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Hippopede curves for modeling radial spin waves in an azimuthally graded magnonic landscape
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We propose a mathematical model for describing radially propagating spin waves emitted from the core
region in a magnetic patch with n vertices in a magnetic vortex state. The azimuthal anisotropic propagation
of surface spin waves (SSWs) into the domain, and confined spin waves (or Winter’s magnons) in domain
walls, increases the complexity of the magnonic landscape. In order to understand the spin wave propagation in
these systems, we first use an approach based on geometrical curves called “hippopedes”; however, it provides
no insight into the underlying physics. Analytical models rely on generalized expressions from the dispersion
relation of SSWs with an arbitrary angle between magnetization M and wave number k. The derived algebraic
expression for the azimuthal dispersion is found to be equivalent to that of the hippopede curves. The fitting
curves from the model yield a spin wave wavelength for any given azimuthal direction, number of patch vertices,
and excitation frequency, showing a connection with fundamental physics of exchange-dominated surface spin
waves. Analytical results show good agreement with micromagnetic simulations and can be easily extrapolated
to any n-corner patch geometry.
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I. INTRODUCTION

Due to their low loss and shorter wavelength compared to
electromagnetic waves in free space, spin waves are a promis-
ing candidate for communicating information in micron and
submicron scale magnonic circuits [1–3]. Spin wave spectra
of magnetic circular nanodots have been studied intensively
[4–7]. When an in-plane magnetic field excitation is applied to
a vortex spin configuration, the lowest energy mode that can
be excited is the gyration of the vortex core, which depends
on the aspect ratio of the disk [8]. At higher frequencies,
higher order gyrotropic modes [9,10] and a complete set of
modes related to azimuthal and radial spin waves appear [4].
The latter types of spin waves are related to Damon-Eshbach
modes where k is perpendicular to M in a vortex core con-
figuration [11], and their spectra is strongly dependent on
thickness and, more generally, on the physical geometry of
the patch. Moreover, magnetization inhomogeneities such as
vortex cores have attracted attention as spin waves emitters
[12,13]. It is known that due to the confinement or the natural
magnetic state of the sample, inhomogeneities of the internal
magnetic field can be sources of spin waves due to a graded
index in the magnonic landscape [14,15]. Spiraling spin
waves found in vortex configurations have been explained
as hybridization of stationary azimuthal spin waves and
higher order gyrotropic modes, therefore showing no radial
propagation [12,16,17].

Spin waves with spiral or circular wave fronts have been
reported through micromagnetic simulations and experiments
in simple elements such as circular disks or square patches
[12,13,18]. In Ref. [12], the authors propose an analytical
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expression for the dispersion relation of radially propagating
exchange-dominated spin waves from the core region, which
are explained as laterally emitted spin waves from a first-order
gyrotropic mode of the vortex core. Therefore, they manifest
a “surface spin wave–like” (SSW-like) propagating behavior
(since M is perpendicular to k).

In the past, a vast work on analytical modeling has dealt
with magnetically nonsaturated structures presenting domain
walls. Some examples are spin wave emission from Bloch
domain walls [14], reflection and transmission across domain
walls [19,20], or magnetic configuration in a transition be-
tween domain wall types [21]. These models help to provide
insight into the dynamics and a tool for modeling spin wave
phenomena in confined structures that show a more complex
magnonic landscape than saturated dots. Thus far, we have
not found in the literature a generalized mathematical model
dedicated to the particular physics of the spiral or circular
spin waves emitted from a point source in confined structures
of more complex geometries than a circular disk, which are
expected to considerably reshape the radial wave front [18].

Following on these studies, in this work we report on a
model for the observed wave front of spin waves emitted
from an almost point source (e.g., a vortex core) in any n-
vertex patch, which implies the existence of domain walls,
azimuthally distributed across the geometry. The final expres-
sion is derived from a generalization of the dispersion relation
of surface waves for an arbitrary angle between magnetization
M and wave number k. For n > 2, the patch adopts the form of
a regular polygon; for n = 2 and n = 1, the model considers
two or one single vertices. Finally, n = 0 implies a circular
disk. The obtained curves from the model agree well with
numerical results. In Sec. II we describe our models and the
numerical method used for their validation. In Sec. III, we
provide a comparison of both methods and their validation
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through numerical simulations as well as a discussion of re-
sults. This model can help in the description of complex spin
wave wave fronts in nonsaturated elements, which avoids run-
ning numerical simulations for particular shapes. Due to the
attention that the experimentally observed short-wavelength
radial spin waves have recently drawn, we believe this model
is of interest to researchers, experimentalists mainly, working
in the field of spin waves emitted from a point source.

II. NUMERICAL METHODS AND CALCULATIONS

In order to obtain an analytical solution for the spin wave
wave front in a nonsaturated patch, we must make some
initial approximations. This is due to the remarkable com-
plexity of the magnetic configuration within the patch along
the azimuthal direction, especially near magnetically inhomo-
geneous regions, which are determined by shape anisotropy
and dipolar and exchange interactions solely. Thus, in our first
approach we mathematically infer a general equation from
numerical results and in our second approach, we extrapolate
analytical results from a simpler case scenario to ours. Despite
the apparent crudity of these extrapolations, both models show
good agreement and therefore can be considered reliable for
at least descriptive purposes. However, our second approach
is more fundamental, and still, even after a crude generaliza-
tion, it also shows very good agreement with micromagnetic
results.

To obtain more insight into the dynamics and confirm the
performance of our model, we performed a set of micromag-
netic simulations using Mumax3 [22]. We simulated a circular
microdisk with the typical material parameters of permal-
loy at room temperature with saturation magnetization MS =
8 × 105 A m−1, exchange constant Aex = 1.3 × 10−11 J m−1,
Curie temperature from a weighted average of iron and nickel
TC = 270 K, and Gilbert damping constant α = 0.008.
With these parameters, the single circular disk was simulated
in a hexahedral grid. Shapes with diameter d of 900 nm and
thickness t of 80 nm were simulated. The grid was discretized
in the x, y, z space into 512 × 512 × 16 cells. The cell size
along x and y was 3.9 nm, while the cell size along z was fixed
to 4 nm. The cell size along three dimensions is always kept
smaller than the exchange length of permalloy (5.3 nm). The
number of cells was chosen to be powers of 2 for the sake
of computational efficiency. We also set a “smooth edges”
condition with value 8 [22]. A key point in micromagnetic
simulations is to achieve a stable equilibrium magnetization
state. We first set a vortex state with polarity and chirality
numbers of (1,−1) and then executed the simulation with
a high damping (α = 1) to relax the magnetization until the
maximum torque/γ (“maxtorque” parameter in Mumax3)
reached 10−7 T indicating convergence and the achievement
of a magnetization equilibrium state. The typical time to
achieve the equilibrium state was 100 ns. Once the ground
state was obtained, damping was set back to α = 0.008 and
the relaxation process repeated. The microdisk spin configu-
ration was recorded as the ground state of the sample and then
used for the simulations with the dynamic activation.

For analyzing time evolution of the magnetic signal, we
apply a continuous wave excitation at the core region with a

magnetic field B0 at a specific frequency f0,

B0(t ) = A0 sin(2π f0t ), (1)

where f0 is the microwave excitation frequency and pulse
amplitude A0 = 0.3 mT. This is small enough to remain in
the linear excitation regime and avoid any changes to the
equilibrium state. A sampling period of Ts = 25 ps was used,
recording up to 200 simulated samples in space and time, only
after the steady state is reached.

In the next sections we describe the proposed models and
their derivations. Finally, validations for each of them through
numerical simulations are shown.

A. First approach

For this study, we mathematically infer a fitting model
from numerical results on the first obtained shapes when
n = 0, 1, 2, 3, 4, . . . and so on. We then generalize it to any
n-vertex patch. For the case of n = 1 we take an internal
angle assumed to be π/3 and only one domain wall is present,
the patch resembling a “teardrop” shape. For n = 2 we make
a similar assumption, and the patch resembles a “double-
teardrop” shape. For larger values of n, the internal angles
of the vertices are the internal angles of the regular polygons,
defined as 2π (n − 2)/n. Of course, for n = 0 we have a circle.
The vertices are distributed around the shape, separated by
2π/n radians, and the resulting domain walls spaced by π/n.

Regarding magnetic configuration in equilibrium after a
relaxation process, and assuming a centered vortex core, n tri-
angular domains and n domain walls will form in the patch. In
contrast to the circular dot, the azimuthally distributed domain
walls will distort the wave front of the propagating spin wave
from the core region, introducing an azimuthal dependence
(or equivalently, n dependence) to the wavelength of the radial
wave [λ(θ )]. Also, two known values for the spin wave wave-
length can be analytically deduced for any n-corner patch: the
characteristic wavelength of an exchange-dominated surface
spin wave (λSSW), when k is perpendicular to M (that is, when
the spin wave propagates into the domain), and the character-
istic wavelength of the confined spin wave along the domain
wall (λWM), also known as Winter’s magnon [23]. Figure 1
shows the characteristic dispersion relations for the laterally
emitted spin wave from the vortex core from Ref. [12] (blue
curve) and the exchange-dominated Winter’s magnon in an
ideal 180◦ Bloch wall [24] (orange curve). It is worth noting
that in an n-vertex patch, the formed domain walls will be
of the angle of the vertex. For example, in a square (n = 4),
this is an angle of 90◦ (see the top-right inset in Fig. 1).
Micromagnetic simulations (not shown here) show that the
expected wave number is reduced with respect to the 180◦
Bloch wall, due to the shape anisotropy of the sharp corner.
This latter study is not in the scope of this article (although
it will be addressed in a future work) and the effects of an
intermediate domain wall are not included in our model. For
practical purposes, we obtain kWM from the dispersion relation
of an ideal 180◦ Bloch wall (see orange curve in Fig. 1). For
excitation frequencies at which both modes coexist, the wave
numbers (or wavelengths) that fall in the gray area, delimited
by kSSW and kWM, can relate to the azimuthally dependent
wavelength of the radial spin wave in the patch.
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FIG. 1. Dispersion relations for the laterally emitted spin wave
from a first higher order dynamical core, see Ref. [12], and a Winter’s
magnon (WM), for the material parameters indicated in Sec. II, as
limiting cases. Dashed horizontal line indicates an excitation fre-
quency of 8.8 GHz. Gray area highlights the expected magnitudes
for intermediate wave vectors (see bottom-right inset) between the
two limiting cases, when being simultaneously excited. Insets: Color
arrows show the wave vectors for the laterally emitted spin wave
(in a SSW configuration) and the Winter’s magnon, which are as-
sumed kWM ≈ 2kSSW for the excitation frequency of 8.8 GHz (length
of the vectors represent their magnitudes). Black arrows show the
orientation of magnetization in the domains. Bottom inset shows
a simplified schematic of the angular distribution of wave vectors
at the top-right corner of a square patch (n = 4). Gray arrow is an
intermediate case for the spin wave wave vector between the limiting
cases, from which an angular dependence can be inferred.

The proposed model is based on the mathematical expres-
sions of a family of curves known as “hippopedes.” Since
the polar representation of these curves allows a smooth az-
imuthal transition from a certain wavelength (maximal) to
another finite value (minimal), these curves can be used here
as a generalization of the problem scenario. By applying these
expressions to the particular scenario, i.e., a magnetic patch
with regularly distributed vertices and domain walls, a simple
expression for the spin wave wavelength can be obtained.
From a conic canonical equation with geometrical parameters
a and b, see [25] for a more detailed description, then the
generic equation of the resulting hippopede in polar coordi-
nates is

f (θ ) = 2
√

b

√
a − b sin2

(
θ

n

2
+ φ0

)
, (2)

where the phase parameter φ0 sets an initial rotation angle
for the patch. For n = 2 and b = 2a, Eq. (2) leads to a spe-
cial case known as Bernoulli’s lemniscate. In fact, a whole
family of lemniscates can be obtained from the hippopedes
if b > a. More information on the hippopede curves can be
found in the Supplemental Material [25]. The hippopedes
when b < a, known as Booth’s ovals, allow a transition from a
finite-wavelength maximum value (λSSW) to another nonzero
minimum value (λWM); see Fig. 2(b). The particular values
of the geometrical parameters a and b can be found from the

FIG. 2. (a) Schematic of various magnetic patches depending of
the number of vertices n with magnetization around the core (solid
black line). Domain walls bisect the sharp corners. (b) Polar repre-
sentation of Eq. (2) showing the azimuthal variation of wavelength
within the shape, with the appropriate rotation of the patch (φ0) so
the equation describes correctly the shape of the patch. Minimum
and maximum radial amplitudes are assumed λSSW = 2λWM (length
of the vectors represent their magnitudes). In terms of the hippopedes
parameters a and b, this means a ratio of b/a = 0.75.

hippopede general equation particularized to the wavelength
limiting conditions of a maximum λSSW at every 2π/n angle
and a minimum λWM at every 2π/n + π/n angle. An initial
rotation angle of φ0 = 0 is assumed. The ratio b/a is found
to be equal to 1 − λ2

WM/λ2
SSW. In the range of frequencies

under study, λSSW > λWM is satisfied, so this implies that we
can model our system with hippopede curves where b < a.
The initial phase rotation φ0 in Fig. 2(b) (and hereafter) is
chosen so it properly coincides with the numerically mod-
eled patch. Therefore, a more complete expression for our
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model is

λ(θ, n) = λSSW

√
1 −

(
1 − λ2

WM

λ2
SSW

)
sin2

(
θ

n

2
+ φ0

)
. (3)

Figure 2(b) shows a collection of curves from Eq. (3) for
different number of vertices n. Following from the magnetic
configuration of the patch in the vortex state and assuming
for example λSSW = 2λWM, which yields a ratio b/a = 0.75
(b < a), results qualitatively show an azimuthal changing
wavelength around the center of the shape according to a
hippopede curve. In Sec. II B, we derive a more generalized
expression that yields a connection with the fundamental
physics.

B. Second approach

In this case, we start from the analytical expression of the
dispersion relation of surface spin waves given an arbitrary
angle α between M and k. Damon and Eshbach [11] found
a generalized expression for the dispersion relation of surface
spin waves in a semi-infinite stripe for arbitrary angles α and
β, α being the angle between the ferromagnetic planar body
surface and effective field Hi, and β the angle between the
orthogonal direction of that effective field and wave number
k. Extended to the exchange regime, it can be expressed as

ω = γ Hi

2cosαcosβ
+ γ Bi

2
cosαcosβ + ωMλexk2. (4)

In Ref. [11], the original expression is derived for magneto-
static spin waves in a semi-infinite stripe. It should be noted
that our problem scenario, although being a finite sample, can
still be regarded equivalent due to the short wavelength of the
spin wave modes under study [11]. In Ref. [11], the expression
shows a continuous variation of the spin wave wavelength as
angle increases, toward the limiting scenario of a backward
volume spin wave (BVSW) configuration. It is worth noting
that in our problem scenario, that limiting case would not be
the BVSW dispersion relation but the Winter’s magnon (see
Fig. 1). Also, in nonsaturated samples, Eq. (4) can be reduced
by specifying only in-plane magnetization (α = 0), assuming
that the internal field in the magnetic domain is Hi = −MS

(therefore, Hi = MS and Bi = 0) in absence of an external
biasing field. For β = 0, k is perpendicular to M (k ⊥ M) and
therefore λ = λSSW (see inset in Fig. 1). Hence, for a specific
excitation frequency ω = ω0 we can rewrite Eq. (4) in terms
of a variable wavelength (λ = 2π/k) in the azimuthal direc-
tion β (as defined in Fig. 1 and in Ref. [11]) as (a step-by-step
derivation is shown in the Supplemental Material [25])

λ(β ) = λSSW

√
(1 − p) cos β

cos β − p
, (5)

where β = θ , with θ being the azimuthal direction as de-
fined in Eq. (2) and Eq. (3) that coincides with the angle
β, setting the reference for an azimuthal dependence of k
at θ = 0, and p = ωM/2ω0, where ωM = γ MS . We obtain a
classical surface spin wave dispersion behavior from Eq. (5)
when θ = 0. In Eq. (2), the initial arbitrary rotation phase
of the patch can be conveniently chosen as φ0 = π/2 so a
surface spin wave wavelength can be effectively obtained for
θ = 0, as a reference point. This implies we can substitute

FIG. 3. Collection of curves from Eq. (5) for n = 0, 1, 2, and 4.
Curves for n = 3 and higher orders (n > 4) can be easily inferred.
Physically nonrealizable zeros are placed at every π/n angle.

sin(θ + φ0) → cos(θ ) in Eq. (2), which keeps the reference
λ(0) = λSSW consistent with Eq. (5). Equation (5) implies
a decreasing wavelength as the angle θ (or equivalently, β)
increases. For a flux closure magnetization in the patch, the
reference angle coincides with the direction of propagation
into a first magnetic domain.

In the model, parameter p = ωM/2ω0 yields a connection
between the observed radial wave front in simulations and
the magnetic properties of the material but sets an upper
frequency bound for the model, which is not physically mean-
ingful. The model from Eq. (5) yields imaginary values for
cos(θ ) < p � 1 and therefore, it would only be applicable for
ω0 < ωM/2 and for certain azimuthal directions. Equation (5)
would still be applicable as a model for the scenario of a
magnetic patch for small deviations of θ from 0, although it
does not apply when θ → π/2, where the backward volume
spin wave propagates instead of surface spin waves according
to Ref. [11].

Also, this preliminary model assumes in-plane magnetiza-
tion for all azimuthal directions, so it still does not take into
account effects of magnetic inhomogeneities, i.e., the domain
walls. Figure 3 shows a collection of curves from Eq. (5)
illustrating a periodic effect when an n number of corners
is included (θ → nθ/2). In Fig. 3, only the rightmost lobe
would be strictly represented by Eq. (5), i.e., for values of
−π/n < θ < π/n and n > 0.

As stated above, imaginary values and zeros of Eq. (5) due
to the frequency dependence and geometry are not physically
meaningful in our scenario. This is due to the imposed lower
frequency gap for the ferromagnetic resonance in the disk and
the presence of domain walls, respectively. To include these
phenomena and avoid the zeros in the model, Eq. (5) has to
be generalized with the undefined parameter σ and rescaling
factor ε so the expression is extended as

λ(θ, n) = ε λSSW

√
σ + (1 − p) cos

(
n θ

2

)
cos

(
n θ

2

) − p
. (6)
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FIG. 4. Ratio (black solid curve) between wavelengths from the
dispersion relation from [11] (λDE) and the extended model linked
to the hippopedes (λHp) for p ≈ 1.75 showing good agreement, and
practically no deviation from unity at any angle apart from the
domain wall region for p ≈ 10.75 � 1 (red solid curve). Left inset:
Normalized results from Eq. (7) adding azimuthal periodicity for a
number of corners n = 0 (blue), n = 1 (red), n = 2 (yellow), and
n = 4 (purple). Right inset: Comparison of the normalized results
from Eq. (7) (solid purple curve) and Eq. (5) (dashed purple curve)
for n = 4 and p ≈ 1.75.

In an n-corner patch, the spin wave shows a wavelength
of λSSW at every 2π/n angle and of λWM at every π/n an-
gle. These limiting conditions allow us to find the values of
parameters ε and σ . The values for ε and σ are found to
be ε = (

√
λ2

SSW − λ2
WM)/λSSW and σ = λ2

WM/(λ2
SSW − λ2

WM),
which, simplified for λWM = 0, lead to the equation from
Ref. [11]. Due to the azimuthal periodicity every π/n (in con-
trast to the scenario described in Ref. [11]), the cosine terms in
Eq. (6) must only take positive values. Also, since taking their
absolute value would yield a nondifferentiable function at the
angle where the domain wall is encountered, the cosine terms
are replaced by their squared values. Assuming λWM �= 0 and
after algebraic transformations, the modified equation is

λ(θ, n) = λWM

√
1−

(
1− λ2

SSW

λ2
WM

)
(1 − p)

cos2
(
n θ

2

)−p
cos2

(
n
θ

2

)
,

(7)

where p = ωM/2ω0. Our key result is obtained if p � 1
and therefore (1 − p)/[cos2(nθ/2) − p] ≈ 1. Then, the re-
sultant equation is indeed the hippopede curve equation
(assumed φ0 = π/2n, so the directions for λWM and λSSW

are exchanged) described in Sec. II A, which explains the
good fitting to these curves at low frequencies (ω0 	 ωM/2).
Therefore, the azimuthal change of wavelength for a spin
wave emitted from the core in an n-corner magnetic patch
in the vortex configuration is fully described by hippopede
curves.

Figure 4 (left inset) shows a collection of curves obtained
from Eq. (7) normalized to λSSW, assuming λSSW = 2λWM

(see Fig. 1). In the right inset, a particular case for n = 4
is shown in comparison with the respective solution from
Eq. (5) and the relative error between both equations for
all angles between 0 and π/n, normalized to the number of
vertices n for a value p ≈ 1.75 (black solid curve), obtained
from assuming ω0/2π = 8.8 GHz and from Permalloy mate-
rial properties, ωM/2π ≈ 27 GHz. For a large enough value
of p, assumed to be about six times larger (p ≈ 10.75), and
therefore p � 1, results show indeed a minimal difference
from the hippopede curves (red solid curve), almost neg-
ligible away from the domain wall regions. The proposed
model, as an extension of Eq. (5), avoids the azimuthal zeros
and shows a minimal difference from the values from the
exchange-dominated surface spin wave dispersion. Therefore,
Eq. (7) is a suitable model, derived as a generalization from
Eq. (5). In Sec. III, we provide numerical evidence of its
reliability.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we compare the models previously described
to numerical micromagnetic simulations in order to validate
them. Radial spin waves with a spiral profile from the core
region can also propagate, when the excitation signal is ap-
plied in-plane of the patch [13]. This effect can be added
to the model in terms of a normalized azimuthal factor that
creates a counterclockwise spiralling effect as observed in the
simulated wave fronts [λ(θ ) → θ

2π
λ(θ )]. In micromagnetic

simulations, a continuous out-of-plane wave excitation of fre-
quency ω0/2π = 8.8 GHz is applied to the core region. The
excitation frequency is chosen so the radial spin wave shows
a clear wave front for the given dimensions and material of
the magnetic patch [18]). From Fig. 1 (and numerical results
from [18]), the wavelengths of the spin wave into the domain
and the confined mode are chosen as λSSW = 135 nm and
λWM = 89 nm. The condition λSSW > λWM is satisfied by
applying an oscillating magnetic field in the GHz range. We
need to address that the main objective is to test the relative
change between these two wavelengths, regardless of their
absolute values. Figure 5(a) shows snapshots of the dynamic
out-of-plane magnetization from micromagnetic simulations
of two different shapes, a double-teardrop shape (two vertices)
and a square (four vertices). Their respective k-space maps
from each image are shown on the right, where the white ar-
rows indicate the propagation of the main modes, surface spin
waves and Winter’s magnons. The images are interpolated for
clarity. Before performing a spatial fast Fourier transform, a
Hamming window of 256 points is applied to the data set
to avoid image artifacts due to reflections at the edges and
spurious high-frequency values.

Values of wavelength are extracted from the simulated
k-space images at angles from 0 rad to π/2 in the teardrop
shape and from 0 rad to π/4 in the square in steps of π/16.
The error bars are found after interpolation, yielding an er-
ror in wavelength of approximately 8 nm. The change in
wavelength given by the model shows very good agreement
with numerical results and follows the predicted trend. The
analytical results can easily be extrapolated to any n-corner
shape. Taking this into account, we can confidently say that
the proposed model describes the spin wave wave front of an
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FIG. 5. (a) Left: Snapshots of numerical results for a double-
teardrop shape (n = 2) and a square (n = 4). Red arrows indicate the
direction of propagation of the two main modes (surface spin wave
and Winter’s magnon). Right: k space of the snapshots where the
wave number profile (inverse of the wavelength profile) is shown.
Results are interpolated to 5 extra points between data points for
clarity. White arrows show the direction of propagation of the main
modes. (b) Comparison of the maximum values of λ = 2π/k found
in (a) for the double-teardrop shape (blue) and the square (orange)
with the results from Eq. (6) where λSSW = 135 nm and λWM = 89
nm found from numerical results at ω0/2π = 8.8 GHz and p ≈ 1.75.
Error bars are found after the interpolation process, which introduces
a measured error of approximately 8 nm.

emitted spin wave from the core in any n-corner shape with
accuracy.

Finally, in any n-corner shape presenting angular period-
icity, the azimuthal transition from a surface spin wave of
wavelength λ1 into that of a confined mode along a domain
wall λ2 < λ1 is of the form of a hippopede curve or, more
generalized,

λ(λ1, λ2, θ, n)=λ1 f (λ1, λ2, θ, n)

√
1−g(λ1, λ2) cos2

(
θ

n

2

)
,

(8)

where functions f and g are generic functions of the indicated
magnitudes.

As a suggested improvement to the model, a radial depen-
dence could be included into Eq. (7). The radial dependence
should consider that, as n increases, the domain walls will
merge closer to the core region, which implies no azimuthal
gradient and the wave front profile will be that of a disk
(equivalent to n = 0) under a critical effective radius.

The hippopede curves are obtained from Eq. (7) under
the condition p � 1. It is worth noting that the condition√

2λWM > λSSW > λWM, which implies a “hippopede wave
front” with geometrical parameters b < a, is not necessarily
satisfied for all values of λ(θ ) at every ω0, as explained
before. Although the extended model avoids an upper fre-
quency bound, there is a lower frequency bound from which
only spin waves will be radiated into the domains from the
core due to the nonzero internal field there. In contrast, a
gapless mode can propagate in the domain walls [24]. As
ω0 increases, at the limit when λSSW ≈ λWM, the wave front
tends to a circular profile, as explained elsewhere [18] and as
Eq. (7) consistently predicts. This frequency dependence is
already implicit in the model in parameter p = ωM/2ω0. At
high frequencies where ω0 ≈ ωM/2 and therefore p ≈ 1 (so
p � 1 is not hold), assuming λSSW ≈ λWM, Eq. (7) effectively
yields a wavelength of λ(θ, n) = λSSW, that is, a circular wave
front, which is confirmed by micromagnetic simulations and
elsewhere.

At even higher frequencies (ω0 � ωM), p 	 1 and there-
fore (1 − p)/[cos2(nθ/2) − p] ≈ 1/ cos2(nθ/2), Eq. (7) leads
again to λ(θ, n) = λSSW, regardless of λSSW and λWM values.
This implies that Eq. (7) is still a valid model even for p ≈ 1 or
p 	 1, or in other words, it does not show an upper frequency
bound for radial waves. This is consistent with the physical
scenario to describe and previous work on radially propagat-
ing spin waves.

Previous work on exchange-dominated radial spin waves
has predominantly dealt with direct observation or experimen-
tal detection, as referred to in Sec. I. We believe that our
results may help in obtaining further information on these
spin waves such as an expression for a spatially dependent
wavelength, potential detection of magnetic inhomogeneities
in magnetic films of various geometries, or characterization
of the material properties, when used, for example, as a fitting
tool. We would also like to highlight the applicability of these
mathematical curves itself. We believe that, in addition to their
known applications in mechanical linkages (see Supplemental
Material [25]), the work proposed here is another interesting
use of these curves for modeling in physics and, in particular,
a novelty in magnetism.

IV. SUMMARY

We have used geometrical expressions to successfully
model propagating spin waves from the vortex core region
in n-corner elements in a magnetic flux closure configuration
where domain walls are present. The proposed models are
validated and all show very good agreement with numerical
results. The equations can be generalized to any n-corner
shape, including nonregular shapes such as a teardrop shape
(one corner) and a double-teardrop shape (two corners). A
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first model is based on a special case of the hippopede curves,
known as Booth’s ovals, since they allow smooth transitions
between two known wavelength values. A more exact model
is obtained straight from generalizing the fundamental equa-
tion of surface spin wave dispersion, which can be retrieved
by setting λWM = 0. This more compact model describes the
spin wave wave front accurately at positions far from the
core and, especially, close to the inhomogeneous areas (i.e.,
domain walls). Interestingly, through algebraic transforma-
tions, the final equation of the model (where λWM �= 0 and
p � 1) is identical to the equation of the hippopede curve.
The result connects the mathematical model with the physical
parameters of the material and proves the hippopede curves
as the most accurate mathematical description of the tran-
sition between one wavelength and the other. Reciprocally,
the magnetic properties of the material (through λWM and
λSSW) can be retrieved from the geometrical parameters of the
plotted Hippopede curve (a and b). Given the frequency of the
oscillating field ω0, parameter p and therefore ωM and MS can
also be retrieved.

The model from Eq. (7) also takes into account the
frequency dependence of the oscillating field. At lower
frequencies, the model yields hippopede curves for the spin-

wave wave-front profile. At higher frequencies, it effectively
leads to circular wave fronts, as expected from numerical
results.

The models can also be applied on spiral wave fronts,
although they are originally defined for ’‘in-phase” wave
fronts, which makes them suitable for also describing circu-
lar/nonspiraling wave fronts. For modeling spiral wave fronts,
the equation must be modified accordingly by simply intro-
ducing a normalized spiraling effect factor. We hope these
results help to better understand the propagating features
of spin waves in confined structures, more especially those
emitted from quasipunctual sources, and how to control their
dynamical properties.

All data created during this research are openly avail-
able from the University of Exeter’s institutional repository
[26].
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