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Long-term and Short-term Targets: Conflict and Reconciliation
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Abstract : We address the issue of a tradeoff between long- and short-term interests in economic management. Starting
with an obvious observation that the actions targeted to long- and short-term goals are generally in conflict, we pass on
to a less obvious satement that it is not an exceptional situation that a smart decision maker can reduce or even eliminate
the conflict. We illustrate the statement by an informal analysis of a stylized model of management of an enterprise. We
show that if the managers put enough effort in identification of the current-value shadow prices of the enterprice, their
current short-term-optimal actions become non-distiguishable from the long-term-optimal ones.
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1. Introduction

Each of us has multiple objectives, and each of us realizes that
there is no chance to achieve all of them simultaneously; current
decisions are driven by tradeoffs of the objectives. A typical ex-
ample is the tradeoff between the short-term and long-term ob-
jectives. As usual, the short-term interest dominates in current
decision-making, and the long-term interest is kept on the back-
ground as a useful but rather abstract guideline. Does the repe-
tition of short-term optimal actions move one away from one’s
long-term objective, or does it eventually allow one to reach
that objective? From a systems analysis perspective these two
options split the world of the agent-driven systems into two big
clusters ? the cluster of ’unsustainable’ systems (in which the
agents’ short- and long-term objectives contradict each other)
and that of ’sustainable’ ones (in which the agents’ short- and
long-term objectives are, structurally, in agreement). In this pa-
per we focus on an example of a decision making pattern arising
in studies of long-term economic management.

Historically, rigorous studies of economic development were
strongly motivated by themathematical theory of optimal con-
trol (Pontryagin, et al, 1961). Accordingly, the issue of optimal
long-term economic growth was put in the focus (Arrow and
Kurz, 1970; Intriligator, 1971). The long-term optimization ap-
proach was rapidly developing, expanding the spectrum of eco-
nomic models and entering, in many aspects, mathematics (see,
e.g., Aubin and Clarke, 1979; Grossman and Helpman, 1991;
Barro and Sala-i-Martin, 1995; Weitzmann, 2003; Aseev and
Kryazhimskiy, 2007).

In recent years, an alternative approach, known asbehavioral
economics(see, e.g., Diamond and Vartiainen, 2007), was be-
coming more and more popular among the economists. Behav-
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ioral economics aims at understanding motivations/actions of
agents that drive economic processes. The agents (for example,
companies), in their practice, follow, usually, short-term objec-
tives (such as increase of the income in the next season), and
consider long-term goals as strategic guidelines.

The ‘behavioral’paradigm seems to be in conflict with the
theory of optimal long-term economic growth. However, purely
logically, the conflict is not that obvious. Why can’t the ‘my-
opic’agents act so as if they were instructed by the central
planner?

If the ‘myopic’and long-term-oriented actions are not in
conflict indeed, we can claim that the economic development is
multi-optimal, the optimal long-term scenario is implemented
through the short-term-optimal actions. In mathematics, multi-
optimality is exceptional. The multi-optimality of an economic
model can therefore be a reflection of the exceptional fact that
the economic system establishes ‘double guarding’against
moving away from a ‘correct’economic trajectory.

2. Model
Below, we use a simplified model of an enterprise to show that,
from the viewpoint of a long-term planner, short-term optimal
decisions may range from counter-optimal to the optimal ones,
depending on how smart are the managers in estimating the cur-
rent shadow prices in the production process.

Let us imagine an enterprise, whose managers do not plan
to close or sell it; based on that, we assume that the enterprise
operates over a time interval expanding from zero to infinity.

Let x(t) denote the size of the enterprise’s production capital,
the number of the equipment units operating at the enterprise at
a current timet. We assumex(t) to be a positive real (in reality,
the production capital is subdivided in a number of categories
and characterized by a vector). Below,x0 is a given size of the
production capital at the initial time, zero,

x(0) = x0 (1)

The managers regulate the enterprise by fixing, at each time,
t, the current investment,u(t), in the development of the enter-
prise. Thus,u(t) varies over time, being chosen by the managers

Innovation and Supply Chain Management, DOI: to be set , Copyrightc⃝ ISCM Forum 2013 all rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33901767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Innovation and Supply Chain Management, Vol. 7, No. 1, March 20132

from some set representing all allowable sizes for the current
investment.

We assume that at each time,t, the capital’s current increment
rate, ṫ(t), is determined by the current capital size,x(t), and
current investment size,u(t),

ẋ(t) = f (x(t),u(t)) (2)

here f is a function characterizing the effectiveness of invest-
ment; for example, ifu(t) is used to purchase equipment for
price r, (2) takes the formẋ((t) = ru(t) − δx(t) whereδ is the
capital obsolescence rate.

Now let us associate ourselves with the enterprise’s managers
who do their planning at the initial time, zero. Consider some
investment scenario as a function of time,t → u(t). Substi-
tuting u(t), for every t, in (2), we get an ordinary differential
equation describing the process of capital development under
the chosen investment scenario. Solving (2) subject to the ini-
tial condition (1), we construct a function of time,x → x(t),
showing us the capital growth trajectory under the investment
scenariot → u(t). Repeating this procedure for a large number
of investment scenarios (ideally, for all investment scenarios),
we construct the set of the corresponding capital growth trajec-
tories. All those investment scenarios and capital growth tra-
jectories are, potentially, feasible. We are now in a position to
decide, which of those paths should be followed in the future.
At this point, we need to use our strategic thinking and define
our long-term goal. We define our long-term goal as follows:

maximizing the enterprise’s overall benefit for the entire pe-
riod of its operation.

Let g(x(t),u(t)) be the enterprise’s marginal benefit at state
(x(t),u(t)), the marginal benefit gained through the sails of the
products and other enterprise’s activities is expressed in mon-
etary terms. The functiong characterizes the momentary effi-
ciency of the enterprise’s activities; for example, if the enter-
prise gains benefit through sails only,q is the number of prod-
ucts produced by one unit of equipment in one unit of time and
c is the products’price, one can setg(x(t),u(t)) = cqx(t).

Transition from timet to time t + △t (where trianglet is
small) brings us benefit of sizeg(x(t),u(t))△t (here and be-
low we neglect additional second order terms). Taking into
account inflation, with some rateρ, we represent the above in-
come in the monetary units operating at the initial time, zero,
aseρtg(x(t),u(t)). Summation over time with the vanishing time
step△t results in a standard integral form for the overall benefit,

J =
∫ ∞

0
eρtg(x(t),u(t))dt (3)

Thus, prior to taking any management decisions, we declare
that our strategic long-term goal is maximization of the enter-
prise’s overall benefit,J. Our declaration is nothing else than a
claim that we are going to find (and then follow) the solution to
theoptimal control problemfor the control system (2) with the
initial state (1) and objective functional (3),

maxJ =
∫ ∞

0
eρtg(x(t),u(t))dt (4)

Subject to

ẋ(t) = f (x(t),u(t))

x(0) = x0.

Remembering that the optimal control problem (4) is our
strategic principle, we, the enterprise’s managers, do not re-
gard it as a practical management recommendation. As usual,
we make our current management decisions adaptively, as re-
actions to the current situation. More specifically, we follow
an adaptation rule that seems most practical and reliable,maxi-
mization of the current monetary capital growth rate.

3. Adaptation rule

Let us consider our adaptation rule in more detail. Supposex(t)
is the current size of the enterprise’s production capital and we
are in a position to choose a current investment,u(t). Let us
take some hypotheticu(t) and estimate the increment in the en-
terprise’s monetary capital in a small transition fromt to t +△t.
The increment has two components, the income due to the sails,
and the increment in the value of the production capital. As
earlier, we estimate the income due to the sails asg(x(t),u(t)).
An obvious estimate for the increment in the value of the pro-
duction capital isp(t)ẋ(t)△t, wherep(t) is the current price for
equipment. Thus, for the increment in the enterprise’s monetary
capital we have the estimate,

p(t)ẋ(t)△t + g(x(t),u(t))△t.

Dividing by △t and letting△t go to zero, we find that the
current monetary capital growth rate is given by

M(t) = p(t)ẋ(t) + g(x(t),u(t)),

or (see (2))

M(t) = p(t) f (x(t),u(t)) + g(x(t),u(t)). (5)

In economic applications of optimal control theory,M(t)
is known as thecurrent-value Hamiltonian, and p(t) as the
current-value adjoint variable. Trying different values foru(t),
we get different values for the current monetary capital growth
rate,M(t). Remembering that our adaptation rule is maximiza-
tion of the current monetary capital growth rate, we chooseu(t)
so as to maximizeM(t),

maxM(t) over u(t) (6)

In order to findu(t) from (6), we need to know the current
price for equipment,p(t) (see (5). Let us note thatp(t) is not
the price, for which equipment can be sold on the market of
products today;p(t) is the price of the enterprise on the ‘market
of enterprises’. Using p(t), a potential buyer estimates the
efficiency of the enterprise in bringing income in the long run.
Identification ofp(t) is a non-trivial task, which is reflected in
its name,‘current-value shadow price’.

Certainly, we can estimate the current-value shadow price,
p(t), empirically, based on experience or common sense. How-
ever, empirical estimates can lead us to counter-optimal deci-
sions.

4. Example
Let model (2) have the form

ẋ(t) = ru(t) − δc(t),
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implying that investment,u(t), is used to purchase equipment
for pricer and the production capital depreciates at rateδ. As-
sume that investment in development of the production capital,
u(t), is not allowed to exceed a given upper boundu+ > δ/r,
and the enterprise gains benefit due to the sails of products and
due to some other activity, for which the amount ofu+ − u(t)
is invested at each timet. The marginal benefit due to the sails
is given bycqx(t) whereq is the number of products produced
by one unit of equipment in one unit of time andc is the prod-
ucts’ price. Letting the marginal benefit due to the alternative
activities be proportional to the current investment in those ac-
tivities, we estimate it asa(u+ −u(t)) with some proportionality
coefficienta. Thus, for the marginal benefit we have

g(x(t),u(t)) = cqx(t) + au+ − au(t).

Let us, rather rationally, assume that the current shadow
price, p(t), is proportional to the current market value for the
equipment, i.e.,

p(t) = bx(t).

whereb is some proportionality coefficient. Then the current-
value Hamiltonian (5) takes the form

M(t) = bx(t)(ru(t) − δx(t)) + cqx(t) + au+ − au(t).

Using the adaptation rule (6), we find that

u(t) =

{
u+ , i f bx(t)r − a > 0
u(t) − 0 , i f bx(t)r − a < 0

.

Based on these relations, we easily deduce that

u(t) =

{
u+ , i f x0 > a/br
u(t) − 0 , i f x0 < a/br

. (7)

In the former case, we constantly invest the full amount in
development of the production capital and invest nothing in the
alternative activities, and in the latter case we do the opposite.

Depending on parameter values, this rational investment
strategy can be both optimal and counter-optimal. Indeed,
straightforward calculations (see Appendix 2) yield that the op-
timal investment policy is the following:

u(t) =


0 i f δ < ρ

0 i f δ > ρ, a < cqr and t< t∗
u+ i f δ > ρ, a < cqrand t> t∗

; (8)

heret∗ is defined by

e−ρt∗ (cqr− a) = (ρ + δ)e−δt∗ .

We see that the adaptation rule (7) gives us the optimal in-
vestment size (8) for all times, t, ifx0 < a/br (see the latter
case in (7) holds and the former case in (8) takes place (i.e.,
eithera ≥ cqr or a < cqr, δ < ρ). Otherwise, the latter case in
(8) takes place and (7) gives us the non-optimal investment size
either for t < t∗ or for t > t∗ (if, respectively, the former and
latter cases in (7) take place).

5. Conclusion

We used a stylized model of development of an enterprise to
show that‘myopic’management decisions aimed at improving
the entrprise’s performance in the short run (namely, at raising
its monetary capital in each next time period) and‘ forward
looking’ones aimed at optimizing the enterprice’s operation
in the long run (namely, at maximizing its benefit flow over
an infinite time period) may both strongly disagree and stay in
good agreement. A key to reducing a conflict between‘ my-
opic’and‘ forward looking’decisions is identification of the
current-value shadow prices for the enterprise. If the current-
value shadow prices are understood as market prices for the
enteriprice’s equipment or are based on management experi-
ence, the conflict can be strong. A careful on-line analysis of
the future scenarios for the enterprise’s operation in the market
and financial environments opens up a way to accurate identifi-
cation of the current-value shadow prices and to elimination of
the conflict.

Appendix

A. Current-value shadow price

Let us outline an argument that leads to finding the current-
value shadow price,p(t), to be used in the adaptation rule (6).
In our argument, we use a currency unit common for all times,
t; for that currency unit we take the one that operates at the
initial time, 0. This currency unit is, due to inflation,eρt times
stronger than the one used at timet. Therefore, the current-
value shadow price evaluated asp(t) in the units of the current
currency, takes aeρt times smaller value,ψ(t), being expressed
in terms of the initial currency units,

ψ(t) = e−ρt p(t),

we callψ(t) the universal shadow price, or, shorter, the shadow
price at timet. Multiplying the current monetary capital growth
rate,M(t), (see (5)) bye−ρt, we recalculateM(t) using the initial
currency unit; we get

H(t) = e−ρtM(t) = ψ(t) f (x(t),u(t))

+e−ρtg(x(t),u(t)). (A. 1)

Now we rewrite the adaptation rule (6) usingH(t) instead of
M(t):

maxH(t), over u(t). (A. 2)

We assume thatu(t) that solves the maximization problem
(A. 1) does not lie on the boundary of the set of all values ad-
missible for the current investment (note that choosing bound-
ary, ‘emergency’values is not typical for economic decisions).
Then the derivative of the maximized function (A. 1) vanishes
at pointu(t), i.e.,

ψ(t)
∂ f (x(t),u(t))

∂u
+ e−ρt ∂g(x(t),u(t))

∂u
= 0. (A. 3)

Note that (A. 3) allows us, in principle, to findu(t) as an ex-
plicit function of t, x(t) andψ(t),

u(t) = U(t, x(t), ψ(t)). (A. 4)
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Let us introduce the enterprise’s monetary capital (expressed
in terms of the initial currency unit),C(t). Note that the deriva-
tive of the monetary capital gives us the current monetary capi-
tal growth rate,

Ċ(t) = H(t). (A. 5)

Let us now look at·C(t) from a different perspective. Con-
sider the enterprise’s overall benefit subsequent to timet, J(t).
Similarly to (3), we have

J(t) =
∫ ∞

t
e−ρtg(x(s),u(s))ds. (A. 6)

Assume for the moment that at timet we are able to ‘con-
vert’the enterprise into the overall benefit subsequent tot, to
‘exhaust’the enterprise and get a monetary benefit of sizeJ(t).
In this virtual scenario, we putJ(t) on a bank account at timet,
and subsequently get our dividend from the bank. Ideally, the
interest rate equals the inflation rate,ρ. Therefore, in our virtual
scenario, at timet we getρJ(t) from the bank. In an ideal econ-
omy, the optimal investment policy suggests that the monetary
capital rate in the production process,Ċ(t), is as profitable as
that we get from the bank in the virtual scenario,ρJ(t),

Ċ(t) = ρJ(t)

Using (A. 5), we rewrite this as

H(t) = ρJ(t) (A. 7)

Let us assume that our investment scenario,t → u(t), is op-
timal, implying that (A. 7) holds for all times,t. This assump-
tion leads us to two important features of the dynamics of the
shadow price,ψ(t).

One feature characterizes the behavior ofψ(t) for larget. Let
t go to infinity. Using (A. 6), we find thatJ(t) tends to zero.
Then by (A. 7)H(t) tends to zero, too. Based on formula (A. 1)
for H(t), we get that

ψ(t) f (x(t),u(t)) + e−ρtg(x(t),u(t))→ 0, as t→ ∞. (A. 8)

Assumingg to be bounded, we find that the second term in
(A. 8) tends to zero. Now (A. 8) tells us that the first term in
(A. 8) tends to zero as well. The latter fact, under an additional
assumption that the values of fare separated from zero, implies
that

ψ(t)→ 0 as → ∞. (A. 9)

Thus, the shadow price vanishes in the long run.
The other feature of the shadow price is its dynamics. Differ-

entiation of (A. 7) yields

Ḣ(t) = ρJ̇(t). (A. 10)

Specify the right and left hand sides in this equality. Using
formula (A. 1) forH(t), we get

Ḣ(t) = ψ̇(t) f (x(t),u(t)) + ψ(t)
∂ f (x(x(t),u(t))

∂x
ẋ(t)

+ψ(t)
∂ f (x(t),u(t))

∂u
u̇(t) − ρe−ρtg(x(t),u(t))

+e−ρt ∂g(x(x(t),u(t))
∂x

ẋ(t) + e−ρt ∂g(x(t),u(t)
∂u

u̇(t).

By (A. 3), in the right hand side the sum of the last terms in
the first and second lines is zero; the first term, using (2), we
represent aṡψ(t). Hence,

Ḣ(t) = ψ̇(t)ẋ(t) + ψ(t)
∂ f (x(x(t),u(t))

∂x
ẋ(t)

−ρe−ρtg(x(t),u(t)). (A. 11)

Differentiation ofJ(t) (see (A. 5)) yields

ρJ̇(t) = −ρe−ρtg(x(t),u(t)). (A. 12)

Based on (A. 9), we equalize the right hand sides in (A. 11)
and (A. 12). Canceling the common term,−ρe−ρtg(x(t),u(t)),
we get

ψ̇(t)ẋ(t) + ψ(t)
∂ f (x(t),u(t))

∂x
ẋ(t)

+e−ρt ∂g(x(t),u(t))
∂x

ẋ(t).

Canceling the nonzero multiplier ˙x(t) = f (x(t),u(t)), we fi-
nally find that

ψ̇(t) = −ψ(t)
∂ f (x(t),u(t)

∂x

−e−ρt ∂g(x(t),u(t)
∂x

. (A. 13)

The latter, holding for all times,t, describes the dynamics of
the shadow price,ψ(t). Recall that the optimal investment,u(t),
is an explicit function oft, x(t) andψ(t), u(t) = U(t, x(t), ψ(t))
(see (12)). Substituting into (A. 13), we transform the latter into

Ḣ(t) = −ψ(t)
∂ f (x(t),U(t, x(t), ψ(t)))

∂x

−e−ρt ∂g(x(t),U(t, x(t), ψ(t)))
∂x

. (A. 14)

Substitution ofu(t) = U(t, x(t), ψ(t)) into (2) yields

ẋ(t) = f (x(t),U(t, x(t), ψ(t))). (A. 15)

We get the entire set of relations by adding the boundary con-
ditions (1) and (A. 8) (in which we substitute

u(t) = U(t, x(t), psi(t)),

x(0) = x0, (A. 16)

Ψ(t) f (x(t),U(t, x(t), ψ(t)))

+e−ρtg(x(t),U(t, x(t), ψ(t)))→ 0 as→ ∞. (A. 17)

Thus, the coupled optimal dynamics of the production cap-
ital, x(t), and the shadow price,ψ(t), is described by the sys-
tem of differential equations (A. 14), (A. 15) and the bound-
ary conditions (A. 16), (A. 17). These relations follow from the
Pontryagin maximum principle providing necessary optimality
conditions for optimal control problems of type (4). We see
that, in order to form the optimal investment policy,t → u(t),
one needs to solve the system (A. 14), (A. 15) under the bound-
ary conditions (A. 16), (A. 17) and setu(t) = U(t, x(t), ψ(t)) at
each timet. The latter equality agrees with our adaptation rule
(maximization of the current monetary capital growth rate (see
(A. 1)), in which the shadow price,ψ(t), is computed by solv-
ing (A. 14)- (A. 17). Let us recall in conclusion that our non-
mathematical argument is essentially based on an assumption
that the economy, in which the enterprise operates, is a perfect
environment for production and banking.
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B. Proof of formula (8)

Here we derive formulas (8) for the optimal investment policy
in the Example. Given an investment policyt → u(t), the cor-
responding trajectory for the production capital,t → x(t), for
model ẋ(t) = ru(t) − δx(t), is given by

x(t) = e−δtx0 + r
∫ t

0
e−δ(t−s)u(s)ds.

Hence, for the overall benefitJ, (3), whereg(x(t),u(t)) =
cqx(t) + au+ − au(t), we have

J =
∫ ∞

0
e−ρtg(x(t),u(t))dt = J0 + J1

where

J0 =

∫ ∞
0

e−ρt[e−δtx0 + au+]dt

is a constant and

J1 = cqr
∫ ∞

0
e(ρ+δ)t

∫ t

0
eδsu(s)dsdt− a

∫ ∞
0

eρtu(t)dt

=
1

ρ + δ

∫ ∞
0

[e−ρt(cqr− a) − (ρ + δ)e−δt]u(t)dt

The singlet → u(t) taking values between 0 andu+, which
maximizesJ1 is given by

u(t) = 0, i f a ≥ cqr or a < cqr, δ < ρ;

u(t) =

{
0 if t < t∗, a < cqr, δ > ρ
u+ if t > t∗, a < cqr, δ > ρ

wheret∗ is defined by

e−ρt∗ (cqr− a) = (ρ + δ)e−δt+ .

Formula (8) is stated.
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