad-based networks, increasing the strength of the distance effect on between-group 414 

connections increased false negative rates for both methods (Fig. 2d iv).  415 

 416 

The effect of network sampling on error rates 417 

Sampling a subset of possible interactions or contacts from the dyad-based network in an unbiased 418 

manner had no clear effect on rates of either false positives (Fig. 3a) or false negatives (Fig. 3b). In 419 

contrast, sampling a subset of possible grouping events had a considerable effect on inference in 420 

grouping event-based networks. Contrary to our predictions, there were more false positives when a 421 

more complete sample of grouping events conducted (Fig. 3c) while, conversely, increased 422 

observation effort reduced the rate of false negatives (Fig. 3d). 423 

 424 

Discussion 425 

We have evaluated the performance of both ERGM and permutation-based approaches for 426 

analysing animal social networks in a range of contexts. There are four key take-home messages 427 

from our work. First, ERGMs generally performed well, producing low rates of false positives for 428 

dyad-based networks, and lower rates of false negatives in both dyad- and grouping event-based 429 

networks. Second, both ERGMs and datastream permutations had high false positive rates in 430 

grouping-event based networks, supporting similar results from Weiss et al. (2020) for permutations 431 

and highlighting that ERGMs do not necessarily provide a viable alternative in this context without 432 

careful consideration of additional variables to control for sampling effects. Third, the performance 433 

of both approaches depended on the assortativity of the network; both approaches performed well 434 

when there was no assortativity by sex, permutation-based approaches performed poorly when 435 

there was any assortativity by sex and ERGMs performed poorly when there was positive assortment 436 

by sex. Fourth, in grouping event-based networks both analysis approaches gave lower rates of false 437 

negatives, but higher rates of false positives, as observation effort increased. These results should 438 

aid researchers in choosing appropriate analytical approaches in animal social network studies. We 439 

have summarised our key findings and recommendations in Table 2. We stress however that no 440 

network analysis method is “plug and play”, and that careful consideration should be given when 441 

fitting an ERGM or when designing permutations to analyse any network. 442 



15 
 

In dyad-based networks, rates of false positives were relatively low for detecting differences 443 

in degree, although typically above those that would be expected for α = 0.05. False positive rates 444 

were typically higher for permutations than ERGMs for all dyadic networks. Permutations may 445 

therefore be anti-conservative when analysing dyad-based networks. This was particularly true when 446 

additional effects are present in networks, as ERGMs performed better than permutations if there 447 

was either positive or negative assortativity by sex, but not if there was no sex-assortativity. 448 

Performance was worst for both methods when connections were positively assorted by sex, while 449 

permutations also performed badly when networks were negatively assorted by sex, yet ERGMs 450 

performed best in this context. The poor performance of permutations in this context suggests that 451 

when a trait affects both degree and assortativity, permutation-based approaches are more likely to 452 

detect spurious differences between categories of individuals (such as male and female) in their 453 

number of connections. This highlights the benefits of using ERGMs over permutation-based 454 

approaches in this context; namely that ERGMs can more easily facilitate the incorporation of 455 

additional confounding variables when testing an effect of interest as ERGMs specifically model 456 

topological effects on network structure alongside other biological processes of interest (Silk and 457 

Fisher 2017). A caveat here is that there were differences in ERGM error rates that depended on 458 

whether assortativity was positive or negative. This reveals that assortativity may influence network 459 

structure in a way that alters model performance even when accounted for. Phenotypic assortativity  460 

is common in animal social networks across taxa and for a range of different traits (Farine 2014; 461 

McDonald and Pizzari 2016; McDonald et al. 2017). We therefore suggest that caution is applied 462 

when testing for differences in connectivity or social centrality in study systems in which such 463 

patterns of assortativity are expected to occur. Positive assortativity (e.g. males interacting more 464 

with other males) will often cause a difference in connectivity to be found when it is in fact absent, 465 

while negative assortativity (e.g. males being more likely to interact with females) can lead to a 466 

difference in connectivity being missed when they are present. Future work to develop approaches 467 

that can better address these biases in estimation will be valuable. 468 

In grouping event-based networks the two analysis approaches did not greatly differ in 469 

overall effectiveness but did show different patterns. Stronger within- and between-group 470 

interactions increased false positive rates for ERGMs but decreased them for the permutation 471 

approach. In other words, more network connections increased the chance that ERGMs would 472 

detect an effect when there was none, but fewer network connections increased the chances the 473 

permutation approach would correctly identity no effect. In contrast, increasing the density of 474 

within-group interactions or reducing the distance effect so that networks were more widely 475 

connected decreased the false negative rate in grouping event-based networks for both approaches. 476 
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A difference between the sexes was therefore easier to detect in grouping event-based networks 477 

that were more well-connected. While for ERGMs this represents a trade-off between false positives 478 

and false negatives as the number of complete edges increases, permutations will perform 479 

consistently better in well-connected networks compared to sparsely connected networks , with 480 

relatively lower rates of both false positives and false negatives. 481 

Lower levels of observation effort increased the rate of false negatives in grouping event-482 

based networks, with this effect especially striking when only 30% of groups were sampled (when 483 

60% of groups were sampled, error rates were more similar to full sampling). This highlights that 484 

under-sampling grouping events may lead to inaccurate inferences as reported elsewhere (Franks et 485 

al. 2010; Farine 2014; Fisher et al. 2017b), especially when many grouping events are missed (and 486 

the number sampled is low). Interestingly, increasing the observation effort increased the rate of 487 

false positives in grouping-event based networks. Therefore, for both approaches a higher number 488 

of observed interactions (dyad-based networks) or grouping events (grouping event-based 489 

networks) increases the chances of an effect being found, regardless of whether it was actually 490 

present. A similar effect was found for datastream permutations by Weiss et al. (2020), with false 491 

positives increasing as more grouping events were sampled. We suggest that for permutation-based 492 

approaches, the problems associated with datastream permutations highlighted by Weiss et al. 493 

(Weiss et al. 2020) are exacerbated when observation effort is higher. When more events are 494 

sampled, the randomisation process results in permuted networks that have less variation in 495 

connectivity and edge weight than when fewer grouping events are sampled. Why this also happens 496 

for ERGMs as well is less clear, although does support the suggestion of Shalizi and Rinaldo (Shalizi 497 

and Rinaldo 2013) that in some contexts ERGMs may be susceptible to sampling effects. As a result, 498 

those studying dense grouping-event based social networks should be cautious when interpreting 499 

any statistically significant effects they detect, as the effects could be spurious. These effects were 500 

absent in dyad-based networks, suggesting that they are tied to type of sampling used. Future work 501 

could explore the impact of sampling in more detail to produce a sensitivity curve for the effect of 502 

sampling effort on error rates in animal social network studies that exploit data on group 503 

membership.  504 

 Moving forward, edge weights that represent residuals of models that account for space use 505 

(Whitehead and James 2015) might represent useful approaches to study population-level social 506 

networks. A further alternative may be to use network models that can control for space more 507 

effectively such as latent space models (Cranmer et al. 2016; Silk et al. 2017). Latent space models 508 

deal with the non-independence of individuals in a network by placing them within a k-dimensional 509 

“social space” (Hoff et al. 2002), and this is likely to handle individuals with different sets of contacts 510 
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more effectively than either approach used here. Further developments of permutation and ERGM 511 

approaches will also be possible. The use of bipartite ERGMs to directly model group by individual 512 

matrices offers one potential solution for grouping event-based networks (Silk et al. 2017). However, 513 

it may also be possible to fit additional terms in count-based ERGMs, or use alternative edge weight 514 

distributions, to control for sampling effects. Similarly, the use of datastream permutations that can 515 

maintain key network features (such as degree distributions), similar to those suggested by Chodrow 516 

(2019), might reduce the false positive rates of these approaches in grouping event-based networks. 517 

Using such datastream permutations may be especially beneficial if these approaches are combined 518 

with more conventional biological constraints (Whitehead and Dufault 1999; Whitehead et al. 2005; 519 

Croft et al. 2011; Farine and Whitehead 2015; Farine 2017). However, it must be confirmed that 520 

these approaches do not suffer the same problems as those identified by Weiss et al. (Weiss et al. 521 

2020).  522 

  523 

Conclusions 524 

In conclusion, we have examined the relative strengths and weaknesses of applying ERGMs and 525 

permutation-based approaches in a range of animal social networks in the presence and absence of 526 

confounding effects. Our study, alongside other works investigating how best to statistically examine 527 

and interpret animal networks, provide a series of guidelines for empiricists moving forward (Table 528 

2).  Overall, while both ERGM and permutation-based approaches have their weaknesses, both 529 

clearly offer valuable tools in analysing animal social networks, and further methodological 530 

developments that improve the performance of both in grouping event-based data should be a 531 

priority. 532 
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Tables 686 

 687 

Table 1. Parameters of interest and the values used in network generation and sampling.  688 

Name Description Values Values description 

d.eff Effect of distance between groups on the 

frequency of between groups-interaction 

0 Distance between groups has no 

effect  

4 Increased distance reduces likelihood 

of interaction moderately 

8 Increased distance reduces likelihood 

of interaction strongly 

i.dens Effect of an interaction being within a group 0.4 Interactions within groups less 

common 

0.8 Interactions within groups quite 

frequent 

1.2 Interactions within groups very 

frequent 

o.dens Effect of an interaction being between groups 0.4 Interactions between groups less 

common  

0.2 Interactions between groups rare 

0.1 Interactions between groups 

extremely rare 

m.eff Effect of being male -0.5 Males less likely to be involved in 

social interactions 

0 Being male has no effect on 

frequency of interactions 

0.5 Males more likely to be involved in 

social interactions   

sex.eff Strength of intra-sex interactions 0.5 Intra sex interactions weaker  

1 No effect of intra-sex interactions 

2 Intra sex interactions stronger 

obs.eff Observation effort 0.3 Lazy observer 

0.6 Diligent observer 

0.9 Superhero observer 

1.0 Omniscient observer 

 689 

 690 

691 
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Table 2. Key findings and recommendations from our study for hypotheses related to trait-based 692 

differences in social network position 693 

 694 

 695 

  696 

 Dyadic-based network data 
Grouping-event based network 
data 

Permutation-based 
approach 

Low false positive rate when there 
is no assortativity 
 
Low false negative rate when there 
is positive or no assortativity. Slight 
deterioration in performance when 
network density is lower 

High false positive rates, especially 
with positive assortativity or when 
larger numbers of grouping events 
are sampled 
 
Low-intermediate false negative 
rates. Deterioration in 
performance when there is 
negative assortativity or network 
density is lower 

Exponential random 
graph models 

Low false positive rate when there 
is negative or no assortativity 
 
Low false negative rate. Slight 
deterioration in performance when 
network density is lower or there is 
negative assortativity 

High false positive rates especially 
with positive assortativity or when 
network density is higher 
 
Low false negative rate when there 
is no or positive assortativity and 
when network density is higher 

Recommendations 

Both approaches generally 

perform well for dyadic-based 

network data 

We recommend that both 

approaches are viable for 

analysing dyadic-based network 

data, although ERGMs perform 

marginally better in most 

situations. We highlight the need 

for caution when confounding 

effects of assortativity are present 

until new methods are developed. 

Standard ERGMs also suffer from 

high false positive rates and so do 

not present a ready-made 

alternative to datastream 

permutations to test network 

measure-trait relationships in 

grouping event-based networks 

(see Weiss et al 2020) 

We recommend careful use of 

node-label permutations 

(combined with appropriate 

correction for variation in 

sampling among individuals) until 

other methods have been 

evaluated for use on grouping 

event-based data  
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Figure legends 697 

Figure 1. Example generated true generated network, alongside dyad-based and group-based 698 

networks at observation efforts of a) 0.9, b) 0.6 and c) 0.3. The results of mantel test comparisons 699 

between the dyad-based and group-based networks and the true network are presented 700 

underneath. Node colours represent the groups assigned at network generation. Round nodes are 701 

female while square nodes are male. Node position is approximately based on the spatial location of 702 

groups assigned at initial generation. Edge width indicates connection strength and edge colour 703 

whether a connectionis within a group (coloured as group) or between groups (black). Parameters 704 

used in generating this network were: distance effect= 4, within-group edge density = 0.8, between-705 

group edge density = 0.4, male effect= 0 and sex effect = 1. 706 

 707 

Figure 2. The failure rate per 100 simulations of the ERGMs (blue) and the permutation-based 708 

approach (orange) when detecting the difference between the sexes in strength. Row a) shows how 709 

the rates change due to the presence of negative, no, or positive assortativity by sex. Row b) shows 710 

how the rates change due to the strength of within-group interactions. Row c) shows how the rates 711 

change due to the strength of between-group interactions. Row d) shows how the rates change due 712 

to the strength of the effect of the distance between the groups. Plots show either the rate of false 713 

positives (columns i & ii), or the rate of false negatives (columns iii & iv), in both dyad-based 714 

networks (columns i & iii) and grouping event-based networks (columns ii & iv). The black bars 715 

indicate the medians, the white bars the 25% and 75% quartiles. The width of each violin relative to 716 

others within the plot gives the relative frequency of failure rates compared to other frequencies 717 

within that specific plot.  718 

 719 

Figure 3. The failure rate of ERGMs (orange) and our permutation-based approach (blue) in dyad-720 

based (a & b) or grouping event-based (c & d) networks at either correctly identifying the lack of 721 

effect (i.e. avoidance of false negatives; a & c), or correctly detecting the presence (i.e. avoidance of 722 

false positives; b & d) of the difference between the sexes in strength under a range of observation 723 

efforts. The black bars indicate the medians, the white bars the 25% and 75% quartiles. The width of 724 

each violin relative to others within the plot gives the relative frequency of failure rates compared to 725 

other frequencies within that specific plot.  726 
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