1 Transtibial fixation for medial meniscus posterior root tear reduces posterior extrusion and 2 physiological translation of the medial meniscus in middle-aged and elderly patients

3

Abstract 4

Purpose: To investigate changes in meniscal extrusion during knee flexion before and after pullout 5 6 fixation for medial meniscus posterior root tears (MMPRTs) and determine whether these changes correlate with articular cartilage degeneration and short-term clinical outcomes. 7

Methods: Twenty-two patients (mean age, 58.4±8.2 years) diagnosed with type II MMPRT underwent

8 9 open MRI preoperatively, 3-months after transtibial fixation, and at 12-months after surgery, when 10 second-look arthroscopy was also performed. The medial meniscus (MM) medial and posterior 11 extrusion (MMME and MMPE) were measured at knee 10° and 90° flexion; at which MM posterior 12 translation was also calculated. Articular cartilage degeneration was assessed using ICRS grade at primary surgery and second-look arthroscopy. Clinical evaluations included Knee Injury and 13 Osteoarthritis Outcome Score, International Knee Documentation Committee subjective knee 14 evaluation form, Lysholm score, Tegner activity level scale, and visual analog scale. 15

16 **Results**: MMME at 10° knee flexion was higher 12 months postoperatively than preoperatively (4.77±1.48 vs. 3.53±1.17, p=0.012). MMPE at 90° knee flexion and MM posterior translation were 17 smaller 12 months postoperatively than preoperatively (3.49±1.05 vs. 4.60±1.27, 7.23±1.74 vs. 18 8.89±1.98, p<0.001). Articular cartilage degeneration of medial femoral condyle correlated with 19

20	MMME in knee extension (r=0.48, p=0.04). All clinical scores significantly improved 12 months
21	postoperatively; however, correlations of all clinical scores against decreased MMPE and increased
22	MMME were not detected.
23	Conclusions: MMPRT transtibial fixation suppressed the progression of MMPE and cartilage
24	degeneration and progressed MMME minimally in knee flexion position at one-year. However, in the
25	knee extension position, MMME progressed and correlated with MFC cartilage degeneration.
26	
27	Level of Evidence: IV
28	Keywords: Medial meniscus; Posterior root tear; transtibial fixation; Meniscus extrusion; Open
29	magnetic resonance imaging.

31 Introduction

Many studies have shown that medial meniscus (MM) posterior root tears (PRT) are associated with 32 33 osteoarthritis; 31% of patients with MMPRT undergo subsequent TKA at a mean duration of 30 months after conservative treatment [19]. The medial meniscus is rigidly attached to the tibia and is therefore 34 35 less mobile, making it more vulnerable to traumatic injuries and degenerative changes than the lateral 36 meniscus [13, 21]. Therefore, loss of hoop strain caused by MMPRT leads to a physiological state equivalent to total meniscectomy and can accelerate the process of degenerative arthritis with meniscal 37 38 extrusion [1, 4, 7]. Due to repair of hoop tension, several meniscus repair techniques such as transtibial 39 fixation, suture anchor-dependent repair, direct all-inside repair, and posterior reattachment of the MM posterior root have been developed for arthroscopic treatment of MMPRT [4, 6, 16, 21]. LaPrade et al. 40 41 described that MM posterior root repair is indicated in active patients following acute or chronic 42 MMPRTs with no significant knee osteoarthritis, joint space narrowing, and malalignment [21]. Chung 43 et al. described that midterm clinical outcomes after transtibial fixation are not age-dependent [5]. They preferred transtibial fixation because of its lower technical challenges and ability to restore 44 anatomic attachment of the MM posterior root [8, 21]. Although there is currently a lack of consensus 45 46 regarding the superior technique, transtibial fixation is increasingly being used in clinical practice. A meta-analysis on the outcomes of MMPRT fixation in transtibial fixation [4] demonstrated good 47 midterm results after surgery but revealed that MM medial extrusion does not necessarily affect 48 49 clinical outcomes such as the Lysholm knee score and International Knee Documentation Committee

50	(IKDC) evaluation. However, these knee scores are not suitable for evaluating middle-aged or older
51	patients who develop MMPRTs during light activities such as using stairs and squatting [2]. MMPRT
52	with a degenerating meniscus is reported in middle-aged or older people due to their lifestyle and
53	behaviors, including frequent squatting and sitting on the floor with folded legs [2]. These behaviors
54	may lead to an increased risk of posterior meniscal segment impingement, and injury due to
55	degenerated MMPRs may occur at low knee flexion angles when performing activities, such as
56	descending stairs, stepping, and walking downhill [3, 11]. Additionally, most meniscal tears, including
57	radial tears occurring within 9 mm from the root attachment, are classified as Type II in middle-aged
58	and older individuals [17, 21]. However, few studies have reported MM conditions, including the
59	extrusion and translation of the meniscus during knee flexion pre- and postoperative MMPRT.
60	An open MRI analysis found that MMPRT caused pathological posterior extrusion of the MM medial
61	and posterior segment at 90° knee flexion [23, 24]. Therefore, analysis of MM medial/posterior
62	extrusion (MMME/MMPE) in older patients after transtibial fixation of MMPRT using open MRI is
63	clinically useful in assessing MM conditions, especially at 90° knee flexion.
64	Performing MMPRT fixation in elderly patients remains potentially controversial; surgeons may
65	hesitate to perform surgical fixation in such patients due to their lower ability to heal. The purpose of
66	this study was to investigate pre- and postoperative changes in meniscal extrusion of the medial and
67	posterior segments in MMPRT patients using open MRI in knee extension and flexion positions and
68	to determine whether these extrusions correlated with cartilage damage and short-term clinical

69	outcomes, including the Knee Injury and Osteoarthritis Outcome Score (KOOS). We hypothesized that
70	transtibial fixation in MMPRT patients does not suppress the progression of MMME and cartilage
71	degeneration during knee extension but is useful for suppressing the progression of MMPE and
72	cartilage degeneration in knee flexion position.
73	Even in elderly patients with low healing ability, transtibial fixation of MMPRT can be clinically
74	relevant if improvements in meniscal extrusion and suppression of cartilage degeneration are observed
75	in the knee flexion position; this would hold true even if the remaining meniscal medial extrusion was
76	in the knee extension position. In addition, it is clinically meaningful to further improve surgical
77	techniques by examining in detail the relationship between cartilage damage and meniscal extrusion
78	during knee extension and flexion positions.
79	
80	Methods
81	Patients
82	This study was retrospective in nature. All medical records were reviewed retrospectively to obtain
83	patients' demographic and clinical characteristics from a database at our institution. The medical
84	records for 51 consecutive patients receiving transtibial fixation between March 1, 2016 and October
85	31, 2017 were reviewed. All patients had an episode of sudden posteromedial painful popping,
86	continuous knee pain, and prolonged pooling of joint fluid [3]. MMPRTs were classified according to
97	
07	the description by LaPrade [20] into 5 tear types at surgery: type I tears were partially stable meniscal

88	tears within 9 mm of the center of the root attachment (n=1), type II tears were complete radial tears
89	within 9 mm of the center of the root attachment (n=46), type III tears were bucket-handle tears with
90	meniscal root detachment (n=0), type IV tears were complex oblique meniscal tears extending into the
91	root attachment (n=4), and type V tears were avulsion fractures of the meniscal root attachment (n=0)
92	[20]. The exclusion criteria were: (a) more than 70 years old and a body mass index (BMI) greater than
93	30 kg/m^2 , included varus alignment > 5°, severe cartilage lesion (International Cartilage Research
94	Society grade III or IV), and Kellgren-Lawrence grade > III in radiographs. (b) Other than type II
95	MMPRT. Among these 51 patients, 46 were diagnosed with type II MMPRT under arthroscopic
96	findings. Among the remaining 5 patients, one was diagnosed with type I MMPRT and four were
97	diagnosed with Type IV MMPRT. These 5 patients were excluded. Among the included 46 patients,
98	22 underwent open MRI preoperatively, as well as 3 and 12 months after surgery. Second-look
99	arthroscopic evaluation was performed in all cases. This retrospective study analyzed the changes in
100	MMME and MMPE after transtibial fixation using open MRI and assessed cartilage degeneration
101	using arthroscopic images and video recordings. Patients were treated with a modified transtibial
102	suture technique combined with FasT-Fix® (Smith & Nephew, Andover, MA, USA) after creating the
103	tibial bone tunnel with a PRT guide, as previously described [7, 10, 18, 31]. We reviewed the patients'
104	medical records to determine age, sex, height, body weight, BMI, as well as preoperative, and 3-month
105	and 12-month postoperative clinical outcomes. The patient demographics are summarized in Table 1.

107 *Arthroscopic evaluation (Cartilage status, Anterior Cruciate ligament status)*

108	Arthroscopic assessment of the cartilage lesions and anterior cruciate ligament (ACL) were performed
109	using arthroscopic images and video recordings. Evaluation of the cartilage and its documentation
110	were carried out using the same ICRS articular cartilage lesion classification system at primary surgery
111	and second-look arthroscopy. Articular surfaces on the medial/lateral femoral condyle (MFC/LFC)
112	were divided into 9 segments (MF 1-9, LF 1-9). The medial/lateral tibia plateau (MTP/LTP) was
113	divided into 5 segments (MT 1-5, LT 1-5). The trochlea was divided into 3 segments (T 1-3) and the
114	patella was divided into 9 segments (P 1-9) (Figure 3). The ACL was evaluated using synovial coverage
115	grade at primary surgery and at second-look arthroscopy.

116

117 Surgical procedure

Surgical indications of MMPRT repair in patients under 70 years old and a BMI less than 30 kg/m² 118 included varus alignment < 5°, mild cartilage lesion (International Cartilage Research Society low 119 120 grade I or II), and Kellgren–Lawrence grade 0–II in radiographs. The patients were placed in a supine position on the operating table. A standard arthroscopic examination was performed using a 4-mm-121 diameter, 30° arthroscope (Smith & Nephew) through routine anteromedial (AM) and anterolateral 122 123 (AL) portals. A probe was introduced through the AM portal and the severity of MMPRT was evaluated. In cases with a tight medial compartment, we used the outside-in pie-crusting technique of the medial 124 collateral ligament with a standard 18-gauge hollow needle (TERUMO, Tokyo, Japan) [28]. The 125

126	posterior meniscal peripheral attachment of the MM was detached using a rasp to gain meniscal
127	mobility. In the modified transtibial suture combined with FasT-Fix technique, a Knee Scorpion suture
128	was passed (Arthrex, Naples, FL, USA) was used to pass a No. 2 Ultrabraid (Smith & Nephew)
129	vertically through the meniscal tissue (figure 4a). Subsequently, the FasT-Fix 360 meniscal repair
130	system was inserted from the AM portal into the MM posterior horn and root across the Ultrabraid in
131	a modified Mason-Allen configuration [7, 8, 10] (figure 4b, c). The PRT guide (Smith & Nephew),
132	which can create the tibial tunnel at a favorable position because of a narrow twisting/curving shape
133	during transtibial fixation for MMPRT, was placed at the center of the attachment area [9] A 2.4-mm
134	guide pin was inserted, using the PRT guide, at a 55° angle to the articular surface, and a 4.5-mm
135	cannulated drill was used to over-drill [18]. The free ends of the sutures were pulled out through the
136	tibial tunnel using a suture manipulator (figure 4d, e). Gentle tension was applied to the sutures until
137	the posterior horn reached its tibial attachment area. The pulled sutures were rigidly tied to the double-
138	spike plate (Meira, Aichi, Japan), 10 mm from the extra-articular aperture of the tibial tunnel. Tibial
139	fixation was performed using the double-spike plate and screw with the knee flexed at 45° using an
140	initial 20-N tension [7, 8, 18].

142

143 Postoperative Rehabilitation

144 The postoperative rehabilitation protocol was similar for all patients. All patients were initially kept

145	non-weight bearing in the knee immobilizer for 2 weeks after surgery. Knee flexion exercises were
146	limited to 90° for the first 4 weeks. The patients were allowed full weight bearing and 120° knee
147	flexion after 6 weeks. Deep knee flexion was permitted 3 months postoperatively [7].
148	
149	MRI measurements
150	Open MRI scanning was performed in the supine position preoperatively, and at 3 months and 12
151	months postoperatively using an Oasis 1.2 T (Hitachi Medical, Chiba, Japan) with a coil in the 10°
152	(Figure 1a) and 90° (Figure 1b) knee-flexed positions under non-weight-bearing conditions. Standard
153	sequences of the Oasis included a sagittal proton density-weighted sequence (repetition time [TR]/echo
154	time [TE], 1718/12), using a driven equilibrium pulse with a 90° flip angle and coronal T2-weighted
155	multi-echo sequence (TR/TE, 4600/84) with a 90° flip angle. The slice thickness was 4 mm with a 0-
156	mm gap. The field of view was 16 cm with an acquisition matrix size of 320 (phase) \times 416 (frequency)
157	[23]. MM measurements were performed using a simple MRI-based meniscal sizing technique on the
158	sagittal and coronal views at knee flexion angles of 10° and 90°.
159	The MM medial extrusion was measured as the distance from the medial edge of the tibial plateau
160	cartilage to the medial border of the MM. MM extrusion measurements were obtained in the mid-
161	coronal plane by linking the coronal and sagittal image series (Figure 1c, 1d) [14].
162	The details of the MM posterior extrusion measurements were determined from a previously described
163	method [19]. MM posterior extrusion was measured using a line passing orthogonally through the

164	medial tibial plateau, which is the distance from the posterior edge of the tibia (excluding osteophytes)
165	to the posterior edge of the MM (Figure 1e, 1f). Using the posterior edge of the tibia as the standard,
166	extrusions toward the posterior from the tibial edge represented a positive value, whereas a negative
167	value was defined as the absence of such extrusions. The MMME and MMPE were measured from the
168	osteophyte-excluded outer and posterior margin of the medial tibial plateau to the outer and posterior
169	edge of the MM, respectively.
170	
171	Clinical outcome evaluations
172	Clinical outcomes were assessed preoperatively and at the 3-month, 6-month, and 12-month follow-
173	ups after the surgery using the Knee Injury and Osteoarthritis Outcome Score (KOOS), International
174	Knee Documentation Committee (IKDC) subjective knee evaluation form, Lysholm score, Tegner
175	activity level scale, and visual analog scale (VAS) as indicators of pain score. Preoperative results were
176	compared with the 3-month, 6-month and 12-month follow-up results. The KOOS consists of five
177	subscales: pain, symptoms, activities of daily living (ADL), sport and recreation function (sport/rec),
178	and knee-related quality of life (QOL) outcomes.
179	
180	
181	Statistical analyses

Statistical analyses were performed using EZR software (Saitama Medical Center Jichi Medical 182

183	University, Tochigi, Japan). Data are expressed as mean \pm standard deviation (SD), unless otherwise
184	indicated. Statistical significance was set at $p < 0.05$. The repeated measures analysis of variance
185	(ANOVA) was used to compare the preoperative and postoperative clinical scores. One-way ANOVA
186	with Dunnett's multiple comparison post-hoc test was used to compare the preoperative and
187	postoperative MRI data. The averages of these measurements were used in analysis. Differences in
188	cartilage degeneration between primary and second-look arthroscopy were determined by using the
189	Wilcoxon signed-rank test. The Spearman rank correlation was calculated to assess the correlation
190	between MM medial extrusion and MM posterior translation and the area with significant change in
191	cartilage degeneration. MRI measurements were completed by two independent orthopedic surgeons
192	to determine inter-observer reliability using the intraclass correlation coefficient (ICC). Each observer
193	repeated the measurements at a 4-week interval to determine intra-observer reliability. Linear
194	regression analysis was used to assess the correlation of all clinical scores at 12 months with MMPE
195	(knee flexion angles of 10° and 90°) and MMME (knee flexion angles of 10° and 90°).

197 **Results**

198Table 1 shows clinical characteristics of type II MMPRT patients. These patients met surgical199indications for MMPRT. Comparing clinical scores before and after transtibial fixation, all scores were200significantly greater at the 12-month follow-up after surgery (p < 0.05, Figure 2).

201 The extent of MMME at 10° knee flexion was greater at 12 months postoperatively compared to the

202	preoperative measurement (4.77 \pm 1.48 vs 3.53 \pm 1.17, p = 0.012). On the other hand, the extent of
203	MMME at 90° knee flexion was greater at 12 months postoperatively, but the difference was not
204	statistically significant (3.28 \pm 0.84 vs 2.46 \pm 0.58, p = 0.095). The extent of MMPE at 90° knee flexion
205	was smaller at 3 months and 12 months postoperatively when compared with the preoperative
206	measurement (3.21±1.03, 3.49±1.05 vs 4.60±1.27, p<0.001). MM posterior translation during knee
207	flexion between 10° and 90° was smaller at 3 months and 12 months postoperatively compared with
208	preoperative MM translation (7.07±1.87, 7.23±1.74 vs 8.89±1.98, p<0.001) (Table 2). Significant
209	differences in the area of cartilage degeneration were observed between primary surgery and second-
210	look arthroscopy at the medial femoral condyle (MF1-4), medial tibial plateau (T2), patella (P5), and
211	trochlea (T2) (Table 3-5). The cartilage degeneration changes of MF 4 correlated with MMME in knee
212	extension position (r = 0.48, p = 0.04) (Table 6). At the primary surgery, the ACL synovial coverage
213	grade was A in all cases. However, at the second-look arthroscopy, ACL degeneration (synovial
214	coverage grade B) were observed in one patient. Regarding measurements of MMME, the ICCs for
215	intra-observer repeatability and inter-observer repeatability ranged between 0.823 and 0.876 and 0.873
216	and 0.902, respectively. For MMPE measurements, the ICCs for intra-observer repeatability and inter-
217	observer repeatability ranged between 0.892 and 0.921 and 0.922 and 0.945, respectively. Correlations
218	of all clinical scores with decreased MMPE and increased MMME were not detected.

220 Discussion

221	There were 3 main findings from the present study. First, in type II MMPRT patients, MMPE at 90°
222	knee flexion and MM posterior translation during knee flexion decreased after performing the modified
223	transtibial suture technique combined with FasT-Fix fixation. In addition, suppression of cartilage
224	degeneration was observed in the area of MFC from the middle to the posterior end of the site. Second,
225	MMME at 90° knee flexion did not progress greatly, but did progress at the knee extension position.
226	In addition, progression of partial cartilage degeneration was observed especially at the anteromedial
227	site of MFC and this cartilage degeneration correlated with MMME in the knee extension position.
228	Third, meniscus extrusion did not affect all clinical scores at the 12-month postoperative follow-up.
229	A biomechanical study that mimicked MMPRT type II (complete radial tear within 9 mm from root
230	attachment) reported a significant reduction in the medial compartment contact area except for the
231	extension knee position. At a knee flexion of 90°, the contact area of the medial compartment decreased
232	by about 40%, while the contact pressure increased by about 70% [25]. Similar results were reported
233	in another biomechanical study; the pathologically decreased contact area and increased contact
234	pressure with a flexed knee were restored by transtibial fixation to the same extent as the intact knee
235	[1]. The results of these biomechanical studies aligned with the results of our study, which indicated
236	that improved MMPE and suppression of cartilage degeneration in the area of MFC from the middle
237	to the posterior end of the site (MF5-9) led to restoration of meniscal hoop tension with the knee in a
238	flexed position. In contrast to the good results reported in biomechanical studies, some reports have
239	demonstrated cartilage degeneration and MMME progression on postoperative magnetic resonance

240 imaging and second-look examinations, regardless of good clinical outcomes [8, 22]. Similar to these 241 results, our study demonstrated that despite MMME progression in the knee extension position and 242 partial cartilage degeneration (especially anteromedial site of MFC cartilage), all clinical outcomes 243 were improved. In addition, MMME in knee extension position and cartilage degeneration of area 244 MF4 showed a moderate correlation. Hasegawa et al. reported that the strongest correlation between 245 ACL and cartilage degeneration was found at the MFC [12]. In this study, we checked the ACL condition using arthroscopic images and video recordings; we could not detect obvious degenerative 246 changes at the primary surgery, but at the second-look arthroscopy, ACL degeneration was observed 247 in one patient. Thus, worsening MFC cartilage degeneration in this study may influence the ACL 248 249 degeneration. Therefore, additional surgical procedures that can improve MMME in the knee extension 250 position may prevent MFC and ACL degeneration.

In normal knees, the convex femoral condyle slides and rolls on the tibial plateau with knee flexion, and inevitably pushes the meniscus to move backward. During flexion, the meniscus moves backward, and the anteroposterior diameter gradually decreases. The tibiofemoral contact area gradually decreases during flexion because of the large curvature radius at the femoral condyle top and the reduced rearward radius [15]. In the present study, MMME was smaller in the knee flexion position (3.3 mm) than in the knee extension position (4.8 mm). This result may be influenced by the change of curvature radius at the femoral condyle during knee flexion.

258 If the anterior and posterior cruciate ligaments (ACL/PCL) are normal at 90° knee flexion, anterior

259	translation of the tibia is counteracted by the buttress effect of the medial meniscus [3]. This highlights
260	the role of MM as a secondary stabilizer in knee flexion. In MRI analysis for MMPRT, the posterior
261	translation of MM is 8.6 mm at 90° knee flexion [23]. In addition, the preoperative amount of posterior
262	translation of the MM in MMPRT was very similar (8.9 mm). The amount of posterior translation of
263	the MM after MMPRT repair improved to 7.2 mm, but the amount of posterior translation was about
264	2 to 3 mm more than that of a normal meniscus (4 to 5 mm) [27, 29]. It was unclear how this difference
265	affected the kinematics (pathological MM translation and rotation of the tibia) in the knee joint.
266	However, MMPRT in elderly patients, which has been considered difficult to repair due to
267	degenerating meniscal tissue and poor healing ability, showed improved MMPE and amount of
268	posterior translation induced by transtibial fixation.
269	This study did not evaluate MM extrusion (MMME/MMPE) under body weight. The degree of MM
270	extrusion (MMME) is significantly different between loaded and unloaded MRI in those with no
271	osteoarthritis or minimal osteoarthritis [26]. On the other hand, the posterior segment of MM is
272	strongly connected to the posterior joint capsule and the semi-membranous muscle [6]. Since the
273	tension of these structures is increased in the loaded knee extension position, the influence on the MM
274	posterior translation may be small. However, the posterior translation of MM in the loaded knee flexion
275	position is unclear. Thus, further research using ultrasonography that can be applied clinically is
276	required in future studies.

277 There were several limitations in this study. First, patient records were retrospectively assessed, the

278	sample size was small, and the follow-up period was one year. Second, this study focused on type II
279	MMPRTs; therefore, other tear patterns could not be evaluated. Third, this study did not evaluate MM
280	extrusion (MMME/MMPE) under body weight. Fourth, there was no video recording or image for
281	evaluating PCL, and there was no description of the posterior drawer test in the medical record, so
282	detailed evaluation was not possible. Fifth, since MRI was two-dimensional and did not include axial
283	images, movement of the three-dimensional meniscus was not reflected in the analysis. Morphological
284	analysis of the meniscus should be attempted using three-dimensional MRIs during knee flexion.
285	Future studies should also include more patients with other types of tears and a longer follow-up period.
286	Conclusions
287	MMPRT transtibial fixation suppressed the progression of MMPE and cartilage degeneration, and
288	progressed MMME minimally in knee flexion position in a short-term one-year unloaded MRI and
289	arthroscopic evaluation. However, in the knee extension position, MMME progressed and correlated
290	with the MFC cartilage degeneration. The results of this study indicate that transtibial fixation can
291	restore the meniscal morphology at 90° knee flexion, even in elderly patients with poor healing ability.
292	However, the postoperative MM conditions did not affect all good clinical scores by the one-year
293	follow-up.
294	Compliance with ethical standards

Ethical approval

- All procedures performed in studies involving human participants were in accordance with the
- 297 ethical standards of the institutional review board.
- 298
- 299 Informed consent
- 300 Informed consent was obtained from all individual participants included in the study.

302 References

303	1.	Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of
304		the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am
305		90:1922-1931.
306	2.	Bae JH, Paik NH, Park GW, Yoon JR, Chae DJ, Kwon JH, Kim JI, Nha KW (2013) Predictive
307		value of painful popping for a posterior root tear of the medial meniscus in middle-aged to older
308		Asian patients. Arthroscopy 29:545-549.
309	3.	Bhatia S, LaPrade CM, Ellman MB, LaPrade RF (2014) Meniscal root tears: significance,
310		diagnosis, and treatment. Am J Sports Med 42:3016-3030.
311	4.	Chung KS, Ha JK, Ra HJ, Kim JG (2016) A meta-analysis of clinical and radiographic outcomes
312		of posterior horn medial meniscus root repairs. Knee Surg Sports Traumatol Arthrosc 24:1455-
313		1468.
314	5.	Chung KS, Ha JK, Ra HJ, Lee HS, Lee DW, Park JH, Kim DH, Kim JG (2019) Pullout fixation
315		for medial meniscus posterior root tears: clinical results were not age-dependent, but osteoarthritis
316		progressed. Knee Surg Sport Traumatol Arthrosc 27:189-196.
317	6.	DePhillipo NN, Moatshe G, Chahla J, Aman ZS, Storaci HW, Morris ER, Robbins CM,
318		Engebretsen L, LaPrade RF (2019) Quantitative and Qualitative Assessment of the Posterior
319		Medial Meniscus Anatomy: Defining Meniscal Ramp Lesions. Am J Sports Med 47:372-378
320	7.	Fujii M, Furumatsu T, Kodama Y, Miyazawa S, Hino T, Kamatsuki Y, Yamada K, Ozaki T (2017)

321		A novel suture technique using the FasT-Fix combined with Ultrabraid for pullout repair of the
322		medial meniscus posterior root tear. Eur J Orthop Surg Traumatol 27:559-562.
323	8.	Fujii M, Furumatsu T, Xue H, Miyazawa S, Kodama Y, Hino T, Kamatsuki Y, Ozaki T (2017)
324		Tensile strength of the pullout repair technique for the medial meniscus posterior root tear: a
325		porcine study. Int Orthop 41:2113-2118.
326	9.	Furumatsu T, Kodama Y, Fujii M, Tanaka T, Hino T, Kamatsuki Y, Yamada K, Miyazawa S,
327		Ozaki T (2017) A new aiming guide can create the tibial tunnel at favorable position in transtibial
328		pullout repair for the medial meniscus posterior root tear. Orthop Traumatol Surg Res 103:367-
329		371.
330	10.	Furumatsu T, Okazaki Y, Kodama Y, Okazaki Y, Masuda S, Kamatsuki Y, Takihira S, Hiranaka T,
331		Yamawaki T, Ozaki T (2019) Pullout repair using modified Mason-Allen suture induces better
332		meniscal healing and superior clinical outcomes: A comparison between two surgical methods.
333		Knee Elsevier B.V. 26:653-659
334	11.	Furumatsu T, Okazaki Y, Okazaki Y, Hino T, Kamatsuki Y, Masuda S, Miyazawa S, Nakata E,
335		Hasei J, Kunisada T, Ozaki T (2019) Injury patterns of medial meniscus posterior root tears.
336		Orthop Traumatol Surg Res 105:107-111.
337	12.	Hasegawa A, Otsuki S, Pauli C, Miyaki S, Patil S, Steklov N, Kinoshita M, Koziol J, D'Lima DD,
338		Lotz MK (2012) Anterior cruciate ligament changes in the human knee joint in aging and
339		osteoarthritis. Arthritis Rheum 64:696-704
		19

340	13.	Hino T, Furumatsu T, Miyazawa S, Fujii M, Kodama Y, Kamatsuki Y, Okazaki Y, Ozaki T (2018)
341		A histological study of the medial meniscus posterior root tibial insertion. Connect Tissue Res 9:1-
342		8
343	14.	Kamatsuki Y, Furumatsu T, Fujii M, Kodama Y, Miyazawa S, Hino T, Ozaki T (2018) Complete
344		tear of the lateral meniscus posterior root is associated with meniscal extrusion in anterior cruciate
345		ligament deficient knees. J Orthop Res 36:1894-1900.
346	15.	Kawahara Y, Uetani M, Fuchi K, Eguchi H, Hayashi K (1999) MR assessment of movement and
347		morphologic change in the menisci during knee flexion. Acta Radiol 40:610-614.
348	16.	Kim JH, Chung JH, Lee DH, Lee YS, Kim JR, Ryu KJ (2011) Arthroscopic suture anchor repair
349		versus pullout suture repair in posterior root tear of the medial meniscus: a prospective comparison
350		study. Arthroscopy 27:1644-1653.
351	17.	Kim JY, Bin SI, Kim JM, Lee BS, Oh SM, Cho WJ (2019) A novel arthroscopic classification of
352		degenerative medial meniscus posterior root tears based on the tear gap. Orthop J Sport Med
353		7:232596711982794.
354	18.	Kodama Y, Furumatsu T, Fujii M, Tanaka T, Miyazawa S, Ozaki T (2016) Pullout repair of a
355		medial meniscus posterior root tear using a FasT-Fix® all-inside suture technique. Orthop
356		Traumatol Surg Res 102:951-954.
357	19.	Krych AJ, Reardon PJ, Johnson NR, Mohan R, Peter L, Levy BA, Stuart MJ (2017) Non-operative

358 management of medial meniscus posterior horn root tears is associated with worsening arthritis

359	and poor clinical outcome at 5-year follow-up. Knee Surg Sports Traumatol Arthrosc 25:383-389
360	20. LaPrade CM, James EW, Cram TR, Feagin JA, Engebretsen L, LaPrade RF (2014) Meniscal root
361	tears: A classification system based on tear morphology. Am J Sports Med 43:363-369.
362	21. LaPrade RF, LaPrade CM, James EW (2015) Recent advances in posterior meniscal root repair
363	techniques. J Am Acad Orthop Surg 23:71-76.
364	22. Lee SS, Ahn JH, Kim JH, Kyung BS, Wang JH (2018) Evaluation of healing after medial meniscus
365	root repair using second-look arthroscopy, clinical, and radiological criteria. Am J Sports Med
366	46:2661-2668.
367	23. Masuda S, Furumatsu T, Okazaki Y, Kodama Y, Hino T, Kamatsuki Y, Miyazawa S, Ozaki T
368	(2018) Medial meniscus posterior root tear induces pathological posterior extrusion of the
369	meniscus in the knee-flexed position: An open magnetic resonance imaging analysis. Orthop
370	Traumatol Surg Res 104:485-489.
371	24. Okazaki Y, Furumatsu T, Yamaguchi T, Kodama Y, Kamatsuki Y, Masuda S, Okazaki Y, Hiranaka
372	T, Zhang X, Ozaki T (2019) Medial meniscus posterior root tear causes swelling of the medial
373	meniscus and expansion of the extruded meniscus: a comparative analysis between 2D and 3D
374	MRI. Knee Surgery, Sport Traumatol Arthrosc. doi: 10.1007/s00167-019-05580-6. [Epub ahead
375	of print]
376	25. Padalecki JR, Jansson KS, Smith SD, Dornan GJ, Pierce CM, Wijdicks CA, Laprade RF (2014)
377	Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior

378	root attachment site: in situ pull-out repair restores derangement of joint mechanics. Am J Spor
379	Med 42:699-707.

380	26.	Patel R,	Eltgroth N	M, Souza I	R, Zhang	CA, Majumdar	S, Link	TM, Motam	edi D (201	6) Loaded
-----	-----	----------	------------	------------	----------	--------------	---------	-----------	------------	-----------

- 381 versus unloaded magnetic resonance imaging (MRI) of the knee: Effect on meniscus extrusion in
- healthy volunteers and patients with osteoarthritis. Eur J Radiol Open Elsevier Ltd. 3:100-107
- 383 27. Seil R, Duck K, Pape D (2011) A clinical sign to detect root avulsions of the posterior horn of the
- medial meniscus. Knee Surg Sports Traumatol Arthrosc 19:2072-2075.
- 385 28. Todor A, Caterev S, Nistor DV (2016) Outside-in deep medial collateral ligament release during
 386 arthroscopic medial meniscus surgery. Arthrosc Tech 5:781-785.
- 29. Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM (1999) Meniscal movement.
- 388 An in-vivo study using dynamic MRI. J Bone Joint Surg Br 81:37-41.

389	Figure	legends
389	Figure	legend

390	Fig. 1 Magnetic resonance imaging-based measurements: 10° and 90° knee-flexed position in a non-
391	weight-bearing condition (a, b). Coronal and sagittal images of the knee flexed at 10° (c, e) and 90°
392	(d, f). Medial and posterior margins of the medial tibial plateau (solid lines) and medial meniscus
393	(dashed lines).
394	MMME: medial meniscus medial extrusion, MMPE: medial meniscus posterior extrusion
395	
396	Fig. 2 Time-dependent clinical outcomes. Data were collected preoperatively and at 3-, 6-, and 12-
397	month follow-ups
398	KOOS: Knee Injury and Osteoarthritis Outcome Score, ADL: activities of daily living, Sport/rec: sport
399	and recreation function, QOL: quality of life, IKDC: International Knee Documentation Committee
400	subjective knee evaluation form, VAS: visual analog scale, $*p < 0.05$.
401	
402	Fig. 3 Schematic illustrations of the femoral condyle and tibial plateau. (a) The patella was divided
403	into 9 segments. (b) The medial and lateral femoral condyles were divided into 9 segments. (c) The
404	medial and lateral tibial plateaus were divided into 5 segments.
405	
406	Fig. 4 Modified transtibial suture technique combined with FasT-Fix fixation. (a) No. 2 Ultrabraid was
407	passed through the posterior horn of the MM with the Knee Scorpion suture passer. (b) The first

408	implant of FasT-Fix was inserted into the posterior horn of the MM, whereas the passed Ultrabraid
409	was tensioned throughout the AL portal. (c) The second implant of FasT-Fix was inserted into the
410	posterior root of the MM across the Ultrabraid. (d) Modified transtibial suture technique combined
411	with FasT-Fix fixation. (e) Schematic drawing of the modified transtibial suture technique combined
412	with FasT-Fix fixation. The uncut free ends of the FasT-Fix suture and/or Ultrabraid were retrieved
413	from the tibial tunnel at an anatomic attachment of the medial meniscal posterior root. Note that the
414	FasT-Fix needle penetrated the meniscal horn and posterior joint capsule.