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Abstract

Background: A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest
cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the
projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2
IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed
forest cover increase could reduce the effects of the greenhouse gas concentration change.

Results: Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead
to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of
forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15–20% of the climate
change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential
afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The
probability of dry days and warm temperature extremes would decrease.

Conclusions: Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional
and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission
can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this
case study with a hypothetical land cover change can contribute to the assessment of the role of forests in
adapting to climate change. Thus they can build an important basis of the future forest policy.

Keywords: Land cover change, Afforestation, Biogeophysical feedbacks, Climatic extremes, Regional climate
modelling
Background
Climate change and its impacts on different spatial and
temporal scales and sectors have been addressed by several
international research projects in the last decade [1-3]. All
regional climate projections agree that at the end of the
21st century, a warming is expected in all seasons over
Europe. The spatial patterns of the temperature changes in
summer indicate the largest increase in the Mediterranean
region, Southern France and over the Iberian Peninsula,
while less warming is projected over Scandinavia [4,5]. An-
nual precipitation changes show a north–south gradient
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over Europe, with increase in the north (especially in winter)
and decrease in the south (especially in the Mediterranean
area in summer).
The considerable enhancement of inter-annual varia-

bility of the European summer climate as well as the
changes of the hydrological cycle can lead to higher pro-
bability of extremes compared to present-day conditions
[4,6-11]. The frequency of warm/wet and warm/dry events
is projected to increase while the cold extremes show a
significant decrease by 2100 [12]. The Mediterranean and
the South-East European regions are the most prone to
higher risks of heat waves and prolonged dry spells [8,13].
Whereas in Northern to North-Eastern Europe the
number of days with intense precipitation is very likely to
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increase, which can result in a rise in flood frequencies
[8,14-16]. The Central-Mediterranean and Central-Western
Europe seem to be especially vulnerable to increases in both
summer drought and flood [12,14].
Climate change affects the key sectors such as hydro-

logical systems, infrastructure, human health, agriculture
and forestry. Changes of the climatic means and extremes
already show impacts on land cover that are expected to
be more severe under future climate conditions. Drought
periods and other extremes are responsible for a signifi-
cant share of agricultural losses in Europe. Impacts of
severe droughts on the composition, structure, and bio-
geography of forests have been detected worldwide in the
recent decades [17,18]. On the lower limit of the forest
distribution [19,20] ecological models expect growth
decline and mass mortality of many zonal tree species
whose distributions are limited primarily by recurrent
droughts [21,22]. This phenomenon is not typical in
humid areas of Europe [23].
Land cover in turn interacts with the atmosphere, thus

it has an important role in climate regulation. Vegetation
affects the physical characteristics of the land surface
(biogeophysical feedbacks), which control the surface
energy fluxes and hydrological cycle. Through biogeo-
chemical processes, ecosystems alter the biogeochemical
cycles and thereby changing the chemical composition of
the atmosphere [24-27]. Depending on the region, biogeo-
physical and biogeochemical feedbacks of land cover on
climate can amplify or dampen each other [28]. Through
the land-atmosphere interactions, changes of the land
cover and land use due to natural influence and policy
induced land management alter weather and climate,
hence can lead to the enhancement or reduction of the
projected climate change signals expected from increased
atmospheric CO2 concentration [25,29,30]. Past land use
decisions have been shown to influence the mitigation
potential in the boreal regions [31]. Depending on the
carbon sequestration of the land cover, the CO2 warming
of deforestation can dominate over albedo cooling effect
(forests masks snow, which result in lower albedo). Several
studies have addressed the biogeophysical cooling and
moistening effect of tropical forests [29,32]. Whereas the
magnitude of the net climate forcing and benefit of tem-
perate forests and their role in the climate change mitiga-
tion is considered marginal or uncertain [32-34]. Climate
model studies for the temperate region often show contra-
dictory results. Replacing temperate forests with agriculture
or grasslands can lead to lower surface air temperatures in
summer [35,36] and may reduce the number of hot days
[37]. In Canadian and Hungarian areas at the forest-steppe
border forests showed a cooling and moistening effect on
climate, thus may contribute to the drought mitigation
[38,39]. These results indicate that climatic effects of fo-
rests are determined by various contrasting feedbacks.
The variability of the climatic, soil and vegetation charac-
teristics of a region, the length of analysed time scale [40],
as well as the representation of land surface processes in
the applied climate model, also have an influence on the
simulated vegetation–atmosphere interactions.
Europe is the only continent with a significant increase

of forest cover in recent times. In the last two decades the
annual area of natural forestation and forest planting
amounted to an average of 0.78 million hectares/year [41].
Land use and land cover change could be a very important
driver for future environmental changes. The climatic
feedbacks of land cover changes in Europe due to climate
change and regional land use policies as well as the role of
forests in the climate change mitigation are still poorly
understood. The EC-FP7 project CC-TAME (Climate
Change – Terrestrial Adaptation and Mitigation in Europe)
aimed to prepare fine-scale studies not only for the assess-
ment of the climate protecting effects of forests, but also
for the development of adaptation strategies in forestry,
agriculture and water management for the next decades. In
order to contribute to this scientific goal, we prepared a
case study to assess

� the biogeophysical effects of a hypothetic potential
afforestation on summertime temperatures and
precipitations, for the end of the 21st century and
its regional differences within Europe,

� the magnitude of the biogeophysical feedbacks of
forest cover increase compared to the projected
climate change signal with special focus on the
probability and severity of temperature and
precipitation extremes.
Results and discussion
Methods overview
This subsection summarizes the most important aspects
that are essential for the appropriate interpretation of
the results. The experimental set-up and the method of
the analyses are introduced in Sect. 4 more in detail.
In order to provide climate change information due to

emission change, an emission scenario simulation for
the future (2071–2090) and a reference simulation for
the past (1971–1990) has been carried out applying the
regional climate model REMO [42,43]. Both of them
were performed with present (unchanged) forest cover
(Table 1, Figure 1). To quantify the sensitivity of the
model to changes in land cover, a hypothetic potential
afforestation simulation has been prepared for the period
2071–2090 (Table 1, Figure 2). The analyses of the simu-
lation results focused on the biogeophysical effects of
forest cover increase on precipitation and temperature
means and extremes in the summer months (June, July,
August).



Table 1 Analysed data and time periods

Experiment Reference simulation Potential afforestation simulation

Characteristics Present forest cover unchanged Deciduous forests cover all additional vegetated area

Time period 1971–1990 2071–2090

2071–2090

Greenhouse gas forcing IPCC-SRES emission scenario A2

Horizontal resolution 0.22°

Lateral boundaries ECHAM5/MPI-OMa

a Roeckner et al. 2006, Jungclaus et al. 2006.
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Biogeophysical effects of emission change and potential
afforestation on the summer temperature means and
precipitation sums in Europe
First, the sign and magnitude of the climate change signals
without any land cover change have been investigated
comparing the summer temperature means and precipita-
tion sums in the time period 2071–2090 to 1971–1990.
Increase of temperature is projected to occur with precipi-
tation decrease in Southern- and Central-Europe and in
the southern part of Scandinavia, whereas Northeast-
Europe can be characterized with warmer and wetter
Figure 1 Simulation domain with the present forest area in the mode

Figure 2 Increase of the forest cover in the potential afforestation sim
three analysed regions are marked: Northern Germany (DE), Northeast Fran
conditions (Figure 3). In agreement with the results of
other regional climate model simulations for Europe,
the strongest warming and drying are expected in the
Mediterranean area, southern France and over the Iberian
Peninsula (Figure 3).
Second, climate change signal due to potential affores-

tation has been determined comparing the simulation
results with- and without forest cover increase for 2071–
2090. The regions have been identified, where the hypo-
thetic forest cover increase shows the largest effects on
summer temperature and precipitation (Figure 4). Land
l. Horizontal resolution: 0.22°.

ulation compared to the present forested area in the model. The
ce (FR) and Northeast Ukraine (UA).



Figure 3 The mostly climate change affected regions due to emission changes (Δ T: temperature change, Δ P: precipitation change
2071–2090 vs. 1971–1990). Only those regions are coloured, which are significant for Δ T and Δ P at 90% confidence level.
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cover change affects the near-surface energy fluxes. The
larger leaf area index and low aerodynamic resistance of
forests (through increased roughness length) compared to
other vegetated surfaces support the more intense vertical
mixing. It leads to enhanced ability of evapotranspiration,
thus to larger latent heat flux (not shown) and cooler sur-
face temperatures. In northern part of Central-Europe and
in Ukraine temperatures decreased by 0.3–0.5°C
additionally to more than 10% increase (approx. 50 mm)
of the summer precipitation sum in the potential afforest-
ation simulation compared to the reference experiment
with unchanged land cover (Figure 4). The precipitation
conditions are also influenced by large-scale atmospheric
circulation patterns, thus the precipitation signal is not
linearly correlated with the amount of forest cover
increase. In some boreal areas a relative small rate of affor-
estation resulted in a significant decrease of precipitation.
Consequently, the regions characterized by largest

climatic effects of afforestation do not correspond to the
areas with the largest signals due to emission change.
The magnitude of the climatic effects of both emission
change and potential afforestation differs among regions.
Figure 4 The regions characterized by the largest effects of forest co
change, Δ P: precipitation change for 2071–2090, without any change
changes, whereas the light colour bar on the right side to large but non-si
In most parts of the temperate zone the cooling and
moistening effects of afforestation are dominant during
summer. These feedbacks can reduce the projected
warming and drying especially in the northern part of
Central-Europe and Ukraine. Whereas increase of the
forest cover can enhance the climate change signal for
precipitation in some part of Spain, Belarus and Russia
but the magnitude of this impact is relatively small com-
pared to the effect of the emission changes. Thus the
analysis of the magnitude of the climatic feedbacks of
afforestation relative to the effects of the enhanced
greenhouse gas emission can help to determine the
regions, where forests can play an important role in
altering the climate change signal.
The regional characteristics of the effect of the assumed

potential afforestation on temperature and precipitation
have been analysed for three selected regions (Northern
Germany: DE, Northeast France: FR, Northeast Ukraine,
UA; Figure 2). Figures 5–6 show that for both temperature
and precipitation the climate change signal due to emis-
sion change and due to potential afforestation have the
opposite sign. It means that climatic effects of emission
ver increase on temperature and precipitation (Δ T: temperature
in emission). The dark colour bar on the left side refers to significant

gnificant changes.



Figure 5 Change of the summer temperature mean (Δ T) due to emission change (2071–2090 vs. 1971–1990), due to potential
afforestation (2071–2090) and due to emission change + potential afforestation. DE: Northern Germany, FR: Northeast France, UA:
Northeast Ukraine.
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change can be reduced by the forest cover increase in the
selected regions. The temperature change signals for
potential afforestation (−0.4 - -0.5°C) are smaller than for
emission changes (+2.4 - +2.9°C). In northeastern part of
Ukraine 20% of the emission change signal could be miti-
gated by the assumed afforestation (Figure 5).
Figure 6 Change of the summer precipitation sum (Δ P) due to emiss
afforestation (2071–2090) and due to emission change + potential aff
Northeast Ukraine.
The magnitude of the precipitation change shows larger
spatial differences. In the northern part of Germany, the
increase of the summer precipitation sum due to potential
afforestation (+ 17%; + 45 mm) would be larger than its
decrease due to the enhanced greenhouse gas emission
(Figure 6). Thus the increase of forest cover would fully
ion change (2071–2090 vs. 1971–1990), due to potential
orestation. DE: Northern Germany, FR: Northeast France, UA:
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compensate the projected climate change signal, as long as
there is enough soil moisture available. The combined
effect of afforestation and emission changes for 2071–2090
would result in a net precipitation increase compared to
the reference simulation for the past (1971–1990) without
any land cover change.
In the region of Northern France, the precipitation

decrease based on the A2 emission scenario is projected
to be larger (−26%; -69 mm). If emission changes occurred
together with potential afforestation, the half of the
original climate change signal could be relieved (Figure 6).
The relative climate change mitigating effect of potential
afforestation is projected to be similar in Northern
Ukraine (Figure 6), however both climate change signal
and afforestation effect are smaller in this area.

Effects of emission change and potential afforestation on
the summer temperature and precipitation extremes
Increase of forest cover affects not only the climatic means
but also the extremes. The probability density functions
(PDFs) of temperature show that distributions of the daily
temperature means are shifted towards the warmer direc-
tion under future climate conditions (Figure 7). The PDF
for the Ukrainian region indicates that the probability and
severity of extreme warm summers may increase signifi-
cantly under enhanced climate change. The PDF of the
potential afforestation scenario shows a similar shape but
with a slight shift towards colder values and a reduced
upper tail compared to the reference in 2071–90 (the other
two regions show similar behaviour – not shown). Conse-
quently, increase of forest cover can result in cooler
summer mean temperature (−0.5°C in Northern Ukraine)
and may contribute to the decrease of temperature variabi-
lity, thereby to the reduction of the projected climate
change signal.
In each of the selected regions the total number of warm

extremes (summer days, hot days, extremely hot days) are
Figure 7 Probability density function of the daily temperature means
projected to increase significantly at the end of the 21st
century (Table 2). Changes due to potential afforestation
have the opposite sign but they are relatively small com-
pared to the effect of the emission changes. The largest
benefit of forest cover could be reached in the French
region. Here, almost half of the increase in the number of
extremely hot days could be mitigated by the assumed
potential afforestation (Table 2).
Figure 8 illustrates that despite of the decrease of

the summer precipitation sum, the probability of the
extremely large daily precipitation amounts may in-
crease by the end of the 21st century, especially in
Ukraine. Assuming potential afforestation in this re-
gion, this tendency could be mitigated. The distribu-
tion of the precipitation amounts above 20 mm/day as
well as the effects of emission and land cover change
show spatial differences among the selected regions.
In Northern Germany and Northern France, affores-
tation may enhance the effects of increased green-
house gas concentrations, resulting in more severe
precipitation events.
Analysing the selected WMO-CCL/CLIVAR extreme

indices [44] for all summer days in the 20-year time
periods (Table 2) it can be concluded, that under
enhanced greenhouse gas conditions the number of
dry days may increase. Potential afforestation would
result in an increase of the daily precipitation
amount. Thus the probability of dry days would de-
crease as well as the number of days characterised by
larger than 10 mm precipitation may increase
(Table 2). The latter could fully compensate the effect
of emission change in the German region. In this area
the total number of very heavy precipitation days
show no changes due to emission change, but would
increase by 17 due to potential afforestation (Table 2).
In Northern Germany and Northern France not only
the probability but also the severity of heavy
(T) in the Northeast Ukrainian region.



Figure 8 Daily precipitation sums (P) in the summer months
within the investigated 20-year time periods. DE: Northern
Germany, FR: Northeast France, UA: Northeast Ukraine.

Table 2 Total number of the daily temperature and precipitation extremes [44] for summer in the investigated 20-year
time periods

Extreme index Definition [unit] Region Number of days Change of the number of days

REF SA2 vs. REF SA2F vs. SA2 SA2F vs. REF

SU when DE 168 +212 −29 +183

Number of summer days Tmax≥ 25°C [day] FR 248 +365 −32 +333

UA 760 +382 −55 +327

Tx30GE when DE 21 +54 −20 +34

Number of hot days Tmax≥ 30°C [day] FR 24 +152 −26 +126

UA 151 +227 −31 +196

Tx35GE when DE 0 +2 −1 +1

Number of extremely hot days Tmax≥ 35°C [day] FR 1 +22 −10 +12

UA 8 +47 −7 +40

RR1 when DE 796 +124 −53 +71

Number of dry days Rday < 1 mm [day] FR 931 +185 −45 +140

UA 1098 +132 −68 +64

RR10 when DE 133 −13 +41 +28

Number of heavy precipitation days Rday≥ 10 mm [day] FR 127 −38 +20 −18

UA 110 −21 +14 −7

RR20 when DE 19 0 +17 +17

Number of very heavy precipitation days Rday≥ 20 mm [day] FR 16 +1 +10 +11

UA 14 +3 +6 +9

REF: Reference simulation 1971–90, SA2: Emission scenario simulation 2071–90, SA2F: Potential afforestation experiment 2071–90. DE: northern Germany, FR:
northeast France, UA: northeast Ukraine. Bold and scored values: potential afforestation would reduce more than half of the climate change signal. Bold values:
potential afforestation would enhance the climate change signal.
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precipitation events would increase assuming potential
afforestation (Figure 8).

Summary and conclusions
A case study has been prepared with the regional climate
model REMO to assess the biogeophysical effects of a
hypothetic potential afforestation scenario during summer
in Europe for the end of the 21st century. Results of the
A2 IPCC-SRES emission scenario simulations with and
without forest cover increase have been compared to each
other, in order to quantify the sensitivity of the regional
climate model to land cover changes. For precipitation
and temperature means and extremes, the sign and the
magnitude of the biogeophysical effects of afforestation
have been analysed relative to the climate change signal
due to emission change. The regional characteristics of
the effects have been investigated in three selected areas.
Results of the sensitivity study can be summarised as

follows:

� In the temperate region potential afforestation can
result in a decrease of the summer temperature
mean (0.3-0.5°C) and an increase of the summer
precipitation sum (up to 50–60 mm).
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� For precipitation, the climate change mitigating
effects of afforestation differs among the selected
regions. In the northern part of Germany the
increase of forest cover would fully compensate the
projected climate change signal. In Northern France
the precipitation decrease based on the A2 emission
scenario is projected to be larger than in Northern
Ukraine. In both regions the half of the climate
change signal could still be relieved assuming
potential afforestation.

� In each of the selected regions increase of forest
cover may contribute to the decrease of the
variability of the daily temperature means, thereby
to the reduction of the projected climate change
signal. The strong increase of the number of warm
extremes (summer days, hot days, extremely hot
days) due to emission change can be slightly
reduced by the assumed potential afforestation.

� In Northern Germany and France, the forest cover
increase would enhance the effects of emission
change on extreme precipitation, resulting in more
severe heavy precipitation events. The probability of
dry days would decrease.

The magnitude of the possible climate change reducing
effects of a potential afforestation for Europe, on regional
scale, for longer future time period have not assessed
before. Based on the simulation results it can be concluded
that large, contiguous forest blocks can have distinctive
biogeophysical effect on the climate on regional and local
scale. Our land cover change study confirm that in smaller
areas the biogeophysical feedback processes can signifi-
cantly affect and modify the weather and climate, the
temperature and precipitation variability [45,46]. The mag-
nitude of the climatic effects of afforestation shows large
spatial differences. Although even the hypothetic, practi-
cally unrealistic increases of forest cover could not offset
the projected climate change in the most affected South-
European regions, ecological services and local scale be-
nefits of forest cover are highly valued. In the northern part
of the temperate zone forests may play an important role in
reducing the expected warming and drying during summer.
Northern Germany is a relative humid region. Here, affor-
estation shows large climatic effects, as long as there is
enough soil moisture available. The limiting role of the
available soil moisture during the summer months has
recently been investigated for this area for shorter time
period (Petersen pers. comm.).
For the introduced sensitivity study, one regional climate

model has been applied driven by one emission scenario.
Multimodel ensembles and intercomparison studies are
needed for studying the robustness of the results, which is
the aim of recent EU-projects (e.g. LUCID; [47]). The
spatial and temporal changes of vegetation cover due to
climate change were not considered. So far, there is no in-
formation available about the climate change effects on the
distribution of forest in Europe beyond limited case studies.
Our sensitivity study focused on the biogeophysical

feedbacks, the biogeochemical interactions, the pro-
cesses related to the carbon sequestration of forests and
soil were not taken into account. In the temperate zone,
net climatic effects of forests are determined by various
contrasting feedbacks [29]. In case of biogeophysical pro-
cesses, trees may contribute to warming due to their lower
albedo relative to grass. But depending on regional charac-
teristics forests can lead to cooling through the larger
amount of evapotranspiration compared to other land
surfaces. Similarly to Hogg et al. [38] Sánchez et al. [48],
Wramneby et al. [30] and Gálos et al. [39], our simulations
showed the dominant evaporative cooling effects for the
entire summer period. However the results regarding the
impacts of afforestation on temperature extremes are in
contradiction with Anav et al. [37] for the same region.
This result underlines that the simulated effects can
largely depend on the description of the land surface pro-
perties and the representation of physical processes at the
land surface and in the soil in the applied climate model
[49]. Biogeophysical and biogeochemical effects can en-
hance or dampen each other. Forested areas sequester
more carbon than grasslands. The carbon – climate feed-
backs under future climate conditions are large unknowns
[50]. Higher CO2 concentrations can also lead to the in-
crease of the stomatal resistance thereby to the inhibition
of the transpiration, which can amplify the global warming
[51,52]. Therefore for the quantification of the net climatic
benefits of forests, and to give appropriate suggestions for
carbon management options an integrated assessment of
these processes would be essential.
From a practical point of view, results of this case study

related to the investigation of the climate sensitivity due to a
hypothetic land use change and its regional differences can
contribute to the future adaptation strategies in European
agriculture and forestry. The understanding of the role of
land cover in the climate system becomes even more
important. Land cover characteristics due to climatic condi-
tions as well as policy induced land management are
region-specific. The sign and magnitude of the climatic
effects of afforestation and emission change also shows large
spatial differences. Therefore, to obtain regional scale infor-
mation, similar fine scale case studies are essential to quan-
tify and predict the climatic effectiveness of the different
land cover and land use practices.

Model and methods
The regional climate model REMO – general
characteristics and land surface representation
REMO (regional climate model at the Max Planck Institute
for Meteorology; [42,43]) is a regional three-dimensional
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numerical model of the atmosphere. The calculation of the
prognostic variables is based on the hydrostatic approxima-
tion. The physical parameterizations are based on the glo-
bal climate model ECHAM4 [53]. Land surface processes
in REMO are controlled by physical vegetation properties.
The parameters of leaf area index and fractional vegetation
cover for the growing and dormancy season, background
albedo, surface roughness length due to vegetation, forest
ratio, plant-available soil water holding capacity and volu-
metric wilting point are allocated to the different land cover
types of the Olson distribution [54,55]. The parameters are
aggregated to the model grid cell in the given horizontal
resolution. The vegetation parameters can be linearly aver-
aged, weighted by the fractional areas of the component
land cover classes [56]. The only exception is the roughness
length due to vegetation, which has to be logarithmically
averaged at a so-called blending height [57]. In the current
model version the vegetation phenology is represented by
monthly varying values of leaf area index and vegetation
ratio [58]. The mean climatology of the annual cycle of
background albedo is also implemented [59,60]. All other
land surface parameters remain constant throughout the
year. REMO has been validated for Europe [43] and the
simulation results have been compared to an ensemble of
regional climate model projections [61].

Experimental set up
The simulations have been carried out for Europe
(Figure 1), with 0.22° horizontal grid resolution. REMO
Figure 9 Changes of the roughness length ([m]; left) and leaf area ind
land cover (summer mean).
was driven with lateral boundary conditions from a simu-
lation conducted with the coupled atmosphere–ocean
model ECHAM5/MPI-OM [62,63].
The following experiments have been performed and

analysed (Table 1):

� Reference simulation for the past (1971–1990) with
present (unchanged) forest cover.

� Emission scenario simulation for the future
(2071–2090) with unchanged forest cover applying
the A2 IPCC-SRES emission scenario (continuously
increasing global population and regionally oriented
economic growth that is more fragmented and
slower than in other storylines [64]). This
experiment was the reference simulation to the land
cover change study.

� Emission scenario simulation with potential
afforestation for 2071–2090. The potential
afforestation map (Figure 2) is based on the net
primary production map for Europe derived from
remotely sensed MODIS (Moderate-Resolution
Imaging Spectroradiometer) products,
precipitation and temperature conditions from
the Wordclim database and soil conditions from
the International Institute for Applied Systems
Analysis.

Based on these conditions, areas on Figure 2 could be
theoretically forests. However, land cover is also
ex (right) for potential afforestation compared to the unchanged
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influenced by the land use policy, therefore the afforest-
ation scenario in our study is a hypothetic one, where add-
itional forested areas were assumed to be deciduous.
In case of the new potential forest cover map the frac-

tional area of the forests has been increased. In order to
include these changes into REMO, all characteristic land
surface parameters (i.e. leaf area index and fractional
vegetation cover for the growing and dormancy season,
background albedo, surface roughness length due to
vegetation, forest ratio, plant-available soil water holding
capacity and volumetric wilting point) have been recal-
culated and reaggregated for all model grid cells. Figure 9
represents the changes of two selected land surface para-
meters, which play a determining role in the land-
atmosphere interactions of the model. The increase of
the forested area in Europe (Figure 2) corresponds to an
increase of roughness length and leaf area index in
summer (Figure 9).

Method of analyses
The analyses of the simulation results focused on the
summer months (June, July, August), because of the
high radiation input, intense heat and mass exchange.
The leaf area index of the deciduous forests reaches its
maximum in this period, which has a strong control on
the land-atmosphere interactions.
The sign and the magnitude of the temperature and

precipitation changes have been analysed for the follo-
wing three cases:

� Climate change due to emission change has been
investigated comparing the results of the simulations
with unchanged land cover for 2071–2090 to
1971–1990.

� Climate change due to potential afforestation have
been calculated comparing the simulation results
with- and without forest cover increase for the
future time period (2071–2090).

� Climate change due to emission change and
potential afforestation has been determined
comparing the results of the potential afforestation
experiment (2071–2090) to the reference study in
the past (1971–1990) without land cover change.

A Mann–Whitney U-Test [65] was applied to test the
significance of the climatic effects of afforestation and
emission change. The regional characteristics of the effect
of afforestation have been investigated for three selected
regions in more detail, where temperature and/or precipi-
tation changes are significant at the 90% confidence level
and the assumed increase of the forested area exceeds
90%. The selected regions are (Figure 2): Northern
Germany (DE), Northeast France (FR) and Northeast
Ukraine (UA). All areas have the same size (15000 km2).
The probability distribution of temperature has been
calculated from the daily mean values in the investigated
20-year time periods based on the normal distribution
function. The indices of temperature and precipitation
extremes in this study were selected from the list of
climate change indices recommended by the World
Meteorological Organization–Commission for Clima-
tology (WMO–CCL) and the Research Programme on
Climate Variability and Predictability (CLIVAR [44]).
The selected indices (Table 2) describe cold and warm
as well as wet and dry extremes. They are defined in
terms of counts of days crossing absolute thresholds.
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