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Abstract 

The financial crises of 2001-2002 and 2008-2009 had a significant impact on the world 
economy. In this paper, we investigate whether early warning signals can be seen in 
financial time series preceding the crises. In our analysis, we use data on the Dow Jones 
Industrial Average and Federal Reserve Interest Rate. We construct a random process 
describing the occurrence of positive and negative signals in a time series preceding the 
financial crisis of 2001-2002. We use the constructed random process and a time series 
for the period 2001-2008 to assess the probability of a crisis to occur in 2008-2009. We 
show that the probability exhibits a steady growth and conclude that the proposed 
method demonstrates an ability to register early warning signals on the global financial 
crisis of 2008-2009. 
 
Keywords: collapse analysis, early warning signals, financial crisis, data  processing, 
binary model, encoding rules, stochastic processes 
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Towards Detection of Early Warning Signals

on Financial Crises

Alena Puchkova
Arkady Kryazhimskiy

1 Introduction

Financial crises have strong impacts on the economy, including labor markets, household
incomes, and the profitability of companies. Substantial literature is devoted to under-
standing how financial crises develop. Papers [1]-[3], [8], [10]-[13] review background
information on the latest Global Financial Crisis of 2008-2009 and the Dot-com boom of
2001-2002, and explore how these crises developed and how collapse of the Dow Jones
market spread globally. In [6] the US housing market is simulated in order to measure
a systematic impact of the ratchet effect, which caused the Global Financial Crisis. In
[5], behavior of six leading US economic indicators is analyzed in the context of forecast-
ing the onset and the end of recessions; the authors use a pattern recognition algorithm
developed for predicting infrequent events. In [9] it is argued that catastrophic bubbles
such as the Global Financial Crisis are caused by the formation of increasing and decreas-
ing trends, and that smaller crises can provide statistical laws for bubble formation and
financial collapse.

In this paper we view financial crises as extreme events. Compared to fluctuations in
values of the indicators of a system’s performance, extreme events are usually understood
as qualitative shifts in the system’s behavior. In this context, signals on the upcoming
extreme events can be characterized in terms of tendencies rather than predictions on
particular quantities. Roughly, one can group the tendencies in two categories – tendencies
to a crisis (an extreme event of a negative character) and tendencies to avoiding a crises.
Under that paradigm, early warning signals can be treated in a binary way – as either
“minus” signals registering a tendency to a crisis, or “plus” signals registering a tendency
to avoiding a crisis (see [7]).

Based on this binary approach, we develop a three-stage research pattern for identify-
ing tendencies to crises in application to two recent financial crises – the Dot-com crisis
of 2001-2002, and the latest global financial crisis of 2008-2009.

A first stage is recognition. Assessing an eight-year-long financial time series (on the
Dow Jones Industrial Average and Federal Reserve Interest Rate) preceding the crisis of
2001-2002, we identify some “minus” and “plus” signals. We understand the “minus”
signals as short (four-month-long) patterns in the time series, which occur, primarily,
close to the time of the crisis, and the “plus” signals as those occurring, primarily, in
earlier periods. We propose a binary encoding rule that transforms short data patterns
into “minus” and “plus” signals.
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A second stage is a statistical analysis. We use the binary encoding rule to transform a
long (1954-2001) time series preceding the crisis of 2001-2002 into a sequence of “minus”
and “plus” signals, and analyze the frequencies of a “minus” and a “plus” to follow
each short binary window in the sequence (in our analysis each binary window is formed
by three subsequent overlapping signals covering six months). We treat the frequencies
as transition probabilities, which define a binary random process operating in the space
of the binary windows. In our analysis the binary random process serves as a model
describing the mechanism for the “plus” and “minus” signals to occur in the operation
of the financial system under consideration. Two important features of the model are
the following. Firstly, as ensured by the recognition analysis, the model recognizes early
warning signals on the crisis of 2001-2002. Secondly, as ensured by the statistical analysis,
the model captures the dynamics of signals occurring in a long historical time series.

A third stage is testing the forecasting ability of the model. We use the model to assess,
retrospectively, the probability of a financial crisis to occur in October 2008 (the latest
global financial crisis was registered in the period from October 2008 to February 2009).
We show that the probability grows steadily starting from October 2007 and reaches value
1 in August 2008. Thus, our binary stochastic model based on analysis of data preceding
the crisis of 2001-2002, demonstrates an ability to register early warning signals on the
global financial crisis of 2008-2009.

In section 2 we provide a brief overview on the Dot-com crisis of 2001-2002 and the
global financial crisis of 2008-2009.

In sections 3, 4 and 5 we present, respectively, the recognition stage, statistical analysis
stage and testing stage of our research effort.

2 Recent financial crises

Here we provide a brief overview on the Dot-com crisis of 2001-2002 and the global
financial crisis of 2008-2009.

2.1 The Dot-com crisis, 2001-2002

According to [3] and [17], in 2001 the stock markets, which followed the rapid upswing
in technology stocks in the late 1990’s, achieved a high point and a bubble was formed.
Valuations of stocks did not correspond to real values. The bubble collapsed. Since the
bubble was essentially powered by the rise of Internet sites and the technology industry
in general, many of these companies went bankrupt, which gave the crisis the name the
“Dot-com crisis”. The Dow Jones Industrial Average (DJIA) fell down from 11497 points
in December 1999 to 7581 points in September 2002, a drop of 34% in nominal terms.

The Dot-com crisis resulted from a rapid appreciation of technology stocks, which led
to a steady growth in DJIA. Growth in DJIA was essentially motivated by a significant
level of confidence in new and emerging technology businesses related to technology stocks,
which created a high level of confidence and strength in the economy in the US, and its
spread world wide.

To put some pressure on the economy expanding too quickly (in December 1999, DJIA
reached an extreme height of around 11,500 points) and to constrain money supply, the
Federal Reserve started to increase the Federal Reserve Interest Rate (FRIR) around
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Figure 1: The Dow Jones Industrial Average (DJIA) and Federal Reserve Interest Rate
(FRIR) in the period from February 1994 to May 2002 (monthly data, 100 months).

January 1999 (see the red curve in Figure 1). The upward pressure on interest rates
reached a peak in June 2000, which was maintained until, approximately, December 2000.
DJIA started to oscillate in a range between, approximately, 10,000 and 11,000 points. A
collapse in DJIA became visible in June 2001 (see the blue curve in Figure 1); in October
2001, DJIA fell down to 9,000 points. The Federal Reserve started to decrease interest
rates as the US economy seemed to be stalled. The Federal Reserve reduced interest rates
from 6.5% in November 2000 to 1.75% in February 2002 to stimulate the economy. This
had the effect of mitigating a fall in the DJIA and the broader world economy going into
a recession.

2.2 The global financial crisis, 2008-2009

In this subsection we use [1], [2], [11]-[13] and [16] as sources.
The global financial crisis of 2008-2009 is considered by many economists as the worst

financial crisis since the Great Depression of the 1930s. It resulted in the collapse of many
large banks in the US, for example, Bear Strearns, Merrill Lynch, the Lehman Brothers.
The US government undertook bailout measures for some banks and let other banks buy
banks damaged by the collapse. Internationally, this scene was repeated around the world
particularly in Europe, but less so in South East Asia and Australia. As a consequence,
this led to the downturns in stock markets around the world. In many countries, the
housing markets also suffered, resulting in numerous people being evicted from their
homes, increased bank foreclosures and prolonged vacancies. This was particularly so in
the US where the housing bubble reached extreme proportions created by the banks and
other lenders whose lending policies were out of control. The trust of self-monitoring of
banks and other financial institutions failed in a significant way. This was particularly
the case in the US where there was a large drop in the value of house prices, which in
turn contributed to the failure and insolvency of key businesses and finally the decline in
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consumer wealth and confidence. This led to a significant decline in economic activity
and to a severe global economic recession in 2008.

Figure 2: The Dow Jones Industrial Average (DJIA) and Federal Reserve Interest Rate
(FRIR) in the period from February 2001 to May 2009 (monthly data, 100 months).

These failures were estimated to have been in the order of trillions of US dollars in the
US alone. The global financial crisis was triggered by a cash shortfall in the US banking
system in 2008 and the collapse of the US housing bubble which peaked in 2007. This
damaged financial institutions globally and damaged investor confidence had an impact
on global stock markets such as the Dow Jones, where shares suffered large losses during
2008 and early 2009. During this period economies worldwide slowed down as credit
tightened and international trade declined. Governments and central banks responded
with unprecedented fiscal stimulus packages, monetary policy expansion and institutional
bailouts. Although there have been aftershocks, the financial crisis itself ended sometime
between late-2008 and mid-2009.

The crash began on October 6, lasting a week. DJIA fell 18%, its worst weekly decline.
On October 24, 2008 many of the world’s stock exchanges experienced their worst declines
in history, with drops of around 10% in most indices. By February 2009 the DJIA dropped
49,3% to 7063 points from its peak of 13930 points reached in October 2007, in just 16
months (see Figure 2).

Figure 2 shows that DJIA (the blue curve) reaches the highest level of 13930 points
in October 2007 whilst FRIR (the red curve) climbs from 1% to 5.25%. The Federal
Reserve increased the interest rates to stop the economy from overheating that could be
attributed to the banking system not being in control of the housing market and toxic
debt world wide. In October 2007 there was a common understanding that some major
banks had liquidity problems. As this became known to the populace, the stock market
collapsed. From October 2007 to February 2009 DJIA dropped 6867 points. The Federal
Reserve attempted to support the economy by decreasing interest rates to almost zero
from October 2007 to November 2008. The interest rates was staying at a nearly zero
percent for three years showing the depth of the collapse.
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3 Recognition: Dot-com crisis

In the recognition stage of our analysis, our goal is to identify pre-cursors of the Dot-
com crisis of 2001-2002. We use time series for DJIA and FRIR (see Appendix 2 and
Figure 1), representing the monthly data for the period from February 1994 to May 2002
– 100 months that precede and cover the Dot-com crisis.

3.1 Binary encoding rule

Here, we describe a binary encoding rule that transforms each short pattern in the above
mentioned 100-month-long time series, y1, y2, ..., y100, that precedes and covers the Dot-
com crisis, into either a “minus” signal registering a tendency to a crisis, or a “plus” signal
registering no tendency to a crisis. Here, yi = (y1i , y

2
i ), y

1
i is the value for DJIA and y2i is

the value for FRIR in month i (i = 1, . . . , 100).
We discretize the data. For this purpose, we introduce a grid in the two-dimensional

y space, with steps

h1 =
y1max − y1min

N
and

h2 =
y2max − y2min

N

on the y1 axes and y2 axes, respectively; here y1max and y1min are the maximum and
minimum values for DJIA over months 1, . . . , 100; y2max and y2min are the maximum and
minimum values for FRIR over months 1, . . . , 100; and N is a natural number, which
we call the grid dimension. For each node on the grid, ȳ = (ȳ1, ȳ2) = (y1min + Y 1h1,
y2min + Y 2h2), where Y 1, Y 2 are integers located between 0 and N , we define its grid

coordinates as a pair Y = (Y 1, Y 2) and do not distinguish between ȳ and Y .
We approximate each vector, y, in the time series y1, y2, ..., y100 by a node on the grid,

Y = (Y 1, Y 2), that is closest to y in the Euclidean metric. Using this approximation, we
transform the time series y1, y2, ..., y100 into a sequence of nodes, Y1, Y2, ..., Y100, which
we call the grid series.

Take a natural m much smaller than 100; we call it the pattern length. We de-
fine pre-patterns as (m + 1)-long subsequences in the grid series, Yi, Yi+1, ..., Yi+m, where
i = 1, . . . , 100−m. Any sequence of the form

z = (z1, z2, . . . , zm+1) = (Yi − li, Yi+1 − li, ..., Yi+m−1 − li, Yi+m − li)

where Yi, Yi+1, ..., Yi+m is a pre-pattern, li = (l1i , l
2
i ), l1i = min{Y 1

i , ..., Y
1
i+m},

l2i = min{Y 2
i , ..., Y

2
i+m} (i = 1, . . . , 100 − m), will be said to be a pattern. In contrast

to the pre-patterns, the patterns are insensitive to the locations of the (m+ 1)-long sub-
sequences on the grid series, representing their shapes only.

We categorize the patterns into two groups, a “−” group and a “+” group in such a
way that the “−” patterns concentrate closer to month 100, the time of the crisis, and
the “+” patterns concentrate closer to month 1, far away from the time of the crisis. We
interpret these locations of the “−” and “+” patterns in time so that the “−” patterns
“feel” crisis, whereas the “+” patterns do not.

In our study we set m = 3. Therefore, the patterns, z, have length 4,

z = (z1, z2, z3, z4), zj = (z1j , z
2
j ) = (DJj, FRj) (j = 1, 2, 3, 4). (1)
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We define a pattern z (1) to be a “−” pattern if it satisfies one of the following conditions:
(A−) DJj ≥ DJj+1 and FRj < FRj+1 for some j = 1, 2, 3;
(B−) DJj ≥ DJj+1 and FRj > FRj+1 for some j = 1, 2, 3;
(C−) the number of j = 1, 2, 3, 4 such that DJj ≥ 1 is not less than 2 and FRj = 0

for all j = 1, 2, 3, 4.
We define a pattern z (1) to be a “+” pattern if it satisfies one of the following

conditions:
(A+) DJj < DJj+1 and FRj < FRj+1 for some j = 1, 2, 3;
(B+) DJj < DJj+1 and FRj > FRj+1 for some j = 1, 2, 3;
(C+) the number of j = 1, 2, 3, 4 such that DJj ≥ 1 is less than 2 and FRj = 0 for all

j = 1, 2, 3, 4.
It is easily seen that for each pattern z (1) at least one of the conditions (A−), (B−),

(C−), (A+), (B+), (C+) is satisfied. If two conditions, one from the “−” group: (A−),
(B−), (C−) and one from the “+” group: (A+), (B+), (C+), are satisfied for some z, we
define it to be a “+” pattern. Thus, each pattern belongs to either the “−” group or to
the “+” group.

Let us give a rough economic interpretation of the above definitions.
Suppose DJIA goes down and FRIR grows. Growth in FRIR implies that the economy

gets less cheap money, and investment becomes more expensive. The decrease in DJIA
shows that the economy fails to cope with that financial pressure, and gives us a negative
signal. This can explain (A−).

Suppose both DJIA and FRIR go down. In this situation, the economy does not react
positively to the fact that the interest rates go down. In other words, the economy is
pessimistic about its future prospects. A further drop in the interest rates is needed in
order to stimulate the economy. This can be qualified as a negative signal. In this manner,
we explain (B−).

Suppose DJIA varies and FRIR stays constant. In this situation the economy is not
regulated financially. We treat it as a negative signal and come to (C−).

Suppose DJIA grows, showing that the economy is strong, and let FRIR grows as well.
Growth in FRIR is an indication of an effort to slow down economic growth and implies
that the economy is very strong. A strong economy provides no signal on an upcoming
crisis. This can justifies (A+).

Suppose DJIA grows and FRIR goes down. The decrease in FRIR shows an effort
to stimulate the economy. The effort is efficient, since DJIA grows, showing that market
is expected to be stronger. Again, no signal on a crisis is seen. In this manner, we can
justify (B+).

Finally, suppose both DJIA and FRIR stay constant. This is an equilibrium situation.
We treat it positively and we come to (C+).

To come to the above definitions of the “−” and “+” groups, we have used a special
pattern classification algorithm described in Appendix 1 and implemented as a software
(see Appendix 4). The definitions of the “−” and “+” groups provide us with a binary

encoding rule, using which we transform every pattern z (1) into either a “−” signal
supposed to register a tendency to a crisis, or a “+” signal supposed to register no tendency
to a crisis. Namely, for every “−” pattern z we say that “−” is the code of z, and for
every “+” pattern z we say that “+” is the code of z.

6



3.2 Verification of the binary encoding rule

We use the binary encoding rule to transform the grid series Y1, . . . , Y100 into a sequence
of “−” and “+” signals, s1, . . . , s96, where si is either a “−” or a “+” (i = 1, . . . , 96).
Namely, for i = 1, . . . , 96 we set si to be the code of the pattern zi that starts at month i,

zi = (zi1, z
i
2, z

i
3, z

i
4) = (Yi − li, Yi+1 − li, Yi+2 − li, Yi+3 − li), (2)

li = (l1i , l
2
i ), l1i = min{Y 1

i , Y
1
i+1, Y

1
i+2, Y

1
i+3}, l2i = min{Y 2

i , Y
2
i+1, Y

2
i+2, Y

2
i+3}.

To verify that the proposed encoding rule allows us to “feel” the approach of the Dot-
com crisis, we consider the evolution of Fi, the fraction of the “−” signs in the moving
10-long window of signals, si, . . . , si+9 (i = 1, . . . , 87), for N = 4. Figure 3 shows that Fi

stays below 0.6 before November 1998 and above 0.6 after November 1998. In the period
from February 1998 to May 1999 Fi exhibits a rapid growth, and it never drops below
0.7 after December 1998. Thus, the “−” signals concentrate, primarily, in the period
adjoining the time of the Dot-com crisis. We interpret this as an evidence for the fact
that in the original time series we have satisfactorily recognized the “−” signals registering
a tendency to a crisis.

Figure 3: Behavior of Fi, the fraction of the “−” signals in the moving 10-long window
of signals, si, . . . , si+9 (i = 1, . . . , 87); m = 3, N = 4.

Remark 1 It is well-known that robustness to variations in parameter values is an im-
portant property of methods of assessment of uncertain systems; it serves as an indication
of the reliability of the assessment results. Our experiments show that for a relatively
wide range of values for the pattern length, m > 3, and grid dimension, N > 4, we sat-
isfactorily recognize “−” signals in the original time series if we use (A−) and (B−) and
generalize (C−) as

(D−) the number of j = 1, . . . ,m + 1 such that DJj ≥ 1 is not less than m − 1 and
FRj = 0 for all j = 1, . . . ,m+ 1.

Accordingly, we satisfactorily recognize “+” signals using (A+) and (B+) and gener-
alizing (C+) as

(D+) the number of j = 1, . . . ,m + 1 such that DJj ≥ 1 is less than m − 1 and
FRj = 0 for for all j = 1, . . . ,m+ 1.

In other words, the proposed binary encoding rule is robust to variations in the pa-
rameter values of our recognition method.
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4 Statistical analysis: time series for 1954-2001

In the second stage of our analysis we use the binary encoding rule and a time series for
a long period preceding the Dot-com crisis (1954-2001) to construct a random process
describing the occurrence of “−” and “+” signals in the operation of the financial system.
Following subsection 3.1, we set m = 3 and N = 4.

4.1 Historical transition probabilities

We use the constructed binary encoding rule (see subsection 3.1) to transform the DJIA
and FRIR time series for the period 1954-2001 into a historical binary sequence of “−”
and “+” signals, following each other with one-month steps, and carry out a statistical
analysis of the historical binary sequence.

Namely, we consider every three subsequent signals in the historical binary sequence
(covering, together, six months) as a binary window. For every binary window, σ̄ =
(σ̄1, σ̄2, σ̄3), we collect all subsequent binary windows, and for every subsequent binary
window, σ = (σ1, σ2, σ3) (which, due to its overlap with σ̄, is necessarily such that σ1 = σ̄2

and σ2 = σ̄3), we compute the frequency of its occurrence after σ̄. We treat that frequency
as a historical probability, p(σ|σ̄), for σ to follow σ̄, or a historical transition probability for
σ̄ to be transformed to σ in a one-step transition. We organize the transition probabilities
as amatrix of transition probabilities, Z, whose columns correspond to the binary windows,
σ̄, and rows correspond to the subsequent binary windows, σ. The matrix has the form

Z =

+++ ++− +−+ +−− −++ −+− −−+ −−−
453/479 0 0 0 26/29 0 0 0
26/479 0 0 0 3/29 0 0 0

0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1/2 0 0 0 29/33 0
0 0 1/2 0 0 0 4/33 0
0 0 0 9/33 0 0 0 24/45
0 0 0 24/33 0 0 0 21/45

+ + +
++−
+−+
+−−
−++
−+−
−−+
−−−

.

4.2 Binary random process and the probability of crisis

The matrix of transition probabilities, Z, defines a random process operating in the space
of the binary windows; we call it the binary random process (see [4]).

Based on an understanding that a crisis occurs after a long series of “−” signals
(see subsection 3.2), we assume that a crisis occurs in month k if a 12-month-long se-
quence of “−” signals, with no more than one exceptional “+” signal, occurs in months
k−12, . . . , k−1. In terms of the binary windows, we understand a crisis as the realization
of a sequence of binary windows, σ̄1, . . . , σ̄10, such that one of the four conditions are sat-
isfied: (a) σ̄1 = . . . = σ̄10 = (−,−,−); (b) σ̄1 = . . . = σ̄9 = (−,−,−) and σ̄10 = (−,−,+);
(c) σ̄1 = . . . = σ̄8 = (−,−,−), σ̄9 = (−,−,+), and σ̄10 = (−,+,−); (d) there is a single
s ≤ 8 such that σ̄s = (−,−,+), σ̄s+1 = (−,+,−), σ̄s+2 = (+,−,−), and σ̄j = (−,−,−)
for all j 6= s, j 6= s+1 and j 6= s+2. Let C denote the set of all such sequences of binary
windows, σ̄1, . . . , σ̄10. Formally, we understand a crisis as the random event C in the set
of all trajectories of the binary random process.
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Given that a binary window σ̂i occurs in month i (i ≤ k−12), the binary random pro-
cess evaluates the probability of a sequence σ̄1, . . . , σ̄10 to occur in months k−12, . . . , k−1
as follows:

Pk(σ̄
1, . . . , σ̄10|σ̂i) =

∑

σi+1,...,σk−11∈S

γ(σk−11)p(σk−11|σk−12) . . . p(σi+2|σi+1)p(σi+1|σ̂i)

where S is the set of all binary windows and

γ(σk−11) = p(σ̄10|σ̄9)p(σ̄9|σ̄8) . . . p(σ̄1|σk−11).

Thus, for the probability of a crisis to occur in month k we get

Pk(C|σ̂i) =
∑

(σ̄1,...,σ̄10)∈C

Pk(σ̄
1, . . . , σ̄10|σ̂i).

In case i > k−12, when the 12-month-long sequence of signals in months k−12, . . . , k−1
overlaps the binary window σ̂i, the random process evaluates the probability of a crisis
to occur in month k as follows:

Pk(C|σ̂i) =
∑

(σ̄i−k+12,...,σ̄10)∈Ci

p(σ̄10|σ̄9)p(σ̄9|σ̄8) . . . p(σ̄i−k+12|σ̂i)

where Ci is the set of (k− i−1)-long sequences of binary windows, σ̄i−k+12, . . . , σ̄10, which
satisfy (a), (b), (c) or (d).

To compute Pk(C|σ̂i), we developed a special software (see Appendix 4).

5 Testing: global financial crisis

In this part of our analysis our goal is to test the forecasting ability of the binary random
process as a qualitative model describing the operation of the financial system. Like in
section 4, we set m = 3 and N = 4.

5.1 Original time series and grid series

We consider the time series for DJIA and FRIR in a period that precedes the global
financial crisis and overlaps with it – 100 months from February 2001 to May 2009 (see
Figure 2 and Appendix 2). We introduce a 100-node time grid with a one-month step, in
which February 2001 is numbered 1. We discretize the data using a two-dimensional grid
of dimension N in the DJIA, FRIR plane and form a grid series, Y1, . . . , Y100, as explained
in subsection 3.1. (See Appendix 3 for more details on data processing.)

5.2 Imitated on-line assessment of the probability of a crisis

We use an imitation of an on-line experiment to generate the values for the probability
of a crisis to occur in October 2008 (month 93) – the actual time, at which the global
financial crisis occurred (see section 2).

9



In each current month, i, where 6 ≤ i ≤ 93 (i = 6 corresponds to July 2001), we use
the binary encoding rule to construct a current binary window – three subsequent signals,
σ̂i = (σ̂i

1, σ̂
i
2, σ̂

i
3), where σ̂i

1 is the code of the pattern

zi−5 = (zi−5
1 , zi−5

2 , zi−5
3 , zi−5

4 ) = (Yi−5 − li−5, Yi−4 − li−5, Yi−3 − li−5, Yi−2 − li−5),

li−5 = (l1i−5, l
2
i−5), l1i−5 = min{Y 1

i−5, Y
1
i−4, Y

1
i−3, Y

1
i−2}, l2i−5 = min{Y 2

i−5, Y
2
i−4, Y

2
i−3, Y

2
i−2},

which starts at month i− 5; σ̂i
2 is the code of the pattern

zi−4 = (zi−4
1 , zi−4

2 , zi−4
3 , zi−4

4 ) = (Yi−4 − li−4, Yi−3 − li−4, Yi−2 − li−4, Yi−1 − li−4),

li−4 = (l1i−4, l
2
i−4), l1i−4 = min{Y 1

i−4, Y
1
i−3, Y

1
i−2, Y

1
i−1}, l2i−4 = min{Y 2

i−4, Y
2
i−3, Y

2
i−2, Y

2
i−1},

which starts at month i− 4; and σ̂i
3 is the code of the pattern

zi−3 = (zi−3
1 , zi−3

2 , zi−3
3 , zi−3

4 ) = (Yi−3 − li−3, Yi−2 − li−3, Yi−1 − li−3, Yi − li−3),

li−3 = (l1i−3, l
2
i−3), l1i−3 = min{Y 1

i−3, Y
1
i−2, Y

1
i−1, Y

1
i }, l2i−3 = min{Y 2

i−3, Y
2
i−2, Y

2
i−1, Y

2
i },

which starts at month i− 3.
In month i we estimate the probability of a crisis to occur in month 93 on the absolute

time grid, as P (C) = P93(C|σ̂i) (see subsection 4.2).
In our imitated on-line assessment experiment we compute P (C) as described above,

sequentially, for months i = 6, . . . , 93. Our calculations show that until July 2003 (month
30), P (C) does not change, remaining extremely small; in the period between July 2003
and October 2007 P (C) oscillates, still remaining extremely small; in the period between
October 2007 and March 2008 P (C) grows slowly but steadily; in the period between
March 2008 and August 2008 P (C) grows fast; and it reaches size 1 in August 2008, three
months before the time the crisis had actually occurred. Figure 4 shows the behavior of
P (C) in the period from October 2007 to October 2008.

Figure 4: Behavior of P (C), the probability of a crisis to occur in October, 2008.
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6 Conclusion

The testing result presented in section 5 shows that the proposed method for a qualita-
tive assessment of early signals on crises has, potentially, an ability to guess the actual
tendencies. The fact that the model identified using data on an earlier crisis is sensitive
to signals on a next crisis allows us to conjecture that either the two crises have a same
nature, or the model is robust to the mechanisms that drove their development.

The presented work is preliminary. Next research phases will include analysis of the
sensitivity of the method to variations in parameter values (a preliminary step in this
direction is outlined in Remark 1); extensions to assessment of other historical financial
crises; and extensions to analysis of pre-cursors of other types of extreme events.
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Appendix 1: a pattern classification algorithm

Here, for the case of an arbitrary pattern length, m (much smaller than 100), and an
arbitrary grid dimension, N , we describe a pattern classification algorithm we used to
find the binary encoding rule presented in subsection 3.1.

Let us set M = 100−m if m is even and M = 99−m otherwise; then M is even. We
split the discrete time grid 1, . . . ,M into two equal parts: 1, . . . ,M/2 andM/2+1, . . . ,M .

We perform the algorithm in steps. By n− and n+ we denote the numbers of patterns
encoded by a “−” and by a “+”, respectively.

Step 0. We encode every pattern zi (2) where i = 1, . . . ,M/2 with a “+”.

As a result we get M/2 “+” patterns concentrating at the “early” half of the time grid
(far distant from the time of the crisis), n− = 0, and n+ = M/2. In the following steps
we extend the encoding rule to new patterns and make sure that (i) the “−” patterns
concentrate, primarily, in the “late” half of the time grid; (ii) in the end, the numbers of
the “−” and “+” patterns, n−, and n+, approximately equalize, and (iii) in each step,
encoding is not contradictory in the sense that all identical patterns that are encoded are
encoded identically.

Step 1. We encode zM with a “−”. If zM 6= zj for all j ≤ M/2, we get n− = 1 and
n+ = M/2 and go to Step 2. If zM = zj for some j ≤ M/2, we re-encode zj with a “−”,
implying that n− = 2, n+ = M/2− 1. In result we have the single “−” pattern, zM , lying
at the end of the “late” half of the time grid, and “+” patterns zi covering the “early”
half of the time grid (i = 1, . . . ,M/2) either with no gaps, or with the single “gap” – the
exclusive pattern zj encoded by a “−”. Here we go to step 2.

Step s (s < M/2). Initially, all patterns located in the “early” part of the time
grid, i.e., zi with i = 1, . . . ,M/2, and all patterns following the time node M − s, i.e., zi

with i = M − s + 1, . . . ,M , are encoded by “−” or “+” signs, and all patterns zi with
i = M/2 + 1, . . . ,M − s are not encoded. Moreover, encoding is not contradictory in the
sense mentioned above.

We encode zM−s with a “−”.
If zM−s 6= zj for all j ≤ M/2 and all j > M − s, or if all zj with j ≤ M/2 and

j > M − s identical to zM−s are “−” patterns, we go to the Switching rule (see below).
In result, a new “−” pattern, zM−s, appears, the original value for n− grows for 1, n+

does not change, and encoding is, again, not contradictory.
If zM−s = zj for some j ≤ M/2 or some j > M − s, and zj is encoded with a “+”,

we re-encode zj with a “−”. In result, two new “−” patterns, zM−s and zj, appear, the
original value for n− grows for 2, the original value for n+ decreases for 1, and encoding
is, again, not contradictory. Here we go to the Switching rule.

Switching rule.

If n− < n+, we go to Step s+ 1.
If n− ≥ n+, we go to Sub-step s.1.

Sub-step s.1. We encode zM−s−1 with a “+”.
If there are no “−” patterns zj with j ≤ M/2 or j ≥ M − s, which are identical to

zM−s−1, we finalize Sub-step s.1; n− remains unchanged and n+ grows for 1.
If we find a “−” pattern zj with j ≤ M/2 or j ≥ M − s, which is identical to zM−s−1,

we encode zj with a “+” and finalize Sub-step s.1; n− decreases for 1 and n+ grows for

13



2, and encoding is non-contradictory.
If n− < n+, we go to Step s+ 2.
Otherwise we go to Sub-step s.2.

Sub-step s.k. Initially, all patterns located in the “early” part of the time grid,
i.e., zi with i = 1, . . . ,M/2, and all patterns following the time node M − s − k, i.e., zi

with i = M − s − k, . . . ,M , are encoded by “−” or “+” signs, and all patterns zi with
i = M/2 + 1, . . . ,M − s− k − 1 are not encoded. Encoding is not contradictory.

We encode zM−s−k−1 with a “+”.
If there are no “−” patterns zj identical to zM−s−k−1, we finalize Sub-step s.k; n−

remains unchanged and n+ grows for 1.
If we find a “−” pattern zj identical to zM−s−k−1, we encode zj with a “+” and finalize

Sub-step s.k; n− decreases for 1 and n+ grows for 2, and encoding is non-contradictory.
If n− < n+, we go to Step s+ k + 1.
Otherwise we go to Sub-step s.k + 1.

The described pattern classification algorithm provides us with a binary encoding rule
such that the “−” patterns concentrate, primarily, in the “late” half of the time grid; and
the numbers of the “−” and “+” patterns, n− and n+, are approximately equal (one can
prove that |n− − n+| ≤ 2). The encoding rule is non-contradictory in the sense that all
identical patterns are encoded identically. We call it the basic encoding rule. Next, we
notice that the basic encoding rule differs from the one described in subsection 3.1 non-
essentially in the sense that the number of the patterns encoded differently by those two
binary encoding rules is small enough. In our analysis, we use the latter binary encoding
rule, since it is more interpretable in economic terms.
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Appendix 2: data

Table 1: DJIA and FRIR data from February 1994 until
May 2002 (sources [14] and [15]).

MONTH DJIA FRIR
1 Feb-94 3832.02 3.25
2 Mar-94 3635.96 3.34
3 Apr-94 3681.69 3.56
4 May-94 3758.37 4.01
5 Jun-94 3624.96 4.25
6 Jul-94 3764.5 4.26
7 Aug-94 3913.42 4.47
8 Sep-94 3843.19 4.73
9 Oct-94 3908.12 4.76
10 Nov-94 3739.23 5.29
11 Dec-94 3834.44 5.45
12 Jan-95 3843.86 5.53
13 Feb-95 4011.05 5.92
14 Mar-95 4157.69 5.98
15 Apr-95 4321.27 6.05
16 May-95 4465.14 6.01
17 Jun-95 4556.1 6.00
18 Jul-95 4708.47 5.85
19 Aug-95 4610.56 5.74
20 Sep-95 4789.08 5.80
21 Oct-95 4755.48 5.76
22 Nov-95 5074.49 5.80
23 Dec-95 5117.12 5.60
24 Jan-96 5395.3 5.56
25 Feb-96 5485.62 5.22
26 Mar-96 5587.14 5.31
27 Apr-96 5569.08 5.22
28 May-96 5643.18 5.24
29 Jun-96 5654.63 5.27
30 Jul-96 5528.91 5.40
31 Aug-96 5616.21 5.22
32 Sep-96 5882.17 5.30
33 Oct-96 6029.38 5.24
34 Nov-96 6521.7 5.31
35 Dec-96 6448.27 5.29
36 Jan-97 6813.09 5.25
37 Feb-97 6877.74 5.19
38 Mar-97 6583.48 5.39
39 Apr-97 7008.99 5.51

Continued on next page
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Table 1 – continued from previous page
MONTH DJIA FRIR

40 May-97 7331.04 5.50
41 Jun-97 7672.79 5.56
42 Jul-97 8222.61 5.52
43 Aug-97 7622.42 5.54
44 Sep-97 7945.26 5.54
45 Oct-97 7442.08 5.50
46 Nov-97 7823.13 5.52
47 Dec-97 7908.25 5.50
48 Jan-98 7906.5 5.56
49 Feb-98 8545.72 5.51
50 Mar-98 8799.81 5.49
51 Apr-98 9063.37 5.45
52 May-98 8899.95 5.49
53 Jun-98 8952.02 5.56
54 Jul-98 8883.29 5.54
55 Aug-98 7539.07 5.55
56 Sep-98 7842.62 5.51
57 Oct-98 8592.1 5.07
58 Nov-98 9116.55 4.83
59 Dec-98 9181.43 4.68
60 Jan-99 9358.83 4.63
61 Feb-99 9306.58 4.76
62 Mar-99 9786.16 4.81
63 Apr-99 10789.04 4.74
64 May-99 10559.74 4.74
65 Jun-99 10970.8 4.76
66 Jul-99 10655.15 4.99
67 Aug-99 10829.28 5.07
68 Sep-99 10336.95 5.22
69 Oct-99 10729.86 5.20
70 Nov-99 10877.81 5.42
71 Dec-99 11497.12 5.30
72 Jan-00 10940.53 5.45
73 Feb-00 10128.31 5.73
74 Mar-00 10921.92 5.85
75 Apr-00 10733.91 6.02
76 May-00 10522.33 6.27
77 Jun-00 10447.89 6.53
78 Jul-00 10521.98 6.54
79 Aug-00 11215.1 6.50
80 Sep-00 10650.92 6.52
81 Oct-00 10971.14 6.51
82 Nov-00 10414.49 6.51
83 Dec-00 10787.99 6.40

Continued on next page
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Table 1 – continued from previous page
MONTH DJIA FRIR

84 Jan-01 10887.36 5.98
85 Feb-01 10495.3 5.49
86 Mar-01 9878.8 5.31
87 Apr-01 10735 4.8
88 May-01 10911.9 4.21
89 Jun-01 10502.4 3.97
90 Jul-01 10522.8 3.77
91 Aug-01 9949.8 3.65
92 Sep-01 8847.6 3.07
93 Oct-01 9075.1 2.49
94 Nov-01 9851.6 2.09
95 Dec-01 10021.6 1.82
96 Jan-02 9920 1.73
97 Feb-02 10106.1 1.74
98 Mar-02 10403.9 1.73
99 Apr-02 9946.2 1.75
100 May-02 9925.3 1.75

Table 2: DJIA and FRIR data from February 2001 until
May 2009 (sources [14] and [15]).

MONTH DJIA FRIR
1 Feb-01 10495.3 5.49
2 Mar-01 9878.8 5.31
3 Apr-01 10735 4.8
4 May-01 10911.9 4.21
5 Jun-01 10502.4 3.97
6 Jul-01 10522.8 3.77
7 Aug-01 9949.8 3.65
8 Sep-01 8847.6 3.07
9 Oct-01 9075.1 2.49
10 Nov-01 9851.6 2.09
11 Dec-01 10021.6 1.82
12 Jan-02 9920 1.73
13 Feb-02 10106.1 1.74
14 Mar-02 10403.9 1.73
15 Apr-02 9946.2 1.75
16 May-02 9925.3 1.75
17 Jun-02 9243.3 1.75
18 Jul-02 8736.6 1.73
19 Aug-02 8663.5 1.74
20 Sep-02 7580.97 1.75

Continued on next page
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Table 2 – continued from previous page
MONTH DJIA FRIR

21 Oct-02 8393.84 1.75
22 Nov-02 8896.09 1.34
23 Dec-02 8345.33 1.24
24 Jan-03 8076.36 1.24
25 Feb-03 7907.87 1.26
26 Mar-03 8062.86 1.25
27 Apr-03 8480.09 1.26
28 May-03 8850.26 1.26
29 Jun-03 8994.73 1.22
30 Jul-03 9229.39 1.01
31 Aug-03 9415.82 1.03
32 Sep-03 9277.21 1.01
33 Oct-03 9797.79 1.01
34 Nov-03 9782.46 1
35 Dec-03 10439.48 0.98
36 Jan-04 10488.07 1
37 Feb-04 10583.92 1.01
38 Mar-04 10396.15 1
39 Apr-04 10249.5 1
40 May-04 10188.45 1
41 Jun-04 10440.27 1.03
42 Jul-04 10139.71 1.26
43 Aug-04 10163.16 1.43
44 Sep-04 10063.31 1.61
45 Oct-04 10027.47 1.76
46 Nov-04 10435.33 1.93
47 Dec-04 10787.45 2.16
48 Jan-05 10491.06 2.28
49 Feb-05 10779.08 2.5
50 Mar-05 10522.97 2.63
51 Apr-05 10092.53 2.79
52 May-05 10471.61 3
53 Jun-05 10271.06 3.04
54 Jul-05 10640.91 3.26
55 Aug-05 10482.64 3.5
56 Sep-05 10568.22 3.62
57 Oct-05 10440.07 3.78
58 Nov-05 10805.63 4
59 Dec-05 10717.5 4.16
60 Jan-06 10868.3 4.29
61 Feb-06 10994.05 4.49
62 Mar-06 11138.53 4.59
63 Apr-06 11367.14 4.79
64 May-06 11164.31 4.94

Continued on next page
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Table 2 – continued from previous page
MONTH DJIA FRIR

65 Jun-06 11166.31 4.99
66 Jul-06 11183.44 5.24
67 Aug-06 11382.83 5.25
68 Sep-06 11679.07 5.25
69 Oct-06 12075.93 5.25
70 Nov-06 12230.26 5.25
71 Dec-06 12463.15 5.24
72 Jan-07 12621.53 5.25
73 Feb-07 12262.3 5.26
74 Mar-07 12354.35 5.26
75 Apr-07 13120.94 5.25
76 May-07 13626.91 5.25
77 Jun-07 13408.62 5.25
78 Jul-07 13200.36 5.26
79 Aug-07 13344 5.02
80 Sep-07 13895.63 4.94
81 Oct-07 13930.01 4.76
82 Nov-07 13382.94 4.49
83 Dec-07 13251.17 4.24
84 Jan-08 12614.35 3.94
85 Feb-08 12262.81 2.98
86 Mar-08 12266.15 2.61
87 Apr-08 12813.37 2.28
88 May-08 12638.32 1.98
89 Jun-08 11336.42 2
90 Jul-08 11370.78 2.01
91 Aug-08 11543.96 2
92 Sep-08 10859.58 1.81
93 Oct-08 9325.01 0.97
94 Nov-08 8829.04 0.39
95 Dec-08 8771.69 0.16
96 Jan-09 7996.72 0.15
97 Feb-09 7062.93 0.22
98 Mar-09 7596.65 0.18
99 Apr-09 8161.11 0.15
100 May-09 8500.57 0.18
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Appendix 3: patterns, binary sequence and frequency

of negative signals

Table 3: Processed data for the period from February
1994 to April 2002 – the patterns (DJIA and FRIR),
binary sequence (BS) and the fractions of the “−” signals
in 10-month-long moving windows (F); m = 3, N = 4; 1
stands for a “+” and 0 for a “−”.

MONTH DJIA FRIR BS F
1 May-94 0000 0011 0
2 Jun-94 0000 0111 0
3 Jul-94 0000 0000 1
4 Aug-94 0000 0000 1
5 Sep-94 0000 0000 1
6 Oct-94 0000 0001 0
7 Nov-94 0000 0011 0
8 Dec-94 0000 0111 0
9 Jan-95 0000 0000 1
10 Feb-95 0000 0000 1 0.5
11 Mar-95 0000 0001 0 0.5
12 Apr-95 0000 0011 0 0.5
13 May-95 0000 0111 0 0.6
14 Jun-95 0000 0000 1 0.6
15 Jul-95 0001 1110 1 0.6
16 Aug-95 0011 1100 1 0.5
17 Sep-95 0111 1000 1 0.4
18 Oct-95 0000 0000 1 0.3
19 Nov-95 0000 0000 1 0.3
20 Dec-95 0000 0000 1 0.3
21 Jan-96 0000 0000 1 0.2
22 Feb-96 0000 0000 1 0.1
23 Mar-96 0000 0000 1 0
24 Apr-96 0000 0000 1 0
25 May-96 0000 0000 1 0
26 Jun-96 0000 0000 1 0
27 Jul-96 0000 0000 1 0
28 Aug-96 0000 0000 1 0
29 Sep-96 0000 0000 1 0
30 Oct-96 0000 0000 1 0
31 Nov-96 0000 0000 1 0
32 Dec-96 0000 0000 1 0
33 Jan-97 0001 0000 1 0
34 Feb-97 0011 0000 0 0.1
35 Mar-97 0111 0000 0 0.2

Continued on next page
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Table 3 – continued from previous page
MONTH DJIA FRIR BS F

36 Apr-97 0000 0000 1 0.2
37 May-97 0000 0000 1 0.2
38 Jun-97 0000 0000 1 0.2
39 Jul-97 0000 0000 1 0.2
40 Aug-97 0000 0000 1 0.2
41 Sep-97 0000 0000 1 0.2
42 Oct-97 0000 0000 1 0.2
43 Nov-97 0000 0000 1 0.2
44 Dec-97 0000 0000 1 0.1
45 Jan-98 0000 0000 1 0
46 Feb-98 0001 0000 1 0
47 Mar-98 0011 0000 0 0.1
48 Apr-98 0111 0000 0 0.2
49 May-98 0000 0000 1 0.2
50 Jun-98 0000 0000 1 0.2
51 Jul-98 0000 0000 1 0.2
52 Aug-98 1110 0000 0 0.3
53 Sep-98 1100 0000 0 0.4
54 Oct-98 1001 0000 0 0.5
55 Nov-98 0011 0000 0 0.6
56 Dec-98 0111 1110 0 0.7
57 Jan-99 0000 1100 0 0.7
58 Feb-99 0000 1001 0 0.7
59 Mar-99 0000 0011 0 0.8
60 Apr-99 0001 0111 0 0.9
61 May-99 0011 0000 0 1
62 Jun-99 0111 0000 0 1
63 Jul-99 0000 0000 1 0.9
64 Aug-99 0000 0000 1 0.8
65 Sep-99 1110 0000 0 0.8
66 Oct-99 1101 0000 0 0.8
67 Nov-99 1011 0000 0 0.8
68 Dec-99 0111 0000 0 0.8
69 Jan-00 0000 0000 1 0.7
70 Feb-00 1110 0000 0 0.7
71 Mar-00 1101 0000 0 0.7
72 Apr-00 1011 0001 0 0.7
73 May-00 0111 0011 0 0.8
74 Jun-00 1110 0111 0 0.9
75 Jul-00 1101 0000 0 0.9
76 Aug-00 1011 0000 0 0.9
77 Sep-00 0111 0000 0 0.9
78 Oct-00 0000 0000 1 0.8
79 Nov-00 1110 0000 0 0.9

Continued on next page
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Table 3 – continued from previous page
MONTH DJIA FRIR BS F

80 Dec-00 1101 0000 0 0.9
81 Jan-01 1011 0000 0 0.9
82 Feb-01 0110 1110 0 0.9
83 Mar-01 1100 1100 0 0.9
84 Apr-01 1001 1000 0 0.9
85 May-01 0011 1110 0 0.9
86 Jun-01 0110 1100 0 0.9
87 Jul-01 1101 1000 0 0.9
88 Aug-01 1010 0000 0 1
89 Sep-01 0100 1110 0 1
90 Oct-01 1000 1100 0 1
91 Nov-01 0000 2110 0 1
92 Dec-01 0000 1100 0 1
93 Jan-02 0000 1000 0 1
94 Feb-02 0000 0000 1 0.9
95 Mar-02 0000 0000 1 0.8
96 Apr-02 0000 0000 1 0.7

Table 4: Processed data for the period from February
2001 to October 2008 – the patterns (DJIA and FRIR),
binary sequence (BS) and the fractions of the “−” signals
in 10-month-long moving windows (F); m = 3, N = 4; 1
stands for a “+” and 0 for a “−”.

MONTH DJIA FRIR BS F
1 May-01 0000 1100 0
2 Jun-01 0000 1000 0
3 Jul-01 0000 0000 1
4 Aug-01 0000 0000 1
5 Sep-01 1110 1110 0
6 Oct-01 1100 1100 0
7 Nov-01 1001 2110 1
8 Dec-01 0011 1100 1
9 Jan-02 0111 1000 1
10 Feb-02 0000 0000 1 0.4
11 Mar-02 0000 0000 1 0.3
12 Apr-02 0000 0000 1 0.2
13 May-02 0000 0000 1 0.2
14 Jun-02 1110 0000 0 0.3
15 Jul-02 1100 0000 0 0.3
16 Aug-02 1000 0000 1 0.2
17 Sep-02 1110 0000 0 0.3

Continued on next page
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Table 4 – continued from previous page
MONTH DJIA FRIR BS F

18 Oct-02 1101 0000 0 0.4
19 Nov-02 1011 0000 0 0.5
20 Dec-02 0111 0000 0 0.6
21 Jan-03 0000 0000 1 0.6
22 Feb-03 1110 0000 0 0.7
23 Mar-03 1101 0000 0 0.8
24 Apr-03 1011 0000 0 0.8
25 May-03 0111 0000 0 0.8
26 Jun-03 0000 0000 1 0.8
27 Jul-03 0000 0000 1 0.7
28 Aug-03 0000 0000 1 0.6
29 Sep-03 0000 0000 1 0.5
30 Oct-03 0001 0000 1 0.4
31 Nov-03 0011 0000 0 0.5
32 Dec-03 0111 0000 0 0.5
33 Jan-04 0000 0000 1 0.4
34 Feb-04 0000 0000 1 0.3
35 Mar-04 0000 0000 1 0.2
36 Apr-04 0000 0000 1 0.2
37 May-04 0000 0000 1 0.2
38 Jun-04 0000 0000 1 0.2
39 Jul-04 0000 0000 1 0.2
40 Aug-04 0000 0000 1 0.2
41 Sep-04 0000 0000 1 0.1
42 Oct-04 0000 0000 1 0
43 Nov-04 0000 0000 1 0
44 Dec-04 0000 0001 0 0.1
45 Jan-05 0000 0011 0 0.2
46 Feb-05 0000 0111 0 0.3
47 Mar-05 0000 0000 1 0.3
48 Apr-05 0000 0000 1 0.3
49 May-05 0000 0000 1 0.3
50 Jun-05 0000 0000 1 0.3
51 Jul-05 0000 0000 1 0.3
52 Aug-05 0000 0001 0 0.4
53 Sep-05 0000 0011 0 0.5
54 Oct-05 0000 0111 0 0.5
55 Nov-05 0000 0000 1 0.4
56 Dec-05 0000 0000 1 0.3
57 Jan-06 0000 0000 1 0.3
58 Feb-06 0000 0000 1 0.3
59 Mar-06 0000 0000 1 0.3
60 Apr-06 0001 0000 1 0.3
61 May-06 0010 0001 0 0.4

Continued on next page
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Table 4 – continued from previous page
MONTH DJIA FRIR BS F

62 Jun-06 0100 0011 0 0.4
63 Jul-06 1000 0111 0 0.4
64 Aug-06 0001 0000 1 0.3
65 Sep-06 0011 0000 0 0.4
66 Oct-06 0111 0000 0 0.5
67 Nov-06 0000 0000 1 0.5
68 Dec-06 0000 0000 1 0.5
69 Jan-07 0000 0000 1 0.5
70 Feb-07 0000 0000 1 0.5
71 Mar-07 0000 0000 1 0.4
72 Apr-07 0001 0000 1 0.3
73 May-07 0011 0000 0 0.3
74 Jun-07 0111 0000 0 0.4
75 Jul-07 0000 0000 1 0.3
76 Aug-07 0000 0000 1 0.2
77 Sep-07 0000 0000 1 0.2
78 Oct-07 0000 1110 0 0.3
79 Nov-07 0000 1100 0 0.4
80 Dec-07 0000 1000 0 0.5
81 Jan-08 1110 0000 0 0.6
82 Feb-08 1100 1110 0 0.7
83 Mar-08 1000 1100 0 0.7
84 Apr-08 0000 1000 0 0.7
85 May-08 0000 1110 0 0.8
86 Jun-08 1110 1100 0 0.9
87 Jul-08 1101 1000 0 1
88 Aug-08 1011 0000 0 1
89 Sep-08 0110 0000 0 1
90 Oct-08 2210 0000 0 1
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Appendix 4: software

To carry out numerical analysis presented in this work, two software packages were de-
veloped.

Figure 5: Software package 1: construction of a binary sequence for a given time series.

Package 1 (see Figure 5) allows the user to construct a binary sequence for a given
time series. The user chooses the length of the time grid in months (in our case, 100); puts
in monthly data for DJIA and FRIR; and chooses parameter values: the pattern length
(m) and dimension of the grid (N). The package finds the encoding binary sequence and
plots the graph of the fraction of the “−” signals in the moving 10-long window of signals
(see Figure 3).

Figure 6: Software package 2: computation of the probability of a crisis.

Package 2 (see Figure 6) finds the probability of a crisis to occur in month k, Pk(C|σ̂i)
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(see subsection 4.2). The user chooses k, the pattern length (m), the matrix of transition
probabilities (see subsection 4.1) and the binary window, σ̂i.
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