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Abstract

Adaptive speciation with gene flow via the evolution of assortative mat-

ing has classically been studied in one of two different scenarios. First, spe-

ciation can occur if frequency-dependent competition in sympatry induces

disruptive selection, leading to indirect selection for mating with similar

phenotypes. Second, if a subpopulation is locally adapted to a specific en-

vironment, there is indirect selection against hybridizing with maladapted

immigrants. While both of these mechanisms have been modeled many

times, the literature lacks models that allow direct comparisons between

them. Here, we incorporate both frequency-dependent competition and lo-

cal adaptation into a single model, and investigate whether and how they

interact in driving speciation. We report two main results. First, we show

that, individually, the two mechanisms operate under separate conditions,

hardly influencing each other when one of them alone is sufficient to drive

speciation. Second, we also find that the two mechanisms can operate to-

gether, leading to a third speciation mode, in which speciation is initiated

by selection against maladapted migrants, but completed by within-deme

competition in a distinct second phase. While this third mode bears some

similarity to classical reinforcement, it happens considerably faster, and

both newly formed species go on to coexist in sympatry.
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1 Introduction

In the last years, conceptual discussion has emerged on whether the old geo-

graphic classification of speciation processes as allopatric, parapatric, or sym-

patric is still useful (Dieckmann et al., 2004; Butlin et al., 2008; Fitzpatrick et al.,

2009; Mallet et al., 2009). Until recently, theoreticians mainly studied sympatric

models with initial panmixia (for reviews see, e.g., Via, 2001; Bolnick & Fitz-

patrick, 2007), and allopatric models without gene flow at least during an initial

phase (for a review see, e.g., Servedio & Noor, 2003). This traditional approach

has been criticized for two main reasons. First, fully sympatric and allopatric

speciation represent limiting cases of parapatric speciation, which comprises all

intermediate levels of gene flow from very weak to very strong. Second, and more

fundamentally, the geographic setting alone typically tells us very little about the

mechanism of speciation.

Many researchers have therefore argued for a classification scheme that focuses

on mechanisms rather than on geography. In one scenario, speciation occurs as

an unselected by-product of (neutral or adaptive) divergence. An example is the

evolution of postzygotic isolation due to the accumulation of Dozhansky-Muller

incompatibilities (e.g., Orr & Turelli, 2001; Gavrilets, 2000; Kondrashov, 2003).

Alternatively, speciation (or reduced gene flow between incipient species) can be

a direct target of selection: in a broad sense of the term, we refer to these cases

as “adaptive speciation”. In contrast to speciation occurring as a by-product,

adaptive speciation usually works through the buildup of prezygotic barriers to

gene flow (c.f., Dieckmann et al., 2004; Doebeli & Dieckmann, 2005; Weissing

et al., 2011). An important and well-studied special case of adaptive speciation,

which is also our focus here, is the adaptive evolution of assortative mating.
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In spatially structured populations, assortative mating can evolve via two

main mechanisms, which differ in the source of disruptive selection, and in how

polymorphism is maintained in a population. The first mechanism is driven by

competition (Rosenzweig, 1978). Many models of competitive speciation assume

a sympatric setting (e.g., Dieckmann & Doebeli, 1999; Doebeli & Dieckmann,

2005; Doebeli et al., 2007; Ito & Dieckmann, 2007; Pennings et al., 2008; Otto

et al., 2008; Ripa, 2009; Rettelbach et al., 2011), but there are also parapatric

models (e.g., Meszéna et al., 1997; Day, 2001; Doebeli & Dieckmann, 2003; Heinz

et al., 2009; Payne et al., 2011; Fazalova & Dieckmann, 2012). Speciation can

occur in these models if frequency-dependent competition induces disruptive se-

lection, such that extreme phenotypes have an advantage over intermediates. If

hybrids between the extreme phenotypes have such an intermediate (and thus,

unfit) phenotype, there is indirect selection for mating with similar phenotypes,

potentially leading to prezygotic isolation.

The second mechanism for the evolution of assortative mating is driven by

gene flow. This mechanism requires some initial divergence of subpopulations in a

spatially structured environment, for example due to local adaptation. Selection

for assortative mating results when these subpopulations exchange migrants and

matings with maladapted immigrants produce unfit hybrids. The classical sce-

nario is reinforcement after secondary contact following initial divergence during

an allopatric phase (e.g., Kirkpatrick, 2000; Mizera & Meszéna, 2003; van Doorn

et al., 2009; Thibert-Plante & Hendry, 2009). Such initial divergence, however,

does not require allopatry, and can even evolve with random mating across demes

(e.g., in a Levene model; Kisdi & Priklopil, 2011).

While these two mechanisms and the resulting paths to adaptive speciation

have separately been treated in various model-based analyses, the combined ef-
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fect of both mechanisms in a single model has never been analyzed. In this study,

we use a simple deterministic model, which is well understood in the sympatric

case and in which the different selective forces can easily be distinguished. Both

classical models appear as limiting cases, and all levels of mixture between them

can be analyzed. We find that the two mechanisms work in separate param-

eter regions, hardly influencing each other in parameter regions where a single

mechanism alone is sufficient to drive speciation. Instead, we identify a third pa-

rameter region where both mechanisms combine in a characteristic chronological

succession. We therefore conclude that adaptive speciation can proceed via three

distinct spatio-temporal modes.

2 Model

We study a sexually reproducing diploid population. Our model builds on that

by Pennings et al. (2008), which in turn is based on earlier models by Rough-

garden (1972), Christiansen & Loeschcke (1980), Dieckmann & Doebeli (1999),

and Matessi et al. (2001). While all of these earlier models considered a fully

sympatric setting, our model incorporates spatial structure, by considering two

demes that are connected by gene flow. We examine two versions of our model,

that differ in their genetic assumptions. The first model version, with fixed al-

lelic effects for the divergent trait, is described below. A second version, in which

allelic effects can evolve freely, is analyzed in Appendix A.

Ecological assumptions Individuals have two traits of interest: an ecolog-

ical trait X that controls specialization on certain types of a resource, and a

mating-preference trait that determines the degree of female choosiness. The
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population is subdivided into two demes that exchange migrants. Individuals

mate and compete within demes, resulting in frequency-dependent, “soft” selec-

tion (Levene, 1953; see also Ravigné et al., 2004, 2009). Migration occurs after

birth, before selection and mating, and is symmetric between demes.

The ecological phenotype X is subject to two sources of natural selection,

resulting from (1) differential intrinsic resource availability and (2) frequency-

dependent resource competition among individuals with similar phenotypes. Ac-

cordingly, we assume that different ecological phenotypes specialize on different

types of resources and, therefore, have different carrying capacities. More pre-

cisely, we assume that the carrying-capacity function K is quadratic in X . Selec-

tion can be stabilizing, directional, or disruptive. For stabilizing (or, depending

on X and θ, directional) selection we use a unimodal distribution,

K(X) = Kmax

(

1−
(θ −X)2

2σ2
K

)

. (1)

For disruptive selection, K is instead given by an analogous U-shaped function,

K(X) = Kmin

(

1 +
(θ −X)2

2σ2
K

)

. (2)

For stabilizing selection (eq. 1), θ is the phenotype with maximal carrying

capacity, while for disruptive selection (eq. 2), it is the phenotype with minimal

carrying capacity. Kmax and Kmin denote the maximal and minimal carrying

capacity, and σK scales the width of the carrying-capacity function. Selection is

strong if σK is small. In the following, we use the parameter k = 1−K(θ+1)/K(θ)

to measure this strength of the selection component resulting from the shape of

K. Selection is stabilizing if k > 0 and disruptive if k < 0. The phenotype with

maximal or minimal carrying capacity may differ between demes. We assume
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that the two demes are symmetric, e.g., if the optimum in deme 1 is θ, it is −θ

in deme 2.

As a second source of natural selection, individuals experience competition

from other individuals. The amount of competition experienced by phenotype

X can be expressed via an ecologically effective population size that weighs all

potential competitors with phenotypes Y according to their competitive impact

γ(|X − Y |) on phenotype X,

C(X) =
∑

Y

γ(|X − Y |)N(Y ), (3)

where the sum extends over all possible phenotypes, N(Y ) is the number of indi-

viduals with phenotype Y , and γ(|X −Y |) measures the strength of competition

between X and Y . We assume that γ is a Gaussian function of the phenotypic

distance with mean 0 and variance σ2
C,

γ(|X − Y |) = exp

(

−
(X − Y )2

2σ2
C

)

. (4)

Competition induces frequency-dependent disruptive selection. When σC is large,

individuals compete also with relatively different phenotypes, i.e., their individ-

ual niche is wide. When σC is small, individuals mainly compete with their own

phenotype, making the resultant negative frequency-dependent selection strong.

Analogously to k, we use the parameter c = 1 − γ(1)/γ(0) = 1 − γ(1) to mea-

sure the strength of this frequency dependence. The competition function and

the carrying-capacity function combine to yield a phenotype-specific mortality of

logistic type,

d(X) =
C(X)

K(X)
. (5)

6



In addition, individuals are affected by sexual selection due to assortative

mating. Choosy females prefer males with an ecological phenotype X similar to

their own (X thus takes the role of a “magic trait” that underlies both natural and

sexual selection; Servedio et al., 2011). We assume that the mating probability

ν between a female with phenotype X and a male with phenotype Y depends on

their phenotypic distance according to a Gaussian shape,

ν(|X − Y |) = exp

(

−
(X − Y )2

2σ2
m

)

= (1−m)(X−Y )2 , (6)

where m = 1− ν(1) is the probability that a female rejects a male with a pheno-

typic distance of 1. Accordingly, m can take values between 0 and 1. A female

with m = 0 is not choosy at all; if adopted by all females, this implies random

mating at the population level. Conversely, a female with m = 1 mates exclu-

sively with males of her own ecological phenotype; if adopted by all females, this

implies complete reproductive isolation at the population level. Only females

are choosy, and the mating genotype is not expressed in males. Based on these

mating probabilities, we can assign a mating success φ(X) to different ecological

phenotypes. In particular, the mating success of phenotype X is the average of

the corresponding female and male mating successes, φ(X) = (φf(X)+φm(X))/2,

with

φf(X) =
∑

Y

Nm(Y )ν(X, Y )Q(X),

φm(X) =
∑

Y

Nf(Y )ν(Y,X)Q(Y ). (7)

Here, Nm(Y ) and Nf(Y ) are the number of males and females, respectively, with

phenotype Y. In our numerical analyses, we always assume a 1:1 sex ratio (Nm =
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Nf = N/2). Q(X) is a normalizing factor that scales the mating activity of

females. We obtain this factor by assuming that choosiness is not costly for

females (φf(X) = 1 for all X), which leads to

Q(X) =
1

∑

Y Nm(Y )ν(X, Y )
. (8)

While this guarantees that all females have equal mating success, the same is not

true for males. Instead, female choosiness induces sexual selection against males

with rare phenotypes (Doebeli & Dieckmann, 2003; Pennings et al., 2008).

Based on the mortality in equation (5) and the mating success in equation

(7), we define the fitness W (X) of a phenotype X as,

W (X) = φ(X) exp
[

ρ
(

1− d(X)
)]

, (9)

with ρ denoting the intrinsic growth rate. The phenotypic distribution N(X)

after selection is thus given by

Ñ(X) = N(X) exp
[

ρ
(

1− d(X)
)]

, (10)

and the number B(X) of births of individuals with phenotype X is given by

B(X) =
∑

Y,Z

Ñf(Y )Ñm(Z)ν(|Y − Z|)Q(Y )RY Z→X , (11)

where RY Z→X is the probability that parents with phenotypes Y and Z produce

offspring with phenotype X . All mated individuals are assumed to have the

same number of offspring. We assume non-overlapping generations, so B(X)

equals N(X) for the next generation, before migration. Subsequently, a fraction
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µ of this offspring migrates to the other deme. To summarize, our model features

three different components of selection:

(i) Frequency-independent natural selection is described by the parameters k

and θ, which determine the carrying-capacity function. This fitness component

can be stabilizing (k > 0), disruptive (k < 0) or directional (if the phenotypic

range is appropriately restricted, see below). We can interpret this function as

reflecting a distribution of resources. In particular, disruptive selection (k < 0)

describes a situation with two resources. For θ 6= 0, one resource is more abundant

in deme 1, and the other one is more abundant in deme 2.

(ii) Negatively frequency-dependent natural selection due to competition be-

tween similar phenotypes is governed by the parameter c. It is this source of

selection that allows local coexistence of different phenotypes (i.e., maintenance

of polymorphism), which is a prerequisite for competitive speciation. If c = 0,

all individuals compete equally strongly with each other. In this case, only a

single phenotype/allele can prevail within a deme. Intermediate values of c typ-

ically induce frequency-dependent disruptive selection: intermediate phenotypes

then suffer competition from two sides and thus have lower fitness than the ex-

treme phenotypes, which are partially protected from competition. Very large

values of c can enable a coexistence of intermediate and extreme phenotypes.

In the following, we will therefore say that, depending on the magnitude of c,

frequency-dependent competition creates either 2 or 3 ecological niches.

(iii) The final source of selection in our model is sexual selection on males

due to assortative mating. Since female choosiness favors males with common

phenotypes, this type of sexual selection is positively frequency-dependent (Pen-

nings et al., 2008). The strength of choosiness is evolvable and is measured by

the variable m.
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Genetic assumptions We assume that the ecological trait X is determined

by a single diploid locus with two alleles, whose effects are additive and lie sym-

metrically around 0. Above, we have defined the carrying-capacity function to

possess the same symmetry. By considering symmetric allelic effects, we thus

assume that the ecological trait evolves in accordance with this environmental

symmetry. We relax this assumption in Appendix B. The effects of the ecological

alleles x are −0.5 and 0.5, such that the ecological phenotypes X are −1, 0, and

1. Note that, with these phenotypic values, frequency-independent selection is

stabilizing or disruptive if θ < 0.5 and directional if θ > 0.5.

Like the ecological trait, also the mating trait is also determined by a single

diploid locus without dominance: it can take values from 0 (random mating)

to 1 (complete isolation). In our numerical analyses, the mating alleles have

values m = 0, 1/6, 2/6, 3/6 and follow a stepwise mutation model with a mutation

probability of u = 10−5 per generation.

To analyze our model, we numerically iterate a version of equation 11, in

which phenotypes are replaced by genotypes and the effects of segregation, free

recombination, and mutation are captured by the function R (from equation 11).

The initial conditions are m = 0 and nearly equal frequencies of the ecological

alleles (one allele has frequency 0.51 in one deme and 0.48 in the other deme, to

avoid artifacts arising from symmetric initial conditions).

Model parameters As specified above, our model features ten parameters.

For the long-term evolutionary dynamics, however, this number can be reduced.

First, Kmax, Kmin and ρ scale the population dynamics but so not affect the

evolutionary dynamics. Second, u and the number of alleles for m scale the

speed of evolution but do not affect its long-term outcome (as long as u is small
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enough and the number of alleles large enough). Third, the allelic values for

X can be chosen as unity without loss of generality. Our model thus has four

essential parameters: these are µ, θ, k, and c. Below we give a comprehensive

analysis of the evolutionary dynamics by varying these parameters.

3 Results

In the following, we describe our results for the model version with fixed allelic

effects. Results for the model version with evolvable effects are summarized in

Appendix A; they confirm and refine our findings for the fixed-effect model.

Figure 1 shows how evolutionary outcomes vary with model parameters.

The colored regions comprise parameter combinations for which complete re-

productive isolation evolves. As detailed below, we find three different spatio-

temporal modes of adaptive speciation, which we will refer to, respectively, as

migration-independent competitive speciation, migration-driven ecological speci-

ation, and migration-induced competitive speciation: Speciation in the migration-

independent competitive mode (red region in Fig.1) takes place within a single

deme due to intra-deme competition. Speciation in the migration-driven ecolog-

ical mode (green region in Fig.1) occurs between demes, due to selection against

mating with maladapted immigrants (this is similar to classical reinforcement

but without a preceding allopatric phase). Finally, speciation in the migration-

induced competitive mode (blue region in Fig.1) begins between demes due to

selection against mating with immigrants and is completed within demes due to

intra-deme competition. Before further explaining these three modes of specia-

tion, we briefly summarize results for those parts of the parameter space in which

speciation does not occur. For a detailed description of these cases, see Pennings

11



et al. (2008) and Rettelbach et al. (2011).

No speciation

Random mating Whenever the heterozygotes (with phenotype 0) have the

highest fitness, no degree of choosiness evolves. Under stabilizing selection (θ <

0.5 and k > 0), this is the case if frequency-independent selection is strong (large

k) and frequency-dependent competition is weak (k > c) (black area with high

k in left and middle columns of Fig. 1). With directional selection (θ > 0.5),

heterozygote advantage can arise either because frequency-independent selection

is strong but frequency-dependent competition is also strong (high k and high c),

or because the intermediate phenotype is favored as a generalist strategy in the

presence of strong migration (black area in Fig. 1I).

Partial isolation Under strongly frequency-dependent selection (high c), each

phenotype occupies its own niche, and choosiness evolves to intermediate values

until the heterozygotes are rare enough to no longer experience a fitness disad-

vantage through competition (gray regions in Fig. 1).

Loss of polymorphism Speciation fails if the polymorphism at the ecological

locus is lost. Without migration (i.e. an isolated deme, µ = 0, top row), this

happens if frequency-dependent competition is too weak (c is low) to counteract

the effect of frequency-independent disruptive (k < 0) or directional (θ > 0.5)

selection. This happens for c < 1 − (1 − θ2k)/(1 − (θ − 1)2k) (hatched regions

in Fig. 1A, 1B) and for c < 1− exp(−k) (hatched area in Fig. 1C), respectively.

For θ > 0, if the population becomes monomorphic, it is always for the locally

adapted allele, while for θ = 0, one or the other allele becomes fixed, depending
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on initial conditions.

When two demes are connected by rare migration (e.g. µ = 0.01; middle row

in Fig. 1), spatial heterogeneity favors local adaptation and, thus, divergence. As

shown in Fig. 1E and 1F, the loss of polymorphism at low c seen in the sym-

patric case (µ = 0) is prevented at higher θ. For θ = 0, it still depends on initial

conditions which allele becomes fixed in each deme, as mentioned in the previous

paragraph. At low migration rates, it is therefore possible that different alleles

nearly fix in the two demes, thus maintaining the population-level polymorphism.

Stronger frequency-dependent selection (larger c) tends to equalize the allele fre-

quencies across demes, such that typically the same allele goes to fixation in

both demes. This can be seen in the monomorphic stripe in Fig. 1D (hatched

area): there, c is not large enough to support polymorphism within demes, but

large enough to equalize allele frequencies in the two demes, such that the overall

polymorphism is lost. For c = 0, θ = 0 and small migration rate (µ < 0.06), we

obtain numerical results that confirm the condition for the stability of the poly-

morphism found by Karlin & McGregor (1972): The polymorphism is locally

stable if k < −6µ (results not shown).

For frequent migration (µ > 0.2; bottom row in Fig. 1), local adaptation

becomes impossible, and the polymorphism is again lost at low c.

Three spatio-temporal modes of adaptive speciation

In this subsection, we focus on the parameter regions in which speciation occurs.

Migration-independent competitive mode Frequency-dependent compe-

tition of intermediate strength creates two ecological niches; once these are oc-

cupied, intermediate phenotypes are disfavored. This leads to indirect selection
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against mating between the opposite homozygotes (as such a mating would pro-

duce unfit heterozygous offspring) and, therefore, to the evolution of assortative

mating. This is the classical competitive-speciation scenario (Rosenzweig, 1978),

which has been thoroughly studied in models of sympatric speciation (e.g., Dieck-

mann & Doebeli, 1999; Pennings et al., 2008).

Indeed, competitive speciation is the only mechanism in our model that works

in sympatry (µ = 0). Our results for higher migration rates show that this

mode operates largely independently of spatial structure, as can be seen from

comparing the red areas in Fig. 1. In other words, migration has little effect,

because (essentially sympatric) speciation happens in parallel in the two demes.

The corresponding evolutionary dynamics (first row of Fig. 2) show that the

ecological alleles reach a frequency of 0.5 very quickly. Subsequently, choosiness

increases (Fig. 2A), and the frequency of heterozygotes declines to zero. In this

manner, speciation is completed on a time scale of a few thousand generations.

Migration-driven ecological mode Spatial heterogeneity is the only relevant

source of divergent selection when selection is directional within demes (θ > 0.5)

and frequency-dependent competition is not strong enough to cause within-deme

disruptive selection. Without migration, the allele x = −1 fixes in deme 1 and

the allele x = 1 fixes in deme 2 (hatched area in Fig. 1C). With weak migration

(and thus, a high probability that offspring stay in their natal deme), selection

disfavors mating with immigrants, and choosiness increases accordingly. With

strong migration, the generalist, intermediate, phenotype has an advantage, and

no speciation occurs (especially for low k, for which directional selection is weak

anyway).

This is a reinforcement-like scenario (green region in Fig. 1F), which would

14



play out very similarly under secondary contact (i.e., if µ were initially set to 0,

c.f., Servedio & Noor, 2003). It is well-known that the evolution of high levels of

assortative mating can be extremely slow under this mechanism, and full isolation

may never be reached (see the Discussion for details). Indeed, in our model,

choosiness does not become strong enough to complete speciation over tens of

thousands of generations (∼ 1% heterozygotes remain). Frequency-dependent

competition has a negligible net effect on this mechanism, because it works in

two opposite directions. On the one hand, increasing c increases the viability

and frequency of immigrants, which in turn increases selection for assortative

mating. On the other hand, higher c also increases the fitness of hybrids, which

in turn decreases selection for assortative mating. The green area in Fig. 1F

is separated from the red area by a small strip, where frequency-dependence

is strong enough to favor rare types, but not strong enough to cause divergence

within one deme. The evolved choosiness in this parameter region is clearly lower

than in the parameter regions allowing for speciation.

Speciation via this migration-driven mode can occur even in the absence of

spatial heterogeneity, provided frequency-independent disruptive selection is sym-

metric and different alleles initially are sufficiently prevalent in both demes. As

shown in the subsection on “Loss of polymorphism”, this is possible for weak

migration, negative k and c = 0 (green lines in Fig. 1D and 1E). Choosiness can

then evolve due to selection against hybrid heterozygotes, even though immigrant

and resident homozygotes may possess equal fitness.

The migration-independent and migration-driven modes described above are clas-

sical routes to sympatric and parapatric speciation, respectively, which are al-

ready well-known from previous studies. Our analysis shows that these modes
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occur in separate parameter regions. This indicates that for such speciation dy-

namics, the underlying mechanisms – competition and spatial heterogeneity –

do not interfere with each other. There is, however, a third parameter region, in

which both mechanisms act in concert, thereby creating a new mode of speciation.

Migration-induced competitive mode For a bimodal resource distribution

(k < 0) and frequency-dependent competition (c > 0), two niches exist in each

deme, such that two reproductively isolated species can locally coexist. In the

absence of spatial structure, however, this ecological dimorphism tends to be un-

stable under random mating. This is because a rare allele finds itself (relatively)

more often in unfit heterozygous genotypes and will be driven to extinction un-

less frequency-dependence of competition is sufficiently strong. In contrast, with

spatial structure local extinction is avoided, and speciation becomes possible.

Note that spatial heterogeneity (θ > 0) is not necessary but makes the speciation

process more robust to initial conditions.

The third row of Fig. 2 shows a situation with weak migration. Speciation

proceeds in two phases. In a first, migration-dependent, phase, each deme is

dominated by one of the two alleles. The locally rare allele is maintained only

by migration-selection balance. Selection acts against mating with immigrants

because heterozygous offspring have reduced fitness. As choosiness increases, the

risk of such maladaptive mating decreases, and so does the fitness disadvantage

of the immigrants, because they, too, mate more frequently among their own

phenotype. Once a threshold value of choosiness is reached, the immigrants are

able to maintain themselves: they form a self-contained colony that no longer

depends on recurrent immigration – the second local niche has become available

to them. In the course of the underlying evolutionary dynamics, this moment
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is signaled by a sudden steep increase in the frequency of the locally rare allele

(Fig. 2I and 2L).

At this point, the second, migration-independent, phase of the speciation

process sets in. The increased size of the immigrant “colony” leads to an increased

number of matings between extreme phenotypes, which induces a sharp peak in

the frequency of heterozygote hybrids (Fig. 2H and 2K). Since heterozygotes

continue to be unfit, selection against these matings increases sharply, leading to

a further increase in choosiness. This, in turn, increases the size of the immigrant

colony, which further reinforces selection for choosiness. Through this positive

feedback, complete reproductive isolation evolves rapidly.

Thus, the first, migration-dependent, phase of the speciation process works

similarly to standard between-deme ecological speciation. The length of this

phase decreases with increasing migration rate (compare third and fourth rows

in Fig. 2). The second, migration-independent, phase resembles a competitive-

speciation scenario, in which both ecological phenotypes are present at high fre-

quency, leading to a fast increase in reproductive isolation. In this phase, spe-

ciation will go to completion even if migration is completely stopped (i.e., in

sympatry; results not shown).

Some aspects of a two-phase pattern in the evolution of assortative mating can

be observed also in parts of the migration-independent parameter range (Fig. C1

in Appendix C, upper left panel). However, in this case, both phases are driven

by local competition. The characteristic property of the migration-induced com-

petitive mode is that its first phase relies on immigration, and speciation cannot

occur without this trigger.
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4 Discussion

We have analyzed the evolution of assortative mating in a model with both within-

deme frequency-dependent competition and between-deme environmental hetero-

geneity. While both factors can cause speciation, they do not act synergistically

across a large region of parameter space. They may, however, combine in a

characteristic chronological order in the presence of a third source of disruptive

selection, that is, a bimodal carrying-capacity function.

We have thus demonstrated the existence of three distinct spatio-temporal

modes of adaptive speciation: a migration-independent mode, which depends on

within-deme competition; a migration-driven mode, which is based on ecological

differences among demes; and a new migration-induced mode, in which partial

isolation evolves as in the migration-driven mode, but speciation is completed

due to competition within demes, as in the migration-independent mode. In all

three modes, speciation is adaptive, that is, assortative mating evolves as an

adaptation against the production of unfit hybrid offspring. However, the three

modes differ markedly in the geographical patterns during and after speciation

(Figure 2) and in their dependence on spatial structure and migration rates.

Three modes of adaptive speciation Whether or not the two considered

driving forces of adaptive speciation – between-deme heterogeneity and within-

deme competition – interact synergistically depends on the shape of the resource

distribution as described by the carrying-capacity function. If the resource distri-

bution within demes is unimodal or flat, the two driving forces cannot complement

each other. There is thus no smooth transition between the corresponding spe-

ciation modes (note that the respective parameter regions in Fig. 1 and A1 are

not contiguous). The reason is that migration-driven ecological speciation and
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migration-independent competitive speciation are based on different ecological

niche structures.

In the migration-driven mode, speciation proceeds if each deme contains a

single niche and these niches are ecologically incompatible. Evolution of assor-

tative mating then proceeds through selection on residents to avoid mating with

maladapted immigrants. Adding weak frequency-dependent competition to such

a scenario has little effect, as long as it does not create a second local niche.

(Consequently, the boundaries of the corresponding parameter region in Fig. 1

are independent of c as long as c < 1− exp(−k)).

In contrast, speciation in the migration-independent competitive mode pro-

ceeds if strong frequency-dependent competition creates two niches in each deme.

The evolution of assortative mating is then driven by local interactions between

residents. Adding migration and spatial heterogeneity to such a competitive-

speciation scenario has little impact on the parameter region allowing speciation,

at least in the model with fixed allelic effects (Fig. 1). The reason is that, in this

model, both demes contain the same phenotypes (albeit at different frequencies),

so immigration does not fundamentally change selection within demes.

If allelic effects can evolve (Appendix A), this remains true, but migration

then has an indirect effect on speciation, by influencing the phenotypic distance

between the homozygotes (Fig. A1). Weak migration drives these homozygotes

further apart (to reduce competition with immigrants), thus lowering competi-

tion and inhibiting speciation. In contrast, strong migration brings them closer

together (to increase fitness of migrants), thus increasing competition and facil-

itating speciation. Still, if speciation occurs, it is clearly driven by within-deme

interactions.

Whereas competition and spatial heterogeneity do not combine synergistically
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with a unimodal resource distribution, this changes with a bimodal distribution.

In this case, there are two niches in each deme, but one of these niches cannot

be occupied as long as assortative mating is weak and immigrants suffer a high

cost of hybridization. In the migration-induced competitive mode, the first phase

of speciation resembles the migration-driven ecological mode, that is, assortative

mating increases due to selection on residents against mating with immigrants.

As assortative mating becomes stronger, immigrants hybridize less frequently, and

occupation of the second niche becomes possible. Once this happens, speciation

continues and is completed separately within each deme.

Our results clearly show the limitations of a geographical classification of spe-

ciation. All scenarios discussed here are parapatric according to the definition

by Gavrilets (2003). Nevertheless, gene flow plays radically different roles in the

three speciation modes. On the one hand, there is almost no effect of gene flow

in the migration-independent competitive mode, and in the second phase of the

migration-induced competitive mode. In both cases, evolution of reproductive

isolation is driven by within-deme competition – a classical “sympatric” mecha-

nism. On the other hand, gene flow is vital for the migration-driven ecological

mode, and in the first phase of the migration-induced competitive mode, which

in many aspects are similar to reinforcement. As a consequence, the three modes

of speciation lead to entirely different patterns in the distribution of phenotypes

(and genotypes) through space and time. On the one hand, the two migration-

dependent modes require strong initial spatial differentiation, in contrast to the

migration-independent competitive mode; on the other hand, the two competitive

modes lead to coexisting species in sympatry, in contrast to the migration-driven

ecological mode.
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Model assumptions and generality of results Our model has been designed

as a minimal model to understand the interplay between different sources of se-

lection for the evolution of reproductive isolation. Such models do not attempt

to emulate a specific biological system, but try to uncover general principles. To

this end, they make a large number of simplifying assumptions. In our case,

this concerns, in particular, the genetics of the ecological trait and the mating

trait. We have confirmed the robustness of our results to the most severe genetic

constraints, i.e., the assumption of fixed allelic effects (Appendix A). Another un-

realistic assumption that could influence the outcome is the symmetry of fitness

functions and migration rates. Indeed, Servedio & Kirkpatrick (1997) found that

reinforcement can be sensitive to asymmetric migration. Therefore, in additional

numerical analyses (Appendix B), we specifically tested whether asymmetric mi-

gration affects the migration-induced competitive speciation mode. We find that

even a strong asymmetry does not change our qualitative results. The only

exception is strictly unidirectional migration (a continent-island model), where

speciation cannot be completed because females on the continent do not evolve

assortative mating (and, hence, female immigrants keep hybridizing).

Our symmetry assumption for the fitness function implies that the fitness

of phenotype 1 in deme 1 is the same as the fitness of phenotype 2 in deme 2

and vice versa. Again, additional numerical analyses show the robustness of our

results (Appendix B). In particular, migration-induced competitive speciation

still occurs in one of the demes if there is disruptive selection only in this deme

but directional selection in the other deme (with maximum fitness at the lower

fitness peak of the first deme).

In this study, we did not assume costs for assortative mating. Costs that are

related to finding a mating partner (like limited trials or predation risk during
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search) should have a very weak effect on the migration-dependent mechanisms.

The populations are nearly monomorphic, and the resident females should have

no problem to find a proper partner. In the migration-independent phase of

the migration-induced competitive mechanism, such search costs could make it

more difficult for the rare phenotype to establish, because they increase positive

frequency-dependence (Kopp & Hermisson, 2008)

Another simplifying assumption is the use of a “magic trait”, i.e. a trait under

disruptive selection that also contributes to mate choice. Servedio et al. (2011)

argue that such magic traits may not be rare in nature. In the alternative scenario

– in which the trait under divergent selection differs from that determining mate

choice – reproductive isolation can evolve only if linkage disequilibrium between

the two traits develops. For a single sympatric population, this can be difficult

(Felsenstein, 1981; Gavrilets, 2005), although Dieckmann & Doebeli (1999) have

shown that speciation is in principle possible even in this case. If gene flow

is limited because of spatial structure, the formation of linkage disequilibria is

simplified. As a consequence, migration-induced competitive speciation may be

easier than migration-independent competitive speciation in a two-trait scenario.

Finally, our models assume a discrete deme structure. Competitive speci-

ation in a model of an environmental cline in continuous space has previously

been studied by Doebeli & Dieckmann (2003). Since there is no clear difference

between “residents” and “immigrants” in a cline model, the distinction between

migration-independent and migration-dependent modes of speciation becomes

less applicable. Nevertheless, we find several correspondences. The parameter

region in which speciation along the cline is possible can be roughly divided

into two regions (Figure 4c in Doebeli & Dieckmann, 2003). A first migration-

independent region, where speciation is possible without spatial heterogeneity,
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requires sufficiently strong local frequency dependence, but is virtually unaffected

by migration rates and by the slope of the environmental gradient. In contrast,

a second migration-dependent region is almost unaffected by local frequency de-

pendence – it merely relies on an environmental gradient of intermediate slope

and on not too strong migration. This is similar to our model, in which the

migration-driven ecological mode requires an intermediate distance of the fitness

maxima (for too large θ the migration-driven mechanism cannot work, because

immigrants immediately die, Fig. 1). Since the local resource distribution is

always unimodal in the model by Doebeli & Dieckmann (2003), a migration-

induced competitive speciation mode cannot exist. Whether such a mechanism

also occurs in continuous space requires further study.

How likely is speciation through each of the three modes? In the past,

there has been a lot of discussion about the plausibility and relevance of mecha-

nisms that explain speciation through the adaptive evolution of assortative mat-

ing. Since both sympatric competitive speciation and parapatric ecological speci-

ation (especially reinforcement) have been amply reviewed elsewhere (Via, 2001;

Servedio & Noor, 2003; Coyne & Orr, 2004; Dieckmann et al., 2004; Gavrilets,

2004; Bolnick & Fitzpatrick, 2007), we focus on a comparison of these modes of

speciation with the new migration-induced competitive mode identified here.

One argument against sympatric speciation due to competition is that nega-

tive frequency-dependent selection must be quite strong. This is true, in partic-

ular, for the evolution of assortative mating from low initial levels of choosiness.

The principal reason is that female choosiness induces sexual selection, which

is positively frequency dependent (implying a cost of rarity) and thus favors in-

termediate “hybrid” phenotypes while they are still common. This may create

23



a barrier against speciation at intermediate levels of choosiness, which was first

described by Matessi et al. (2001) and later studied in detail by Pennings et al.

(2008). At first sight, it seems as though this problem could perhaps be solved

by assuming a bimodal resource distribution, as this further reduces the fitness of

heterozygotes. However, for weak negative frequency dependence (low c), another

problem appears: frequency-independent disruptive selection at the phenotypic

level creates rare-allele disadvantage due to underdominance at the ecological

locus, which can lead to a loss of polymorphism. As seen in Figure 1, the pa-

rameter region in which speciation is prevented by this effect can be substantial.

However, in the presence of spatial heterogeneity, speciation can be salvaged by

the migration-induced mechanism (compare Fig. 1B and 1E).

A “race between speciation and extinction” (i.e., loss of polymorphism) has

also been a classical argument against reinforcement (Paterson, 1978; Spencer

et al., 1986; Liou & Price, 1994; Coyne & Orr, 2004). This is exactly what

happens within demes in the first phase of our migration-independent competitive

speciation mode. That is, the race against extinction is quickly lost locally, but

both incipient species are preserved globally due to spatial heterogeneity. Once

assortative mating is strong enough, the polymorphism becomes stable also within

demes.

A somewhat related situation has recently been modeled by Aguilée et al.

(2013). These authors studied speciation in a dynamic landscape characterized

by the repeated splitting and merging of habitats (thus alternating allopatric,

parapatric and sympatric conditions). Purely sympatric speciation was deliber-

ately prevented by a combination of small population size and an unfavorable

genetic architecture, with multiple unlinked loci determining the ecological trait.

Speciation was possible, however, via repeated cycles of divergence in allopatry
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followed by reinforcement in parapatry and sympatry.

Another classical criticism against reinforcement (Moore, 1957; Spencer et al.,

1986) is that it is self-defeating. This is because, with increasing choosiness, the

rate of hybridization decreases and, hence, the selection pressure for a further

increase in choosiness declines to zero. If reinforcement takes place in a para-

patric scenario, the hybridization rate is further limited by the migration rate,

which must not be too high, or else speciation will fail due to swamping. In

addition, maladapted immigrants are under selection for disassortative mating,

since, under locally directional selection, hybrids have higher fitness than the

“wrong” homozygotes (Servedio, 2004). As a consequence, the evolution of in-

creased choosiness becomes very slow once high levels of assortment have been

reached, and it may stop altogether before full prezygotic isolation is attained.

Indeed, a recent study by Bank et al. (2011) found that reinforcement will lead

to complete isolation only if it evolves from a low level of assortment in a single

major step. These earlier findings are fully consistent with the results presented

here (Fig. 2B). However, as may be seen from Fig. 2, the evolution of assortative

mating is about an order of magnitude faster in the migration-induced competi-

tive mode than in the migration-driven ecological mode. Eventually, the selection

pressure goes to zero, too, but only at a much higher level of assortment. This

is because, contrary to reinforcement-like scenarios, the frequency of encounters

between the extreme homozygotes increases as speciation proceeds. Also, there

never is selection for disassortative mating, because the extreme homozygotes

have higher fitness than the hybrids. As a consequence, complete isolation is

reached in all cases.

We can conclude that speciation via the migration-induced competitive mode

avoids some of the main difficulties of both pure competitive speciation and
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reinforcement-like parapatric speciation. In a nutshell, it uses the migration-

driven mechanism as long as the latter is powerful at low choosiness, and then

switches to the competitive mechanism at high choosiness, when underdominance

is less of an issue and weak negative frequency dependence is sufficient to maintain

the polymorphism.

But how likely is it that the conditions required for migration-induced com-

petitive speciation are met in nature? This mode depends on a combination

of three key factors: spatially heterogeneous selection, (weak) local frequency-

dependent selection, and local frequency-independent disruptive selection against

hybrids. In our model, selection against hybrids arises from a U-shaped or bi-

modal carrying-capacity function, which might reflect the availability of different

types of resource. One may envisage the homozygous genotypes as specialists

for two discrete resources with an unequal distribution across demes (i.e., one

resource is more common in deme 1 and the other in deme 2). Hybrids are not

well adapted to either resource and are outcompeted by the specialists. This sce-

nario is a generalization of the classical (parapatric) scenario with only a single

resource (and, hence, stabilizing selection) in each deme. Hybrid disadvantage

may also arise from ecological factors unrelated to resource use, or from intrin-

sic incompatibilities. These alternative interpretations require no changes to our

model and the reported results.

The first phase of migration-induced competitive speciation depends on a

frequency-dependent disadvantage for rare genotypes, even though coexistence

is possible for two reproductively isolated species. Empirical evidence for the

plausibility of such a scenario comes from the study of inter-specific reproductive

interference (i.e., heterospecific interactions during mate acquisition that have

negative fitness consequences for at least one species and are caused by incom-
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plete species recognition; see Gröning & Hochkirch, 2008 for a review). Even

though these studies typically focus on interference between species that are al-

ready fully isolated, the results are likely to be relevant also for incipient species

and intraspecific polymorphisms. Most importantly, these studies show that re-

productive interference can have severe fitness consequences and can lead to the

extinction of rare species due to “sexual exclusion” (Kuno, 1992; Hochkirch et al.,

2007; Thum, 2007; Kishi et al., 2009). Some authors have argued that sexual ex-

clusion may be more important for structuring communities than competitive

exclusion (Gröning & Hochkirch, 2008 and references therein), and that it may

explain the non-overlapping geographical distributions of some closely related

species (Thum, 2007). Hybrid inferiority leading to positive frequency depen-

dence has also been invoked as a theoretical explanation for the formation of

mosaic hybrid zones (M’Gonigle & FitzJohn, 2009) and for understanding the

coexistence of ecologically fully equivalent species in parapatry or mosaic sympa-

try (M’Gonigle et al., 2012).

While each single condition required for migration-induced competitive speci-

ation appears plausible by itself, all three are needed to enable speciation through

this mode, limiting its scope accordingly. Since the resultant geographical pat-

tern is the same as for migration-independent competitive speciation, it will be

possible to distinguish these two modes empirically only if information about the

speciation history is available.

Summarizing, our study shows how locally disruptive selection may (or may

not) interact synergistically with spatially heterogeneous selection in the evolu-

tion of prezygotic isolation. The migration-induced competitive speciation mode

adds a new facet to adaptive speciation theory, further increasing the range of

ecological settings in which speciation through the evolution of assortative mating
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is a realistic possibility.
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Appendix A Evolving Allelic Effects

The simple model with two fixed alleles, which was analyzed in the main text,

assumes that the ecological trait can only vary over a limited phenotype range.

Since a restricted trait space enhances competition among phenotypes, this as-

sumption implies a strong genetic constraint that may artificially promote an

increase in choosiness (Polechová & Barton, 2005). Importantly, the constraint

is not a result of the single-locus nature of the model. In fact, by adding more

loci, the constraint may even get stronger, because more loci generate more in-

termediate phenotypes and the average distance among phenotypes decreases

(Rettelbach et al., 2011). Our simple model also assumes discrete alleles at the

mating locus. As shown by Rettelbach et al. (2011), large steps in the evolution

of assortative mating make speciation easier.

To demonstrate the robustness of our results, we therefore use a model that

specifically relaxes the key constraints, but still allows for comprehensive anal-

ysis: For the ecological trait, we assume evolvable allelic effects to allow for an

unrestricted trait space. At the mating locus, we allow for the evolution of assor-

tative mating in infinitesimal steps. A similar model has been studied by Ripa

(2009) for a sympatric scenario. The evolutionary outcome in this model strongly

depends on the relative rates of evolution, that is, on how fast choosiness evolves

relative to the ecological trait. This is because larger choosiness and a larger

distance between phenotypes can be seen as alternative ways to avoid competi-

tion: Either get rid of the intermediate phenotypes or create a niche for them by

getting out of their way.

A.1 Model In the following, we describe a model in which both the mating

trait and the allelic effects at the ecological locus can evolve gradually. For
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the ecological locus, this means that the phenotypic distance between the two

homozygote phenotypes can increase or decrease (e.g., due to evolution at a

modifier locus, cf. Kopp & Hermisson, 2006), but they always remain symmetric

around X = 0, which also is the phenotype of the heterozygotes. At the mating

locus, m can gradually change between 0 and 1.

The ecological assumptions are the same as in the core model, the only dif-

ference being the definition of K(X) in the case of disruptive selection. Since

a U-shaped carrying capacity curve (as used in the main text) would cause the

allelic effects to evolve towards infinity, we instead define K as the maximum of

two quadratic curves

K(X) = max

(

Kmax

(

1−
(θ + 1−X)2

2σ2
K

)

, Kmax

(

1−
(θ − 1−X)2

2σ2
K

))

. (A1)

To study the evolution of allelic effects, we use evolutionary invasion analysis

(Geritz et al., 1998). That is, we consider the dynamics of a rare mutant modifier

allele in a resident population at demographic and genetic equilibrium, which is

determined by iterating equation( 11) for 100, 000 generations. Whether the fre-

quency of such a rare modifier allele grows or shrinks is determined by the sign of

its invasion fitness. Let x denote the allelic effect at the ecological locus (i.e. the

two homozygotes have phenotypes x and −x, respectively). Assume a mutant

modifier allele whose carriers have allelic effect xm , whereas the resident popu-

lation has effect xr. The mutant allele spreads to both demes and to all genetic

backgrounds (here, ecological genotypes). We are interested in the dynamics of a

vector containing the frequencies of all these mutant genotypes. Within a single
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deme, the mutant dynamics is determined by a matrix D with elements

D(i, j) = W (j)
∑

h

W (h)N(h)
(

ν(j, h)Q(j) + ν(h, j)Q(h)
)

Rjh→i. (A2)

This is the number of mutants with genotype i produced by matings between

(male or female) mutants with genotype j and all possible resident genotypes

(index h) after selection (compare eq. 11). Let D1 and D2 be the mutant matrices

for deme 1 and 2, respectively. The mutant dynamics in the whole population is

then governed by the matrix

D =







(1− µ)D1 µD2

µD1 (1− µ)D2






. (A3)

The invasion fitness of the mutant is given by the dominant eigenvalue of D.

Taking the first derivative of this eigenvalue with respect to xm at the point

xm = xr gives the invasion fitness gradient (Geritz et al., 1998). If the invasion

fitness gradient is positive (negative), the allelic effect x will increase (decrease).

A similar analysis can be done for the mating trait m (i.e., the effect of the allele

at the mating locus).

Using this approach, the evolutionary equilibria of x andm can be determined

by following the selection gradient in both traits. The selection gradient vanishes

at the intersection of the evolutionary isoclines for x and m, which in turn are

given by the combinations of trait values x and m for which selection for one of

the traits vanishes. The convergence stability of an evolutionary equilibrium can

be determined by examining the directions of the selection gradient in the four

areas between the intersecting isoclines. If there are multiple stable equilibria,

the evolutionary outcome may depend on the relative speeds at which the two
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traits evolve. Since a full analysis of evolutionary equilibria, their stability, and

basins of attraction is complex (e.g., Ripa, 2009), here we focus on a simple but

realistic special case: we assume that evolution starts at m = x = 0 and that x

evolves much faster than m. This means that evolution quickly converges to the

x-isocline and then proceeds along this line until reaching a stable equilibrium.

We focus on this limiting case mainly because it represents the opposite extreme

of the model with fixed allelic effects. Note that direct selection on the ecological

trait will usually be stronger than indirect selection on the mating trait, lending

some plausibility to this limit (c.f. Ripa, 2009).

A.2 Results The long-term evolution of the mating probability is illustrated

in Figure A1. At first glance, these results look quite different from those for

fixed effects (Fig. 1). The reason is that, with evolving effects, a change in the

parameter k can be compensated by evolution of the trait value x, such that it

is mainly the ratio of k and c that matters. Therefore, Figure A1 is dominated

by diagonals. Nevertheless, we find the same three modes of speciation as in the

model with fixed allelic effects.

Migration-independent competitive mode If x evolves faster than m, spe-

ciation in the migration-independent competitive mode is only possible in a lim-

ited parameter range (red areas in Fig. A1). Instead, in many cases, x evolves to a

value that is large enough to significantly reduce competition between homo- and

heterozygotes. For example, with fixed x = 1, speciation is possible in Fig. 1E for

k = 0.1 and c = 0.4, but for the same parameter values in Fig. A1E, the evolved

value of x is 1.6. At this value, the niches of the different phenotypes are hardly

overlapping, and only limited choosiness evolves. In the absence of migration,

our results are in full agreement with the ones by Ripa (2009), who provides a
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detailed analysis.

In contrast to the model with fixed alleles, the parameter range for migration-

independent competitive speciation is no longer independent of θ and µ. The

effect is an indirect one: Spatial structure influences evolution at the ecological

locus, which in turn affects the evolution of choosiness. As shown in Figure A1,

weak migration can hamper the evolution of reproductive isolation through local

competition, whereas strong migration can facilitate the process. With weak

migration, the locally favored type experiences increased competition (relative to

µ = 0) due to the migrants. As a consequence, the distance between extreme

phenotypes increases, and speciation becomes more difficult (compare Fig. A1B

and E). In contrast, strong migration prevents the evolution of large values of

x, because extreme homozygotes would be very unfit when finding themselves in

the wrong deme (selection for generalists). For example, for k = 0.3, c = 0.7 and

θ = 0.4, x evolves to about 1 for µ = 0.01 (Fig. A1E), but only to about 0.6 for

µ = 0.5 (Fig. A1H). With the reduced distance between the extreme phenotypes,

selection for increased choosiness is strong and complete isolation can evolve.

Migration-driven ecological mode Adaptive speciation via local adaptation

and selection against mating with immigrants is possible for intermediate k and

c < 1 − exp(−k) (green areas in Fig. A1E and F). x evolves to ≈ θ in this case.

In contrast to the model with fixed effects, speciation fails for small k. Instead,

the population becomes practically monomorphic for a generalist genotype with

x ≈ 0, because selection for local adaptation is not strong enough.

Migration-induced competitive mode As in the model with fixed allelic

effects, a two-phased process of migration-induced competitive speciation is ob-

served if the resource distribution is bimodal and frequency-dependent selection
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is too weak to maintain the polymorphism in the absence of migration (blue area

in Fig. A1E). The process is illustrated in Fig. A2c. As long as choosiness is

low, the frequency of the less fit homozygote in a given deme is very low, and

the selection gradient for choosiness decreases (corresponding to the migration-

dependent phase). With intermediate choosiness, the second niche opens up

(because the rare phenotype no longer produces only heterozygote offspring),

and the less fit homozygotes increases in frequency (sharp rise of the black line

in Fig. A2c). At the same point, the choosiness gradient increases (correspond-

ing to the fast migration-independent phase), until choosiness is very high and

speciation is (nearly) completed. In contrast to the model with fixed allelic ef-

fects, the migration-induced competitive mode does not work for θ = 0 (i.e., no

spatial heterogeneity). This is because with gradual evolution of choosiness, the

polymorphism at the ecological locus becomes unstable for a small interval of in-

termediate values of m (Bürger & Schneider, 2006; Pennings et al., 2008). With

small m, the global polymorphism is maintained, because the rare phenotypes

in each deme cannot increase in frequency. With large m, local coexistence is

possible within a single deme. For some intermediate m, however, the rare phe-

notype can increase, but local coexistence is not yet possible, leading to global

extinction of one of the two alleles. With discrete values for m (as assumed in

the main text), this small window of instability is never hit.

No speciation As in the model with fixed effects, there is a large parameter

range in which speciation does not occur. One notable difference to the previous

model is that, with evolving effects, no branching occurs in the random mating

area with c < 1−exp(−k) and small θ (i.e., the population remains monomorphic

for a generalist ecological phenotype).
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Appendix B Asymmetries between Patches

We performed additional simulations to study the effect of asymmetries in the

migration rate and in the fitness function. The results are shown in Figure B1

(for asymmetric migration) and Figure B2 (for asymmetric fitness).

With asymmetric migration (second and third row in Figure B1), assortative

mating evolves first in the deme with many immigrants and later also in the deme

with few immigrants. As long as there is any migration in both directions, speci-

ation occurs. With one-way migration (i.e., a continent-island model), speciation

does not occur within 10000 generations (note that the time scale in the third row

is different). The problem in this case is the following: For the migration-driven

phase, it does not matter where the immigrants come from, but that immigrants

and hybrids have lower fitness, such that there is selection for assortative mating

on the residents. However, in the continent population, no assortative mating

evolves, and immigrant females from the continent keep hybridizing on the is-

land. Thus, they do not lose their disadvantage of producing unfit hybrids. As a

consequence, the migration-independent phase does not take place, and the case

reduces to the migration-driven ecological mode.

Asymmetric fitness functions have an influence on stability of the polymor-

phism. If one allele has a higher overall fitness, it is more likely to become fixed.

However, in parameter ranges where the polymorphism is stabilized at all, ei-

ther by frequency-dependence or by local adaptation plus low migration, only

the shape of the fitness function matters, not the exact values. Additional sim-

ulations confirm this. Figure B2 shows that the migration-induced competitive

mechanism works even if there is disruptive selection in deme 1 and directional

selection in deme 2 (for the phenotype with lower fitness in deme 1). In this case,
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coexistence of the two species is only possible in deme 1. The migration-driven

phase is slowed down relative to the case with disruptive selection in both demes.

Appendix C Examples of Evolutionary Dynamics

In Figure C1, we show a variety of different temporal patterns underlying the re-

sults in Figure 1E. The borders between different regimes are not always abrupt,

for example aspects of the migration-induced two-phased pattern are also visi-

ble in the migration-independent competitive regime. Nevertheless, the borders

are well-defined, because in the migration-induced competitive regime speciation

cannot occur within a single population.
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Figure 1: Overview of evolutionary outcomes resulting from varying the four
essential parameters. In the panels, colored areas refer to the three modes of
adaptive speciation discussed in the main text (red: migration-independent com-
petitive mode; green: migration-driven ecological mode; blue: migration-induced
competitive mode), with the numbers marking the parameter combinations used
in Fig. 2. Hatched areas indicate loss of polymorphism, while shaded areas corre-
spond to incomplete reproductive isolation, ranging from very light grey (nearly
complete isolation) to black (random mating). Bar diagrams above the panels
illustrate the carrying capacity function for the three ecological phenotypes. For
θ > 0.5 (right-most column), selection is directional across the range of possi-
ble phenotypes for any choice of k, so only the part for k > 0 is shown as the
part with k < 0 would be redundant. We show three representative migration
rates µ. The migration-driven ecological speciation mode and migration-induced
competitive speciation mode can be observed for migration rates of up to about
0.2. Note that µ = 0 and µ = 0.5 correspond to full allopatry and full sympatry,
respectively. In these cases, only migration-independent competitive speciation
can occur. (If, in addition, θ = 0, there is no spatial structure, which is why
panels A and G are alike.)
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Figure 2: Evolutionary dynamics for the three different spatio-temporal modes
of speciation, in terms of the mating probability between different homozygotes
(first column); the frequency of heterozygotes (second column); frequency of the
x = 1 allele (third column) in deme 1 (continuous lines) and deme 2 (dotted
lines). Note the longer timescale for the migration-driven ecological mode. For
the migration-induced competitive mode, comparison between panels G-I (lower
migration rate) and J-L (higher migration rate) illustrates the influence of the
migration rate on the speed of this modes initial migration-dependent phase.
Parameters:µ = 0.01, θ = 0, k = 0.1, and c = 0.4 (A-C; label “1” in Fig.1);
µ = 0.01, θ = 1, k = 0.1, and c = 0 (D-F; label “2” in Fig.1); µ = 0.01, θ = 0.4,
k = −0.3, and c = 0.2 (G-I; label “3” in Fig.1); µ = 0.02, θ = 0.4, k = −0.3,and
c = 0.2 (J-L).
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Figure A1: The evolution of assortative mating in the model version with evolving
allelic effects, if the population starts at random mating and choosiness evolves
more slowly than the ecological trait. The plots show the equilibrium mating
probability between different homozygotes as determined from invasion fitness
analysis, ranging from zero (white; complete isolation) to one (black; random
mating). Hatched areas indicate loss of polymorphism. Inset numbers are equi-
librium values of the ecological trait (allelic effect x) for the respective parameter
combinations. Colors delineate the areas for the different modes of speciation
discussed in the main text; red: migration-independent competitive speciation;
green: migration-driven ecological speciation; blue: migration-induced competi-
tive speciation. The case k = 0 is not shown, because in this case, x would evolve
to infinity.
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Figure A2: The three modes of speciation in the model version with evolving
allelic effects at the ecological locus (i.e., gradual evolution of both x andm). The
black line shows the frequency (in one deme) of the rare homozygote phenotype
as a function of the mating probability between different homozygotes. The gray
line shows the strength of selection for assortative mating, as measured by the
selection gradient form (at the equilibrium value of x).(A) Migration-independent
competitive speciation µ = 0.01, θ = 0, k = 0.1, c = 0.3, (B) Migration-driven
ecological speciation µ = 0.01, θ = 1, k = 0.1, c = 0, (C) Migration-induced
competitive speciation µ = 0.01, θ = 0.4, k = −0.25, c = 0.05: the two phases of
the process are clearly visible.
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Figure B1: Time courses for asymmetric migration rates. Migration from deme 2
to deme 1 is always µ21 = 0.1, migration µ12 from deme 1 to deme 2 is as specified.
Further parameters are θ = 0.4 k = −0.3 c = 0.2. The black lines refer to deme
1 (thus, the deme with more immigrants than emigrants), the gray lines refer to
deme 2. First column: mating probability between different homozygotes; second
column: frequency of heterozygotes; third column: frequency of the x = 1 allele.
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Figure B2: Migration-induced competitive speciation with directional selection
in the second deme. µ = 0.01 c = 0.1; deme 1 (disruptive selection): k = −0.3,
θ = 0.2; deme 2 (directional selection): k = 0.2, θ = 0.6. The black lines are
for deme 1, the gray lines for deme 2. Assortative mating evolves a bit faster in
deme 1. The migration-independent phase only happens in deme 1.
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Figure C1: Time courses for different parameters in Fig. 1E. The lines show
the borders between the different regimes. Upper group of panels A: migration-
independent competitive speciation. Left middle group B: migration-induced
competitive speciation. Left lower group C: migration-driven ecological specia-
tion. Right middle group D: Partial isolation. Right lower group E: Random
mating.
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