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We unfold the bifurcation involving the loss of evolutionary stability of an equilibrium of the
canonical equation of Adaptive Dynamics (AD). The equation deterministically describes the
expected long-term evolution of inheritable traits—phenotypes or strategies—of coevolving pop-
ulations, in the limit of rare and small mutations. In the vicinity of a stable equilibrium of the
AD canonical equation, a mutant type can invade and coexist with the present—resident—types,
whereas the fittest always win far from equilibrium. After coexistence, residents and mutants
effectively diversify, according to the enlarged canonical equation, only if natural selection favors
outer rather than intermediate traits—the equilibrium being evolutionarily unstable, rather than
stable. Though the conditions for evolutionary branching—the joint effect of resident-mutant
coexistence and evolutionary instability—have been known for long, the unfolding of the bi-
furcation remained a missing tile of AD, the reason being related to the nonsmoothness of the
mutant invasion fitness after branching. In this paper, we develop a methodology that allows the
approximation of the invasion fitness after branching in terms of the expansion of the (smooth)
fitness before branching. We then derive a canonical model for the branching bifurcation and
perform its unfolding around the loss of evolutionary stability. We cast our analysis in the
simplest (but classical) setting of asexual, unstructured populations living in an isolated, homo-
geneous, and constant abiotic environment; individual traits are one-dimensional; intra- as well
as inter-specific ecological interactions are described in the vicinity of a stationary regime.

Keywords : adaptive dynamics; bifurcation; evolutionary branching; evolutionary stability; inva-
sion fitness; singular strategy.
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1. Introduction

Since its founding publications [Metz et al., 1996, Geritz et al., 1997, 1998], Adaptive Dynamics (AD) has2

been widely used for modeling the long-term evolutionary dynamics of genetically transmitted phenotypic
traits (see Dercole & Rinaldi [2008] and the refs. therein), with special emphasis on the emergence of4

diversity through evolutionary branching. Evolutionary branching takes place when a resident and a similar
mutant type coexist in the same environment and natural selection is disruptive, i.e., it favors outer rather6

than intermediate phenotypes. Series of subsequent mutations hence lead to the diversification of the two
traits. Analogous phenomena can be observed in socio-economic contexts [Dercole et al., 2008, 2010b, Landi8

& Dercole, 2014], where behavioral strategies, innovations, and competition play the role of phenotypic
traits, mutations, and natural selection [Ziman, 2000].10

In the limit of extremely rare mutations of infinitesimal effect, evolution can be approximated by a
continuous dynamics in terms of an ODE model, called the canonical equation of AD [Dieckmann & Law,12

1996, Champagnat et al., 2006]. The AD canonical equation describes the expected long-term evolution as
an ascent of the traits on an adaptive fitness landscape [Levins, 1968, Metz et al., 1992, Gavrilets, 2004].14

All kinds of evolutionary attractors can be displayed, from stationary—called singular strategies in the AD
jargon—to periodic [Dieckmann et al., 1995, Dercole et al., 2003] and chaotic [Dercole et al., 2010a, Dercole16

& Rinaldi, 2010]; and attractor multiplicity (ecological and/or evolutionary) questions the replicability of
evolutionary history [Dercole et al., 2002, 2006]. When mutational steps are finite and stochastically drawn,18

evolution proceeds as a random walk in the trait space of coevolving populations, again showing the full
plethora of nonlinear behaviors (see e.g. [Dieckmann, 1997, Doebeli & Ruxton, 1997, Doebeli & Dieckmann,20

2000]).
Evolutionary branching can be formally described in terms of the stability properties of the singular22

strategies, seen as the evolutionary equilibria of the AD canonical equation. Specifically, resident-mutant
coexistence can only occur in the vicinity of a singular strategy [Geritz, 2005, Meszéna et al., 2005, Dercole &24

Rinaldi, 2008], that must hence be a stable equilibrium—convergence stability in the AD jargon [Eshel, 1983,
Taylor, 1989, Christiansen, 1991, Eshel et al., 1997]—to be reached by the evolutionary dynamics (unstable26

equilibria—convergence unstable singular strategies—are not considered). And it must be unstable for
the higher-dimensional canonical equation used after resident-mutant coexistence—evolutionary instability28

[Maynard Smith & Price, 1973]—to produce phenotypic divergence. Whereas branching cannot occur if
coexistence is not possible close to the evolutionary equilibrium or if the equilibrium is evolutionarily30

stable—the equilibrium then represents a terminal point of the evolutionary dynamics [Dercole & Rinaldi,
2008].32

The transition from terminal to branching point (or vice-versa) along with changes in the relevant
demographic, environmental, or control parameters, can therefore be interpreted as a bifurcation of the AD34

canonical equation. The unfolding of the bifurcation is however a missing tile of AD theory. The reason
why it has been left behind is related to difficulties in developing a suitable normal form for the bifurcation.36

In fact, the fitness landscape after branching is nonsmooth at the branching point and this prevents the
Taylor expansion approach typical of normal form analysis.38

In this paper we develop a methodology that allows the approximation of the dimorphic fitness
landscape—the invasion fitness of a mutant in the presence of two resident types at incipient branching—in40

terms of the expansion of the monomorphic fitness—the invasion fitness before branching—up to any order
locally to the branching point. We cast our analysis in the simplest (but classical) setting of unstructured42

populations (no distinction in age, state, location, etc., of individuals) varying in continuous time in an iso-
lated, homogeneous, and constant abiotic environment; individual traits are quantified by one-dimensional44

strategies; intra- as well as inter-specific ecological interactions are described in the vicinity of a stationary
regime. We exploit an expansion in the radial direction in the plane of the two coexisting strategies and46

show that the fitness landscape is smooth on each given ray, thus obtaining an approximation that is
parametric in the ray angle.48

By means of a third-order approximation, we unfold the branching bifurcation involving the change in
evolutionary stability of the singular strategy. In particular, the third derivative of the monomorphic fitness50

with respect to the mutant strategy is the critical coefficient ruling branching at the bifurcation. The other
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transition from terminal to branching point, the one involving the possibility of resident-mutant coexistence
near the singularity, is more intricate and is left for future research. This, as well as bifurcations of higher2

codimension (more degeneracies occurring together), can in principle be dealt with the same methodology.
Interestingly, our approximation coincides up to second-order to the one obtained by Geritz et al. [1997,4

1998] by assuming a smooth dimorphic fitness (see the Appendix 1 in [Geritz et al., 1998] in particular).
Thus, the branching conditions derived by Geritz et al. [1997, 1998], in terms of the second derivatives of the6

monomorphic fitness at the singular strategy, are confirmed. The third-order terms in the approximation
however differ from those one would obtain under the smoothness assumption. Worth to remark is that8

our third-order terms are given in terms of the monomorphic fitness derivatives (in contrast to what
preliminarily found by Durinx [2008], in the special case of Lotka-Volterra models), so the evolutionary10

dynamics locally to a branching point are determined by quantities that can be evaluated without waiting
for the mutation that triggers the branching—an important feature for the empirical test of evolutionary12

predictions.
The paper is organized as follows. In the next section we introduce the basic notation and the method-14

ology used for approximating the dimorphic invasion fitness. For simplicity, we consider a single species
generic model (as done in [Geritz et al., 1997, 1998]) and we focus on the transition from the monomorphic16

to the dimorphic situation. In Appendix C, we consider higher polymorphisms and/or inter-specific ecolog-
ical and/or coevolutionary interactions. The results are fully analogous, but more involved to be derived.18

In Sects. 3 and 4 we present the normal form and the unfolding of the branching bifurcation, respectively.
Sect. 5 is dedicated to two examples, where the developed theory is applied to two AD models taken from20

the literature. Finally, in Sect. 6, we discuss possible extensions for future work. In particular, similar results
are expected to hold for the case of structured populations characterized by multi-dimensional strategies.22

All analytical computations have been handled symbolically and a fully-commented Mathematica script is
provided as online Supplementary Material.24

2. Methods

2.1. Notation, assumptions, and preliminaries26

We consider two similar competing populations, with abundances measured by densities n1(t) and n2(t)
at time t and characterized by a one-dimensional strategy (or trait) x taking values x1 and x2 ≃ x1 in28

populations 1 and 2 (the case in which other conspecific populations and/or other species are present
is treated in Appendix C). Before branching, we refer to populations 1 and 2 as resident and mutant,30

respectively, whereas they are both residents after branching.
Populations 1 and 2 being conspecific, their per-capita growth rates ṅ1/n1 and ṅ2/n2 can be expressed32

through the same fitness generating function (or g-function [Vincent & Brown, 2005]) g(n1, n2, x1, x2, x
′)—

the per-capita growth rate of a virtual population with strategy x′ and infinitesimally small density in the34

environment set by strategies x1 and x2 with densities n1 and n2. Then, ṅ1/n1 and ṅ2/n2 are given by the
g-function evaluated for x′ = x1 and x′ = x2, respectively:36

ṅ1 = n1 g(n1, n2, x1, x2, x1), (1a)

ṅ2 = n2 g(n1, n2, x1, x2, x2), (1b)

the resident-mutant model of AD [Dercole & Rinaldi, 2008].
To define reasonable population dynamics, function g enjoys the four basic properties P1–P4 sum-38

marized below. The first three are rather obvious, whereas the fourth one is more involved and has been
recently introduced [Dercole, 2014]. We assume g to be smooth and we use lists of integer superscripts to40

indicate the arguments w.r.t. which we take derivatives and the order of differentiation, e.g.

g(1,0,0,0,0)(n1, n2, x1, x2, x
′) := ∂

∂n1
g(n1, n2, x1, x2, x

′),

g(1,1,0,0,0)(n1, n2, x1, x2, x
′) := ∂2

∂n1n2
g(n1, n2, x1, x2, x

′),

g(2,0,0,0,0)(n1, n2, x1, x2, x
′) := ∂2

∂n2
1
g(n1, n2, x1, x2, x

′).

P1: g(n1, 0, x1, x2, x
′) = g1(n1, x1, x

′),42
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for a suitable function g1, i.e., the per-capita growth rate of a strategy x′ is not affected by the strategy
x2 of an absent population.2

P2: g(n1, n2, x, x, x
′) = g(α(n1+ n2), (1− α)(n1+ n2), x, x, x

′),

for any 0 ≤ α ≤ 1, i.e., any partition of the total density (n1 + n2) into two populations with same4

strategy x must result in the same per-capita growth rate for strategy x′.

P3: g(n1, n2, x1, x2, x
′) = g(n2, n1, x2, x1, x

′),6

i.e., the order in which populations 1 and 2 are considered does not matter.

P4: g(0,0,d1,0,0)(n1, n2, x, x, x
′) =

d1
∑

i1=1

φd1,i1(n1+ n2, x, x
′)ni11 ,

g(0,0,d1,d2,0)(n1, n2, x, x, x
′) =

d1
∑

i1=1

d2
∑

i2=1

φd1,d2,i1,i2(n1+ n2, x, x
′)ni11 n

i2
2 ,

8

for suitable functions φd1,i1 and φd1,d2,i1,i2 , d1, d2 ≥ 1. This property follows from a generalized principle
of mass-action, i.e., the assumption that g describes the pairwise interactions of a virtual individual10

with strategy x′ with x1,2-individuals involved, in turn, in other pairwise interactions [Dercole, 2014].

Properties P1–P4 can be combined to produce further relations among g-derivatives that will be taken12

into account in our expansions in Sect. 2.3 (in particular in the Supplementary Material). For example:

P1,2a: g(l1,l2,0,0,0)(n1, n2, x, x, x
′) = g

(l1+l2,0,0)
1 (n1+ n2, x, x

′),14

i.e., n1- and n2-perturbations simply perturb the total density (n1+ n2) if the two populations have
the same strategy x.16

P1,2b:
d

∑

i=0

(d
i

)

g(l1,l2,i,d−i,0)(n1, n2, x, x, x
′) = g

(l1+l2,d,0)
1 (n1+ n2, x, x

′),

d ≥ 1, obtained by x-differentiating P1-2a.18

P1,3: g(0, n2, x1, x2, x
′) = g1(n2, x2, x

′).

P1,4: g
(0,d,0)
1 (n, x, x′) =

d
∑

i=1

φd,i(n, x, x
′)ni.20

P1,2,4:

d−i2
∑

i=i1

(d
i

)

φi,d−i,i1,i2(n, x, x
′) =

(i1+i2
i1

)

φd,i1+i2(n, x, x
′),

for each i1, i2 ≥ 1 with i1 + i2 ≤ d ≥ 2, obtained by substituting P4 and P1,4 into P1,2b (with22

l1= l2 = 0) and by balancing same (n1, n2)-monomials at the left- and right-hand sides. In particular,

d = 2 i1 = 1 i2 = 1 gives 2φ1,1,1,1 = 2φ2,2,
d = 3 i1 = 1 i2 = 1 gives 3φ1,2,1,1 + 3φ2,1,1,1 = 2φ3,2,
d = 3 i1 = 1 i2 = 2 gives 3φ1,2,1,2 = 3φ3,3,
d = 3 i1 = 2 i2 = 1 gives 3φ2,1,2,1 = 3φ3,3,

24

thus linking the functions φ’s with two sum indexes to those characterized by a single sum index.

P3,4a: g(0,0,0,d2,0)(n1, n2, x, x, x
′) =

d2
∑

i2=1

φd2,i2(n1+n2, x, x
′)ni22 .26

P3,4b: φd1,d2,i1,i2 = φd2,d1,i2,i1 .

P1–4: φ1,1,1,1 = φ2,2, φ2,1,1,1 = φ1,2,1,1 =
1
3φ3,2, φ2,1,2,1 = φ1,2,1,2 = φ3,3,28

obtained by exploiting P3,4b in the examples of P1,2,4.

Moreover, further derivatives w.r.t. to the virtual strategy x′ can be added to all properties.30

As anticipated in the Introduction, we consider the (simplest, but most typical) case of stationary
coexistence. In particular, we assume that for all values of the strategy x1 that we consider, the resident32

population 1 can persist alone at a strictly positive and (hyperbolically) stable equilibrium of Eq. (1a) with
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n2 = 0. We denote the equilibrium density with function n̄(x1), implicitly defined by

g(n̄(x1), 0, x1, x2, x1)
P1
= g1(n̄(x1), x1, x1) = 0. (2)

Note that the hyperbolic stability of the resident equilibrium (i.e., g
(1,0,0)
1 (n̄(x1), x1, x1) < 0) and the2

similarity between the resident and mutant populations (x1 ≃ x2), guarantee that population 2 is also
able to persist alone at the strictly positive (and hyperbolically stable) equilibrium n̄(x2) of Eq. (1b) with4

n1 = 0 (function n̄(x1) is uniquely defined, locally to x1, by the implicit function theorem). In other words,
the resident-mutant model (1) admits the two monomorphic equilibria (n̄(x1), 0) and (0, n̄(x2)) for all pairs6

(x1, x2) that we consider (see Fig. 1).

n1

n1n1

n1

n2 n2

n2n2

n̄(x1)n̄(x1)

n̄(x1)n̄(x1)

n̄(x2)n̄(x2)

n̄(x2)n̄(x2)

00

00

(a) (b)

(c) (d)

λ
(0,1)
1 (x1, x1)(x2 − x1) > 0 λ

(0,1)
1 (x1, x1)(x2 − x1) < 0

λ
(1,1)
1 (x̄, x̄) < 0 λ

(1,1)
1 (x̄, x̄) > 0

Fig. 1. The four possible resident-mutant competition scenarios for (x1, x2) close to the singular point (x̄, x̄). Mutant dom-

inance (resident substitution) (a) and resident dominance (mutant extinction) (b) away from singularity (λ
(0,1)
1 (x1, x1) 6= 0)

for x2 sufficiently close to x1. Coexistence (mutant invasion) (c) and mutual exclusion (mutant extinction) (d) for (x1, x2)
sufficiently close to the anti-diagonal (x̄−∆x, x̄+∆x), ∆x small. Full points: stable equilibria; half-filled points: saddles; empty
points: repellor equilibria.

The monomorphic invasion fitness is the initial (per-capita) growth rate of the mutant population8

[Metz et al., 1992], i.e.,

λ1(x, x
′) := g(n̄(x), 0, x, x, x′)

P1
= g1(n̄(x), x, x

′), (3)

the resident population settled at equilibrium mutations being rare. Technically, λ1(x1, x2) is the eigenvalue10

of the monomorphic equilibrium (n̄(x1), 0) of model (1) ruling mutant invasion along the eigenvector
transversal to the n1-axis (Fig. 1).12

Generically (i.e., if λ
(0,1)
1 (x, x) 6= 0 [Geritz, 2005, Meszéna et al., 2005, Dercole & Rinaldi, 2008]), the

best performing population wins the competition, so x evolves by small steps in the direction of the selection14

gradient λ
(0,1)
1 (x, x). And in the limit of extremely rare and small mutations, the expected evolutionary

dynamics is deterministically described by the AD canonical equation16

ẋ = 1
2µ(x)σ(x)

2 n̄(x)λ
(0,1)
1 (x, x), (4)

where µ(x) and σ(x)2 scale with the frequency and variance of mutations in strategy x (half of which are
at disadvantage and go extinct). The strategies annihilating the selection gradient are called singular and18

correspond to the equilibria of the canonical equation.
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x̄

x̄

x1

x2
(b)

(b)

(a)

(a)

(c)

(c)

θT2(0)

θT1(0)

Fig. 2. The resident-mutant coexistence region locally to the singular point (x̄, x̄) (shaded area, see scenario (c) in Fig. 1);
boundary 1 (blue): transcritical bifurcation of model (1) at which n̄1(x1, x2) = 0; boundary 2 (red): transcritical bifurcation
of model (1) at which n̄2(x1, x2) = 0. For (x1, x2) in the white areas one of the two populations outcompetes the other (see
scenarios (a) and (b) in Fig. 1).

In the vicinity of a singular strategy x̄, i.e.,

λ
(0,1)
1 (x̄, x̄) = 0, (5)

the ecological and evolutionary dynamics are dominated by the second derivatives of the monomorphic
fitness. In particular, resident-mutant coexistence is possible if

λ
(1,1)
1 (x̄, x̄) < 0. (G1)

Geritz et al. [1997, 1998] showed that under (G1) resident and mutant mutually invade each other (the2

instability of the two monomorphic equilibria, see Fig. 1c); and they mutually exclude if the inequality sign
in (G1) is reversed (the stability of the two monomorphic equilibria, see Fig. 1d). The uniqueness and sta-4

bility under (G1) of the internal equilibrium of the resident-mutant model (1) has been later shown (under
different ecological settings) in [Geritz, 2005, Meszéna et al., 2005, Dercole & Geritz, 2015]. When possible,6

coexistence occurs for (x1, x2) in a conical region locally to (x̄, x̄) (see Fig. 2). The boundaries of the region
are transcritical bifurcation curves [Kuznetsov, 2004, Meijer et al., 2009] on which the internal equilibrium8

collides with one of the monomorphic equilibria (see Sect. 2.2). For (x1, x2) in the coexistence region, we
denote the densities of the internal equilibrium with functions n̄1(x1, x2) and n̄2(x1, x2), implicitly defined10

by

g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x1) = 0, (6a)

g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x2) = 0 (6b)

(the equilibrium condition for model (1)).12

After coexistence evolution is driven by a two-dimensional canonical equation

ẋi =
1
2µ(xi)σ(xi)

2 n̄i(x1, x2)λ
(0,0,1)
2 (x1, x2, xi), i = 1, 2, (7)

where14

λ2(x1, x2, x
′) := g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x

′), (8)

is the dimorphic invasion fitness—the initial (per-capita) growth rate of the mutant population of strategy
x′ appeared in an environment set by the two residents x1 and x2 at their equilibrium densities.16

Note the symmetry of the resident-mutant coexistence region w.r.t. the diagonal x1 = x2 (Fig. 2), that
is due to property P3. Indeed, the dynamics of model (1) corresponding to point (x1, x2) below the diagonal18

are obtained by those corresponding to point (x2, x1) above the diagonal by exchanging n1 and n2, i.e., by
exchanging the roles of resident and mutant (hence n̄2(x1, x2) = n̄1(x2, x1)). Consequently, also model (7)20
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has a diagonal symmetry—the vector field at (x1, x2) below the diagonal is obtained by that at (x2, x1)
above the diagonal by exchanging the two components of the field (see the black arrows in Fig.2).2

The (convergence stable) singular strategy x̄ is a branching point if the two coexisting similar strategies
x1 and x2 tend to diversify according to the dimorphic evolutionary dynamics (7). Technically, this is so4

if ẋ1(0) < 0 and ẋ2(0) > 0 at a point (x1(0), x2(0)) of the coexistence region, with x2(0) > x1(0), that
is arbitrarily close to (x̄, x̄) (see the black arrow above the diagonal in Fig.2). The singular strategy is a6

terminal point of the evolutionary dynamics, otherwise.
Geritz et al. [1997, 1998] concluded that a sufficient condition for evolutionary divergence is8

λ
(0,2)
1 (x̄, x̄) > 0, (9)

i.e., the condition for evolutionary instability—mutant invasion at x1 = x̄ [Maynard Smith & Price, 1973].
The conclusion is based on a second-order Taylor expansion of the dimorphic fitness at (x1, x2, x

′) = (x̄, x̄, x̄)10

(see [Geritz et al., 1998] Appendix 1 in particular), that is however nonsmooth there. In fact, by assuming
smoothness and exploiting the following consistency relations:12

C1: λ2(x, x, x
′) = λ1(x, x

′),

the link between the dimorphic and monomorphic fitness functions (induced by properties P1 and P2),14

C2: λ2(x1, x2, x
′) = λ2(x2, x1, x

′),

the order irrelevance of the two residents (property P3)16

C3: λ2(x1, x2, x1) = λ2(x1, x2, x2) = 0,

the resident equilibrium conditions (6),18

one gets to nongeneric constraints on the monomorphic fitness, such as λ
(2,0)
1 (x̄, x̄) = λ

(0,2)
1 (x̄, x̄) at second

order, and similar nonsenses at higher orders (see Appendix 1). In Sect. 2.3 we show that the divergence20

condition (9) is correct, as we rederive it through a proper (radial) expansion of the dimorphic fitness.
In the following we use over-bars to denote evaluations at the singular strategy in the absence of22

mutants, e.g.

ḡ(1,0,0,0,0) := g(1,0,0,0,0)(n̄(x̄), 0, x̄, x̄, x̄)
P1
= g

(1,0,0)
1 (n̄(x̄), x̄, x̄) < 0 (10)

is the stability condition of the resident equilibrium n̄(x̄), λ̄
(0,1)
1 := λ

(0,1)
1 (x̄, x̄) = 0 is the singularity24

condition (5), and λ̄
(1,1)
1 := λ

(1,1)
1 (x̄, x̄) and λ̄

(0,2)
1 := λ

(0,2)
1 (x̄, x̄) rule branching at the singular strategy. And

from the definition (3) of the monomorphic fitness and property P1,4, we can write26

λ̄
(0,q)
1 = ḡ(0,0,0,0,q), (11a)

λ̄
(1,q)
1 = ḡ(1,0,0,0,q)n̄(1)+ φ̄

(0,0,q)
1,1 n̄, (11b)

λ̄
(2,q)
1 = ḡ(2,0,0,0,q)

(

n̄(1)
)2

+ 2
(

φ̄
(0,0,q)
1,1 + φ̄

(1,0,q)
1,1 n̄

)

n̄(1)+ ḡ(1,0,0,0,q)n̄(2) + φ̄
(0,0,q)
2,1 n̄+ φ̄

(0,0,q)
2,2 n̄2, (11c)

q ≥ 0, and so forth (that will be used in Appendix B).
Moreover, taking into account invasion neutrality, i.e.,28

λ1(x, x) = 0 (12)

for any x (note that it is nothing but the definition of n̄(x), see Eqs. (2) and (3)), we can avoid the pure

derivatives λ̄
(d,0)
1 , d ≥ 1, since by the x-derivatives of (12) at (x̄, x̄) we have30

λ̄
(1,0)
1 + λ̄

(0,1)
1 = 0, (13a)

λ̄
(2,0)
1 + 2λ̄

(1,1)
1 + λ̄

(0,2)
1 = 0, (13b)

λ̄
(3,0)
1 + 3λ̄

(2,1)
1 + 3λ̄

(1,2)
1 + λ̄

(0,3)
1 = 0, (13c)

and so forth.
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Finally, recalling our aim of studying the branching bifurcation at which λ̄
(0,2)
1 = 0 under (G1), we can

always assume2

λ̄
(1,1)
1 + λ̄

(0,2)
1

(13b)
= 1

2

(

λ̄
(0,2)
1 − λ̄

(2,0)
1

)

< 0. (14)

The quantity in (14) is the x-derivative of the selection gradient λ
(0,1)
1 (x, x) at x̄, so its negative sign gives

the (convergence) stability of the singular strategy. Condition (14) thus prevents x̄ to be involved in a4

bifurcation of the monomorphic canonical equation (4) in the vicinity of the branching bifurcation [Dercole
& Geritz, 2015].6

2.2. Expansion of the resident-mutant coexistence region

The equilibrium (n̄1(x1, x2), n̄2(x1, x2)) of model (1), at which the two similar strategies (the resident and8

the mutant) coexist during the initial phase of branching, is defined by Eqs. (6a,b), where x1 and x2 play
the role of parameters. Under the genericity condition (G1), Dercole & Geritz [2015] showed that the10

coexistence equilibrium can only undergo transcritical bifurcations in the vicinity of point (x1, x2) = (x̄, x̄)
in the strategy plane, x̄ being a singular strategy. Due to the symmetry of model (1) w.r.t. the diagonal12

x1 = x2, the diagonal itself is a (degenerate) transcritical bifurcation at which the segment n1+n2 = n̄(x1)
is composed of a continuum of (critically) stable equilibria. Crossing the diagonal far from the singularity14

causes the switch of stability between the two monomorphic equilibria (n̄(x1), 0) and (0, n̄(x2)). Moreover,
two (standard) transcritical bifurcations are rooted at point (x̄, x̄) and constitute the boundaries of the16

resident-mutant coexistence region (see Figs. 1 and 2).
The transcritical bifurcation at which the coexistence equilibrium collides with the monomorphic one18

at (n̄(x1), 0) is defined by

λ1(x1, x2) = 0,

i.e., a zero eigenvalue associated to the direction of mutant invasion (recall the text below definition (3)).20

As done in [Dercole & Geritz, 2015], to geometrically characterize the bifurcation curve, it is convenient
to use the polar coordinates (ε, θ),22

x1 := x̄+ ε cos θ, x2 := x̄+ ε sin θ, (15)

and to ε-parameterize the curve as θ = θT2(ε). Along the curve the mutant density n̄2(x1, x2) is zero, so
we call this boundary of the coexistence region “boundary 2.” Then24

λ1(x̄+ ε cos θT2(ε), x̄ + ε sin θT2(ε)) = 0 (16)

is an identity for any (sufficiently small) ε ≥ 0, and by evaluating Eq. (16) and its ε-derivatives at ε = 0 we

can solve the resulting expressions for θT2(0) and the derivatives θ
(k)
T2 (0), k ≥ 1. The angle θT2(0) gives the26

tangent direction to the bifurcation curve at ε = 0, while the first nonvanishing derivative θ
(k)
T2 (0) determines

the curvature (whether θ increases or decreases by moving away from ε = 0 in the θT2(0)-direction, see28

Fig.2).
Specifically, taking into account the singularity condition (5) (and the properties in (13)), the first30

ε-derivative of Eq. (16) at ε = 0 is an identity, whereas the second and third derivatives give

(sin θT2(0) − cos θT2(0))
(

2 cos θT2(0)λ̄
(1,1)
1 + (sin θT2(0) + cos θT2(0))λ̄

(0,2)
1

)

= 0 (17a)

and32

6
(

(sin2θT2(0) − 2 sin θT2(0) cos θT2(0) − cos2θT2(0))λ̄
(1,1)
1 − 2 sin θT2(0) cos θT2(0)λ̄

(0,2)
1

)

θ
(1)
T2 (0) =

(sin θT2(0)− cos θT2(0)) ×
(

3 cos2θT2(0)λ̄
(2,1)
1 + 3cos θT2(0)(sin θT2(0) + cos θT2(0))λ̄

(1,2)
1 + (1+ sin θT2(0) cos θT2(0))λ̄

(0,3)
1

)

(17b)

(see Supplementary Material, last section). From the (sin θT2(0)− cos θT2(0)) factor in the left- and right-

hand sides of (17a) and (17b), we have the solutions θT2(0) =
1
4π and 5

4π, θ
(1)
T2 (0) = 0, which correspond34
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to the diagonal x1 = x2 (for which θ
(k)
T2 (0) = 0 for all k ≥ 1), whereas solving the second factor in (17a) we

obtain2

tan θT2(0) = −2λ̄
(1,1)
1 + λ̄

(0,2)
1

λ̄
(0,2)
1

(13b)
=

λ̄
(2,0)
1

λ̄
(0,2)
1

. (18)

Note that two solutions for θT2(0) can be considered from Eq. (18), one above and one below the diagonal.
We can in fact assume tan θT2(0) 6= 1 under (14).4

Substituting the solution for θT2(0) above the diagonal into (17b) and solving for θ
(1)
T2(0), we get

θ
(1)
T2 (0) = −

4
(

λ̄
(1,1)
1

)2
λ̄
(0,3)
1 − 2λ̄

(1,1)
1 λ̄

(0,2)
1

(

3λ̄
(1,2)
1 − λ̄

(0,3)
1

)

+
(

λ̄
(0,2)
1

)2
(

3λ̄
(2,1)
1 + λ̄

(0,3)
1

)

6
√
2
(

2
(

λ̄
(1,1)
1

)2
+ 2λ̄

(1,1)
1 λ̄

(0,2)
1 +

(

λ̄
(0,2)
1

)2
)3/2

, (19)

whereas taking θT2(0) below the diagonal one gets opposite curvature (see Supplementary Material). More-6

over, the higher-order curvatures for θT2(0) above/below the diagonal are same/opposite for even/odd
k ≥ 2). This allows us to keep the solution above the diagonal and use the expansion θT2(ε) =8

θT2(0) + θ
(1)
T2(0)ε + · · · + θ

(k)
T2 (0)ε

k + O(εk+1) also for negative ε to describe both branches (above and
below the diagonal) of the bifurcation curve. In the rest of the paper, if not otherwise specified, we there-10

fore consider angles above the diagonal and restrict our attention to

1
4π < θ < 5

4π (20a)

and12

x2 − x1 = ε (sin θ − cos θ) > 0. (20b)

The bifurcation curve corresponding to the standard transcritical at the monomorphic equilibrium
(0, n̄(x2)) is symmetric w.r.t. the diagonal to the one occurring at (n̄(x1), 0) and is ε-parameterized as14

θ = θT1(ε) (see Fig. 2). This is “boundary 1” of the resident-mutant coexistence region, along which the
resident density n̄1(x1, x2) is zero. It is indeed defined by λ1(x2, x1) = 0, i.e., a zero eigenvalue at (0, n̄(x2))16

associated to the direction of “resident invasion.” As a result, tan θT1(0) is the inverse of the expression in
(18), i.e.,18

tan θT1(0) =
λ̄
(0,2)
1

λ̄
(2,0)
1

, (21)

and the derivative θ
(k)
T1 (0) coincides with θ

(k)
T2 (0) or with its opposite for odd/even k ≥ 1, i.e.,

θ
(k)
T1 (0) = (−1)k−1θ

(k)
T2 (0). (22)

The two (standard) transcritical bifurcation curves define the resident-mutant coexistence region. That
is, n̄i(x1, x2) = 0 along boundary i defined by the curve θ = θTi(ε), i = 1, 2. In Fig.2 the boundaries are

first-order approximated by θTi(ε) = θTi(0)+ θ
(1)
Ti (0)ε for small (positive and negative) ε. Locally to (x̄, x̄),

the coexistence region is a cone spanned by the rays within angles θT2(0) < θT1(0) (see (18) and (21), where

|λ̄(0,2)1 | < |λ̄(2,0)1 | due to (14)). At the bifurcation (λ̄
(0,2)
1 = 0), the tangent directions to the boundaries 1

and 2 are respectively horizontal (θT1(0) = π) and vertical (θT2(0) =
1
2π), and the curvature is dominated

by λ̄
(0,3)
1 (see (19) with λ̄

(0,2)
1 = 0 under (G1)). Generically, we assume

λ̄
(0,3)
1 6= 0. (G2)
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2.3. Expansion of the dimorphic invasion fitness

As anticipated at the end of Sect. 2.1, the dimorphic invasion fitness λ2(x1, x2, x
′) cannot be Taylor ex-2

panded at (x1, x2, x
′) = (x̄, x̄, x̄). This is due to the nonsmoothness of the resident-mutant coexistence

equilibrium (n̄1(x1, x2), n̄2(x1, x2)), e.g. n̄1(x1, x2) approaches n̄(x̄) along boundary 2 of the coexistence4

region, being zero along boundary 1. The key observation, made in [Durinx, 2008] and (more explicitly) in
[Dercole & Geritz, 2015], is that the equilibrium densities n̄1(x1, x2) and n̄2(x1, x2) can be smoothly defined6

at (x̄, x̄) along each ray in the cone of coexistence, (x1, x2) = (x̄+ ε cos θ, x̄+ ε sin θ), θ ∈ [θT2(0), θT1(0)],
the result being θ-dependent (actually, any θ in the interval (20a) can be used, though either n̄1(x1, x2) or8

n̄2(x1, x2) is negative outside the cone).
Specifically, Dercole & Geritz [2015] made use of new variables (following Meszéna et al. [2005] and10

Dercole & Rinaldi [2008]), the sum of the resident densities s := n1+ n2 and the relative mutant density
r := n2/(n1+n2) (the inverse transformation giving n1 = (1−r)s and n2 = rs), and exploited their fast-slow12

nature for small ε. At constant r, s quickly converges to the fast-equilibrium manifold {sf (r, ε, θ), r ∈ [0, 1]}
connecting the two monomorphic equilibria (see the internal trajectories in Fig.1), so the slow dynamics14

of r can be studied in isolation by restricting n1 and n2 to (1− r)sf (r, ε, θ) and rsf (r, ε, θ).
From the resident-mutant model (1), the fast-equilibrium manifold is defined by16

0 = ṡ = ṅ1+ ṅ2

=(1− r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

+ rg((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ), (23)

whereas the slow dynamics of r is ruled by

ṙ = r(1− r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

− r(1− r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ).

The equilibrium solutions for r are r = 0 and r = 1, corresponding to the monomorphic equilibria of model18

(1), together with the solution r̄(ε, θ) ∈ [0, 1] of

0 = g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

− g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ), (24)

that is unique under (G1) [Dercole & Geritz, 2015].20

The equilibrium densities n̄1(x1, x2) and n̄2(x1, x2) can then be rewritten in terms of (ε, θ) as

n̄1(ε, θ) = (1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), n̄2(ε, θ) = r̄(ε, θ)sf (r̄(ε, θ), ε, θ), (25)

and can be evaluated also at ε = 0 for any given θ in the cone of coexistence (see Tabs.1 and 2, first row).22

The dimorphic fitness can also be rewritten in (ε, θ) and ∆x′ := x′ − x̄ as

λ2(ε, θ,∆x
′) := g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+∆x′), (26)

and can be Taylor expanded around (ε,∆x′) = (0, 0) at given θ. We proceed up to third order. This involves24

up to third ε-derivatives of the fast-equilibrium manifold sf , whereas only the first ε-derivative of the slow
equilibrium r̄ is involved.26

The required zero- and higher-order terms of the fast-equilibrium manifold (w.r.t. ε and mixed (r, ε)) are
reported in Tab.1, whereas those of the slow equilibrium are in Tab.2. They are obtained by differentiating28

Eqs. (23) and (24) at ε = 0 and solving for the unknown terms. Note in particular the expression of r̄(0, θ)
(Tab.2, first row), which goes from zero to one when θ moves from θT2(0) to θT1(0), i.e., from one extreme30

to the other of the cone of coexistence, passing through 1
2 when θ = 3

4π.

The ε-derivatives s
(0,k,0)
f (r, 0, θ), k ≥ 1, characterize the ε-perturbations of the fast-equilibrium man-32

ifold from the zero-order solution sf (r, 0, θ) = n̄(x̄). Note that they are polynomial expressions in r with
degree equal to the order of differentiation and coefficients that are ultimately functions of the singular34

strategy x̄ and of the perturbation direction θ. This is due to property P4, where n1+ n2 becomes n̄(x̄)
when ε → 0, while ni11 n

i2
2 becomes (1 − r)i1ri2n̄(x̄)i1+i2 . The mixed derivatives of sf characterize joint36

(r, ε)-perturbations, i.e., involving both changes in the shape of the manifold and movements along it.
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Table 1. ε-expansion of the fast-equilibrium manifold {sf (r, ε, θ), r ∈ [0, 1]}.

sf (r, 0, θ) = n̄

s
(l,0,0)
f

(r, 0, θ) = 0, l ≥ 1

s
(0,1,0)
f

(r, 0, θ) =
(

(1− r) cos θ + r sin θ
)

n̄(1)

s
(1,1,0)
f

(r, 0, θ) = (sin θ − cos θ)n̄(1)

s
(0,2,0)
f

(r, 0, θ) =
(

(1− r) cos θ + r sin θ
)2
n̄(2) −

r(1−r)(sin θ−cos θ)2

ḡ(1,0,0,0,0)

(

λ̄
(0,2)
1 + φ̄2,1n̄

)

s
(2,1,0)
f

(r, 0, θ) = 0

s
(1,2,0)
f

(r, 0, θ) = 2
(

(1− r) cos θ + r sin θ
)

(sin θ − cos θ)n̄(2) −
(1−2r)(sin θ−cos θ)2

ḡ(1,0,0,0,0)

(

λ̄
(0,2)
1 + φ̄2,1n̄

)

s
(0,3,0)
f

(r, 0, θ) =
(

(1− r) cos θ + r sin θ
)3
n̄(3)

+
3r(1−r)

(

(1−r) cos θ+r sin θ
)

(sin θ−cos θ)2

(ḡ(1,0,0,0,0))2
(

ḡ(1,0,0,0,1) + ḡ(1,0,1,0,0) + ḡ(2,0,0,0,0)n̄(1))(λ̄
(0,2)
1 + φ̄2,1n̄

)

−
r(1−r)

(

(1−r) cos θ+r sin θ
)

(sin θ−cos θ)2

ḡ(1,0,0,0,0)

(

3λ̄
(1,2)
1 + 3φ̄2,1n̄

(1) + 3φ̄
(1,0,0)
2,1 n̄n̄(1) + 3φ̄

(0,0,1)
2,1 n̄+ φ̄3,2 n̄

2)

−
r(1−r)

(

(2−r) cos θ+(1+r) sin θ
)

(sin θ−cos θ)2

ḡ(1,0,0,0,0)

(

λ̄
(0,3)
1 + φ̄3,1n̄

)

Table 2. ε-expansion of the slow equilibrium r̄(ε, θ).

r̄(0, θ) = −
2 cos θλ̄

(1,1)
1 +(sin θ+cos θ)λ̄

(0,2)
1

2(sin θ−cos θ)λ̄
(1,1)
1

r̄(1,0)(0, θ) =
r̄(0,θ)(1−r̄(0,θ))(sin θ−cos θ)

2λ̄
(1,1)
1

(

(

λ̄
(0,2)
1 + φ̄2,1n̄

) ḡ(1,0,0,0,1)

ḡ(1,0,0,0,0) − φ̄2,1n̄
)

−
(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ

2(sin θ−cos θ)λ̄
(1,1)
1

(

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

λ̄
(2,1)
1 + (sin θ + cos θ)λ̄

(1,2)
1

)

− 1+sin θ cos θ

6(sin θ−cos θ)λ̄
(1,1)
1

λ̄
(0,3)
1

Table 3. (ε,∆x′)-expansion of the dimorphic fitness.

λ2(0, θ, 0) = 0

λ
(0,0,q)
2 (0, θ, 0) = λ̄

(0,q)
1 , q ≥ 1

λ
(1,0,0)
2 (0, θ, 0) = 0

λ
(2,0,0)
2 (0, θ, 0) = sin θ cos θ λ̄

(0,2)
1

λ
(1,0,1)
2 (0, θ, 0) = − 1

2 (sin θ + cos θ)λ̄
(0,2)
1

λ
(3,0,0)
2 (0, θ, 0) = sin θ cos θ(sin θ + cos θ)

(

− 3
2
λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

+ λ̄
(0,3)
1

)

λ
(2,0,1)
2 (0, θ, 0) = 1

2 (sin θ + cos θ)2
λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

− 1
3 (1+ sin θ cos θ)λ̄

(0,3)
1

λ
(1,0,2)
2 (0, θ, 0) = − 1

2 (sin θ + cos θ)
λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

Note that they can be simply obtained by r-differentiating s
(0,k,0)
f (r, 0, θ). The ε-derivatives r̄(k,0)(0, θ),

k ≥ 1, describe how the coexistence equilibrium (25) moves from ((1− r̄(0, θ))n̄(x̄), r̄(0, θ)n̄(x̄)) along the2

fast-equilibrium manifold when ε is perturbed in the direction θ.
That the third derivative r̄(3,0)(0, θ) of the slow equilibrium is not needed in the cubic ε-expansion4

of the dimorphic fitness is easy to note. In fact, if one of the r̄’s in front of sf in (26) is ε-differentiated
three times, then no differentiation is taken w.r.t. the ε in x1 and x2 (the third and fourth arguments of6

the g-function), so at x1 = x2 = x̄ the densities n1 and n2 (at first and second arguments) sum up due
to property P2 and the r̄’s in front of sf play no role. And also the third ε-derivatives of the r̄’s at first8

argument of sf do not appear, since they are multiplied by the first r-derivative of sf that vanishes with
ε (see Tab.1, second row), the fast-equilibrium manifold becoming the straight segment n1+ n2 = n̄(x̄) as10

ε → 0. More intricate to see is that also the second derivative of the slow equilibrium is not needed. The
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derivative r̄(2,0)(0, θ) indeed appears in the cubic ε-term in (26) and is multiplied by

3
(

s
(1,1,0)
f (r, 0, θ) ḡ(1,0,0,0,0) + n̄ sin θ

(

g(0,1,0,1,0)− g(1,0,0,1,0)
)

− n̄ cos θ
(

g(1,0,1,0,0)− g(0,1,1,0,0)
)

)
∣

∣

∣

ε=0,∆x′=0
, (27)

where the arguments of the g-derivatives with no over-bar are as in Eq. (26) (checked in the Supplementary2

Material, last section). All of the terms in (27) are generically nonzero, however, their sum vanishes thanks
again to property P4. This can be explicitly seen in Appendix B, substituting (B.9a–d) and (B.12) into4

(27) and noting the expression for s
(1,1,0)
f (r, 0, θ) from Tab.1.

Taking the results in Tabs.1 and 2 into account, exploiting the properties P1–P4 of Sect. 2.1, and6

assuming genericity (G1), the dimorphic fitness derivatives appearing in the third-order ε-expansion

λ2(ε, θ,∆x
′) = λ̄2 + λ̄

(1,0,0)
2 ε+ λ̄

(0,0,1)
2 ∆x′ +

+ 1
2 λ̄

(2,0,0)
2 ε2 + λ̄

(1,0,1)
2 ε∆x′ + 1

2 λ̄
(0,0,2)
2 (∆x′)2 +

+ 1
6 λ̄

(3,0,0)
2 ε3 + 1

2 λ̄
(2,0,1)
2 ε2∆x′ + 1

2 λ̄
(1,0,2)
2 ε(∆x′)2 + 1

6 λ̄
(0,0,3)
2 (∆x′)3 +O(‖(ε,∆x′)‖4) (28)

(over-bars here denote evaluations at (ε,∆x′) = (0, 0)) result as in Tab.3. Rewriting the dimorphic fitness
back in terms of the resident and mutant strategies (x̄ +∆x1, x̄ +∆x2, x̄+∆x′), ∆xi := xi − x̄, i = 1, 2,
i.e., recalling the definition (15) of the polar coordinates (ε, θ), we then come to the following third-order
approximation:

λ̃2(∆x1,∆x2,∆x
′) :=

(

1
2 λ̄

(0,2)
1 − 1

4

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

(∆x1+∆x2) +
1
6 λ̄

(0,3)
1 (∆x1+∆x2 +∆x′)

)

(∆x′−∆x1)(∆x
′−∆x2). (29)

Recall that the right-hand side in (29) is an expansion taken at given θ ∈ [θT2(0), θT1(0)] around (ε,∆x′) =8

(0, 0) (the higher-order terms are indeed O(‖(ε,∆x′)‖4)), and not an expansion w.r.t. (x1, x2, x
′) around

(x̄, x̄, x̄). It can nevertheless be used as an approximation of the dimorphic fitness (8) for (x1, x2) in the10

resident-mutant coexistence region locally to (x̄, x̄) and x′ close to x̄.
Interestingly, the second-order term in (29) coincides with that obtained by Geritz et al. [1997, 1998]12

assuming a smooth dimorphic fitness (see Eq.A10 in [Geritz et al., 1998]; the zero- and first-order terms
vanish at the singular point (x1, x2, x

′) = (x̄, x̄, x̄)). Thus, the (second-order) branching condition (9)14

of Geritz et al. [1997, 1998] is correct, though assuming smoothness implies senseless constraints on the
monomorphic fitness derivatives (starting with the second-order, see Appendix 1).16

To illustrate our approach at work, the reader can see Appendix B, where we compute step by step all
terms in the expansion (28) up to second order. The computation of the third-order terms can be checked18

in the Supplementary Material.

3. The normal form of the branching bifurcation20

From (7) and from the analysis in Sects. 2.2 and 2.3, we now derive two simplified models that approximate
the dimorphic evolutionary dynamics locally to a branching point. In the first model, we take into account22

the curvature of the boundaries of the resident-mutant coexistence region, to preserve the geometric features
relating the evolutionary trajectories with the boundaries themselves. The curvature of the boundaries is24

however irrelevant for the branching bifurcation (λ̄
(0,2)
1 = 0 under (G1)), so we ignore it in the second model,

that we propose as the normal form for the dimorphic canonical equation (7) at the incipient branching.26

First we get rid of the scaling 1
2µ(xi)σ(xi)

2, i = 1, 2. Locally to (x̄, x̄) this can be done in two steps.
A near-identity coordinate transformation, z1,2 = z1,2(x1, x2) (∂zi/∂xj = 1 if i = j, 0 otherwise), whose28

expansion can be set to eliminate all the derivatives of µ and σ in the expansion of the scaling terms
around x1 = x2 = x̄; a time-scaling τ = 1

2µ(x̄)σ(x̄)
2 t, τ being the new time. For simplicity, we keep on30

using variables xi, actually ∆xi, i = 1, 2, and t for the new variables and time.
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Second, we use our radial expansion to approximate the coexistence equilibrium (25). The expansion
is done up to first order (in ε), i.e.,2

ñ1(ε, θ) := (1− r̄(0, θ))n̄+ ε
(

(1− r̄(0, θ))
(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

n̄(1) − r̄(1,0)(0, θ)n̄
)

=

ñ1(∆x1,∆x2) := − λ̄
(1,1)
1 ∆x2 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2)

(∆x1 −∆x2)λ̄
(1,1)
1

n̄− 1

24(∆x1 −∆x2)
(

λ̄
(1,1)
1

)3
×

(

4λ̄
(0,3)
1

(

λ̄
(1,1)
1

)2
n̄(∆x21 +∆x1∆x2 +∆x22)

− 6λ̄
(0,2)
1 λ̄

(1,1)
1 n̄(1)(∆x1 +∆x2)

(

2λ̄
(1,1)
1 ∆x2 + λ̄

(0,2)
1 (∆x1 +∆x2)

)

+3n̄λ̄
(0,2)
1 (−2λ̄

(1,1)
1 λ̄

(1,2)
1 + λ̄

(0,2)
1 λ̄

(2,1)
1 )(∆x1 +∆x2)

2

+3n̄
(

2λ̄
(1,1)
1 ∆x1 + λ̄

(0,2)
1 (∆x1 +∆x2)

)(

2λ̄
(1,1)
1 ∆x2 + λ̄

(0,2)
1 (∆x1 +∆x2)

)

×
(

φ̄
(1,0,0)
2,1 n̄+

ḡ(1,0,0,0,1)

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 − φ̄2,1n̄)

)

)

, (30a)

ñ2(ε, θ) := r̄(0, θ)n̄+ ε
(

r̄(0, θ)
(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

n̄(1) + r̄(1,0)(0, θ)n̄
)

=

ñ2(∆x1,∆x2) := − λ̄
(1,1)
1 ∆x1 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2)

(∆x2 −∆x1)λ̄
(1,1)
1

n̄− 1

24(∆x2 −∆x1)
(

λ̄
(1,1)
1

)3
×

(

4λ̄
(0,3)
1

(

λ̄
(1,1)
1

)2
n̄(∆x21 +∆x1∆x2 +∆x22)

− 6λ̄
(0,2)
1 λ̄

(1,1)
1 n̄(1)(∆x1 +∆x2)

(

2λ̄
(1,1)
1 ∆x1 + λ̄

(0,2)
1 (∆x1 +∆x2)

)

+3n̄λ̄
(0,2)
1 (−2λ̄

(1,1)
1 λ̄

(1,2)
1 + λ̄

(0,2)
1 λ̄

(2,1)
1 )(∆x1 +∆x2)

2

+3n̄
(

2λ̄
(1,1)
1 ∆x1 + λ̄

(0,2)
1 (∆x1 +∆x2)

)(

2λ̄
(1,1)
1 ∆x2 + λ̄

(0,2)
1 (∆x1 +∆x2)

)

×
(

φ̄
(1,0,0)
2,1 n̄+

ḡ(1,0,0,0,1)

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 − φ̄2,1n̄)

)

)

, (30b)

because this is consistent with our approximation, locally to (x̄, x̄), of the resident-mutant coexistence region4

(Sect. 2.2), where, indeed, up to third-order derivatives of the monomorphic fitness are involved. Moreover,
defining the function θTi(ε) of the coexistence region boundary i by ñi(ε, θTi(ε)) = 0, we checked that6

one obtains for θTi(0) and θ
(1)
Ti (0), i = 1, 2, the same results derived in Sect. 2.2 (see Eqs. (18), (19), (21),

and (22)). Note that the symmetry ñ1(∆x2,∆x1) = ñ2(∆x1,∆x2) is preserved by the approximation. Also8

note the term (∆xi−∆xj), i 6= j, at denominator of ñi(∆x1,∆x2), which makes evident the nonsmoothness
of functions n̄1(x1, x2) and n̄2(x1, x2) at (x̄, x̄).10

Instead of approximating n̄i(x̄+∆x1, x̄+∆x2) with the complicated ñi(∆x1,∆x2) in (30), i = 1, 2, we
note that the following expressions share the same structure of the linear terms at numerator:12

η1(∆x1,∆x2) := λ̄
(1,1)
1 ∆x2 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2) +

1
2 λ̄

(1,2)
1 ∆x2(∆x1 +∆x2) +

1
2 λ̄

(2,1)
1 ∆x22

+1
6 λ̄

(0,3)
1 (∆x21 +∆x1∆x2 +∆x22), (31a)

η2(∆x1,∆x2) := λ̄
(1,1)
1 ∆x1 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2) +

1
2 λ̄

(1,2)
1 ∆x1(∆x1 +∆x2) +

1
2 λ̄

(2,1)
1 ∆x21

+1
6 λ̄

(0,3)
1 (∆x21 +∆x1∆x2 +∆x22). (31b)

The expressions in (31) come from the cubic expansion w.r.t. (x1, x2) of λ1(x2, x1) and λ1(x1, x2), respec-
tively. Specifically,14

λ1(x̄+∆x2, x̄+∆x1) = η1(∆x1,∆x2)(∆x1 −∆x2) +O(‖(∆x1,∆x2)‖4),
λ1(x̄+∆x1, x̄+∆x2) = η2(∆x1,∆x2)(∆x2 −∆x1) +O(‖(∆x1,∆x2)‖4),
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so ηi(∆x1,∆x2) = 0 is a quadratic approximation (in the variables (∆x1,∆x2)) of the boundary i

of the coexistence region. It is a different approximation w.r.t. θTi(ε) = θTi(0) + θ
(1)
Ti (0)ε, derived2

in Sect. 2.2, and w.r.t. ñi(ε, θTi(ε)) = 0 proposed above. But again, defining the function θTi(ε) by

ηi(ε cos θTi(ε), ε sin θTi(ε)) = 0, we checked that one obtains for θTi(0) and θ
(1)
Ti (0), i = 1, 2, the results4

of Sect. 2.2.
By means of another near-identity coordinate transformation and another time-scaling (τ =6

−n̄/λ̄(1,1)1 t), we can then replace n̄i(x̄+∆x1, x̄+∆x2) in the dimorphic canonical equation (7) with

ñi(∆x1,∆x2) :=
ηi(∆x1,∆x2)

∆xi −∆xj
, i 6= j, (32)

and use ηi(∆x1,∆x2) = 0 as an approximation of the coexistence region boundary i, i = 1, 2. Note that the8

new ñ1(∆x1,∆x2) and ñ2(∆x1,∆x2) are positive, by construction, inside the approximated coexistence
region (easy to check, e.g. above the diagonal where 0 < ∆x2 = −∆x1).10

Third step, we compute the selection gradients λ
(0,0,1)
2 (x̄+∆x1, x̄+∆x2, , x̄+∆xi), i = 1, 2, using our

approximation (29), thus obtaining12

λ̃
(0,0,1)
2 (∆x1,∆x2,∆xi) := si(∆x1,∆x2)(∆xi −∆xj), i 6= j, (33)

with

s1(∆x1,∆x2) :=

(

1
2 λ̄

(0,2)
1 − 1

4

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

(∆x1+∆x2)+
1
6 λ̄

(0,3)
1 (2∆x1+∆x2)

)

, (34a)

s2(∆x1,∆x2) :=

(

1
2 λ̄

(0,2)
1 − 1

4

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

(∆x1+∆x2)+
1
6 λ̄

(0,3)
1 (∆x1+ 2∆x2)

)

. (34b)

Our first simplified model—the one taking the curvatures θ
(1)
T1(0) and θ

(1)
T2 (0) into account—then reads14

ẋi = ñi(∆x1,∆x2)λ̃
(0,0,1)
2 (∆x1,∆x2,∆xi) = ηi(∆x1,∆x2)si(∆x1,∆x2), i = 1, 2. (35)

Note the simplification of the differences (∆xi −∆xj) at denominator in definition (32) and at numerator
in (33), that makes the model equations polynomial (and therefore smooth!).16

Our second model is the most simple form showing the bifurcation, so we call it the “normal form”
(though we do not provide a formal proof of the topological equivalence with the dimorphic canonical18

equation (7)). It considers only a conical coexistence region θ ∈ [θT2(0), θT1(0)] and, consistently, a zero-
order approximation (in ε) of the coexistence equilibrium (25), i.e.,20

ñ1(ε, θ) := (1− r̄(0, θ))n̄ =

ñ1(∆x1,∆x2) :=
η1(∆x1,∆x2)

∆x1 −∆x2
, (36a)

ñ2(ε, θ) := r̄(0, θ)n̄ =

ñ2(∆x1,∆x2) :=
η2(∆x1,∆x2)

∆x2 −∆x1
, (36b)

with

η1(∆x1,∆x2) := λ̄
(1,1)
1 ∆x2 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2), (37a)

η2(∆x1,∆x2) := λ̄
(1,1)
1 ∆x1 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2). (37b)

The model equations are formally those in (35), but with the new definitions of ñi(∆x1,∆x2) and22

ηi(∆x1,∆x2), i = 1, 2, in (36) and (37).

The unfolding parameter—that we move across zero—is λ̄
(0,2)
1 . Three other parameters are left in the24

normal form (34, 35, 37): λ̄
(1,1)
1 , λ̄

(0,3)
1 , and λ̄

(1,2)
1 . The first two are constrained by the genericity conditions

(G1) and (G2), whereas λ̄
(1,2)
1 plays no role at the bifurcation, as it only appears multiplied by λ̄

(0,2)
1 in26
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si(∆x1,∆x2) (definition (34)). Only the product λ̄
(1,1)
1 λ̄

(0,3)
1 is relevant at the bifurcation (λ̄

(0,2)
1 = 0). Being

λ̄
(1,1)
1 constrained in sign, λ̄

(0,3)
1 is the only relevant coefficient of the normal form.2

Finally, it is important to remark that none of the two models (31, 34, 35) and (34, 35, 37) correspond
to an ε-expansion of the dimorphic canonical equation (7). E.g., the first model includes cubic ε-terms—4

composed of the product of a linear term in n̄i(ε, θ) with a quadratic term in λ
(0,0,1)
2 (ε, θ,∆xi)—but misses

others. This is due to the choice of separately ε-expanding n̄i(x1, x2) and λ
(0,0,1)
2 (x1, x2, xi) in Eq. (7),6

with the advantage of preserving some structural features of the canonical equation, e.g., the presence of

boundary equilibria when ñi(∆x1,∆x2) and λ̃
(0,0,1)
2 (∆x1,∆x2,∆xj) vanish with i 6= j (see next section).8

4. The unfolding of the bifurcation

Under the genericity conditions (G1) and (G2), we analyze in this section the dynamics of the branching10

bifurcation normal form, i.e., model (34, 35, 37) restricted to the cone of resident-mutant coexistence

ñi(∆x1,∆x2) ≥ 0, i = 1, 2, defined in (36, 37), by varying the parameter λ̄
(0,2)
1 across zero.12

By inspection of Eqs. (34, 35, 37), it is straightforward to check that there are four equilibria:

E0: (∆x̄1,∆x̄2) = (0, 0), at which η1(∆x̄1,∆x̄2) = η2(∆x̄1,∆x̄2) = 0.14

E1: (∆x̄1,∆x̄2) =
3λ̄

(0,2)
1

λ̄
(0,2)
1

(

3λ̄
(1,2)
1 +λ̄

(0,3)
1

)

−2λ̄
(1,1)
1 λ̄

(0,3)
1

(

2λ̄
(1,1)
1 +λ̄

(0,2)
1 ,−λ̄

(0,2)
1

)

,

annihilating η1(∆x̄1,∆x̄2) and s2(∆x̄1,∆x̄2).16

E2: (∆x̄1,∆x̄2) =
3λ̄

(0,2)
1

λ̄
(0,2)
1

(

3λ̄
(1,2)
1 +λ̄

(0,3)
1

)

−2λ̄
(1,1)
1 λ̄

(0,3)
1

(

−λ̄
(0,2)
1 , 2λ̄

(1,1)
1 +λ̄

(0,2)
1

)

,

annihilating η2(∆x̄1,∆x̄2) and s1(∆x̄1,∆x̄2).18

E3: (∆x̄1,∆x̄2) =

(

− λ̄
(1,1)
1 λ̄

(0,2)
1

λ̄
(1,1)
1 λ̄

(0,3)
1 −λ̄

(0,2)
1 λ̄

(1,2)
1

, ∆x̄1

)

, at which s1(∆x̄1,∆x̄2) = s2(∆x̄1,∆x̄2) = 0.

Note that the Jacobian of model (34, 35, 37) at E0 is given by20

1
2 λ̄

(0,2)
1

[

1
2 λ̄

(0,2)
1 λ̄

(1,1)
1 + 1

2 λ̄
(0,2)
1

λ̄
(1,1)
1 + 1

2 λ̄
(0,2)
1

1
2 λ̄

(0,2)
1

]

,

so the diagonal ∆x1= ∆x2 and the anti-diagonal ∆x1+∆x2 = 0 are the eigenvectors respectively associated

to the eigenvalues 1
2 λ̄

(0,2)
1

(

λ̄
(1,1)
1 + λ̄

(0,2)
1

)

and −1
2 λ̄

(1,1)
1 λ̄

(0,2)
1 , for λ̄

(0,2)
1 6= 0. Further note that E1 and E2 are22

symmetric boundary equilibria respectively lying on the coexistence cone boundaries 1 and 2, on which
ñ1(∆x1,∆x2) and ñ2(∆x1,∆x2) vanish, whereas E3 lies on the diagonal and is therefore not feasible for24

the dimorphic canonical equation (7).

The four equilibria are all involved in the bifurcation occurring at λ̄
(0,2)
1 = 0, as they collide at (0, 0)26

at the bifurcation. Under the genericity conditions (G1) and (G2), equilibria E0–3 intersect transversely

as λ̄
(0,2)
1 moves across zero. The bifurcation classifies as a non-simple branch point [Govaerts, 2000, Meijer28

et al., 2009] (not to be confused with the branching point of AD!), i.e., the transversal intersection of more

than two λ̄
(0,2)
1 -parameterized equilibrium branches. This bifurcation generically requires the continuation30

problem [Allgower & Georg, 1990] defining the intersecting equilibrium branches to have a nullspace with
dimension larger than two at the bifurcation. Specifically for our case, the continuation problem is defined32

in the space (∆x̄1,∆x̄2, λ̄
(0,2)
1 ) by

C(∆x̄1,∆x̄2, λ̄
(0,2)
1 ) :=

(

C1(∆x̄1,∆x̄2, λ̄
(0,2)
1 ), C2(∆x̄1,∆x̄2, λ̄

(0,2)
1 )

)

= 0

with34

Ci(∆x̄1,∆x̄2, λ̄
(0,2)
1 ) := ηi(∆x1,∆x2, λ̄

(0,2)
1 )si(∆x1,∆x2, λ̄

(0,2)
1 ), i = 1, 2,



July 7, 2015 18:37 Della˙Rossa˙et˙al˙IJBC

16 Della Rossa et al.

0

0

– 0.1

0.1

0.1– 0.1

0

0

– 0.1

0.1
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λ̄
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0
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)
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0
λ̄
(
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,
3
)

1
<

0

∆x1

∆x1

∆x2

∆x2

Fig. 3. Unfolding of the branching bifurcation using model (34, 35, 37). The unfolding parameter λ̄
(0,2)
1 increases from left

to right and vanishes in the central panel, in which all equilibria E0–E3 collide at (∆x1,∆x2) = (0, 0). Top/bottom rows:

λ̄
(0,3)
1 ≷ 0. The resident-mutant coexistence region is shaded, with color code orange-to-blue measuring the magnitude of the

vector field. The region boundary 1 (η1(∆x1,∆x2) = 0 (37)) and the internal x1-nullcline (s1(∆x1,∆x2) = 0 (34)) are plotted
in blue (solid and dashed); red for boundary 2 (η2(∆x1,∆x2) = 0 (37)) and the internal x2-nullcline (s2(∆x1,∆x2) = 0 (34)).
Full points: stable equilibria; half-filled points: saddles; empty points: repellor equilibria.

where λ̄
(0,2)
1 is explicitly mentioned as an argument of functions ηi and si. The Jacobian of function C w.r.t.

(∆x̄1,∆x̄2, λ̄
(0,2)
1 ) is indeed a (2 × 3) null matrix at the bifurcation (easy to check), i.e., the nullspace is2

three-dimensional. Due to the symmetries of the dimorphic canonical equation, this bifurcation can occur
as a codimension-one, i.e., moving a single model parameter (see [Govaerts, 2000], Sect. 8.2).4

Two cases can be distinguished, namely λ̄
(0,3)
1 > 0 and λ̄

(0,3)
1 < 0, whose unfoldings are pictured in

Fig.3 (top and bottom panels, respectively). The movements and stability of the four equilibria, as λ̄
(0,2)
16

goes from negative to positive, are evident from the graphics (left-to-right panels). In particular, the flow
of model (34, 35, 37) is drawn also outside the resident-mutant coexistence cone to make stability easily8

readable. Note that the stability for the unrestricted model is different from the stability for the dimorphic
canonical equation. E.g., equilibrium E0 is always unstable (saddle type) for the unrestricted model, though10

is stable/unstable for the dimorphic canonical equation when λ̄
(0,2)
1 ≶ 0 (evolutionary stability/branching).

Also note that the two cases (λ̄
(0,3)
1 ≷ 0) are topologically equivalent (at the bifurcation there is12

a symmetry w.r.t. the anti-diagonal ∆x1+ ∆x2 = 0), so their distinction is mathematically irrelevant.
However, the distinction is biologically important and becomes evident if one considers the curvature of14

the boundaries of the resident-mutant coexistence region, as we do in model (31, 34, 35). The unfoldings
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∆x1

∆x2

∆x2

Fig. 4. Unfolding of the branching bifurcation using model (31, 34, 35). The unfolding parameter λ̄
(0,2)
1 increases from left

to right and vanishes in the central panel, in which all equilibria E0–E3 collide at (∆x1,∆x2) = (0, 0). Top/bottom rows:

λ̄
(0,3)
1 ≷ 0. The resident-mutant coexistence region is shaded, with color code orange-to-blue measuring the magnitude of the

vector field. The region boundary 1 (η1(∆x1,∆x2) = 0 (31)) and the internal x1-nullcline (s1(∆x1,∆x2) = 0 (34)) are plotted
in blue (solid and dashed); red for boundary 2 (η2(∆x1,∆x2) = 0 (31)) and the internal x2-nullcline (s2(∆x1,∆x2) = 0 (34)).
Full points: stable equilibria; half-filled points: saddles; empty points: repellor equilibria.

of model (31, 34, 35) are show in Fig.4 together with the coexistence region ñi(∆x1,∆x2) ≥ 0, i = 1, 2,
defined in (31, 32). Note the different curvatures of the coexistence region boundaries in the two cases (top2

and bottom panels, respectively; the curvature of the locally vertical boundary is given in (19), ≶ 0 for

λ̄
(0,3)
1 ≷ 0). Then λ̄

(0,3)
1 ≷ 0 makes branching possible at the bifurcation only for mutants with larger/smaller4

trait values (as already anticipated, without a formal derivation, in [Kisdi, 1999]). In both cases branching
is possible, under (G2), so the singular strategy is a branching point at the bifurcation.6

5. Examples

5.1. Branching in a single species model of asymmetric competition8

We first consider the single species AD model of asymmetric competition described in [Kisdi, 1999]. The
resident-mutant model (1) reads:10

ṅ1 = n1
(

ρ(x1)− α(0)n1 − α(x1−x2)n2
)

, (38a)

ṅ2 = n2
(

ρ(x2)− α(x2−x1)n1 − α(0)n2
)

, (38b)
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with Gaussian ρ(x) = exp(−x2/2σ2) and sigmoidal α(x) = 1 − 1
1+ν exp(−x) , σ, ν > 0, that is built on the

g-function2

g(n1, n2, x1, x2, x
′) = ρ(x′)− α(x′−x1)n1 − α(x′−x2)n2.

Model (38) is simple enough (Lotka-Volterra competition) that we can solve analytically for all the
relevant quantities: the monomorphic and dimorphic resident equilibrium densities4

n̄(x) = ρ(x)/α(0), n̄1(x1, x2) =
ρ(x1)α(0) − ρ(x2)α(x1−x2)
α(0)2 − α(x1−x2)α(x2−x1)

, n̄2(x1, x2) = n̄1(x2, x1),

the monomorphic and dimorphic fitnesses

λ1(x, x
′) = g(n̄(x), 0, x, x, x′) = ρ(x′)− α(x′−x)n̄(x),

λ2(x1, x2, x
′) = g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x

′) = ρ(x′)− α(x′−x1)n̄1(x1, x2)− α(x′−x2)n̄2(x1, x2),
the monomorphic and dimorphic selection gradients6

λ
(0,1)
1 (x, x) = ρ(1)(x)− α(1)(0)

α(0)
ρ(x) =

σ2 − νx− x

σ2(1 + ν) exp(x2/2σ2)
,

λ
(0,0,1)
2 (x1, x2, xi) = ρ(1)(xi)− α(1)(xi−x1)n̄1(x1, x2)− α(1)(xi−x2)n̄2(x1, x2), i = 1, 2,

the singular strategy

x̄ = σ2/(1 + ν),

annihilating λ
(0,1)
1 (x, x), the fitness second derivatives ruling branching at x̄8

λ̄
(1,1)
1 = α(2)(0)

α(0) ρ(x̄)−
α(1)(0)
α(0) ρ

(1)(x̄) = − ν
(1+ν)2 exp(σ2/2(1+ν)2)

,

λ̄
(0,2)
1 = ρ(2)(x̄)− α(2)(0)

α(0) ρ(x̄) = − (1+ν)2−νσ2

σ2(1+ν)2 exp(σ2/2(1+ν)2)
,

and the third derivatives entering our approximations

λ̄
(2,1)
1 = −α(3)(0)

α(0) ρ(x̄) + 2α(2)(0)
α(0) ρ

(1)(x̄)− α(1)(0)
α(0) ρ

(2)(x̄) = ν2σ2−ν2−2νσ2−2ν−1
σ2(1+ν)3 exp(σ2/2(1+ν)2)

,

λ̄
(1,2)
1 = α(3)(0)

α(0) ρ(x̄)−
α(2)(0)
α(0) ρ

(1)(x̄) = ν(3−ν)
(1+ν)3 exp(σ2/2(1+ν)2)

,

λ̄
(0,3)
1 = ρ(3)(x̄)− α(3)(0)

α(0) ρ(x̄) =
ν2σ2+3ν2−4νσ2+6ν+3

σ2(1+ν)3 exp(σ2/2(1+ν)2)
.

It is easy to verify that the singular strategy x̄ is attracting the monomorphic evolutionary dynamics10

for any positive (σ, ν) (eigenvalue λ̄
(1,1)
1 + λ̄

(0,2)
1 = −(σ2 exp(σ2/2(1 + ν)2))−1 < 0), that coexistence in its

vicinity is always possible (λ̄
(1,1)
1 < 0 for ν > 0), and that branching (λ̄

(0,2)
1 > 0) occurs for σ2 > (1+ν)2/ν.12

At σ2 = (1 + ν)2/ν the system undergoes the branching bifurcation. Increasing the value of σ, we pass
from a terminal to a branching point.14

Fig.5 compares our approximated model (31, 34, 35) and coexistence region boundaries ηi(∆x1,∆x2) =
0, i = 1, 2 (31), with the fully nonlinear versions. As in Fig.4, the boundary 1 of the coexistence region and16

the internal x1-nullcline of the dimorphic evolutionary dynamics are plotted in blue (solid and dashed); red
for boundary 2 and the internal x2-nullcline. Lighter colors are used for the fully nonlinear versions. The18

values of the model parameters are reported in the caption and those of the genericity conditions left-hand

sides, λ̄
(1,1)
1 (G1) and λ̄

(0,3)
1 (G2) can be checked below each figure panel.20

5.2. Prey branching in a prey-predator community

As a second example, we consider the multi-species prey-predator AD model described in [Landi et al.,22

2013]. Using the notation introduced in Appendix C, the resident-mutant model (1) after a mutation in
the prey population reads:24
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Fig. 5. Unfolding of the branching bifurcation in the AD model in [Kisdi, 1999]. The model parameter σ increases from left to

right turning the singular strategy x̄ from a terminal (λ̄
(0,2)
1 < 0) to a branching (λ̄

(0,2)
1 > 0) point (other parameter: ν = 4).

The approximations ηi(∆x1,∆x2) = 0 (31) and si(∆x1,∆x2) = 0 (34) of the coexistence region boundaries and of the internal
xi-nullcline, i = 1, 2, are shown around (x̄, x̄) using the same graphical and color codes of Fig. 4. Lighter colors are used for

the fully nonlinear versions: boundary 1, λ1(x2, x1) = 0; boundary 2, λ1(x1, x2) = 0; and xi-nullcline, λ
(0,0,1)
2 (x1, x2, xi) = 0.

ṅ1 = n1

(

r − c(x1, x1)n1 − c(x1, x2)n2 −
a(x1,X)

1 + a(x1,X)h(x1,X)n1 + a(x2,X)h(x2,X)n2
N

)

, (39a)

ṅ2 = n2

(

r − c(x2, x1)n1 − c(x2, x2)n2 −
a(x2,X)

1 + a(x1,X)h(x1,X)n1 + a(x2,X)h(x2,X)n2
N

)

, (39b)

Ṅ = N

(

e
a(x1,X)n1 + a(x2,X)n2

1 + a(x1,X)h(x1,X)n1 + a(x2,X)h(x2,X)n2
− d

)

, (39c)

with valley-shaped prey intra-specific competition

c(x1, x2) =
γ1 + γ2x

2
1

1 + γ0(γ1 + γ2x
2
1)

exp
(

−1
4(x1−x2)

2
)

,

bell-shaped predator attack rate

a(x,X) = α0 + exp
(

−(x−X)2
)

,

and sigmoidal predator handling time

h(x,X) = θ

(

3
2 − 1

1 + exp(θ3x)

)(

3
2 −

1

1 + exp(−θ4X)

)

.

It is built on the g-function

g(n1, n2, N, x1, x2,X, x
′) = r− c(x′, x1)n1− c(x′, x2)n2−

a(x′,X)

1+a(x1,X)h(x1,X)n1+a(x2,X)h(x2,X)n2
N.

Analytically, we can only compute the monomorphic resident equilibrium2

n̄(x,X) =
d

a(x,X)(e−dh(x,X))
, N̄(x,X) =

(

r− c(x, x)n̄(x,X)

a(x,X)

)

(

1+ a(x,X)h(x,X)n̄(x,X)
)

,

the prey monomorphic fitness

λ1(x,X, x
′) = g(n̄(x,X), 0, N̄ (x,X), x, x,X, x′) = r − c(x′, x)n̄(x,X)

− a(x′,X)

1 + a(x,X)h(x,X)n̄(x,X)
N̄(x,X),
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and selection gradient

λ
(0,0,1)
1 (x,X, x) = −c(1,0)(x, x)n̄(x,X)− a(1,0)(x,X)

1 + a(x,X)h(x,X)n̄(x,X)
N̄(x,X),

as well as the fitness second and third derivatives (λ
(1,0,1)
1 and λ

(0,0,2)
1 ruling prey branching, and λ

(2,0,1)
1 ,2

λ
(1,0,2)
1 , and λ

(0,0,3)
1 entering our approximations).

All other relevant quantities must be computed numerically:4

– the singular coalition (x̄, X̄), by simulating the coevolution of both prey and predator (see [Landi et al.,
2013] for the modeling of predator mutations),6

– the prey singular strategy x̄(X) at given predator trait, by solving λ
(0,0,1)
1 (x,X, x) = 0 for x,

– the fitness second and third derivatives λ̄
(1,0,1)
1 , λ̄

(0,0,2)
1 , λ̄

(2,0,1)
1 , λ̄

(1,0,2)
1 , and λ̄

(0,0,3)
1 , simply evaluating8

the corresponding analytical expressions at (x̄, X̄),
– the boundaries 1 and 2 of the resident-mutant coexistence region rooted at (x̄(X), x̄(X)) in the plane10

(x1, x2), by continuing the contour-lines λ1(x2,X, x1) = 0 and λ1(x1,X, x2) = 0, respectively,
– the dimorphic resident equilibrium densities n̄1(x1, x2,X), n̄2(x1, x2,X), and N̄(x1, x2,X), by contin-12

uing the nontrivial equilibrium solution of model (39) w.r.t. (x1, x2) treated as model parameters,
– the xi-nullcline of the dimorphic coevolutionary dynamics, by continuing the contour-line

λ
(0,0,0,1)
2 (x1, x2,X, xi) = −c(1,0)(xi, x1)n̄1(x1, x2,X)− c(1,0)(xi, x2)n̄2(x1, x2,X)

− a(1,0)(xi,X)

1+ a(x1,X)h(x1,X)n̄1(x1, x2,X) + a(x2,X)h(x2,X)n̄2(x1, x2,X)
N̄(x1, x2,X) = 0,

i = 1, 2, together with the equilibrium densities n̄1(x1, x2,X), n̄2(x1, x2,X), and N̄(x1, x2,X).14

From the analysis in [Landi et al., 2013], we know that an attracting singular coalition (x̄, X̄) exists for
broad ranges of the model parameters and a prey-branching bifurcation occurs by increasing the predator16

efficiency e (see Eq. (39c)). Fixing the model parameters to the values reported in the caption and always
keeping X = X̄, Fig. 6 compares our approximated model (31, 34, 35) and coexistence region boundaries18

ηi(∆x1,∆x2) = 0, i = 1, 2 (31), with the fully nonlinear versions. As in Fig.4, the boundary 1 of the
coexistence region and the internal x1-nullcline of the dimorphic coevolutionary dynamics are plotted in20

blue (solid and dashed); red for boundary 2 and the internal x2-nullcline. Lighter colors are used for the

fully nonlinear versions. The genericity of the bifurcation is granted by the values of λ̄
(1,0,1)
1 (C.G1) and22

λ̄
(0,0,3)
1 (C.G2) reported below each figure panel.

Fig. 7 shows three cases of dimorphic coevolutionary dynamics at incipient branching. In case (a), the24

prey traits are initialized along the anti-diagonal of the coexistence region, i.e.,

x1(0) = x̄(X(0)) + ε cos θ, x2(0) = x̄(X(0)) + ε sin θ, θ = 3
4π, (40)

and the predator trait X is initially set at its singular value X̄. As predicted by our analysis in Appendix C26

(by the leading terms of the dimorphic model (C.11) and by the scaled approximations (C.12) of the
coexistence equilibrium densities n̄1(x1, x2,X) and n̄2(x1, x2,X)), the prey traits x1 and x2 initially diverge28

symmetrically w.r.t. the singular value x̄ (dashed), while the population remains split into two halves (same
gray scale, see caption) and the predator trait is under neutral selection (ε being small but finite, a weak30

selection acts on X in the very initial phase of branching, showed in the left stretched panel).
In case (b), the prey traits are initialized close to the boundary 2 of the coexistence region (as in (40)32

with θ = 1
2π) and the predator trait still at the singular value X̄. Close to boundary 2 the prey population is

almost monomorphic and mainly composed of x1-individuals (see the gray scale in the left panel, basically34

black in x1 and white in x2), so x1(0) and X(0) are almost at equilibrium at the singular coalition (x̄, X̄). In
accordance with our analysis of Sects. 3 and 4 and of Appendix C, the branching dynamics of (x1, x2) point36

toward the anti-diagonal and this, at the same time, equilibrate the equilibrium densities n̄1(x1, x2,X) and
n̄2(x1, x2,X) (see the gray scale in the right panel). Note that in the very initial phase of branching (left38

panel), while x1 decreases following the branching dynamics, evolution is still basically monomorphic and
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Fig. 6. Unfolding of the branching bifurcation in the AD model in [Landi et al., 2013]. The model parameter e increases

from left to right turning the singular coalition (x̄, X̄) from a terminal (λ̄
(0,0,2)
1 < 0) to a branching (λ̄

(0,0,2)
1 > 0) point

(other parameters: r = 0.5, d = 0.05, γ0 = 0.01, γ1 = 0.5, γ2 = 2.3, α0 = 0.01, θ = 0.5, θ3 = θ4 = 5). The approximations
ηi(∆x1,∆x2) = 0 (31) and si(∆x1,∆x2) = 0 (34) of the coexistence region boundaries and of the internal xi-nullcline,
i = 1, 2, are shown around (x̄, x̄) in the (x1, x2) plane, using the same graphical and color codes of Fig. 4. Lighter colors
are used for the fully nonlinear versions: boundary 1, λ1(x2, X̄, x1) = 0; boundary 2, λ1(x1, X̄, x2) = 0; and xi-nullcline,

λ
(0,0,0,1)
2 (x1, x2, X̄, xi) = 0, i = 1, 2. Numerical continuation performed with the software package Matcont [Dhooge et al.,

2002].
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Fig. 7. Three examples of dimorphic coevolutionary dynamics at incipient branching in the AD model in [Landi et al.,

2013]. Case (a): x1(0) = x̄ −
√
2
2 ε, x2(0) = x̄ +

√
2
2 ε, X(0) = X̄ . Case (b): x1(0) = x̄, x2(0) = x̄ + ε, X(0) = X̄. Case (c):

x1(0) = x̄(X̄+ δ)−
√
2
2 ε, x2(0) = x̄(X̄+ δ) +

√
2
2 ε, X(0) = X̄+ δ. Parameter values as in Fig. 6 (right), ε = 0.003, δ = 0.0001.

The gray scale in the xi-time-series indicates the relative density n̄i(x1, x2, X)/(n̄1(x1, x2, X) + n̄2(x1, x2, X)), i = 1, 2.

(x1,X) oscillate around (x̄, X̄), being the singular coalition a stable focus (x1- and X-oscillations have
similar amplitude, though this is not visible at the scale used for (x1, x2)). As the density of x2 grows in2

detriment of that of x1, the branching dynamics take over as in case (a). However, while x1-individuals are
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still predominant, the selection pressure on the predator is lower (if not slightly negative, due to adaptation
to the decreasing trait x1) w.r.t. case (a) and, as a result, the eventual increase of X is delayed.2

In case (c), the prey traits are initialized along the anti-diagonal (as in case (a), according to (40)),
but the predator trait is perturbed from singularity, X(0) = X̄+ δ. As a result, being x̄ > x̄(X̄+ δ), we4

have x1(0) < x̄ and x2(0) slightly above x̄, so point (x1(0), x2(0)) is internal (and close to boundary 1)
to the prey coexistence region rooted at (x̄, x̄) in the (x1, x2) plane. The predator trait X is initially out6

of equilibrium and quickly evolves toward X̄ (left panel). The oscillations of the predator trait induce a
corresponding movement (back and forth) of the prey coexistence region, that puts point (x1, x2) close to8

boundary 1, avoiding however missing the branching ((x1, x2) touching the region boundary). Thus, after
a first quick transient (see the gray scale in the left panel, soon becoming lighter in x1 and darker in x2),10

the situation is symmetric w.r.t. case (b), with the prey population mainly composed of x2-individuals.

6. Discussion and conclusions12

The main theoretical contribution of this paper is a general method of approximating the dimorphic
fitness (8). It is based on a radial expansion (w.r.t. ε) on a given ray (identified by the angle θ) in the plane14

(x1, x2) of the two similar coexisting strategies. It exploits the fact (observed in [Durinx, 2008] and [Dercole
& Geritz, 2015]) that the equilibrium densities n̄1(x1, x2) and n̄2(x1, x2), at which the two strategies can16

coexist (under (G1)) for x1 and x2 close to the singular strategy x̄, are well defined and smooth along each
given ray in the cone of coexistence rooted at (x̄, x̄), though nonsmooth at (x̄, x̄). As a consequence, the18

ε-expansions of the densities n̄1(ε, θ) and n̄2(ε, θ) and of the dimorphic fitness λ2(ε, θ,∆x
′) (redefined in

polar coordinates (ε, θ) with ∆x′ := x′− x̄) are θ-dependent but, interestingly, they can be written back in20

terms of rational (n̄1 and n̄2) and polynomial (λ2) expressions of (x1, x2). The resulting expressions are not
expansions w.r.t. (x1, x2)—such expansions cannot be defined, contrary to what originally done in [Geritz22

et al., 1997, 1998]—but can nevertheless be used as approximations in the resident-mutant coexistence
region locally to the singular point (x̄, x̄).24

Our methodology is quite general. Other non-similar resident populations (of the same or different
species) are considered (in Appendix C) and the approximation can be taken up to any order (in ε).26

Thanks to a structural property assumed for the dimorphic fitness (property P4 in Sect. 2.1, recently
introduced in [Dercole, 2014]), the n̄1, n̄2, and λ2 ε-expansions can be written in terms of the geometry of28

the monomorphic fitness (3) (in contrast to what preliminarily found in [Durinx, 2008] in the special case
of Lotka-Volterra models).30

We have used the developed approach to unfold the branching bifurcation, at which a stable equilib-
rium of the monomorphic AD canonical equation (4) loses evolutionary stability. Specifically, assuming32

(G1)—allowing resident-mutant coexistence—and (G2)—ensuring the transversality and genericity of the

bifurcation—we have unfolded the transition of λ̄
(0,2)
1 across zero—the evolutionary equilibrium turning34

from a terminal (λ̄
(0,2)
1 < 0) to a branching (λ̄

(0,2)
1 > 0) point of AD.

At the bifurcation, the evolutionary dynamics ruled by the dimorphic canonical equation (7) are36

dominated by the third-order terms in the ε-expansion of the dimorphic fitness (8). Interestingly, the
second-order terms coincide with those Geritz et al. [1997, 1998] obtained by assuming smoothness, though38

nongeneric constraints on the monomorphic fitness come along at second- as well as at higher-orders (see
Appendix 1). Thus the (second-order) branching condition (9) of [Geritz et al., 1997, 1998] is correct and40

our approach becomes essential only at third-order.
By means of a smooth coordinate change and time-scaling, we have identified a simple model that is42

locally equivalent to the dimorphic canonical equation (7) and shows the bifurcation. We claim this is the
normal form for the branching bifurcation: model (34, 35, 37) restricted to the resident-mutant coexistence44

region ñi(∆x1,∆x2) ≥ 0, ∆xi := xi − x̄, i = 1, 2, defined in (36, 37), locally to (∆x1,∆x2) = (0, 0). The
model depends on four parameters that are all monomorphic fitness derivatives: the unfolding parameter46

λ̄
(0,2)
1 , the fitness cross-derivative λ̄

(1,1)
1 (constrained by (G1)), the normal form coefficient λ̄

(0,3)
1 (constrained

by (G2)), and λ̄
(1,2)
1 that plays no role and could be eliminated by a further coordinate change (in that48

sense the normal form could be simplified, but this would require a further change of coordinates that we
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Fig. 8. Monomorphic and dimorphic evolutionary dynamics around the branching bifurcation restricted to the region of
resident-mutant coexistence (shaded area; the color code orange-to-blue measures the magnitude of the vector field). The
singular strategy (the dot at (∆x1,∆x2) = (0, 0)) is always convergence stable (the monomorphic dynamics is shown along
the diagonal), whereas it is evolutionarily stable in the left panel (terminal point, full dot) and evolutionary unstable in the
central and the right panels (branching bifurcation, half-filled dot; branching point, empty dot). Other graphical and color
codes as in Fig. 4.

avoided). The only genericity (and transversality) condition required by the bifurcation (other than the
stability of the monomorphic resident equilibrium (10) and the resident-mutant coexistence under (G1))2

is then (G2).
Keeping into account the curvature of the boundaries of the resident-mutant coexistence region, we4

have proposed a second model (though introduced as first in Sect. 3 and necessarily less simple), locally
equivalent to the dimorphic canonical equation at the incipient branching: model (31, 34, 35) restricted6

to the coexistence region ñi(∆x1,∆x2) ≥ 0, i = 1, 2, defined in (31, 32). The quadratic approximation

of the coexistence region boundaries also depends on λ̄
(2,1)
1 , which is the last independent third-derivative8

of the monomorphic fitness to be involved (λ̄
(3,0)
1 is related to the others by Eq. (13c)). The new approxi-

mation of the boundaries has the advantage of showing some geometric features relating the trajectories10

of the dimorphic canonical equation with the boundaries themselves. Specifically, the internal x1-nullcline
(s1(∆x1,∆x2) = 0; dashed blue in Fig.8) connects to an horizontal fold of boundary 1 (ñ1(∆x1,∆x2) = 0,12

solid blue)—both smaller and larger x1-mutants do (Fig. 8 left) or do not (Fig. 8 right) invade the monomor-
phic x2-population at the fold—and to boundary 2 (ñ2(∆x1,∆x2) = 0, solid red) at a boundary saddle14

with x1 = x̄—the monomorphic x1-population is at equilibrium at the singular strategy; symmetrically for
the internal x2-nullcline (see [Geritz et al., 1999], the Appendix in particular, for more details).16

The analysis of our simplified models as λ̄
(0,2)
1 moves across zero unravels the dynamical phenomena

turning a terminal point of AD into a branching point. Restricting the model dynamics into the region18

of (x1, x2)-coexistence, we see (Fig. 8) that the singular point (∆x1,∆x2) = (0, 0) is always a “corner”

equilibrium that is attracting nearby trajectories for λ̄
(0,2)
1 < 0 and repelling for λ̄

(0,2)
1 > 0. The basin of20

attraction for λ̄
(0,2)
1 < 0 is delimited by the stable manifold of the two boundary saddles (one above and one

below the diagonal), the convergence being composed of a dimorphic phase up to the extinction of one of22

the two similar strategies, followed by a monomorphic phase toward the singular strategy. As λ̄
(0,2)
1 moves

across zero, the two saddles move along the coexistence region boundaries and cross the diagonal colliding24

with the singular point, that consequently changes stability (see Sect. 4). For λ̄
(0,2)
1 > 0 the trajectories

originating close to (0, 0) go away from the singularity and eventually reach an evolutionary attractor that26

is not local to the singularity (and not involved in the bifurcation). The same attractor is generically viable

even for λ̄
(0,2)
1 < 0 (see e.g. [Geritz et al., 1999]), but it cannot be reached from a neighborhood of the28

singularity, unless the mutational step is large enough to escape the basin of attraction. The branching
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bifurcation is therefore catastrophic, in the sense that a small change in λ̄
(0,2)
1 triggers a large evolutionary

transient leading to a new attractor.2

Finally, looking at the curvature of the coexistence region boundaries at the bifurcation (λ̄
(0,2)
1 = 0),

we can extend (under (G2)) the branching condition (9) to4

λ
(0,2)
1 (x̄, x̄) ≥ 0.

The natural follow-up to this work is the analysis of the other codimension-one branching bifurcation—

the one at which the fitness cross-derivative λ̄
(1,1)
1 vanishes with positive λ̄

(0,2)
1 . The resident-mutant coex-6

istence region is locally a cusp rooted at the singular point (x̄, x̄) (see [Priklopil, 2012, Dercole & Geritz,
2015]), and though there might generically be up to two coexistence equilibria, only one is stable and8

should be considered for developing a proper expansion of the dimorphic fitness. Further research could
investigate the codimension-two bifurcation at which both fitness second-derivatives vanish (the type of10

coexistence is already available in [Dercole & Geritz, 2015]), or the cases at which λ̄
(0,3)
1 = 0 together

with one of the fitness second-derivatives; or, as well, higher codimensions that do occur in applications12

(see, e.g., [Doebeli & Ispolatov, 2010]). The methodology developed in this paper is readily applicable and
convenient to pursue the above projects.14

More effort is definitely needed to extend the methodology to the cases of structured populations
[Durinx et al., 2008] and/or to multi-dimensional strategies [Vukics et al., 2003, Ito & Dieckmann, 2014].16

Analogous results are intuitively expected.
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Appendix A The nonsmoothness of the dimorphic fitness

In this appendix we show that assuming the dimorphic fitness λ2(x1, x2, x
′) smooth at (x̄, x̄, x̄) brings to22

the nongeneric constraint

λ̄
(2,0)
1 = λ̄

(0,2)
1 (A.1)

between the second derivatives of the monomorphic fitness λ1(x, x
′) at (x̄, x̄). More in general, in the Sup-24

plementary Material (last section) we show that the smoothness assumption implies nongeneric constraints
at any order k ≥ 2 of the form26

∂k−1

∂xk−1
λ
(0,1)
1 (x, x)

∣

∣

∣

∣

x=x̄

= 0, (A.2)

e.g.

λ̄
(1,1)
1 + λ̄

(0,2)
1 = 0 for k = 2,

which is nothing but (A.1) by the neutrality condition (13b), and28

λ̄
(2,1)
1 + 2 λ̄

(1,2)
1 + λ̄

(0,3)
1 = 0 for k = 3,

λ̄
(3,1)
1 + 3 λ̄

(2,2)
1 + 3 λ̄

(1,3)
1 + λ̄

(0,4)
1 = 0 for k = 4.

The smoothness of the dimorphic fitness would therefore imply that the selection gradient λ
(0,1)
1 (x, x)

vanishes at x = x̄ together with all its x-derivatives, whereas all such derivatives are generically expected30

to be nonzero (see e.g. Eq. (14)), though some of them might vanish in specific models due to symmetries
in the trait dependencies.32

To show Eq. (A.1) we exploit the consistency properties C1–3 of Sect. 2.1 and, in particular, their
derivatives w.r.t. (x, x′) (C1), (x1, x2, x

′) (C2), and (x1, x2) (C3) at x = x1 = x2 = x′ = x̄, that can be34

taken under smoothness. Specifically, C1 and its second x-derivative give
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C1a: λ̄
(0,0,2)
2 = λ̄

(0,2)
1 ,

C1b: λ̄
(2,0,0)
2 + 2 λ̄

(1,1,0)
2 + λ̄

(0,2,0)
2 = λ̄

(2,0)
1 ,2

the second x1-derivative of C2 gives

C2a: λ̄
(2,0,0)
2 = λ̄

(0,2,0)
2 ,4

and, in C3, the mixed (x1, x2)- and the second x2-derivatives of λ2(x1, x2, x1) = 0 give

C3a: λ̄
(1,1,0)
2 + λ̄

(0,1,1)
2 = 0,6

C3b: λ̄
(0,2,0)
2 = 0,

whereas the second x2-derivative of λ2(x1, x2, x2) = 0 gives8

C3c: λ̄
(0,2,0)
2 + 2 λ̄

(0,1,1)
2 + λ̄

(0,0,2)
2 = 0.

From C1b-C2a-C3b, we therefore conclude10

λ̄
(1,1,0)
2 = 1

2 λ̄
(2,0)
1 , (A.3)

whereas substituting λ̄
(0,1,1)
2 from C3c into C3a and then applying C1a-C3b, we conclude

λ̄
(1,1,0)
2 = 1

2 λ̄
(0,2)
1 . (A.4)

Eq. (A.1) evidently follows from (A.3) and (A.4).12

Appendix B Second-order expansion of the dimorphic fitness λ2(ε, θ,∆x′)

In this appendix we make use of the consistency property C1, linking the dimorphic to the monomorphic14

fitness, and of properties P1–P4 (see Sect. 2.1) to compute step by step the expansion (28) up to second
order.16

We start by noting that the x′-derivatives of C1 imply

λ̄
(0,0,q)
2 = λ̄

(0,q)
1 , q ≥ 0, (B.1)

and by recalling that over-bars evaluations are taken at (ε,∆x′) = (0, 0) for λ2(ε, θ,∆x
′) and at (x̄, x̄) for18

λ1(x, x
′). The zero-order term λ̄2 and the first-order term λ̄

(0,0,1)
2 are therefore null by the neutrality and

singularity conditions (12) and (5), respectively.20

More involved is the computation of the other first-order term, i.e., showing λ̄
(1,0,0)
2 = 0 (see Tab.3).

Computing λ̄
(1,0,q)
2 , q ≥ 0, from the λ2 definition (26), we obtain22

λ̄
(1,0,q)
2 =

[

g(1,0,0,0,q)
(

− r̄(1,0)sf + (1− r̄)
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

g(0,1,0,0,q)
(

r̄(1,0)sf + r̄
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

g(0,0,1,0,q) cos θ + g(0,0,0,1,q) sin θ
]∣

∣

∣

ε=0,∆x′=0
, (B.2)

where functions’ arguments, here omitted, are as in (26). The right-hand side of (B.2) simplifies by taking
into account that24

g(1,0,0,0,q)
∣

∣

ε=0,∆x′=0
= g(0,1,0,0,q)

∣

∣

ε=0,∆x′=0
= ḡ(1,0,0,0,q) (B.3)

by P2 and that

g(0,0,1,0,q)
∣

∣

ε=0,∆x′=0
= φ̄

(0,0,q)
1,1 (1− r̄(0, θ))sf (r̄(0, θ), 0, θ), (B.4a)

g(0,0,0,1,q)
∣

∣

ε=0,∆x′=0
= φ̄

(0,0,q)
1,1 r̄(0, θ)sf (r̄(0, θ), 0, θ) (B.4b)
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by P4 and P3,4a, respectively. The result is

λ̄
(1,0,q)
2 = ḡ(1,0,0,0,q)

(

s
(1,0,0)
f (r̄(0, θ), 0, θ) r̄(1,0)(0, θ) + s

(0,1,0)
f (r̄(0, θ), 0, θ)

)

+

φ̄
(0,0,q)
1,1 sf (r̄(0, θ), 0, θ)

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

. (B.5)

Substituting in (B.5) the expressions in Tab.1 for the fast-equilibrium manifold sf (r̄(0, θ), 0, θ) and for the

derivatives s
(1,0,0)
f (r̄(0, θ), 0, θ) and s

(0,1,0)
f (r̄(0, θ), 0, θ) (computed below in Sect.B.1), we obtain2

λ̄
(1,0,q)
2 =

(

ḡ(1,0,0,0,q)n̄(1) + φ̄
(0,0,q)
1,1 n̄

)(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

,

that further simplifies to

λ̄
(1,0,q)
2 =

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

λ̄
(1,q)
1 (B.6)

by taking Eq. (11b) into account. With q = 0, neutrality (13a) and singularity (5) yield λ̄
(1,0,0)
2 = 0, whereas4

substituting the expression for r̄(0, θ) from Tab.2 (computed below in Sect.B.2) into (B.6) with q =1, we
obtain6

λ̄
(1,0,1)
2 = −1

2(sin θ + cos θ)λ̄
(0,2)
1 ,

as in Tab.3.
We finally need to compute λ̄

(2,0,0)
2 . Again from the λ2 definition (26), we have8

λ̄
(2,0,0)
2 =

[(

g(2,0,0,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+

g(1,1,0,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+g(1,0,1,0,0) cos θ+g(1,0,0,1,0) sin θ

)

×
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+

g(1,0,0,0,0)
(

−r̄(2,0)sf−2r̄(1,0)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

)

+

(1−r̄)
((

s
(2,0,0)
f

r̄(1,0)+2s
(1,1,0)
f

)

r̄(1,0)+s
(1,0,0)
f

r̄(2,0)+s
(0,2,0)
f

)

)

+
(

g(1,1,0,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+

g(0,2,0,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+g(0,1,1,0,0) cos θ+g(0,1,0,1,0) sin θ

)

×
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+

g(0,1,0,0,0)
(

r̄(2,0)sf+2r̄(1,0)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

)

+

r̄
((

s
(2,0,0)
f

r̄(1,0)+2s
(1,1,0)
f

)

r̄(1,0)+s
(1,0,0)
f

r̄(2,0)+s
(0,2,0)
f

)

)

+

cos θ

(

g(1,0,1,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+

g(0,1,1,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+g(0,0,2,0,0) cos θ+g(0,0,1,1,0) sin θ

)

+

sin θ

(

g(1,0,0,1,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+

g(0,1,0,1,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+g(0,0,1,1,0) cos θ+g(0,0,0,2,0) sin θ

)]
∣

∣

∣

ε=0,∆x′=0

. (B.7)

Applying P2, i.e., taking (B.3) and

g(2,0,0,0,0)
∣

∣

ε=0,∆x′=0
= g(1,1,0,0,0)

∣

∣

ε=0,∆x′=0
= g(0,2,0,0,0)

∣

∣

ε=0,∆x′=0
= ḡ(2,0,0,0,0)
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into account, the right-hand side of (B.7) simplifies to

λ̄
(2,0,0)
2 =

[

ḡ(2,0,0,0,0)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

)2
+

ḡ(1,0,0,0,0)
((

s
(2,0,0)
f

r̄(1,0)+2s
(1,1,0)
f

)

r̄(1,0)+s
(1,0,0)
f

r̄(2,0)+s
(0,2,0)
f

)

+

2 cos θ

(

g(1,0,1,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+g(0,1,1,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

)

+

2 sin θ

(

g(0,1,0,1,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

+g(1,0,0,1,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f

r̄(1,0)+s
(0,1,0)
f

))

)

+

g(0,0,2,0,0) cos2θ+2g(0,0,1,1,0) sin θ cos θ+g(0,0,0,2,0) sin2θ

]∣

∣

∣

ε=0,∆x′=0

. (B.8)

Applying P4, P3,4a, and P1–4, i.e.,2

g(1,0,1,0,0)
∣

∣

ε=0,∆x′=0
= φ̄1,1 + φ̄

(1,0,0)
1,1 (1− r̄(0, θ))sf (r̄(0, θ), 0, θ), (B.9a)

g(0,1,1,0,0)
∣

∣

ε=0,∆x′=0
= φ̄

(1,0,0)
1,1 (1− r̄(0, θ))sf (r̄(0, θ), 0, θ), (B.9b)

g(0,1,0,1,0)
∣

∣

ε=0,∆x′=0
= φ̄1,1 + φ̄

(1,0,0)
1,1 r̄(0, θ)sf (r̄(0, θ), 0, θ), (B.9c)

g(1,0,0,1,0)
∣

∣

ε=0,∆x′=0
= φ̄

(1,0,0)
1,1 r̄(0, θ)sf (r̄(0, θ), 0, θ), (B.9d)

g(0,0,2,0,0)
∣

∣

ε=0,∆x′=0
= φ̄2,1(1− r̄(0, θ))sf (r̄(0, θ), 0, θ) + φ̄2,2(1− r̄(0, θ))2sf (r̄(0, θ), 0, θ)

2, (B.9e)

g(0,0,1,1,0)
∣

∣

ε=0,∆x′=0
= φ̄2,2(1− r̄(0, θ)) r̄(0, θ)sf (r̄(0, θ), 0, θ)

2, (B.9f)

g(0,0,0,2,0)
∣

∣

ε=0,∆x′=0
= φ̄2,1 r̄(0, θ)sf (r̄(0, θ), 0, θ) + φ̄2,2 r̄(0, θ)

2sf (r̄(0, θ), 0, θ)
2, (B.9g)

the right-hand side of (B.8) becomes

λ̄
(2,0,0)
2 = ḡ(2,0,0,0,0)

(

s
(1,0,0)
f

(r̄(0,θ),0,θ) r̄(1,0)(0,θ)+s
(0,1,0)
f

(r̄(0,θ),0,θ)
)2

+ ḡ(1,0,0,0,0)×
((

s
(2,0,0)
f

(r̄(0,θ),0,θ) r̄(1,0)(0,θ)+2s
(1,1,0)
f

(r̄(0,θ),0,θ)
)

r̄(1,0)(0,θ)+s
(1,0,0)
f

(r̄(0,θ),0,θ) r̄(2,0)(0,θ)+s
(0,2,0)
f

(r̄(0,θ),0,θ)
)

+

2
(

φ̄1,1+φ̄
(1,0,0)
1,1 sf (r̄(0,θ),0,θ)

)(

(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ
)(

s
(1,0,0)
f

(r̄(0,θ),0,θ) r̄(1,0)(0,θ)+s
(0,1,0)
f

(r̄(0,θ),0,θ)
)

+

2φ̄1,1sf (r̄(0,θ),0,θ)r̄
(1,0)(0,θ)(sin θ−cos θ)+

φ̄2,1sf (r̄(0,θ),0,θ)
(

(1−r̄(0,θ)) cos2θ+r̄(0,θ) sin2θ
)

+ φ̄2,2sf (r̄(0,θ),0,θ)
2
(

(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ
)2

. (B.10)

Substituting in (B.10) the fast-equilibrium manifold sf (r̄(0, θ), 0, θ) and its derivatives from Tab.1, we4

obtain

λ̄
(2,0,0)
2 =

(

ḡ(2,0,0,0,0)(n̄(1))2 + 2
(

φ̄1,1 + φ̄
(1,0,0)
1,1 n̄

)

n̄(1) + ḡ(1,0,0,0,0)n̄(2) + φ̄2,1n̄+ φ̄2,2n̄
2
)

×
(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)2

+2 r̄(1,0)(0, θ)(sin θ− cos θ)
(

ḡ(1,0,0,0,0)n̄(1) + φ̄1,1n̄
)

− r̄(0, θ)(1− r̄(0, θ))(sin θ− cos θ)2λ̄
(0,2)
1 ,(B.11)

that further simplifies taking (11c) (q = 0) into account and noting that, from the definition (2) of the6

resident equilibrium and P1,4, we have

n̄(1) = − φ̄1,1n̄+ ḡ(0,0,0,0,1)

ḡ(1,0,0,0,0)
(5,11a)
= − φ̄1,1n̄

ḡ(1,0,0,0,0)
. (B.12)

Thanks to (B.12) we lose the r̄(1,0)(0, θ)-term in (B.11) and obtain8

λ̄
(2,0,0)
2 =

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)2
λ̄
(2,0)
1 − r̄(0, θ)(1− r̄(0, θ))(cos θ − sin θ)2λ̄

(0,2)
1

(13b)
= −2

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)2
λ̄
(1,1)
1

−
(

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)2
+ r̄(0, θ)(1− r̄(0, θ))(sin θ − cos θ)2

)

λ̄
(0,2)
1 .

Substituting the expression for r̄(0, θ) from Tab.2, we finally obtain the expression in Tab.3, i.e.,

λ̄
(2,0,0)
2 = sin θ cos θ λ̄

(0,2)
1 .
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Appendix B.1. Derivatives of the fast-equilibrium manifold sf(r, ε, θ)

The derivatives w.r.t. (r, ε) of the fast-equilibrium manifold are obtained by differentiating the definition2

(23) and by applying property P1–P4. For notation convenience, we omit functions’ arguments and denote
by g(1) and g(2) the evaluations4

g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

and

g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

appearing in the definition (23) (and differing only in the last argument equal to x1 and x2, respectively).6

First note that the evaluation at ε = 0 of Eq. (23) and P2 give

g(sf (r, 0, θ), 0, x̄, x̄, x̄) = 0, (B.13)

that compared with the definition (2) of the resident equilibrium gives the zero-order term sf (r, 0, θ) = n̄(x̄)8

in Tab.1.
The r-derivative of Eq. (23), i.e.,10

[

(1− r)
(

g(1,0,0,0,0)(1)
(

−sf + (1− r)s
(1,0,0)
f

)

+ g(0,1,0,0,0)(1)
(

sf + rs
(1,0,0)
f

)

)

− g(1) +

r
(

g(1,0,0,0,0)(2)
(

−sf + (1− r)s
(1,0,0)
f

)

+ g(0,1,0,0,0)(2)
(

sf + rs
(1,0,0)
f

)

)

+ g(2)
]∣

∣

∣

ε=0
= 0,

simplifies to

ḡ(1,0,0,0,0)s
(1,0,0)
f (r, 0, θ) = 0

using P2 (i.e., taking (B.3) into account) and noting that12

g(1)|ε=0 = g(2)|ε=0 = g(sf (r, 0, θ), 0, x̄, x̄, x̄) = 0

by Eq. (B.13). Being ḡ(1,0,0,0,0) < 0 by the hyperbolic stability of the resident equilibrium n̄(x̄) (see Eq.

(10)), we conclude s
(1,0,0)
f (r, 0, θ) = 0 (as in Tab.1).14

The ε-derivative of Eq. (23), i.e.,
[

(1− r)
(

g(1,0,0,0,0)(1)(1 − r)s
(0,1,0)
f + g(0,1,0,0,0)(1)rs

(0,1,0)
f +

g(0,0,1,0,0)(1) cos θ + g(0,0,0,1,0)(1) sin θ + g(0,0,0,0,1)(1) cos θ
)

+

r
(

g(1,0,0,0,0)(2)(1 − r)s
(0,1,0)
f + g(0,1,0,0,0)(2)rs

(0,1,0)
f +

g(0,0,1,0,0)(2) cos θ + g(0,0,0,1,0)(2) sin θ + g(0,0,0,0,1)(2) sin θ
)]
∣

∣

∣

ε=0
= 0,

simplifies to16

ḡ(1,0,0,0,0)s
(0,1,0)
f (r, 0, θ) +

(

φ̄1,1n̄+ ḡ(0,0,0,0,1)
)(

(1− r) cos θ + r sin θ
)

= 0

using P2 (i.e., taking (B.3) into account), P4, and P3,4. Then, using Eq. (B.12), we obtain

s
(0,1,0)
f (r, 0, θ) =

(

(1− r) cos θ + r sin θ
)

n̄(1)

(as in Tab.1).18

The computation of the derivatives s
(1,1,0)
f (r, 0, θ) and s

(0,2,0)
f (r, 0, θ) that appear in Eq. (B.10) is left

in the Supplementary Material.20

Appendix B.2. Derivatives of the slow equilibrium r̄(ε, θ)
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The derivatives w.r.t. ε of the slow equilibrium are obtained by ε-differentiating the definition (24) and by
applying property P1–P4. For notation convenience, we omit functions’ arguments and denote by g(1) and2

g(2) the evaluations

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

and4

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

appearing in the definition (24) (and differing only in the last argument equal to x1 and x2, respectively).
The ε-derivative of (24) simply gives6

g(0,0,0,0,1)(2)
∣

∣

∣

ε=0
sin θ − g(0,0,0,0,1)(1)

∣

∣

∣

ε=0
cos θ

P2
= ḡ(0,0,0,0,1)(sin θ − cos θ) = 0, (B.14)

as all derivatives not involving the last argument cancel in the difference g(2)− g(1). Eq. (B.14) is however

an identity, being ḡ(0,0,0,0,1) = λ̄
(0,1)
1 = 0 (see Eq. (11a) with q = 1 and the singularity condition (5)).8

We therefore need to take the second ε-derivative of (24), i.e.,
[

sin θ
(

2g(1,0,0,0,1)(2)
(

− r̄(1,0)sf + (1− r̄)
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,1,0,0,1)(2)
(

r̄(1,0)sf + r̄
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,0,1,0,1)(2) cos θ + 2g(0,0,0,1,1)(2) sin θ + g(0,0,0,0,2)(2) sin θ
)

+

− cos θ
(

2g(1,0,0,0,1)(1)
(

− r̄(1,0)sf + (1− r̄)
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,1,0,0,1)(1)
(

r̄(1,0)sf + r̄
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,0,1,0,1)(1) cos θ + 2g(0,0,0,1,1)(1) sin θ + g(0,0,0,0,2)(1) cos θ
)]∣

∣

∣

ε=0
= 0,

that simplifies into

2 ḡ(1,0,0,0,1)
(

s
(1,0,0)
f (r̄(0, θ), 0, θ) r̄(1,0)(0, θ) + s

(0,1,0)
f (r̄(0, θ), 0, θ)

)

+

2 φ̄
(0,0,1)
1,1 sf (r̄(0, θ), 0, θ)

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

+ ḡ(0,0,0,0,2)(sin θ + cos θ) = 0 (B.15)

using P2, P4, and P3,4 (i.e., taking (B.3) and (B.4) into account) and removing the factor (sin θ− cos θ) >10

0 (recall Eq. (20b)). Substituting in (B.15) the expressions in Tab.1 for the fast-equilibrium manifold

sf (r̄(0, θ), 0, θ) and for the derivatives s
(1,0,0)
f (r̄(0, θ), 0, θ) and s

(0,1,0)
f (r̄(0, θ), 0, θ) (computed in Sect.B.1),12

we obtain

2
(

ḡ(1,0,0,0,1)n̄(1) + φ̄
(0,0,1)
1,1 n̄

)(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

+ ḡ(0,0,0,0,2)(sin θ + cos θ) = 0,

from which, taking Eqs. (11a) (q = 2) and (11b) (q = 1) into account, we conclude

r̄(0, θ) = −2 cos θλ̄
(1,1)
1 + (sin θ + cos θ)λ̄

(0,2)
1

2(sin θ − cos θ)λ̄
(1,1)
1

(as in Tab.2).14

The computation of the first derivative r̄(1,0)(0, θ), needed for the third-order in the expansion (28), is
left in the Supplementary Material.16

Appendix C The case of polymorphic and/or multispecies coevolution

We allow in this appendix the resident and mutant populations 1 and 2 to interact and coevolve with18

P other populations of the same or different species, with densities packed in vector N(t) ∈ R
P and

corresponding strategies (finitely different from x1 and x2 in the case of conspecifics) packed in vector X20

(multiple, mutationally independent, traits per population are also allowed [Dercole & Rinaldi, 2008]).
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The resident-mutant model (1) then becomes

ṅ1 = n1 g(n1, n2, N, x1, x2,X, x1), (C.1a)

ṅ2 = n2 g(n1, n2, N, x1, x2,X, x2), (C.1b)

Ṅ = F (n1, n2, N, x1, x2,X), (C.1c)

where the function vector F collects the population growth rates of the P other populations (each com-2

ponent given by the density Np multiplied by the per-capita growth rate of population p, p = 1, . . . , P )
and g(n1, n2, N, x1, x2,X, x

′) is the new g-function. Properties P1–P4 easily extend to the new g and also4

apply to vector F . E.g., property P1 defines the functions

g1(n1, N, x1,X, x
′) := g(n1, 0, N, x1, x2,X, x

′),

F1(n1, N, x1,X) := F (n1, 0, N, x1, x2,X),

and P4 reads6

g(0,0,0,d1,0,0,0)(n1, n2, N, x, x,X, x
′) =

d1
∑

i1=1

φd1,i1(n1+ n2, N, x,X, x
′)ni11 ,

g(0,0,0,d1,d2,0,0)(n1, n2, N, x, x,X, x
′) =

d1
∑

i1=1

d2
∑

i2=1

φd1,d2,i1,i2(n1+ n2, N, x,X, x
′)ni11 n

i2
2 ,

F (0,0,0,d1,0,0)(n1, n2, N, x, x,X) =

d1
∑

i1=1

ψd1,i1(n1+ n2, N, x,X)ni11 ,

F (0,0,0,d1,d2,0)(n1, n2, N, x, x,X) =

d1
∑

i1=1

d2
∑

i2=1

ψd1,d2,i1,i2(n1+ n2, N, x,X)ni11 n
i2
2 ,

for suitable new functions φd1,i1 and φd1,d2,i1,i2 and suitable function vectors ψd1,i1 and ψd1,d2,i1,i2 (with
relations ψ1,1,1,1 = ψ2,2, ψ2,1,1,1 = ψ1,2,1,1 = 1

3ψ3,2, ψ2,1,2,1 = ψ1,2,1,2 = ψ3,3, analogous to P1–4), d1, d2 ≥ 18

[Dercole, 2014].
We assume that for all values of the strategies x1 and X that we consider, population 1 stationarily10

coexists with the other P interacting populations at a strictly positive and (hyperbolically) stable equilib-
rium of model (C.1a,c) with n2 = 0. The resident equilibrium densities, denoted with functions n̄(x1,X)12

and N̄(x1,X), are implicitly defined by

g1(n̄(x1,X), N̄ (x1,X), x1,X, x1) = 0, (C.2a)

F1(n̄(x1,X), N̄ (x1,X), x1,X) = 0. (C.2b)

By the hyperbolic stability of the resident equilibrium, i.e., the negative real part of the eigenvalues of the14

Jacobian matrix

J(x1,X) =

[

n̄(x1, X)g
(1,0,0,0,0)
1 (n̄(x1, X), N̄(x1, X), x1, X, x1) n̄(x1, X)g

(0,1,0,0,0)
1 (n̄(x1, X), N̄(x1, X), x1, X, x1)

F
(1,0,0,0)
1 (n̄(x1, X), N̄(x1, X), x1, X) F

(0,1,0,0)
1 (n̄(x1, X), N̄(x1, X), x1, X)

]

,

also population 2 is able to coexist with the other P interacting populations at a strictly positive (and16

hyperbolically stable) equilibrium (n̄(x2,X), N̄ (x2,X)) of model (C.1b,c) with n1 = 0 and x1 ≃ x2.
Thus, the resident-mutant model (C.1) admits the two monomorphic equilibria (n̄(x1,X), 0, N̄ (x1,X))18

and (0, n̄(x2,X), N̄ (x2,X)) for all x1, x2, and X that we consider.
The invasion fitness for a mutant strategy x′ ≃ x is given by20

λ1(x,X, x
′) := g1(n̄(x,X), N̄ (x,X), x,X, x′).

To characterize the joint evolution of strategies (x,X), one has to write the invasion fitnesses for the
mutants of each of the resident strategies in X, that are each based on the corresponding resident-mutant22
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model [Dercole & Rinaldi, 2008]. The result is an AD canonical equation of the form

ẋ = 1
2µ(x)σ(x)

2 n̄(x,X)λ
(0,0,1)
1 (x,X, x), (C.3a)

Ẋ = · · · (C.3b)

Here we do not explicitly consider the evolution of the strategies in X, but rather treat X as a vector2

of constant parameters. We assume that (x̄, X̄) is a stable equilibrium of the canonical equation (C.3)

(a convergence-stable singular coalition of strategies, in the AD jargon), i.e., λ̄
(0,0,1)
1 = 0 holds together4

with similar relations for the selection gradients associated to the strategies in X (over-bars here denote
evaluations at the singular coalition). For any given X sufficiently close to X̄ , we define the function x̄(X)6

as the singular value for the strategy x at the given X, i.e.,

λ
(0,0,1)
1 (x̄(X),X, x̄(X)) = 0, x̄(X̄) = x̄, (C.4)

as if the strategies in X were not subject to the mutation-selection process. Note that x̄(X) is uniquely8

defined by (C.4) locally to X = X̄ (by the implicit function theorem) under

λ̄
(1,0,1)
1 + λ̄

(0,0,2)
1 6= 0, (C.5)

which is granted by the resident-mutant coexistence condition (G1), now rewritten as

λ̄
(1,0,1)
1 < 0, (C.G1)

and by the proximity to the branching bifurcation at which λ̄
(0,0,2)
1 = 0. The quantity in (C.5) is hence10

negative and excludes that a collision between two solutions for x̄(X) occurs for X close to X̄ (recall
the comment below Eq. (14), though (C.5) is not here related to the assumed convergence stability of the12

singular coalition).
Thanks to the parametric definition of the singular strategy x̄(X) in (C.4), our analysis in Sects. 2.214

and 2.3 goes through, with the complicacy of the P extra non-evolving coexisting populations (see the Sup-
plementary Material, where all computations are performed taking the P extra populations into account).16

Specifically, under (C.G1), a locally conical resident-mutant coexistence region is rooted at (x̄(X), x̄(X))
in the strategy plane (x1, x2) and, for each point of the region, the coexistence equilibrium densities18

n̄1(x1, x2,X), n̄2(x1, x2,X), and N̄(x1, x2,X) are positive and defined by

g(n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X, x1) = 0,

g(n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X, x2) = 0,

F (n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X) = 0.

The coexistence region boundaries can be approximated as in Sect. 2.2, where now20

x1 := x̄(X) + ε cos θ and x2 := x̄(X) + ε sin θ. (C.6)

The tangent direction and the curvature of the boundaries at (x̄(X), x̄(X)) are given by formulas that are
formally analogous to those in Eqs. (18), (19), (21), and (22), with the difference that the derivatives of22

λ1(x,X, x
′) are now evaluated at (x̄(X),X, x̄(X)) and not at (x̄, X̄, x̄). For this, we use over-hats (evaluation

at the singular strategy x̄(X)) instead of over-bars (evaluation at the singular coalition (x̄, X̄)):24

tan θT2(0) =
1

tan θT1(0)
= −2λ̂

(1,0,1)
1 + λ̂

(0,0,2)
1

λ̂
(0,0,2)
1

(13b)
=

λ̂
(2,0,0)
1

λ̂
(0,0,2)
1

and

θ
(1)
T2 (0) = θ

(1)
T1 (0) =

−
4
(

λ̂
(1,0,1)
1

)2
λ̂
(0,0,3)
1 − 2λ̂

(1,0,1)
1 λ̂

(0,0,2)
1

(

3λ̂
(1,0,2)
1 − λ̂

(0,0,3)
1

)

+
(

λ̂
(0,0,2)
1

)2
(

3λ̂
(2,0,1)
1 + λ̂

(0,0,3)
1

)

6
√
2
(

2
(

λ̂
(1,0,1)
1

)2
+ 2λ̂

(1,0,1)
1 λ̂

(0,0,2)
1 +

(

λ̂
(0,0,2)
1

)2
)3/2
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(recall that θTi(ε) = θTi(0)+θ
(1)
Ti (0)ε approximates for small |ε| the boundary i on which n̄i(x1, x2,X) = 0,

i = 1, 2).2

For (x1, x2) in the resident-mutant coexistence region and X sufficiently close to X̄, the dimorphic
fitness reads:4

λ2(x1, x2,X, x
′) := g(n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X, x

′)

(we keep using “monomorphic” and “dimorphic” to denote the situations before and after resident-mutant
coexistence, though evolution could be polymorphic due to the presence of other conspecifics). Analogously
to what done in Sect. 2.3, the dimorphic fitness can be rewritten in terms of (ε, θ,X,∆x′), with ∆x′ :=
x′ − x̄(X), as

λ2(ε, θ,X,∆x
′) :=

g((1− r̄(ε, θ,X))sf (r̄(ε, θ,X), ε, θ,X), r̄(ε, θ,X)sf (r̄(ε, θ,X), ε, θ,X), Nf (r̄(ε, θ,X), ε, θ,X), x̄(X)+ ε cos θ, x̄(X)+ ε sin θ,X, x̄(X)+ ∆x′),
(C.7)

where {sf (r, ε, θ,X), Nf (r, ε, θ,X), r ∈ [0, 1]} is the fast-equilibrium manifold of model (C.1), to which
s := n1 + n2 and N converge at constant r, and r̄(ε, θ,X) is the equilibrium of the slow variable r. The6

fast-equilibrium manifold and the slow equilibrium are respectively defined by

0 = ṅ1+ ṅ2

=(1− r)g((1− r)sf (r, ε, θ,X), rsf (r, ε, θ,X), Nf (r, ε, θ,X), x̄+ ε cos θ, x̄+ ε sin θ,X, x̄+ ε cos θ)

+ rg((1− r)sf (r, ε, θ,X), rsf (r, ε, θ,X), Nf (r, ε, θ,X), x̄+ ε cos θ, x̄+ ε sin θ,X, x̄+ ε sin θ), (C.8a)

0 = Ṅ =F ((1− r)sf (r, ε, θ,X), rsf (r, ε, θ,X), Nf (r, ε, θ,X), x̄+ ε cos θ, x̄+ ε sin θ,X) (C.8b)

and8

0 = g((1− r̄(ε, θ,X))sf (r̄(ε, θ,X), ε, θ,X), r̄(ε, θ,X)sf (r̄(ε, θ,X), ε, θ,X), Nf (r̄(ε, θ,X), ε, θ,X), x̄(X)+ ε cos θ, x̄(X)+ ε sin θ,X, x̄(X)+ ε sin θ)

− g((1− r̄(ε, θ,X))sf (r̄(ε, θ,X), ε, θ,X), r̄(ε, θ,X)sf (r̄(ε, θ,X), ε, θ,X), Nf (r̄(ε, θ,X), ε, θ,X), x̄(X)+ ε cos θ, x̄(X)+ ε sin θ,X, x̄(X)+ ε cos θ)

(C.9)

and their relevant derivatives are computed in the Supplementary Material.
The right-hand side in (C.7) can be Taylor expanded around (ε,∆x′) = (0, 0) at given (θ,X). The10

result is fully analogous to that of Sect. 2.3, so back in the variables ∆x1 := x1 − x̄(X) = ε cos θ and
∆x2 := x2 − x̄(X) = ε sin θ (see the definitions in (C.6)) we can write12

λ2(ε, θ,X,∆x
′) = λ̃2(∆x1,∆x2,X,∆x

′) +O(‖(ε,∆x′)‖4),
with

λ̃2(∆x1,∆x2,X,∆x
′) :=

(

1
2 λ̂

(0,0,2)
1 − 1

4

λ̂
(0,0,2)
1 λ̂

(1,0,2)
1

λ̂
(1,0,1)
1

(∆x1+∆x2)+
1
6 λ̂

(0,0,3)
1 (∆x1+∆x2 +∆x′)

)

(∆x′−∆x1)(∆x
′−∆x2), (C.10)

that is formally identical to the right-hand side in (29) except for replacing the over-bar evaluations with
over-hat ones. Note however the new definitions of variables ∆x1 and ∆x2. They respectively measure the14

horizontal and vertical deviations of x1 and x2 from the singular point (x̄(X), x̄(X)) in the strategy plane
(x1, x2). A change in X (that does not explicitly appear in the right-hand side of (C.10) because hidden16

in the over-hat evaluations) at constant (∆x1,∆x2) hence implies a change in (x1, x2).
Thanks again the parametric definition of the singular strategy x̄(X) in (C.4), also the two canonical

models presented in Sect. 3 (as well as their unfolding as λ̄
(0,0,2)
1 moves across zero in Sect. 3) remain formally

valid under (C.G1) and

λ̄
(0,0,3)
1 6= 0, (C.G2)

because X sufficiently close to X̄ guarantees λ̂
(1,0,1)
1 6= 0 and λ̂

(0,0,3)
1 6= 0, so we can simply replace over-18

bars with over-hats in the canonical models. Note, in particular, that (∆x1,∆x2) = (0, 0) now stands for
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(x1, x2) = (x̄(X), x̄(X)) in Figs. 3 and 4, and that the central panel occurs when λ̂
(0,0,2)
1 = 0, while the

discriminant between top and bottom panels is λ̂
(0,0,3)
1 ≷ 0.2

We are now ready to take into account that (some or all of) the strategies in X are coevolving with
x according to the canonical equation (C.3) in the monomorphic phase, and with x1 and x2 according to4

the canonical model

ẋ1 =

(

λ̂
(1,0,1)
1 ∆x2 +

1
2 λ̂

(0,0,2)
1 (∆x1+∆x2)

)(

1
2 λ̂

(0,0,2)
1 − 1

4

λ̂
(0,0,2)
1 λ̂

(1,0,2)
1

λ̂
(1,0,1)
1

(∆x1+∆x2)+
1
6 λ̂

(0,0,3)
1 (2∆x1+∆x2)

)

(C.11a)

ẋ2 =

(

λ̂
(1,0,1)
1 ∆x1 +

1
2 λ̂

(0,0,2)
1 (∆x1+∆x2)

)(

1
2 λ̂

(0,0,2)
1 − 1

4

λ̂
(0,0,2)
1 λ̂

(1,0,2)
1

λ̂
(1,0,1)
1

(∆x1+∆x2)+
1
6 λ̂

(0,0,3)
1 (∆x1+2∆x2)

)

(C.11b)

Ẋ = · · · (C.11c)

(see Eqs. (34), (35), (37)) in the dimorphic phase. We assume that branching at the singular coalition6

(x̄, X̄) is possible only in strategy x. Branching in the strategies in X can be similarly discussed, one by
one, simply focusing on each component of X as “the small x.” When branching is possible with respect to8

multiple strategies, only the fastest diverging branching (the one with largest λ̄
(0,0,2)
1 ) generically develops,

the others being “missed” [Kisdi, 1999] (see below and also [Landi et al., 2013]).10

If λ̄
(0,0,2)
1 < 0 and X is initially sufficiently close to X̄, the situation is that of the left panels in Figs. 3

and 4, so the singular coalition is a terminal point w.r.t. strategy x. Note that if X is not sufficiently close12

to X̄, it might be λ̂
(0,0,2)
1 > 0, so the right panels apply. An incipient branching is therefore possible in

strategy x close to x̄(X), but the evolution of X is much faster (X being far from equilibrium) and turns14

the situation to the left panels before branching could actually develop (thanks to the assumed convergence
stability of the singular coalition).16

A similar scenario of missed branching [Kisdi, 1999, Landi et al., 2013] occurs when point (x1(t), x2(t)),
moving in the strategy plane in accordance with the canonical equation (C.11) along an incipient branching,18

hits the boundaries of the resident-mutant coexistence region, which are moving themselves along with the

strategies in X. However, this is (generically) not possible if λ̄
(0,0,2)
1 > 0 with X(0) sufficiently close to20

X̄ . In fact, look at the right panels in Figs. 3 and 4 and consider an initial condition for the incipient
branching above the diagonal and on the anti-diagonal ∆x1+ ∆x2 = 0 (i.e., ∆x1(0) = −ε, ∆x2(0) = ε,22

ε > 0 small). From Eqs. (C.11a,b) we then see that ẋ1 < 0 and ẋ2 > 0 have opposite leading terms

(−ẋ1 = ẋ2 = −1
2 λ̂

(1,0,1)
1 λ̂

(0,0,2)
1 ε + O(ε2) > 0), so the diversification initially points in the direction of the24

anti-diagonal. Moreover, the branching population remains initially split into two halves, as we see from
the leading terms26

ñ1(∆x1,∆x2) = ñ2(∆x1,∆x2) = −1
2 λ̂

(1,0,1)
1 +O(ε) (C.12)

in the scaled approximations obtained from Eqs. (36, 37) along the anti-diagonal. As a consequence, the
strategies in X initially remain under (nearly) neutral selection, the corresponding populations facing half28

of the x-residents with a trait increased by ε, the other half with the same trait decreased by ε. Since
the strategies in X were close to equilibrium ((x,X) ≃ (x̄, X̄)) before the splitting, the same condition is30

maintained during the initial phase of branching (i.e., X stays close to the null-surface Ẋ = 0). The result
is that the evolution of X according to the canonical equation (C.11) is initially slower than the divergence32

of x1 from x2, as typically observed in the numerical simulations (see e.g. Fig. 7(a)), and slow is also the
corresponding movement of the coexistence region boundaries in the plane (x1, x2). This prevents missing34

the branching.
If the initial condition for (x1, x2) is not taken on the anti-diagonal (Fig. 7(b)) and/or that for X is not36

taken at X̄ (Fig. 7(c)), the convergence stability of the singular coalition (x̄, X̄) and the initial evolution
of (x1, x2) toward the anti-diagonal (see the right panels in Figs. 3 and 4 and recall that the diagonal38
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and the anti-diagonal are the stable and unstable eigenvectors of the equilibrium (x̄, x̄) in the normal
form (34, 35, 37)) make branching in strategy x possible from many initial conditions close to (x̄, X̄).2

We close this appendix by noting that a more rigorous (center-manifold) approach seems feasible

to show that model (34, 35, 37) (with λ̄
(d,q)
1 replaced by over-bars evaluations λ̄

(d,0,q)
1 at the singular4

coalition (x̄, X̄)) is a normal form also in the presence of other coevolving populations. That is, despite the
nonsmoothness of the coexistence equilibrium densities n̄1(x1, x2,X) and n̄2(x1, x2,X), and the consequent6

nonsmoothness of the dimorphic fitness λ2(x1, x2,X, x
′), model (C.11) is desingularized and reducible to

a two-dimensional λ̄
(0,0,2)
1 -parameterized center manifold close to the branching bifurcation. This would8

require a straightforward expansion of our dimorphic fitness approximation (C.10) w.r.t. X around X̄,
taking the definition of the singular strategy x̄(X) in (C.4) into account. But it would also require the10

definition of an invasion fitness for each of the coevolving strategies in X. This is left for future work.
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