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Nodes in a financial network, such as banks, cannot assess the true risks associated with lending to other
nodes in the network, unless they have full information on the riskiness of all other nodes. These risks can be
estimated by using network metrics (as DebtRank) of the interbank liability network. With a simple agent
based model we show that systemic risk in financial networks can be drastically reduced by increasing
transparency, i.e. making the DebtRank of individual banks visible to others, and by imposing a rule, that
reduces interbank borrowing from systemically risky nodes. This scheme does not reduce the efficiency of
the financial network, but fosters a more homogeneous risk-distribution within the system in a
self-organized critical way. The reduction of systemic risk is due to a massive reduction of cascading failures
in the transparent system. A regulation-policy implementation of the proposed scheme is discussed.

ince the beginning of banking the possibility of a lender to assess the riskiness of a potential borrower has

been essential. In a rational world, the result of this assessment determines the terms of a lender-borrower

relationship (risk-premium), including the possibility that no deal would be established in case the bor-
rower appears to be too risky. When a potential borrower is a node in a lending-borrowing network, the node’s
riskiness (or creditworthiness) not only depends on its financial conditions, but also on those who have lending-
borrowing relations with that node. The riskiness of these neighboring nodes depends on the conditions of their
neighbors, and so on. In this way the concept of risk loses its local character between a borrower and a lender, and
may become systemic. A systemically risky node in a financial network is one that — should it default - will have a
substantial impact (losses due to failed credits) on other nodes in the network. Note that this notion of systemic
risk is different from the risk of not getting payed back, the credit default risk.

The assessment of the systemic riskiness of a node turns into an assessment of the entire financial network’.
Such an exercise can only be carried out with information on the asset-liability network. This information is, up to
now, not available to individual nodes in that network. In this sense, financial networks — the interbank (IB)
market in particular — are opaque. This in-transparency makes it impossible for individual banks to make rational
decisions on lending terms in a financial network, which leads to a fundamental principle: opacity in financial
networks rules out the possibility of rational risk assessment, and consequently, transparency, i.e. access to
system-wide information is a necessary condition for any systemic risk management. Note that recently an
alternative notion for systemic importance of banks for the fluid transmission of credit through the IB market
has been discussed in terms of “controllability”>.

The banking network is a fundamental building block in our globalized society. It provides a substantial part of
the funding and liquidity for the real economy®. The real economy - the ongoing process of invention, produc-
tion, distribution, use, and disposal of goods and services - is inherently risky and introduces a third type of risk,
the economic risk. This risk originates in the uncertainty of payoffs from investments in business ideas, which
might not be profitable, or simply fail. This economic risk can not be eliminated from an evolving economic
system, however it can be spread, shared, and diversified. One of the roles of the financial system is to distribute
the risk generated by the real economy among the actors in the financial network. The financial network can be
seen as a service to share the burden of economic risk. By no means should this service by itself produce additional
systemic risk on top of economic risk endogenously. Neither should the design and regulation of financial
networks introduce mechanisms that leverage or inflate the economic risk. As long as systemic risk is endogen-
ously generated within the financial network, this system is not yet properly designed and regulated. In this paper
we show that, unless a certain level of transparency is introduced in financial networks, systemic risk will be
endogenously generated within financial networks. Systemic risk is hard to reduce with traditional regulation
schemes*’. By introducing a minimum level of transparency in financial networks, endogenous risk can be
drastically reduced without negative effects on the efficiency or volume in the financial services for the real
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economy. We think that the following results on systemic risk man-
agement hold generally. However, for demonstration purposes we
use a specific setup of banks in the IB network that finance demands
from the real economy.

Asset-liability or exposure data needed for systemic risk assess-
ment in actual financial networks such as the IB market, does exist on
various levels of reliability. In some developed countries IB loans are
directly recorded in the ‘central credit register’ of central banks®”. In
several countries the exposure matrix can be estimated from IB pay-
ment data, as in*’. The capital structure of financial agents, which is
also necessary for systemic risk assessment, is available in most coun-
tries through standard reporting to central banks. Payment systems
record financial flows with a time resolution of one second, see e.g."’.
Several studies have been carried out on historical data of asset-
liability networks*>''"", including overnight markets'®, and financial
flows'®. However, exposure networks, payment flows and balance
sheets do not yet provide a complete picture. For a more complete
view on the actual risk networks it would be necessary to integrate
data of credit derivative (issuer-holder) networks, and collateral net-
works (who holds what collateral for what loan). The true risk net-
work is a multiplex network where the same set of financial agents is
connected by various networks, including the asset-liability network,
the derivative and the collateral network, posing significant data
challenges. For simplicity, in this work we assume that it is possible
(for central banks) to compute network metrics based on the asset-
liability matrix at any time (as a proxy of the true systemic risk
network), which in combination with the capital structure of banks,
allows to define a systemic risk-rating of banks.

Network metrics can be used to systematically capture the fact that
systemic risk spreads by borrowing. Borrowing from a systemically
risky bank makes the borrower systemically more risky, since its
default might tip the risky lender into default which then may cause
system wide effects. These metrics are inspired by PageRank, where a
web page, that is linked to a famous page, gets a share of the ‘fame’. A
metric similar to PageRank, the so-called DebtRank, has been
recently used to capture systemic risk levels in financial networks".
In this paper we present an agent based model of the IB network that
allows to estimate the extent to which systemic risk can be reduced by
introducing transparency on the level of the DebtRank. For compu-
tational efficiency we propose a measure based on Katz centrality’,
which we refer to as Katz rank. Both are closely related to the concept
of eigenvalue centrality". Betweenness centrality has been used to
determine systemic financial risk before'?. To demonstrate the risk-
reduction potential of feeding information of the DebtRank back into
the system, we use a simple toy model of the financial- and real
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economy which is described in the next section. Interbank models
of similar design were used before in different contexts* .

The central idea of this paper is to operate the financial network in
two modes. The first reflects the situation today, where banks don’t
know about the systemic impact of other banks, and where all IB
credits are traded with the same interest rate, the so-called ‘inter bank
offer rate’, r'®. We call this scenario the normal mode.

The second mode introduces a minimum regulation scheme,
where banks choose their IB trading partners based on their
DebtRank. The philosophy of this scheme comes from the fact that
borrowing from a systemically dangerous node can make the bor-
rower also dangerous, since she inherits part of the risk, and thereby
increases overall systemic risk. Note, that a default of the borrower
from a systemically dangerous bank affects not only the lender, but
possibly also all other nodes from which the lender has borrowed.
The idea is to reduce systemic risk in the IB network by not allowing
borrowers to borrow from risky nodes. In this way systemically risky
nodes are punished, and an incentive for nodes is established to be
low in systemic riskiness. Note, that lending fo a systemically dan-
gerous node does not increase the systemic riskiness of the lender.
We implement this scheme by making the DebtRank of all banks
visible to those banks that want to borrow. The borrower sees the
DebtRank of all its potential lenders, and is required (that is the
regulation part) to ask the lenders for IB loans in the order of their
inverse DebtRank. In other words, it has to ask the least risky bank
first, then the second risky one, etc. In this way the most risky banks
are refrained from (profitable) lending opportunities, until they
reduce their liabilities over time, which makes them less risky.
Only then will they find lending possibilities again. This mechanism
has the effect of distributing risk homogeneously through the net-
work, and prevents the emergence of systemically risky nodes in a
self-organized critical way: risky nodes reduce their credit risk
because they are blocked from lending, non-risky banks can become
more risky by lending more. We call this mode the transparent mode.

The model. The agents in the model are B banks, F firms and
households. For simplicity every bank has only one firm as commer-
cial client, F = B. This simplification is to some extend justified by the
fact that for example in Germany the number of large corporations
and the number of relevant banks are of the same order of mag-
nitude*?*. In Fig. 1 we show a schematic structure of the model.
For details of the implementation, see SI. At every timestep each firm
approaches its main bank with a request for a loan. The size of these
loans is a random number from a uniform distribution. Banks try to
provide the requested firm-loan. If they have enough cash reserves
available, the loan is granted. If they do not have enough, they

Figure 1 | Schematic structure of the model. Firms approach their bank for firm-loans. These loans are transferred to the households, where
they are redistributed to other firms or are deposited in banks. If a bank can not service a firm-loan because it presently does not have the requested sum
available in the bank, it tries to get the necessary funding through an interbank loan from an other bank. If it can get an IB loan, the firm-loan is payed out,

if it can not, the firm will receive no loan.
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approach other banks in the IB market and try to get the amount
from them at an interest rate of . Not every bank has business
relations with every other bank. Interbank relations are recorded in
the IB bank-relation network, A. If two banks i and j, are willing to
borrow from each other, A;; = 1, if they have no business relations, A;
= 0. We model the IB relation network with fully connected net-
works, random graphs and scale-free networks, see SI. A fully con-
nected bank-relation network means that A;; = 1, for all pairs (i, j). In
this case any bank can do business with any other and there is no
special network topology or bias in business relations. If a bank does
not have enough cash and can not raise the full amount for the
requested firm-loan on the IB market, it does not pay out the loan.
If the bank does pay out a loan, the firm transfers some of the cash to
the households as ‘investments’ for future payoffs (wages, invest in
new machines, etc.). Loans from previous timesteps are paid back
after T timesteps with an interest rate of #°** > r®. The fraction of the
loan not used to pay back outstanding loans, ends up at the house-
holds (for details see SI).

Households use the money received from firms to (1) deposit a
certain fraction at the bank, for which they get interest of 7, or (2) to
consume goods produced by other firms (details in SI). This money
flows back to firms (the firms’ profits) and is used by those to repay
loans. If firms run a surplus, they deposit it in their bank accounts,
receiving interest of #~°", The two actions of the households effec-
tively lead to a re-distribution and re-allocation of funds at every
timestep. For simplicity we model the households as a single (aggre-
gated) agent that receives cash from firms (through firm-loans) and
re-distributes it randomly in banks (household deposits), and among
other firms (consumption).

Specifically, at time ¢ a bank-firm pair is chosen randomly, and the
following actions take place:

6] banks and firms repay loans issued at time t — 1

(if)  firms realize profits or losses (consumption)

(iii)  banks pay interest to households

(iv)  firms request loans

) households re-distribute cash obtained from firms

(vi)  liquidity management of banks in the IB market, including:
IB re-payments, firm-loan requests, defaulted firms, and re-
distribution effects from households

firms pay salaries and make investments

firms or banks default if equity- or liquidity problems arise

(vii)
(viii)

A new bank-firm pair is picked until all are updated (random
sequential update); then timestep t + 1 follows.

During the simulation, firms and banks may be unable to pay their
debts and thus become insolvent. Firms are declared bankrupt if they
are either insolvent, or if their equity capital falls below some negative
threshold. Banks are declared bankrupt if they are insolvent, or have
equity capital below zero. Negative equity of firms can result from a
large loss (households do not buy there) or a series of losses on its
investments. Negative equity of banks can arise through the bank-
ruptcy of a firm or another bank and the subsequent failure of their
loan repayments. See SI for details. If a firm goes bankrupt the bank
writes off the respective outstanding loans as defaulted credits and
realizes the losses. If the bank has not enough equity capital to sustain
these losses it goes bankrupt as well. After the bankruptcy of a bank
there occurs a default-event for all its IB creditors. This may trigger a
cascade of bank defaults. For simplicity, there is no recovery for IB
loans. This assumption is reasonable for the short run, which matters
in practice for short term liquidity®. A cascade of bankruptcies hap-
pens within one timestep. After the last bankruptcy is taken care of,
the simulation is stopped. We model a closed system of banks, firms
and households, meaning that there are no in- or out-flows of cash
from the model.

In the normal mode the model captures the current market prac-
tice, where banks follow a simple strategy to manage their liquidity. If

a bank needs additional liquidity (for providing a firm-loan request,
or for its own re-payments of IB loans) it contacts banks it is con-
nected with in the IB relation network A, and asks them for IB loans.
In the normal mode, bank i asks its neighbors j (with
jeZ; = {j|Ay=1}) in random order. If bank j can provide only
a fraction of the requested IB loan, bank i takes it, and continues to
ask an other neighbor bank from Z; (in random order) until the
liquidity requirements of i are satisfied.

A simple modification to improve the stability of the system is to
avoid borrowing from banks with a large systemic impact. For this a
minimum level of transparency of the IB market is necessary. For all
banks we compute systemic risk metrics based on the IB liability
network L;(t), and the equity of banks C(t), at timestep ¢ (details
in SI). In particular we compute the DebtRank R¥®', and - for
comparison - the Katz rank R¥* (see methods). The most risky bank
has rank 1, the least risky has rank B, see methods.

In contrast to the normal mode, before bank i asks its neighbors for
IB loans, it orders them (the banks contained in set Z;) according to
their inverse Debt- or Katz rank. It then asks its neighboring banks in
the order of their inverse rank, i.e. it first asks the least risky, then the
next risky, etc. The rank is computed at the beginning of each time-
step. In this way the low-risk banks are favored because the likelihood
for obtaining (profitable) IB deals is much higher for them than for
risky banks, which are at the end of the list and will practically never
be asked.

In reality this implies that the banks know the DebtRank of each of
their neighboring banks. This transparency is not available in the
present banking system. Note however, that in many countries cent-
ral banks have all the necessary data to compute the DebtRank. A
possible way to implement such an incentive scheme in reality, is
presented in the discussion.

We further implement a version of the transparent IB market,
where the DebtRank is computed after every transaction that takes
place in the IB market, instead of being computed at the beginning of
the day. This version we refer to as the fast mode.

Results

We simulate the above model with the parameters given in SI, for 500
timesteps. Results are averages over 10,000 identical simulations. Fit
parameters to the following distribution functions are collected in SI
Table 2.

In Fig. 2 (a) we show the distribution of losses to banks £ for the
the normal mode (red), where the selection of counterparties for IB
loans is random and the transparent mode (blue), where banks sort
their potential counterparties according to their inverse DebtRank,
and then approach the least risky neighbor first for the IB loan. The
fast mode is shown in green. The normal mode shows a heavy tail in
the loss distribution, which completely disappears in the transparent
and fast modes, where there are no losses higher than 50 and 40 units,
respectively. Of course losses do not entirely disappear in the trans-
parent scheme, since the economic risk that firms bring to the bank-
ing system can not be completely eliminated. The fast mode appears
to be slightly safer than the transparent mode. Fits to all curves are
found in SI.

The distribution of cascade-sizes C of defaulting banks is seen in
Fig. 2 (b). Again the normal mode shows a heavy tail, meaning that in
a non-negligible number of events, defaults of a single bank trigger a
cascade of liquidity and equity problems through the system. In some
cases up to 80 % of the banks collapse. In the transparent mode the
likelihood for contagion is greatly reduced, and the maximum cas-
cade size is limited by 40 banks in the transparent and about 30 in the
fast mode.

In Fig. 2 (c) we show the transaction volume in the IB market V of
the three modes, normal (red), transparent (blue) and fast (green).
The transparent and fast modes show a higher transaction volume
indicating a more efficient IB market, where liquidity from banks
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Figure 2 | Comparison of the normal mode (red), i.e. random selection of counterparty for IB loans, with the transparent IB market (blue), where the
order of counterparty selection is determined by the inverse DebtRank. The fast mode is shown in green. (a) Distribution of total losses to banks £,
(b) distribution of cascade sizes C of defaulting banks, and (c) distribution of transaction volume in the IB market V. We performed 10,000 independent,
identical simulations, each with 500 timesteps, 100 banks, and the simulation parameters given in SI Table I. A is a fully connected graph.

with excess funds is more effectively channeled to those without. We
verified, that the ratio of requested- to provided firm-loans, the effi-
ciency &, yields £ ~ 1, irrespective of the mode.

In Fig. 3 we show the normalized DebtRank for all individual
banks, for the normal (red), and the transparent scheme (blue).
Banks are rank-ordered according to their DebtRank so that the most
risky bank is found to the very left, the safest to the very right. It is
clear that the systemic risk impact in the transparent mode is spread
more evenly throughout the system, whereas in the normal mode
some banks appear to be much more dangerous to the system.

In Fig. 4 we compare the losses £ for DebtRank (red) and Katz
rank (blue). The performance of the two definitions is hardly distin-
guishable. Also the other systemic risk measures show no noticeable
difference, for cascade size C, and transaction volume distributions V,
see SL.

Figure 5 shows the distribution of losses £, for the (a) normal and
(b) transparent mode, as computed with an Erdos-Rényi (ER) con-
tact network (red) with y = 0.115, and a scale-free (SF) network
(produced with the Barabasi- Albert algorithm, see SI) with the same
average connectivity ((k) = 11.5). In both modes the SF network
leads to a slightly riskier situation. The situation for cascade sizes
and transaction volume is depicted in SI Fig. 3, where we also show
and discuss the effects of connectivity on the three measures in SI
Fig. 4.
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Figure 3 | Normalized DebtRank, R; for individual banks in the normal
(red) and the transparent mode (blue). Banks are ordered according to
their DebtRank, the most risky is to the very left, the safest to the very right.
The distribution is an average over 1000 simulation runs with an ER
network, and shows the situation at timestep ¢t = 100.

We compute the distribution of the time to first default 7 ¢4, for the
normal and the transparent modes. Both distributions are practically
Gaussian (kurtosis ~ 3.3, skewness ~ 0.4) with mean and standard
deviation of TPg™¥=138.2+33.8, and 7T;3"P =138.1+33.7,
respectively. This is expected, since typically the first default is trig-
gered by a firm-default, which is (to first order) independent of the
situation in the IB market, but only depends on the parameters
describing the firms (y;, 6™, C**) and households (g, p), see SI.

Finally, in Fig. 6 we show the effect of the bank selection process
induced by the transparent mode on the IB liability network topo-
logy. The distributions of in-degrees k of the IB liability network
sgn(L;)) for the normal (red) and transparent mode (blue) are shown
at timestep t = 100 for a totally connected bank-relation network, A;;
= 1 for all ij. The in-degree of sgn(L;;), for bank i is the total number
of different banks, i has granted loans to within the last 7 timesteps. In
the normal mode (random order of loan requests) the emerging
liability network shows a Poisson distributed in-degree distribution
(green), with 4 = 2.14. The IB network topology of the normal node
nicely coincides with the expected result from random linking. On
average, half of the banks have excess liquidity and can provide loans
to other banks. In the transparent mode only banks with a low
DebtRank provide IB loans. This leads to fewer banks lending on
the IB market and is reflected in Fig. 6 by the high number of nodes
with an in-degree of zero. The total demand for IB loans (which is
approximately the same as in the normal mode) is now serviced by
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Figure 4 | Comparison of the performance of the DebtRank (red) and the
Katz rank (blue) for the losses, £. Both rank definitions provide
practically identical results. Same simulation parameters as in previous
figure.
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fewer banks with a low DebtRank. As a result, the in-degree distri-
bution of the transparent mode broadens and is well fitted by a
Weibull distribution with a = 7.13 and b = 1.62 (green).
Regardless of the number of links, a bank with a low DebtRank, i.e.
a bank that has borrowed little or nothing on the IB market, is not
systemically risky. The out-degree distribution (total number of
different banks a bank has received loans from) is mainly influenced
by the cash needs of a bank. Therefore the out-degree distribution in
the transparent mode is similar to the in-distribution in the normal
mode, which is shown in SI Fig. 2.

Discussion
We showed that the systemic risk, endogenously created in a
financial network by the inability of banks to carry out correct
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Figure 6 | Distributions of in-degrees k of the IB liability network sgn(Ly)
for the normal (red) and transparent mode (blue), for the case where the
bank-relation network was fully connected (A;; = 1 for all §j). The in-
degree distribution (total number of different banks, a bank has granted
loans to) is affected in the transparent mode because only banks with a low
DebtRank provide loans to others. For the normal mode the distribution
can be well fitted by a Poisson with A = 2.14; the transparent mode is better
fitted with a Weibull distribution with a = 7.13 and b = 1.62 (green lines).
The distributions are an average over 1000 simulation runs and shows the
situation at time ¢ = 100.

risk-estimates of their counterparties, can be drastically reduced by
introducing a minimum level of transparency. This becomes possible
by introducing an incentive that makes borrowers more prone to
borrow from systemically safe lenders. As a measure of the fraction
of systemic risk of individual agents we use network centrality mea-
sures, such as the DebtRank and make it available to all nodes in the
network at each point in time. We could show that the efficiency of
the financial network with respect to the real economy is not affected
by the proposed regulation mechanism. For this we verified that
neither the volume of credit to firms (real economy) was reduced
or lowered in the transparent scheme (£ ~ 1 in all modes), nor that
the trading volume in the IB market was lower than in the normal
mode. On the contrary we could even find a slight increase in trading
volume in the transparent mode. Maintaining of efficiency is possible
since the regulation re-distributes risk in order to avoid the emer-
gence of risky agents that might threaten the system, and does not
reduce the trading volume in the real economy or in the IB liability
network. Risky nodes that are low in DebtRank, are barred from the
possibility of lending their excess reserves to others. This deprives
them from making profits on IB loans, but also reduces their risk of
being hit by defaulted credits. They only receive payments and do not
issue more risk, meaning that over time they become less risky. Less
risky banks are allowed to take more risk (lend more) and make more
profits. The proposed mechanism makes the system safer in a self-
organized critical manner. We explicitly show how this selection
process re-shapes the IB network from a random graph in the normal
mode to a fat tailed degree distribution in the transparent mode.

Note, that in our scheme the borrower determines who borrows
from whom. Usually the lender is concerned if the borrower will be
able to repay the loan. However, this credit default risk is not neces-
sarily of systemic relevance. Lending to a bank with a large systemic
risk can have relatively little consequences for the systemic import-
ance of the lender, or the systemic risk of the system as a whole. In
contrast, if a bank borrows from a systemically dangerous node the
borrower inherits part of this risk, and increases the overall systemic
risk. These facts are conveniently incorporated in the definition of
the Debt- and Katz rank.

We found that the performance of the method is surprisingly
insensitive to the choice of the particular centrality measure, or to
the actual topology of the IB relation network (scale-free or random).
Also the average connectivity k of the network is not relevant, as long
as it remains in sensible regions (({k)€[ ~ 5,B]). This suggests that the
essence of the proposed scheme is that risk is spread more evenly
across the network, which practically eliminates cascading failures.
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A way to implement the proposed transparency in reality would be
that central banks regularly compute the DebtRank of the asset-
liability network (as reported or inferred from payment systems),
and make it available to all banks. To enforce the regulation, the
central bank could monitor IB loans through the payment system,
and severely punish borrowers who failed to find less risky lenders.
Note however, that the asset-liability network is only an approxi-
mation to the true risk network which is a multiplex network, mean-
ing that the banks are linked by at least three risk-relevant networks:
the asset-liability, the credit derivative and mutual collateral-holding
networks. To derive practicable effective risk networks from the
multiplex poses future technical challenges. A more market driven
mechanism to obtain the same self-organized critical regulation
dynamics is subject to further investigations. For future work it
would be interesting to study the aspects of “contrability” introduced
in> within the context of the presented transparency scheme.
Currently, banks have no incentive whatsoever to disclose their sys-
temic risk levels to others, and one could only force them to do so, or
- formulated more positively — create appropriate incentives. This is
maybe only possible with changes in the current jurisdiction.

Methods

DebtRank. DebtRank is a recursive method suggested in'” to determine the
systemic relevance of nodes in financial networks. It is a number measuring the
fraction of the total economic value in the network that is potentially affected by a
node or a set of nodes. Let L;; denote the IB liability network at a given moment (loans
of bank j to bank i), and C; is the capital of bank i, see SI. If bank i defaults and can not
repay its loans, bank j loses the loans Ly, see SI. If j has not enough capital available to
cover theloss, j also defaults. The impact of bank i on bank j (in case of a default of i) is
therefore defined as

L::
i ij
W,-jfmm{ ,E]] (1)
Given the total outstanding loans of bank i, L; = Z]. Ljj, its economic valve is defined
asv; :L,-/Zj L;. The value of the impact of bank i on its neighbors is I; = Zj Wiv;.

To take into account the impact of nodes at distance two and higher, it has to be
computed recursively,

=2 Wi B3 Wyl @
J J

where f3 is a damping factor. If the network W; contains cycles the impact can exceed
one. To avoid this problem an alternative was suggested'’, where two state variables,
hi(t) and s;(t), are assigned to each node. A; is a continuous variable between zero and
one; s; is a discrete state variable for 3 possible states, undistressed, distressed, and
inactive, S; € {U,D,I}. The initial conditions are h;(1) =V, Vi € S¢; h(1) = 0,Vi ¢ Sy,
and si(1) = D, Vie S; si(1) = U, Vi g S (parameter ¥ quantifies the initial level of
distress: ¥ € [0,1], with ¥ = 1 meaning default). The dynamics of h; is then specified
by

hi(t)=min | Lhi(t—1)+ >

jlsi(t=1)=D

Wily(t—1) . ()

The sum extends over these j, for which s;(t — 1) = D,
D ifhi(t)>0;s:(t—1) #1,
Si(t>= 1 ifSi(t71)=D, (4)
si(t—1) otherwise.
The DebtRank of set Sy (set of nodes in distress at time 1), is
R= Zjhj(T) vj— Zjhj(l)vj, and measures the distress in the system, excluding

the initial distress. If S¢is a single node, the DebtRank measures its systemic impact on
the network. The DebtRank of Sy containing only the single node i is

R,‘: Zh](T)VJ—h,(1>V, (5)
J

The normalized DebtRank is R; =R; /> iR

Katz rank. The Katz centrality can be used to capture the risk of contagion in IB
networks and is defined as

K=o} Lk + P (©)
J

To ensure that the Katz centrality converges, we set o = 1/k;, where k is the largest
eigenvalue of L;;. The overall multiplier f is not important, for convenience we set § =
1. We define the Katz rank in the following way: the most risky bank i, with the highest
Katz centrality gets Katz rank R (¢) =1, the least risky bank j (lowest Katz
centrality) gets R)l-‘a‘z(t) =B. Note, that banks that only borrow (in-links only) may
cause contagion and have non-zero Katz centrality. Banks that only provide loans
(out-links) have zero Katz centrality. Loan sizes, neighbors and their neighbors, etc.,
are included in the centrality.

Systemic risk measures. For measures of systemic risk in the system, we use the
following three observables: (1) time to first default as the timesteps of the simulation
before the first default of a bank occurs, 7, (2) the size of the cascade, C as the
number of defaulting banks triggered by an initial bank default (1 <C<B), and (3)
the total losses to banks following a default or cascade at t,,

L=—37[Cilty) —Cilts—1)].

Efficiency measures. To quantify the efficiency of the banking system we use the ratio
of the sum of requested loans by the firms to the sum of loans actually payed out to
firms, at a given time f, averaged over time,
B
Dz k() @)
B req :
X 170
The efficiency of the system is then the time average £ = (E(t)),, taken over the
simulation. As another measure of efficiency we use the transaction volume in the IB
market at a particular time ¢+ = T'in a typical simulation run,
B

V(t)= Zzlji(T)+lji(T—T)~ (8)

j=17i=1

E(t)=

The first term represents the new IB loans at timestep T, the second the loans that are
repaid. We set T = 100.
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