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Abstract

Evolutionary dynamics depend critically on a population’s interac-

tion structure—the pattern of which individuals interact with which

others, depending on the state of the population and the environment.

Previous research has shown, for example, that cooperative behaviors

disfavored in well-mixed populations can be favored when interactions

occur only between spatial neighbors or group members. Combining

the adaptive dynamics approach with recent advances in evolutionary

game theory, we here introduce a general mathematical framework

for analyzing the long-term evolution of continuous game strategies

for a broad class of evolutionary models, encompassing many varieties

of interaction structure. Our main result, the “canonical equation of

adaptive dynamics with interaction structure”, characterizes expected

evolutionary trajectories resulting from any such model, thereby gen-

eralizing a central tool of adaptive dynamics theory. Interestingly, the

effects of different interaction structures and update rules on evolu-

tionary trajectories are fully captured by just two real numbers associ-

ated with each model, which are independent of the considered game.

The first, a structure coefficient, quantifies the effects on selection

pressures, and thus on the shapes of expected evolutionary trajecto-

ries. The second, an effective population size, quantifies the effects

on selection responses, and thus on the expected rates of adaptation.

Applying our results to two social dilemmas, we show how the range of

evolutionarily stable cooperative behaviors systematically varies with

a model’s structure coefficient.
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Introduction

A key challenge for evolutionary biology is to understand how the mech-
anistic features of an evolutionary process affect the ultimate outcome of
evolution. This is already quite challenging under the classical assumption
of a well-mixed population (e.g., Dieckmann and Law, 1996; Champagnat
et al., 2006). Recent decades, however, have seen a surge of interest in evo-
lutionary processes in which ecological events are localized in some sense.
Well-studied examples include evolution in spatially structured populations
(Wright, 1943; Kimura and Weiss, 1964; Barton and Slatkin, 1986; Durrett
and Levin, 1994; Tilman and Kareiva, 1997; Dieckmann et al., 2000; Rousset,
2004; Lieberman et al., 2005; Lion and van Baalen, 2008) in group- or deme-
structured populations (Wright, 1931; Wilson, 1977; Taylor, 1992; Hanski and
Gilpin, 1997; Traulsen and Nowak, 2006; Ohtsuki, 2010), and in populations
with active assortment by kin (Hamilton, 1971; Eshel and Cavalli-Sforza,
1982) or phenotype (Antal et al., 2009). These forms of localized interaction
have significant consequences for the evolution of cooperation (Nowak and
May, 1992; Killingback and Doebeli, 1996; Nakamaru et al., 1997; Mitteldorf
and Wilson, 2000; Santos and Pacheco, 2005; Ohtsuki et al., 2006; Traulsen
and Nowak, 2006; Taylor et al., 2007a; Fletcher and Doebeli, 2009; Helbing
and Yu, 2009; van Veelen et al., 2012), host-parasite interactions (Hassell
et al., 1991; Herre, 1993; Boots and Sasaki, 1999; Haraguchi and Sasaki,
2000; van Baalen, 2002; Read and Keeling, 2003; Boots et al., 2004), signal-
ing (Krakauer and Pagel, 1995; Werfel and Bar-Yam, 2004), and life-history
traits (Hanski and Gaggiotti, 2004).

In the context of evolutionary game theory, notions of locality are re-
flected in a model’s interaction structure, which designates which individuals
participate in game interaction with which others, depending on the current
state of the population and the environment. Notions of locality may also be
reflected in a model’s update rule (Ohtsuki et al., 2006), which specifies how
the outcomes of game interaction affect births, deaths, and other changes to
the population and the environment.

It is thus of great interest (e.g. Nowak et al., 2010a) to understand how
differences in the interaction structure and update rule affect the evolution of
game behavior. Historically, this question has been investigated one model
at a time, revealing both common themes and intriguing differences. In the
case of discrete games, Tarnita et al. (2009b, 2011) have proposed a more
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general approach that exploits the Markov chain structure of evolutionary
game models. However, no corresponding theory yet exists for continuous
games (Brown and Vincent, 1987; McGill and Brown, 2007), in which payoffs
depend continuously on quantitative trait values.

Here we provide a general mathematical framework for determining the
evolutionary trajectories of continuous game strategies under different in-
teraction structures and update rules. Our work merges adaptive dynamics
theory (Nowak and Sigmund, 1990; Hofbauer and Sigmund, 1990; Dieck-
mann and Law, 1996; Metz et al., 1996; Geritz et al., 1997)—a framework
for studying quantitative trait evolution when mutations are incremental and
rare—with the approach of Tarnita et al. (2009b, 2011).

Our main result—which we term the “canonical equation of adaptive
dynamics with interaction structure,” characterizes expected evolutionary
trajectories of strategies for any continuous game, interaction structure, and
update rule satisfying basic assumptions. This result generalizes the canon-
ical equation of adaptive dynamics (which describes expected trajectories
of adaptive evolution in large well-mixed populations; Dieckmann and Law,
1996) to a broad class of models, including established models of evolution
in groups (Wright, 1931; Taylor, 1992; Traulsen and Nowak, 2006; Ohtsuki,
2010), in space (Lieberman et al., 2005; Ohtsuki et al., 2006; Taylor et al.,
2007a; Ohtsuki et al., 2007), with tag-based assortment (Antal et al., 2009),
and in finite well-mixed populations with different forms of generational
structure (Nowak et al., 2004; Imhof and Nowak, 2006; Lessard and Ladret,
2007; Traulsen et al., 2007).

Interestingly, we find that the effects of different interaction structures
and update rules on the dynamics of adaptive evolution are fully captured
by just two real numbers. First, a structure coefficient (Tarnita et al., 2009b)
quantifies the effects on selection pressures, and thus on the shapes of ex-
pected evolutionary trajectories and on the strategies expected as evolution-
ary outcomes. Second, an effective population size quantifies the effects on
selection responses and thus on the expected rates of adaptation. Impor-
tantly, these two numbers are independent of the considered evolutionary
game. Varying the structure coefficient and effective population size in our
equation thus enables rapid, comprehensive analysis of game-strategy trajec-
tories for a wide variety of interaction structures and update rules, represent-
ing many different ecological contexts.

Below, we begin with a review and synthesis of relevant background and
previous work on adaptive dynamics theory and evolutionary game theory.
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We then state the mathematical assumptions defining the class of models
to which our results apply, which are further detailed in Appendix A. The
canonical equation of adaptive dynamics with interaction structure is then
presented, discussed, and applied to the analysis of two social dilemmas.
Its derivation is detailed in Appendix B. We conclude with an exploration of
connections between our work and other approaches, and highlight directions
for future research.

Background and synthesis of previous work

Adaptive dynamics theory

Adaptive dynamics theory (Nowak and Sigmund, 1990; Hofbauer and Sig-
mund, 1990; Dieckmann and Law, 1996; Metz et al., 1996; Geritz et al., 1997;
Dercole and Rinaldi, 2008) studies the long-term evolution of one or more
quantitative traits, allowing the effects of complex interactions among indi-
viduals, including those implying frequency-dependent selection, to be ana-
lyzed. These interactions unfold on a short interaction timescale. Mutations
are assumed to be rare, so that the evolving population is typically monomor-
phic, and its evolution can be studied on two separated timescales: the inter-
mediate demographic timescale, on which competition between phenotypes
results in fixation of one of them, and the longer evolutionary timescale, on
which adaptation occurs via a sequence of trait-substitution events. Muta-
tions are also assumed to be incremental, so that mutant phenotypes can
be viewed as perturbations of resident phenotypes. Trait-substitution events
start with a mutation and generally conclude with the fixation of either the
mutant type or the resident type (Geritz et al., 2002; Geritz, 2005).

The canonical equation of adaptive dynamics (Dieckmann, 1994; Dieck-
mann et al., 1995; Dieckmann and Law, 1996) describes the expected dy-
namics, on the evolutionary timescale, of trait values in a large well-mixed
population, as these values are updated through the successive fixation of
new mutant types. In the case of a single real-valued trait x evolving under
birth-death dynamics with mutation, the canonical equation can be written
as

dx

dt
=

1

2
Nμv

∂f(x′; x)

∂x′

∣
∣
∣
∣
x′=x

, (1)

where t is evolutionary time, N is the equilibrium population size, μ is the
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mutation probability per birth, v is the variance in mutational step size, and
f(x′; x) is the invasion fitness of the mutant type x′, given that the resident
type is x. Invasion fitness is defined as the exponential growth rate of the
mutants when they are rare (Metz et al., 1992). The right-hand side of eq. (1)
equals the expected change in x per unit time, averaged over all possible trait-
substitution events. The canonical equation, in setting the expected change
equal to the actual change dx/dt, characterizes the expected dynamics of
the trait value through evolutionary time (Dieckmann, 1994), as well as the
deterministic dynamics under appropriate scaling limits (Champagnat et al.,
2002).

The occurrence of the invasion fitness function f(x′; x) in the canonical
equation originates from the fact that, in a large well-mixed population, the
probability of mutant fixation is proportional to f(x′; x) when f(x′; x) > 0,
and is zero otherwise (Dieckmann, 1994; Dieckmann and Law, 1996; Dercole
and Rinaldi, 2008; Durinx et al., 2008). In populations that are not large
or not well-mixed, this proportionality may not hold (see Discussion). In
such situations, we must fall back on a more general formulation of adaptive
dynamics, by using fixation probabilities directly (Proulx and Day, 2002;
Rousset, 2004; Imhof and Nowak, 2010), with expected evolutionary trajec-
tories then being described by

dx

dt
= Nu(x)v

∂ρ(x′; x)

∂x′

∣
∣
∣
∣
x′=x

. (2)

Here u(x) denotes the per capita rate of mutant appearance in a monomor-
phic population of type x, and ρ(x′; x) denotes the fixation probability of a
mutant of type x′ in such a population—that is, the probability that a new
mutant type x′, starting from a single individual, will eventually displace a
resident population of type x. For large well-mixed populations, and with
b(x) denoting the per capita birth rate of type x, eqs. (1) and (2) are con-
nected by the relations u(x) = μb(x) and ρ(x′; x) = max{0, f(x′; x)/b(x)}
(Dieckmann and Law, 1996).

Equation (2) illustrates the separation of timescales inherent in the adap-
tive dynamics approach. The whole of eq. (2) describes trait dynamics on
the evolutionary timescale. These dynamics depend, in turn, on the outcome
of resident-mutant competition on the demographic timescale, as summa-
rized by the fixation probability ρ(x′; x). To apply eq. (2), one must obtain
ρ(x′; x) (or, at minimum, its first-order behavior near x′ = x) from analysis
of resident-mutant competition under the evolutionary model in question.
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This may be a difficult task, depending on the complexity of the model. One
contribution of the present work is to obtain expressions for this first-order
behavior of ρ(x′; x) for a general class of models in evolutionary game theory.

Individual-based evolutionary game (IBEG) models

Evolutionary game theory (Maynard Smith and Price, 1973; Taylor and
Jonker, 1978; Weibull, 1997; Cressman, 1992; Hofbauer and Sigmund, 1998,
2003; Nowak and Sigmund, 2004) is a powerful approach to studying the
evolution of social behavior. A game represents a particular mode of in-
teraction, the outcome of which is summarized in payoffs assigned to each
participant. Evolving game strategies may be either discrete or continuous.
For continuous games (Brown and Vincent, 1987; McGill and Brown, 2007),
the strategies are real numbers or vectors representing quantitative traits,
and the payoffs to participants are continuous functions of these strategies.

While early formulations of evolutionary game theory focused on notions
of evolutionary stability (Maynard Smith and Price, 1973) and on frequency
dynamics in infinite populations (Taylor and Jonker, 1978), much recent
attention has been devoted to individual-based evolutionary game models—
which we abbreviate as “IBEG models”—in which births, deaths, game inter-
actions, and other events are represented explicitly (Nowak and May, 1992;
Durrett and Levin, 1994; Killingback and Doebeli, 1996; Nakamaru et al.,
1997; van Baalen and Rand, 1998; Mitteldorf and Wilson, 2000; Nowak et al.,
2004; Santos and Pacheco, 2005; Ohtsuki et al., 2006; Traulsen and Nowak,
2006; Szabó and Fáth, 2007; Taylor et al., 2007a; Antal et al., 2009; Tarnita
et al., 2009a; Nowak et al., 2010a; Perc and Szolnoki, 2010; van Veelen et al.,
2012). In contrast to traditional evolutionary game theory, IBEG models
allow investigation of how localized interaction, population size, and other
factors affect evolutionary game competition.

Here we provide a synthesis and general vocabulary for IBEG models,
highlighting several critical features. We describe these models in biological
terms, noting, however, that many IBEG models are applicable to cultural
evolution through the spreading of behaviors or ideas. We also note that,
while the term “individual-based” often carries the connotation of models
analyzed through numerical analysis and computer simulation, here we use it
to characterize the level at which the considered evolutionary game dynamics
are defined, irrespective of the method subsequently applied for their analysis.

IBEG models appearing in the literature generally have the mathemat-
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ical structure of a Markov chain. That is, they can be represented as a
collection of states with transition probabilities between them. (Determin-
istic and/or continuous-state models can be understood as special and/or
limiting cases of Markov chain models.) In this terminology, the “state” by
definition provides a full snapshot of the evolutionary process, containing all
information relevant to the determination of future states. At minimum, this
includes the number and strategies of all living individuals. The inclusion of
other information depends on the model in question. For example, in models
of group-structured populations (Traulsen and Nowak, 2006; Tarnita et al.,
2009a; Ohtsuki, 2010; Fu et al., 2012), the state includes the group affilia-
tions of all individuals. In models with dynamic social networks (Pacheco
et al., 2006a,b; Perc and Szolnoki, 2010; Wu et al., 2010; Fehl et al., 2011;
Rand et al., 2011), the state includes the current network topology. Models
have also been studied in which the state includes individuals’ ages, devel-
opmental stages, memories of past events, and/or states of health, as well as
the environmental conditions each of them experiences.

An IBEG model must incorporate a scheme for designating when game
interactions occur, and between which pairs or sets of individuals. We call
this scheme the model’s interaction structure. Models of well-mixed popula-
tions (e.g., Nowak et al., 2004; Imhof and Nowak, 2006; Lessard and Ladret,
2007; Traulsen et al., 2007) typically employ a trivial interaction structure:
at all time steps, each individual interacts equally with each of the other
individuals. Other models use interaction structures that incorporate some
notion of locality. For example, individuals may interact only if they are
members of the same group (Taylor, 1992; Traulsen and Nowak, 2006; Oht-
suki, 2010), neighbors on a lattice (Nowak and May, 1992; Wilson et al.,
1992; Durrett and Levin, 1994; Killingback and Doebeli, 1996; Nakamaru
et al., 1997; Hauert and Doebeli, 2004; Helbing and Yu, 2009; Roca et al.,
2009), or are connected through the (current) social network (van Baalen
and Rand, 1998; Santos and Pacheco, 2005; Ohtsuki et al., 2006; Pacheco
et al., 2006a,b; Taylor et al., 2007a; Perc and Szolnoki, 2010; Allen et al.,
2012). In the most abstract sense, a model’s interaction structure can be
understood as a mapping from its current state to the current collection of
game-interaction partners.

Once game interactions have taken place, births, deaths, movements, and
other relevant events must be determined according to another scheme, de-
pending (often stochastically) on payoffs. Following Ohtsuki et al. (2006), we
call this scheme the model’s update rule. For well-mixed population models,
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update rules usually have the property that each individual’s expected off-
spring number is an increasing function of its own payoff (Nowak et al., 2004;
Imhof and Nowak, 2006; Lessard and Ladret, 2007). For models with non-
trivial interaction structure, there is no canonical choice of update rule, and
different choices can lead to strikingly different outcomes. For example, Oht-
suki et al. (2006) explored three different update rules for evolution on graphs.
For one (“Birth-Death”), the benefits of cooperator clustering are opposed by
a spatial competition effect separate from game interaction, rendering coop-
eration ineffective. (A similar effect appears in the group-selection model of
Taylor, 1992 and Ohtsuki, 2010.) For two other update rules (“Death-Birth”
and “Imitation”), the spatial competition effect is weaker and cooperation
can be favored. Thus the choice of update rule is a modeling decision that
must be treated with appropriate care.

Finally, the probabilities of transition between states—and hence the dy-
namics and outcomes of evolutionary competition—depend on the game, the
interaction structure, and the update rule of the considered IBEG model.
We therefore view the game, interaction structure, and update rule as three
key ingredients of any IBEG model, leaving the abstract formalization of this
idea to future work. An important and attractive feature of IBEG models is
that the considered game can be varied independently from the considered
interaction structure and the considered update rule. Varying the latter two
ingredients can elucidate, for example, how the success of a particular trait
or behavior varies with the geometry of the considered environment.

Structure coefficient

Tarnita et al. (2009b; 2011; see also Nowak et al., 2010a) have recently
pioneered a general approach to studying IBEG models on the demographic
timescale. This approach focuses on the Markov chain structure of these
models, abstracting from the details of births, deaths, and game interactions.

Tarnita et al. (2009b) considered IBEG models involving pairwise games
with two strategies, described by 2× 2 payoff matrices,

X Y
X a b
Y c d.

(3)

Above, X and Y are the two considered strategies, a and b are the payoffs
received by X when playing against X and Y , respectively, and c and d are
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the payoffs received by Y when playing against X and Y , respectively. In the
Markov chain representation of such an IBEG model, each transition proba-
bility between any pair of states can be considered a function of the payoff
values a, b, c, and d, with this function depending in turn on the interaction
structure and update rule of the considered model. Tarnita et al. (2009b)
imposed basic differentiability and symmetry assumptions on the transition
probabilities as functions of the payoff values. On this basis, they proved that
any IBEG model satisfying their assumptions can be characterized by a real-
valued “structure coefficient” σ. The value of σ depends on the interaction
structure and update rule, but is independent of the game. Given a particu-
lar game of the form (3), strategy X is favored over strategy Y—in the sense
that X has greater fixation probability than Y under weak selection—if and
only if

σa+ b > c+ σd. (4)

The utility of this result is that, once the value of σ has been determined
for a particular combination of interaction structure and update rule (see
examples in Table 1), condition (4) can be used to determine which strat-
egy is favored in any 2 × 2 game. In short, σ quantifies how a particular
combination of interaction structure and update rule affects the selection
pressure on game strategies. For a well-mixed population, σ approaches 1
as population size approaches infinity; thus, σ = 1 can be interpreted as a
baseline value. In this case, the same-type payoffs a and d and the opposite-
type payoffs b and c are of equal importance in determining evolutionary
success. As σ is increased above 1, the same-type payoffs become increas-
ingly important. Conversely, as σ is decreased below 1, the opposite-type
payoffs become increasingly important. Accordingly, the former case favors
cooperative strategies, whereas the latter case hinders them (Tarnita et al.,
2009b).

We caution that the structure coefficient does not merely quantify as-
sortment of strategies or genetic relatedness between interaction partners.
Its value also depends, for example, on any indirect competition effects that
may be subsumed in the update rule. We will revisit the interpretation of
σ throughout this work. In particular, as part of our results, we derive an
expression for σ in terms of the dependence of fixation probabilities on game
payoffs.
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Mathematical framework

Our main result, an equation describing the evolutionary trajectories of con-
tinuous game strategies, extends the approach of Tarnita et al. (2009b) from
the demographic to the evolutionary timescale, using the adaptive dynamics
framework. The resultant equation applies to any IBEG model satisfying
a set of basic assumptions. In this section, we present these assumptions
verbally, saving rigorous mathematical formulations for Appendix A. We
separate our assumptions into those applying to the interaction timescale
(labeled G1–G2), the demographic timescale (D1–D6), and the evolutionary
timescale (E1–E3).

Interaction timescale: Game strategies and payoffs

Interactions are modeled as a continuous game with payoff function A. The
possible strategies are represented as real numbers or vectors. In the two-
player case, A(x; y) denotes the payoff to an individual of strategy x interact-
ing with an individual of strategy y. For n-player games, the payoff function
is written A(x; y1, . . . , yn−1). In this case, the first argument x denotes the
strategy of the focal individual receiving the payoff, and the remaining n− 1
arguments are the strategies of the other game participants. We place the
following assumptions on A:

G1. A is positive and twice differentiable in all of its arguments, at least in
the case that all game participants use approximately the same strat-
egy.

G2. For games with more than two players, the arrangement of interaction
partners does not matter, i.e., the value of A(x; y1, . . . , yn−1) does not
change if the arguments y1, . . . , yn−1 are permuted.

Demographic timescale: Resident-mutant competition

On the demographic timescale, we are interested in episodes of competition
between a resident strategy x and a mutant strategy x′. Four payoff values
arise in this competition, and we introduce the following shorthand notation
for these:

aMM = A(x′; x′) aMR = A(x′; x)
aRM = A(x; x′) aRR = A(x; x).
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Following the approach of Tarnita et al. (2009b), we focus on the Markov
chain representing resident-mutant competition under the considered IBEG
model, abstracting from lower-level biological details. This Markov chain
is initiated in a state corresponding to the appearance of a single new mu-
tant. Eventually, the Markov chain will reach a state corresponding to either
mutant fixation or extinction. We denote by ρ the probability that mutant
fixation is reached.

We impose six assumptions on how the Markov chains transition prob-
abilities vary with respect to aMM, aMR, aRM, and aRR. These assumptions
implicitly restrict the choices of interaction structures and update rules in
IBEG models that can be analyzed using our approach.

D1. The set of possible states is finite,

D2. The Markov chain’s transition probabilities are completely determined
by the payoff values aMM, aMR, aRM, and aRR,

D3. For any values of aMM, aMR, aRM, and aRR, mutant fixation is possible
from any initial state corresponding to the appearance of a single new
mutant,

D4. The Markov chain’s transition probabilities vary twice differentiably
with respect to aMM, aMR, aRM, and aRR,

D5. The fixation probability ρ is unaffected if aMM, aMR, aRM, and aRR are
each multiplied by a positive constant K > 0,

D6. The fixation probability ρ is increasing in aMM and aMR, and decreasing
in aRM and aRR.

Assumption D2 requires that the evolving strategies affect only the game
payoffs; if the evolving strategies also affected the interaction structure or
update rule, then the Markov chain’s transition probabilities would not be
completely determined by aMM, aMR, aRM, and aRR, but would depend on
x as well. Assumption D5 guarantees that the fixation probabilities are
insensitive to changes in the units in which payoffs are measured.

While these assumptions apply to a wide variety of IBEG models (a sam-
ple of which are listed in Table 1), they exclude models with infinitely many
states (e.g., those with infinite population size or continuous space) and mod-
els in which behaviors affecting the interaction structure (e.g., homophily)
or update rule (e.g., migration) coevolve with the game strategies.
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The six assumptions above are compatible with those stipulated by Tar-
nita et al. (2009b). Consequently, there is a structure coefficient, satisfying
(4), associated to each combination of interaction structure and update rule
satisfying these assumptions.

Evolutionary timescale: Mutation and trait substitu-
tion

Following the adaptive dynamics approach, we make the following two as-
sumptions regarding the mutation process:

E1. Mutations are rare, so that the evolving population is typically monomor-
phic, and long-term evolution can be described as a sequence of trait
substitutions.

E2. Mutation is directionally unbiased.

E3. Mutation is incremental, so that the mutant strategy x′ is always close
to the resident strategy x.

Main result: Canonical equation of adaptive

dynamics with interaction structure

This section presents our central result, the canonical equation of adaptive
dynamics with interaction structure. This equation describes expected evo-
lutionary trajectories of a game strategy x for any combination of continuous
game (satisfying Assumptions G1–G2), update rule and interaction structure
(satisfying Assumptions D1–D6), and mutation process (satisfying Assump-
tions E1–E3).

Univariate traits and pairwise games

We begin with the simple case of a pairwise (two-player) game A(x; y), in
which the strategies x and y are univariate (real numbers). The canonical
equation of adaptive dynamics with interaction structure in this case is

dx

dt
= Ne

N − 1

N

u(x)v

A(x; x)

(
∂A(x′; x)

∂x′

∣
∣
∣
∣
x′=x

+
σ − 1

σ + 1

∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

)

, (5)
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where σ is the structure coefficient and Ne is the effective population size
(defined below). As in eq. (2), t is evolutionary time, N is the equilibrium
population size, u(x) is the per capita rate of mutant appearance, and v is
the variance in mutational step size.

This result is obtained by first showing that expected evolutionary trajec-
tories are related to fixation probabilities as in eq. (2), and then showing that
the relevant derivatives of fixation probabilities can be expressed in terms of
the structure coefficient and effective population size. The full derivation is
given in Appendix B. We now discuss several aspects of this result in detail.

Structure coefficient and shapes of evolutionary trajec-
tories

First we note that all effects of the interaction structure and update rule on
the shape of evolutionary trajectories—in particular on the strategies cor-
responding to evolutionary equilibria—are described by the proportionality
relation

dx

dt
∝

∂A(x′; x)

∂x′

∣
∣
∣
∣
x′=x

+
σ − 1

σ + 1

∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

, (6)

where the symbol ∝ means “proportional to”. The two terms of eq. (6)
express a mutation’s evolutionary success in terms of its effect on the payoff
of its bearer (first term), as well as its effect on the payoffs of those with
whom the bearer interacts (second term). In the limit of a large, well-mixed
population (σ → 1), only the bearer’s payoff matters. But with nontrivial
interaction structure and/or update rule (σ �= 1), a mutant’s effect on the
payoffs of others is relevant, with the sign of σ−1 identifying whether helpful
or harmful effects are favored by the second term.

We also derive in Appendix B an expression for σ in terms of the behavior
of the mutant fixation probability ρ with respect to the game payoffs:

σ =

(
∂ρ

∂aMM

−
∂ρ

∂aRR

)/(
∂ρ

∂aMR

−
∂ρ

∂aRM

)

, (7)

with all derivatives taken at aMM = aMR = aRM = aRR = 1. We note in
passing that this expression also applies to the result of Tarnita et al. (2009b),
with a, b, c, and d in place of aMM, aMR, aRM, and aRR, respectively. We
additionally show in Appendix B that σ is always positive, as a consequence
of Assumption D6.
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The appearance of the ratio (σ− 1)/(σ+1) in eq. (6) can be understood
by the following argument. By condition (4), a mutant strategy x′ is favored
over the resident strategy x if and only if

σA(x′; x′) + A(x′; x)− A(x; x′)− σA(x; x) > 0.

For x′ = x, the quantity on the left-hand side vanishes. Therefore, to first
order in x′ − x, mutant favorability is determined by the sign of

σ

(
∂A(x′; x)

∂x′

∣
∣
∣
∣
x′=x

+
∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

)

+
∂A(x′; x)

∂x′

∣
∣
∣
∣
x′=x

−
∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

= (σ + 1)
∂A(x′; x)

∂x′

∣
∣
∣
∣
x′=x

+ (σ − 1)
∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

.

Dividing by σ + 1, we obtain the coefficients in eq. (6).
Values of σ for a variety of IBEG models are shown in Table 1.

Effective population size and speed along evolutionary
trajectories

We next observe that the rate of evolution in eq. (5) is proportional to the
effective population size Ne. The effective population size is defined here in
terms of the selection response, i.e. through the likelihood of beneficial mu-
tations to fixate. Our definition is motivated by Kimura’s (1964) result that,
for a class of models amenable to one-dimensional diffusion approximation,
a beneficial mutation of selective advantage s has fixation probability

ρ ≈
1− e−2sNe/N

1− e−2sNe

. (8)

Differentiating with respect to s and solving for Ne yields

Ne =
N2

N − 1

∂ρ

∂s

∣
∣
∣
s=0

, (9)

which we take as our definition of Ne. We note that in this work the actual
and effective population sizes, N and Ne, respectively, pertain to the de-
mographic equilibrium of the resident population, rather than to its current
state at a given time.
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Our Ne agrees with the variance effective population size (Kimura, 1964)
and the eigenvalue effective population size (Ewens, 1982; see also Rousset,
2004) for models for which these are defined. Our definition is similar in
spirit to the adaptation effective population size defined by Campos and
Wahl (2009). More generally, it is proven for some models and conjectured
more generally (Metz, 2011) that the notion of effective population size as
a quantity scaling the rate of adaptation—as in eq. (6)—is equivalent to
the more familiar notion of effective population size as a quantity inversely
proportional to the strength of neutral drift.

A convention implicit in eq. (8) is that the Wright-Fisher (non-overlapping
generations) model is taken as a baseline. Consequently, Ne = N for the
Wright-Fisher model, while Ne is greater than (less than) N for population
structures that promote (inhibit) the fixation of beneficial mutations, rela-
tive to this model. Interestingly, many overlapping-generation IBEG models
(Moran, 1958; Dieckmann, 1994; Nowak et al., 2004) have Ne = N/2. Values
of Ne for a variety of models are shown in Table 1.

Rates of mutant appearance

In the canonical equation (5), the process by which new mutations appear
is deliberately left unspecified. This flexibility allows for the application of
eq. (5) to a wide variety of biological and cultural evolutionary processes.

For biological evolution, it is natural to set u(x) equal to μb(x), where
b(x) is the birth rate in a monomorphic population of strategy x, and μ is
the mutation probability per birth as in eq. (1). An important special case
occurs when payoff is equal to birth rate in monomorphic populations, so
that b(x) = A(x; x). In this case the ratio u(x)/A(x; x) in eq. (5) simplifies
to μ.

For cultural evolution, u(x) can be interpreted as the per capita rate at
which new ideas or behaviors are introduced. Depending on the details of the
considered evolutionary process, it may then be reasonable to assume u(x) to
be constant (if innovation is unrelated to strategies or payoffs), proportional
to A(x; x) (if high payoffs induce greater levels of innovation), or inversely
proportional to A(x; x) (if innovation is induced by discontent with one’s
current payoff).
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Recovery of original canonical equation

Dieckmann (1994) derived the original canonical equation of adaptive dy-
namics, eq. (1), using a continuous-time birth-death model in a large well-
mixed population. For this model, σ = 1 and Ne = N/2. If we equate an
individual’s birth rate with the average payoff obtained from all other indi-
viduals and assume a constant death rate, then u(x) = μA(x; x), f(x′; x) =
A(x′; x)− 1, and eq. (5) reduces to the original canonical equation eq. (1).

Multivariate traits

For continuous games with multivariate (d-dimensional) strategies, x = (x1, . . . , xd),
evolutionary trajectories are described by the system of equations

dxi

dt
= Ne

N − 1

N

u(x)vi
A(x; x)

(
∂A(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

+
σ − 1

σ + 1

∂A(x; x′)

∂x′
i

∣
∣
∣
∣
x′=x

)

, (10)

for i = 1, . . . , d. Here, the mutational step size variance vi is given the
subscript i to reflect that mutations in different components i of x may be
differently distributed.

Equation (10) applies when mutations in each component of x are in-
dependent. Correlations among mutations in different components can be
readily accommodated, following a formalism described by Dieckmann and
Law (1996, §6.2).

Multilateral interactions

Our result extends to games involving any number of players. We show in
Appendix C that an n-player game B(x; y1, . . . , yn) can be replaced by the
pairwise game with payoff function A(x; y) = B(x; y, . . . , y)—more specifi-
cally, the payoff value B(x; y1, . . . , yn−1) can be replaced by the arithmetic
mean of A(x; yj) for j = 1, . . . , n − 1. In other words, one can suppose
that the pairwise game A is played with each of the n− 1 partners and the
results are then averaged; this substitution leaves evolutionary trajectories
unchanged.

This surprising simplification arises from the differentiability and sym-
metry properties, G1 and G2, imposed on the game. It does not imply that
the set of interaction partners is typically monomorphic.
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Range of applications

The power of our result lies in its generality. To obtain the expected evo-
lutionary trajectory of a particular continuous strategy under a particular
IBEG model, one need only substitute the appropriate payoff function A
and values of σ and Ne into the canonical equation with interaction struc-
ture, eq. (10). This saves the labor of analyzing each combination of game,
interaction structure, and update rule from scratch. Moreover, our result en-
ables comparisons both within classes of models (e.g., graphs with different
topologies) and across such classes (e.g., models with pre-defined groups ver-
sus those with tag-based assortment). Allowing σ and Ne to vary across all
positive values reveals, all at once, the range of potential trajectories a quan-
titative trait can follow under all conceivable ecological scenarios fulfilling
the rather general assumptions above.

Examples: Social dilemmas

We now illustrate the power of our framework by considering two social dilem-
mas with continuous strategies. In each case we find that, as the structure
coefficient increases, new cooperative equilibria arise and existing equilibria
shift toward greater levels of cooperation.

Example 1: One-shot continuous Prisoner’s Dilemma

We first investigate the continuous Prisoner’s Dilemma (Killingback et al.,
1999; Wahl and Nowak, 1999b,a; Killingback and Doebeli, 2002). This mod-
els a pairwise social dilemma with a continuous range of cooperativity levels,
quantified by a nonnegative real number x. In each interaction, a player
with cooperativity x pays a cost C(x) to produce a benefit B(x) for the
other player. We assume that the functions C(x) and B(x) are twice dif-
ferentiable, strictly increasing, and satisfy C(0) = B(0) = 0 (so that x = 0
corresponds to no cooperation) and C(x) < B(x) for x > 0. The payoff
function thus is

A(x, y) = −C(x) + B(y).

Applying eq. (6), we immediately obtain the cooperativity dynamics un-
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der any IBEG model satisfying our assumptions:

dx

dt
∝ −C ′(x) +

σ − 1

σ + 1
B′(x). (11)

For large well-mixed populations (σ = 1), these dynamics depend only on the
marginal cost C ′(x) of cooperation. The second term contributes when σ �= 1
and captures how a mutant’s success depends on the marginal benefit B′(x)
it gives to others. We see that, depending on the interaction structure and
update rule, a mutant’s success can increase (σ > 1) or decrease (σ < 1) with
this marginal benefit. The ratio (σ− 1)/(σ+1) can therefore be interpreted
as quantifying the “potential for altruism” (Gardner, 2010) afforded by a
particular combination of interaction structure and update rule.

Cooperativity increases from its current value x if and only if both σ > 1
and

B′(x)

C ′(x)
>

σ + 1

σ − 1
. (12)

Conversely, if σ ≤ 1 or if B′(0)/C ′(0) < σ+1
σ−1

, cooperativity will not increase
from an initial value of zero.

The left-hand side of condition (12) is the marginal-benefit-to-marginal-
cost ratio of an increase in cooperativity. Condition (12) thus is a differential
version of the benefit-to-cost thresholds, such as Hamilton’s rule, that fre-
quently arise as conditions for the evolution of cooperation (reviewed by
Nowak, 2006).

Cooperativity equilibria occur at values x = x∗ satisfyingB′(x∗)/C ′(x∗) =
(σ + 1)(σ − 1). An equilibrium x∗ is stable if

d

dx

B′(x)

C ′(x)

∣
∣
∣
x=x∗

< 0, (13)

that is, if the marginal-benefit-to-marginal-cost ratio of cooperation is de-
creasing at x = x∗. Conversely, unstable equilibria occur when this ratio is
increasing. In the latter case, x∗ can be understood as a cooperativity thresh-
old, in that cooperativity dwindles when x < x∗ but becomes self-reinforcing
when x > x∗.

We can neatly summarize these results in a bifurcation diagram (Figure
1), in which the structure coefficient serves as the control parameter. This
diagram shows how greater values of σ yield higher levels of evolutionarily
stable cooperativity. In general, our main result enables constructing such a
bifurcation diagram for any continuous game, showing how the evolutionary
trajectories following eq. (10) vary with a model’s structure coefficient.
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Example 2: Iterated Prisoner’s Dilemma with stochas-
tic reactive strategies

The iterated Prisoner’s Dilemma with stochastic reactive strategies (Nowak
and Sigmund, 1990, 1992, 1993; Imhof and Nowak, 2010) is an elegant and
well-studied example of multivariate adaptive dynamics. Here we consider
the Prisoner’s Dilemma game

C D
C b− c −c
D b 0,

(14)

played an infinite number of times between two players. Each player’s move
depends stochastically on the previous move of the other player. A strategy
is characterized by a pair of probabilities, (p, q) ∈ [0, 1]× [0, 1]. The strategy
component p (resp., q) represents the probability of cooperating in response
to cooperation (resp., defection) by the other player. Thus, the strategy
(0, 0) corresponds to “always defect” (ALLD), (1, 1) to “always cooperate”
(ALLC), and (1, 0) to “tit-for-tat” (TFT). The payoff to each player is aver-
aged over an infinite number of iterations; hence the choice of opening move
is unimportant.

For this game, the payoff to a player with strategy (p1, q1) interacting
with a player with strategy (p2, q2), as calculated by Nowak and Sigmund
(1990), is

A(p1, q1; p2, q2) =
−c(q1 + p1q2 − q1q2) + b(q2 + p2q1 − q2q1)

1− (p1 − q1)(p2 − q2)
.

We study the adaptive dynamics of the cooperation probabilities p and q
using the multivariate canonical equation with interaction structure eq. (10).
For simplicity, we assume that mutations in p and q are independent, and of
equal expected magnitude, but this assumption can readily be relaxed.

Upon computing the four partial derivatives of A as required by eq. (10),
it follows immediately that, for any IBEG model satisfying our assumptions,
the expected evolutionary trajectories trace concentric circles around the
point (p, q) = (1, 0) corresponding to TFT. It further follows that, along
these trajectories, cooperation increases (dp/dt > 0 and dq/dt > 0) if

(σ + 1)
(
− c+ b(p− q)

)
+ (σ − 1)

(
− c(p− q) + b

)
> 0, (15)
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and decreases (dp/dt < 0 and dq/dt < 0) otherwise.
The observations above fully determine the evolutionary trajectories for

this game under any interaction structure and update rule. Figure 2 illus-
trates these results, showing how the range of stable equilibria with positive
p and q values increases with the structure coefficient σ.

Discussion

Summary

Although patterns of interaction and replacement can have complex and
varied effects on a population’s evolution, our results here show that, for
the purposes of determining the expected trajectories of continuous strate-
gies under a broad class of evolutionary game models, these effects are fully
quantified by just two real numbers, the effective population size and the
structure coefficient. This remarkable simplification arises from the assump-
tions of rare and incremental mutation that underlie the adaptive dynamics
framework.

Our results facilitate a broader approach to the study of continuous strat-
egy evolution. Rather than studying individual combinations of a game, an
interaction structure, and an update rule, one can derive the values of the
structure coefficient and effective population size for a particular choice of
interaction structure and update rule (as in the examples shown in Table
1), and thereby immediately understand their effects on adaptive dynamics
for any continuous game. Or, as in Figures 1 and 2, one can focus on a
single game and, by varying σ and Ne, understand how adaptive dynamics
and outcomes for this game vary under different interaction structures and
update rules.

Our work also unifies previous findings that spatial structure can promote
cooperation in continuous-strategy social dilemmas (van Baalen and Rand,
1998; Killingback et al., 1999; Le Galliard et al., 2003, 2005; Ifti et al., 2004).
Our work shows that, across models and games, the strength of this spatial
benefit to cooperation is quantified by the structure coefficient σ. Indeed,
whenever σ > 1, the coefficient of the second term of eq. (10) is positive,
indicating that selection favors strategies that increase the payoffs of others.
The two examples in the preceding section show how both the range and the
intensity of evolutionarily stable cooperative behaviors can increase with σ.
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Fixation probability versus invasion fitness

We depart from most prior work on adaptive dynamics in structured pop-
ulations (van Baalen and Rand, 1998; Ferrière and Le Galliard, 2001; Metz
and Gyllenberg, 2001; Durinx et al., 2008) in our use of fixation probabilities
in place of invasion fitness—defined as the exponential growth rate of a rare
mutant subject to the current environment (Metz et al., 1992; Rand et al.,
1994; Dieckmann and Law, 1996; Metz et al., 1996; Heino et al., 1998).

This concept is natural in well-mixed populations. Additionally, for some
models with nontrivial interaction structure, it can be shown that assortment
patterns are likely to equilibrate (in some sense) while a mutant is still rare
(Matsuda et al., 1992; van Baalen and Rand, 1998; Ferrière and Le Galliard,
2001; Ohtsuki and Nowak, 2008). The invasion fitness can then be derived
assuming that such equilibration has occurred. However, such an approach
does not necessarily account for how the mutant’s fixation probability is af-
fected by its dynamics prior to this equilibration. It is also unclear whether
the separation of timescales needed for defining an exponential phase can be
expected to hold for all models of resident-mutant competition with interac-
tion structure. Basing adaptive dynamics directly on fixation probabilities
(Proulx and Day, 2002; Rousset, 2004; Imhof and Nowak, 2010) eschews such
difficulties.

The direct use of fixation probabilities is therefore attractive when these
can be determined in addition to, or independently of, invasion fitness. By
contrast, where fixation probabilities need to be inferred from invasion fit-
ness, they provide no marginal benefit. Moreover, fixation probabilities are
less appropriate for understanding processes of evolutionary branching (Metz
et al., 1992; Geritz et al., 1997; Dieckmann and Doebeli, 1999), in which com-
peting strains coexist and begin to diverge. Understanding how variations
in interaction structures and update rules affect evolutionary branching will
require formalizing and calculating the establishment probability (Haccou
and Iwasa, 1996; Metz et al., 1996; Durinx et al., 2008)—that is, the proba-
bility that an invading mutant type will reach a sustainable abundance—for
models with nontrivial interaction structure.

Interpretation of structure coefficient

As is made precise in eq. (7), the structure coefficient quantifies how the
outcomes of same-type and different-type interactions affect a mutation’s

22



fixation probability. Because fixation probability is itself a summary quantity
that depends in complex ways on the fundamental events (births, deaths,
interactions, etc.) that drive evolution, one may wish to connect the structure
coefficient more directly to these fundamental events, and thereby also to
other well-studied quantities such as assortment and relatedness.

How to address this challenge depends on the class of models under con-
sideration. Here, as in the work of Tarnita et al. (2009b), evolutionary com-
petition is abstractly represented as a Markov chain. Fixation is represented
explicitly, but births, deaths, interactions, and other fundamental events are
(in the general case) represented only implicitly, as aspects that may affect
transitions between the Markov chain’s states, without the dependence of
those transitions on those events having to be made explicit or concrete.
This abstraction is a strength, in that our results apply to a wide variety of
models. However, it also presents a limitation, in that our results cannot be
expressed in terms of these fundamental events, because they are represented
only implicitly.

This limitation can be overcome by restricting our analyses to a subclass
of models for which ecological events are represented more explicitly. An
example is the class of models with “global updating” (Nathanson et al.,
2009). In this class, the update rule has the property that an individual’s
reproductive fitness (the number of same-type individuals that an individual
leaves after an update; Taylor et al., 2007b; Allen and Tarnita, 2012) is
proportional to its expected game payoff. This property can be understood
ecologically as requiring that competition to reproduce be global, as local
density regulation of survival or fertility otherwise break this proportionality.
Notwithstanding this requirement, game interactions may still be local. This
class includes most models of well-mixed populations, as well as, for example,
Antal et al.’s (2009) model of evolution with phenotypic assortment, Tarnita
et al.’s (2009a) model of evolution in social sets, and Allen and Nowak’s
(2012) model of spatial evolution in cellular populations. For all models in
this class, the structure coefficient σ can be expressed in terms of the relative
frequency of same-type versus different-type game interactions (Nathanson
et al., 2009), that is, as a measure of assortment.

For models without global updating, including models in evolutionary
graph theory (Ohtsuki et al., 2006; Pacheco et al., 2006b; Taylor et al., 2007a;
Allen et al., 2012), the structure coefficient does not merely quantify assort-
ment in game interactions, but also reflects interactions (e.g., competition for
space) that are described by the update rule. For example, the Death-Birth
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and Birth-Death update rules on regular graphs (Ohtsuki et al., 2006) yield
the same spatial assortment pattern, but result in different values of σ, due
to differences in the way spatial competition is modeled (see Table 1, Ohtsuki
et al., 2006, and Nowak et al., 2010b).

Research is ongoing to develop and investigate new classes of IBEG mod-
els, with various degrees of generality. For some of these classes, it should be
possible to express σ in terms of well-studied quantities beyond fixation prob-
abilities. The ultimate result may be a patchwork of classes, with expressions
for σ that differ across classes but coincide on their intersections.

Discrete versus continuous strategy evolution

The adaptive dynamics of continuous game strategies in IBEG models dif-
fers in several noteworthy ways from discrete strategy evolution. First, for
discrete strategies, condition (4) is valid only under weak selection. For con-
tinuous strategies, since mutation is incremental in the adaptive dynamics
framework, the difference in strategy between competing mutants and res-
idents is assumed to be small. Consequently, fitness differences within the
evolving population are small as well. Thus no extra assumption of weak se-
lection is needed for the canonical equation with interaction structure eq. (10)
to hold.

Second, condition (4) determines which of the two strategies A and B
is more likely to displace the other; however, for discrete strategies, it does
not quantify the absolute likelihood of these fixation events. Since absolute
fixation probabilities are needed to predict long-term evolutionary dynamics
based on strategy substitutions, for discrete strategies, the structure coef-
ficient and effective population size together do not fully characterize the
effects of different interaction structures and update rules on long-term evo-
lution. This situation is different for the adaptive dynamics of continuous
strategies: the combined assumptions of incremental mutations and of the
differentiability of the payoff function A(x′; x) imply that the first-order be-
havior of ρ(x′; x) near x′ = x is fully determined by σ, Ne, and the partial
derivatives of A(x′; x) at x′ = x, as we show in Appendix B.

Relation to inclusive fitness theory

The form of the canonical equation with interaction structure, eq. (10) ,is
reminiscent of inclusive fitness theory (Hamilton, 1964a,b; Michod, 1982), in

24



that the effects of a trait are partitioned into two terms representing benefits
to self and to others, with the second term weighted by a quantity related to
interaction patterns.

Yet the canonical equation with interaction structure represents a dif-
ferent perspective than inclusive fitness theory. While no inclusive-fitness
analogue of eq. (10) has yet been proposed (see Rousset, 2004, for some
steps in this direction), inclusive fitness theory typically focuses on parti-
tioning fitnesses rather than game payoffs (Taylor and Frank, 1996; Taylor
et al., 2007b).

While this distinction may at first glance seem immaterial, it does affect
the utility and domains of applicability of the two approaches. To apply
eq. (10), an IBEG model must be specified—that is, all processes relevant to
evolution must be partitioned into those represented by the game, interaction
structure, and update rule. This involves an assumption that all outcomes of
those processes represented by the game are adequately summarized by the
payoffs assigned to the participating individuals. The advantage gained from
this assumption is the clean separation of the game from the interaction
structure and update rule. These ingredients can then be varied indepen-
dently in eq. (10), enabling simple yet comprehensive analyses of how the
evolutionary trajectories of particular traits vary under different conditions
(e.g., Figures 1 and 2).

In contrast, when fitness is partitioned according to inclusive fitness the-
ory, the interaction structure and update rule affect the two fitness terms as
well as the relatedness coefficient (Taylor et al., 2007b; Nowak et al., 2010b).
These terms must therefore be calculated separately for every model, render-
ing the aforementioned type of comprehensive analysis more difficult in the
inclusive fitness framework.

General approaches to evolutionary theory

The results presented here apply to a class of evolutionary models, defined
by a set of assumptions. Reasoning from general assumptions, rather than
specific models, is a relatively new and potentially powerful approach in evo-
lutionary theory. This approach has previously been applied to the dynamics
of physiologically structured populations (Metz and Diekmann, 1986; Diek-
mann et al., 1998, 2001, 2007; Durinx et al., 2008), evolutionary game the-
ory (Tarnita et al., 2009b, 2011), quantitative trait evolution (Champagnat
et al., 2006; Simon, 2008), and models with fixed spatial structure (Allen and
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Tarnita, 2012). The advantage of this approach is that general statements,
applying to many models or systems, can be proven all at once.

There is another general approach to evolutionary theory, which is termed
the “open model” approach by Gardner and West (2006), and is perhaps best
typified by the work of Price (1970, 1972). The open model approach does
not reason from any particular model or set of assumptions. Rather, the
starting point is a collection of variables that represent quantities arising
in an unspecified evolutionary process. These variables are related to each
other using mathematical identities—such as the Price (1970) equation—
that hold irrespective of the biological meaning associated to the variables.
These identities are then rewritten into forms that can be interpreted as
quantitative laws of evolution. For example, versions of Hamilton’s rule have
been derived through this approach (Queller, 1992; Gardner et al., 2011), as
have certain formulations of multilevel selection theory (Price, 1972; Okasha,
2006). The identities derived through this approach are valid in any system
for which the variables involved have meaning, but do not, on their own,
determine the outcome of any particular model or the consequences of any
particular assumption.

A dichotomy has been proposed (Gardner and West, 2006; Gardner et al.,
2007, 2011) between “closed model” (modeling in the traditional sense) and
open model approaches to evolutionary theory. The approach taken here and
by others mentioned above—reasoning from a set of assumptions that delin-
eate a class of models—does not appear to fall under either category. We take
the view that there is a spectrum of generality in mathematical approaches
to evolutionary theory. At one extreme are detailed models representing
specific systems, while the open model approach represents the opposite ex-
treme. Our approach and others like it occupy intermediate positions in this
spectrum.

Inherent in the conceptualization of this spectrum is the acknowledge-
ment of a tradeoff between generality of the domain of applicability versus
specificity in results. Approaches of intermediate generality (e.g., classical
mechanics as derived from Newton’s laws of motion) have been tremendously
powerful in other fields of science. We believe such approaches represent an
exciting growth opportunity for evolutionary theory.
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Limitations

We caution that, in addition to the assumptions allowing trait evolution to be
described by evolutionary game theory, our results depend on the assump-
tions underlying the adaptive dynamics approach. In particular, our use
of condition (4) and other results from evolutionary game theory requires
assuming rare and incremental mutations. Relaxation of these assumptions
would likely reveal a much more complex interplay between interaction struc-
ture, update rule, and game strategy evolution.

Additionally, our results assume that the evolving trait (continuous game
strategy) is independent of the interaction structure and update rule. This
excludes an important class of models in which behaviors affecting the in-
teraction structure or update rule coevolve with strategy (Le Galliard et al.,
2005; Pacheco et al., 2006a,b; Fu et al., 2008; Helbing and Yu, 2009; Perc
and Szolnoki, 2010; Wu et al., 2010). For such models, the value of the
structure coefficient may vary with the considered game and resident strat-
egy. Establishing the relationship between the structure coefficient and the
resident strategy for different games could be an interesting research target
in its own right. In such cases, however, the canonical equation with inter-
action structure, eq. (10), loses the generality that comes from assuming the
independence of the game from the interaction structure and update rule,
because the aforementioned relationship may be game-specific.

Outlook

Our results have a number of implications for future research. For one, they
suggest extending the focus of analysis from the detailed study of individ-
ual models to a general understanding of common features and quantifiable
differences between models. Second, the canonical equation with interac-
tion structure, eq. (10), may help illuminate how different interaction struc-
tures and update rules affect a wide range of phenomena, such as life-history
evolution (Stearns, 1992; Roff, 2002; Crowley and McLetchie, 2002), viru-
lence evolution (Herre, 1993; Boots and Sasaki, 1999; Haraguchi and Sasaki,
2000; Read and Keeling, 2003; Boots et al., 2004), and evolutionary suicide
(Ferrière, 2000; Boots and Sasaki, 2002; Gyllenberg et al., 2002; Lion and van
Baalen, 2008). Finally, the appearance of the marginal-benefit-to-marginal-
cost ratio in condition (12) suggests that quantities typically considered in
economic theory may be useful for understanding the adaptive dynamics of
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quantitative traits.
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A Mathematical framework

Here we present our mathematical framework and assumptions formally. We
state these in the case of a pairwise game, saving the generalization to games
with more than two players for Appendix C. Below, we divide our as-
sumptions into those applying to the interaction timescale, the demographic
timescale, and the evolutionary timescale. Where needed, explanations in
italics provide interpretations of the preceding mathematical statements.

A.1 Interaction timescale: Game strategies and pay-
offs

We assume that the payoff function A satisfies the following condition.

G1. For each x ∈ R
d, A is positive and twice differentiable in both argu-

ments at x′ = x.
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A.2 Demographic timescale: Resident-mutant compe-
tition

We assume that resident-mutant competition is described by a model satis-
fying the following conditions.

D1. There is a finite set S with an associated probability distribution Q,
and a distinguished subset FM ⊂ S which is assigned zero probability
by Q.

S is the set of states. Q is the probability distribution of states corre-
sponding to the appearance of a new mutant strategy. FM is the set of
states corresponding to mutant fixation.

D2. For any payoff matrix

G =

(
aMM aMR

aRM aRR

)

,

there is a collection {ps′|s}s,s′∈S of transition probabilities, giving S the
structure of a Markov chain.

D3. The Markov chain associated to any such payoff matrix G has the
following properties:

• There is zero probability of transitioning from a state in FM to a
state not in FM.

Mutant fixation is irreversible (barring further mutation).

• For any s ∈ S that is assigned positive probability by Q, and any
s′ ∈ FM, there is a positive integer n for which the probability of
transitioning from s to s′ in n steps is positive.

Mutant fixation is possible from any initial state.

D4. The transition probabilities ps′|s vary twice differentiably with respect
to the entries of G.

D5. If the payoff matrixG is multiplied by a constantK > 0, the probability
ρ that the Markov chain hits FM, given that its initial state is sampled
from Q, is unaffected.

The evolutionary dynamics are insensitive to the choice of unit by which
payoffs are quantified.
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D6. The probability ρ defined in Assumption D5 is increasing in aMM and
aMR, and decreasing in aRM and aRR, for all values of aMM, aMR, aRM,
and aRR sufficiently close to each other (that is, for all values of aMM,
aMR, aRM, and aRR whose pairwise ratios are sufficiently close to 1).

Mutant fixation probability increases with mutant payoffs and decreases
with resident payoffs, at least when these payoffs are close to each other.

A.3 Evolutionary timescale: Mutations and trait sub-
stitutions

We place the following assumptions on the adaptive dynamics of game strate-
gies on the evolutionary timescale:

E1. Adaptive evolution follows a Markov jump process with state space Rd.
This process depends on the following ingredients:

• A payoff function A(x; y) satisfying Assumption G1,

• A positive real-valued function u on R
d,

• A probability measure U on R
d, with an associated σ-algebra of

measurable sets,

• A resident-mutant competition model satisfying Assumptions D1–
D6.

The infinitesimal transition rate to state x′ ∈ R
d, given that the current

state is x, is equal to

Nu(x) dU(x′ − x) ρ(x′; x). (A.1)

Above, ρ(x′; x) is the fixation probability ρ for the resident-mutant
competition model, as defined in Assumption D5, with the entries of
G given by

aMM = A(x′; x′), aMR = A(x′; x),
aRM = A(x; x′), aRR = A(x; x).

A Markov jump process is a continuous-time Markov process in which
the state is constant except for being punctuated by instantaneous jumps
to new states. In this case, the state x ∈ R

d represents the resident
strategy, and jumps represent substitution events, through which a new
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mutant strategy displaces the resident strategy. We regard these substi-
tution events as instantaneous from the perspective of long-term evo-
lution. Representing evolution in this way formalizes the assumption,
often made in the adaptive dynamics approach, that mutations are rare
enough that the resident population can be effectively regarded as typ-
ically monomorphic (see, for example, Dieckmann, 1994; Champagnat
et al., 2002).

The function u(x) gives the per capita rate at which new mutants appear
in a population with resident strategy x. The probability measure U
represents the distribution of possible mutational steps x′ − x. In the
case that U has an associated density function M , we can write dU(z) =
M(z) dz.

Expression (A.1) can be understood by considering that the instanta-
neous rate at which type x′ displaces type x is the product of the expected
number of mutants born per unit time, Nu(x), the (infinitesimal) prob-
ability that a mutant is of type x′, dU(x′ − x), and the probability that
mutant type x′ will displace resident type x, should it arise, ρ(x′; x).

E2. For a random variable z distributed according to U , E[z] = 0.

Mutation is directionally unbiased.

E3. For a random variable z distributed according to U , E [|z|2] ≫ E [|z|3].

The third moment of mutational step size is eclipsed by the second,
reflecting an assumption of incremental mutation.

For notational compactness, we additionally assume that N and U do
not vary with x, and that there is no covariance between the components
of a mutational step (that is, Cov[zi, zj] = 0 for all i, j = 1, . . . , d). These
assumptions are inessential and can be relaxed in a straightforward manner,
as described by Dieckmann and Law (1996).

Our derivation can also be extended to situations in which the trait space
(the set of possible x-values) is not the whole of Rd, but a domain D ⊂ R

d,
as in Examples 1 and 2 of the main text. In this case, the canonical equation,
eq. (10), holds at all points x for which the probability that x + z /∈ D is
negligible. Since the distribution U of mutational steps is presumed to be
narrow, this will typically include all points x that are sufficiently far from
the boundary of D. There are several schemes for extending the canonical
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equation to points near the boundary (Dieckmann et al., 2006). The simplest
of these—which we applied in Examples 1 and 2—is to assume that eq. (10)
holds in the whole interior of D, and that the dynamics on the boundary
are given by subtracting, from the vector dx/dt obtained from eq. (10), the
component (if any) that points orthogonally outward from D.

B Derivation

We now derive our main result, eq. (10), based on the mathematical frame-
work described above. We first express the expected change in strategy in
terms of the fixation probability (Section B.1), and then in terms of game
payoffs (Section B.2). These two sections derive the functional form of the
canonical equation. Sections B.3 and B.5 relate the coefficients appearing in
this equation to the effective population size and structure coefficient, respec-
tively. Sections B.4 and B.6 then establish formulas for, and the positivity
of, the effective population size and structure coefficient, respectively.

B.1 Adaptive dynamics in terms of fixation probabili-
ties

The assumption that long-term evolution follows a Markov jump process
with infinitesimal transition rates given by eq. (A.1) implies the following
equation for the expected change in strategy x per unit time,

dx

dt
= Nu(x)

∫

Rd

z ρ(x+ z; x) dU(z).

Since ρ is an absorption probability of a finite Markov chain (Assumptions
D1–D3 and D5), and since absorption is possible from any initial state sam-
pled from Q (Assumption D3), ρ varies smoothly with the Markov chain’s
transition probabilities (see, e.g., Theorem 3.3 of Iosifescu, 1980). Assump-
tion D4 then implies that ρ is twice differentiable with respect to the payoff
values aMM, aMR, aRM, and aRR. By Assumption G1, ρ(x′; x) is twice dif-
ferentiable in x and x′ at points where x′ = x. We can therefore replace
ρ(x + z; x) by its multivariate Taylor expansion around z = 0 up to first
order,

ρ(x+ z; x) = ρ(x; x) +
d∑

i=1

zi
∂ρ(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

+O
(
|z|2

)
,
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yielding

dx

dt
= Nu(x)ρ(x; x)

∫

Rd

z dU(z)

+Nu(x)
d∑

i=1

(
∂ρ(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

∫

Rd

z zi dU(z)

)

+O

(∫

Rd

|z|3 dU(z)

)

. (B.1)

By Assumption E2, the first term on the right-hand side of eq. (B.1) is zero,
and by Assumption E3, the third term is negligible relative to the second.
Thus eq. (B.1) can be replaced with

dx

dt
= Nu(x)

d∑

i=1

(
∂ρ(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

∫

Rd

z zi dU(z)

)

.

Our assumption of no covariance among the components of z implies that
∫

Rd

z zi dU(z) = viei,

where ei is the unit vector for the ith component of Rd. The expected change
in x is therefore given by the system of equations

dxi

dt
= Nu(x)vi

∂ρ(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

, (B.2)

for i = 1, . . . , d.

B.2 Adaptive dynamics in terms of game payoffs

Using the multivariate chain rule, we obtain

∂ρ(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

=
∑

j,k∈{M,R}

∂ρ

∂ajk

∣
∣
∣
∣
G=

(

A(x;x) A(x;x)
A(x;x) A(x;x)

)

∂ajk
∂x′

i

∣
∣
∣
∣
x′=x

. (B.3)

By Assumption D5, each of the payoff values ajk can be divided by aRR =
A(x; x) without changing the value of ρ. This implies that

∂ρ

∂ajk

∣
∣
∣
∣
G=

(

A(x;x) A(x;x)
A(x;x) A(x;x)

)
=

1

A(x; x)

∂ρ

∂ajk

∣
∣
∣
∣
G=( 1 1

1 1 )
,
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which, in combination with eq. (B.3), yields

∂ρ

∂x′
i

∣
∣
∣
∣
x′=x

(x′; x) =
1

A(x; x)

∑

j,k∈{M,R}

∂ρ

∂ajk

∣
∣
∣
∣
G=( 1 1

1 1 )

∂ajk
∂x′

i

∣
∣
∣
∣
x′=x

. (B.4)

By the multivariate chain rule, the partial derivatives of the ajk at x′ = x
are given by

∂aMM

∂x′
i

∣
∣
∣
∣
x′=x

=
∂A(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

+
∂A(x; x′)

∂x′
i

∣
∣
∣
∣
x′=x

,

∂aMR

∂x′
i

∣
∣
∣
∣
x′=x

=
∂A(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

,

∂aRM

∂x′
i

∣
∣
∣
∣
x′=x

=
∂A(x; x′)

∂x′
i

∣
∣
∣
∣
x′=x

,

∂aRR

∂x′
i

∣
∣
∣
∣
x′=x

= 0.

We can therefore rewrite eq. (B.4) in the form

∂ρ(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

=
κ

A(x; x)

(
∂A(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

+ κ′∂A(x; x
′)

∂x′
i

∣
∣
∣
∣
x′=x

)

. (B.5)

Here, the quantities κ and κ′ are given by

κ =

(
∂ρ

∂aMM

+
∂ρ

∂aMR

) ∣
∣
∣
∣
G=( 1 1

1 1 )
,

κ′ =

[(
∂ρ

∂aMM

+
∂ρ

∂aRM

)/(
∂ρ

∂aMM

+
∂ρ

∂aMR

)] ∣
∣
∣
∣
G=( 1 1

1 1 )
.

(B.6)

We observe that κ and κ′ are independent of A and x.
Combining eq. (B.5) with eq. (B.2) yields the dynamical equation

dxi

dt
= N

u(x)viκ

A(x; x)

(
∂A(x′; x)

∂x′
i

∣
∣
∣
∣
x′=x

+ κ′∂A(x; x
′)

∂x′
i

∣
∣
∣
∣
x′=x

)

. (B.7)

It now only remains to relate κ and κ′ to Ne and σ. We can establish
these relationships by considering particularly simple payoff functions A and
resident strategies x, and substituting these into (B.5). Since κ, κ′, σ and Ne

are all independent of A and x, any relationship derived using a particular
choice of A and x will hold generally.
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B.3 Appearance of effective population size

As motivated in the main text, we define the effective population size for a
given resident-mutant competition model as

Ne =
N2

N − 1

∂ρ

∂s

∣
∣
∣
s=0

, (B.8)

where ρ is the fixation probability of a mutant with selective advantage s
relative to the resident population.

To relate Ne thus defined to the constant κ appearing in (B.7), we must
choose a specific payoff function A to substitute into (B.5). As concluded
above, a particularly simple choice of A can be made without any loss of gen-
erality. We thus consider A(x; y) = 1 + x, describing frequency-independent
selection, so that the link to selective advantage is clear. We choose x = 0
as the resident strategy. With these choices, mutants and residents have
constant payoffs 1 + x′ and 1, respectively (regardless of their interaction
partners), so we identify x′ as the mutant’s selective advantage; that is,
x′ = s.

Substituting this payoff function A and x = 0 in eq. (B.5) yields

∂ρ(x′; 0)

∂x′

∣
∣
∣
x′=0

= κ. (B.9)

Identifying x′ with s and comparing with eq. (B.8), we obtain

κ = Ne
N − 1

N2
. (B.10)

Since the values of κ and Ne do not depend on the game being played, this
identity holds for all games.

B.4 Alternate expression for, and positivity of, effec-
tive population size

Equations (B.10) and (B.6) also imply an alternate expression for Ne:

Ne =
N2

N − 1

(
∂ρ

∂aMM

+
∂ρ

∂aMR

) ∣
∣
∣
∣
G=( 1 1

1 1 )
, (B.11)

35



We can use this expression to show the positivity of Ne. Assumption D6
implies that

∂ρ

∂aMM

∣
∣
∣
∣
G=( 1 1

1 1 )
> 0,

∂ρ

∂aMR

∣
∣
∣
∣
G=( 1 1

1 1 )
> 0.

In combination with eq. (B.11), we can thus conclude that Ne must be posi-
tive.

B.5 Appearance of structure coefficient

To express the constant κ′ appearing in eq. (B.7) in terms of σ, we first
observe that for x = x′,

G =

(
A(x′; x′) A(x′; x′)
A(x′; x′) A(x′; x′)

)

= A(x′; x′)

(
1 1
1 1

)

.

By Assumption D5, the fixation probability ρ(x′; x′) does not depend on the
value of A(x′; x′), and is therefore constant with respect to x′. Differentiating
at x′ = 0, we obtain

0 =
∂ρ(x′; x′)

∂x′

∣
∣
∣
∣
x′=0

=
∂ρ(x′; 0)

∂x′

∣
∣
∣
∣
x′=0

+
∂ρ(0; x′)

∂x′

∣
∣
∣
∣
x′=0

,

and therefore
∂ρ(x′; 0)

∂x′

∣
∣
∣
∣
x′=0

= −
∂ρ(0; x′)

∂x′

∣
∣
∣
∣
x′=0

.

This implies that for all sufficiently small |x′|,

ρ(x′; 0) > ρ(0; x′) ⇐⇒
∂ρ(x′; 0)

∂x′

∣
∣
∣
x′=0

> 0. (B.12)

As above, we now choose a particular payoff function A to substitute into
eq. (B.5). We consider the linear Prisoner’s Dilemma with payoff function
A(x; y) = −cx+ by + 1, b > c > 0, and resident and mutant strategies x = 0
and x′ > 0, respectively. The payoff matrix G can then be written as

G =

(
1 1
1 1

)

+ x′

(
b− c −c
b 0

)

.

We observe from the form of this expression that the mutant strategy x′ can
be interpreted as a selection-strength parameter (Nowak et al., 2004; Tarnita
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et al., 2009b). By the defining condition of the structure coefficient, condition
4) in the main text, we obtain, for sufficiently small x′ > 0,

ρ(x′; 0) > ρ(0; x′) ⇐⇒ σ(b− c)− c > b. (B.13)

Separately, substituting the chosen A and x = 0 into eq. (B.5) yields

∂ρ(x′; 0)

∂x′

∣
∣
∣
∣
x′=0

= κ(−c+ κ′b).

Applying eq. (B.12) and the positivity of κ—which follows from eq. (B.10)
and the positivity of Ne—we obtain

ρ(x′; 0) > ρ(0; x′) ⇐⇒ −c+ κ′b > 0. (B.14)

Comparing condition (B.13) with condition (B.14), we thus see that

κ′ =
σ − 1

σ + 1
. (B.15)

Again, since the values of κ′ and σ do not depend on the game being played,
this identity holds for all games.

Substituting eq. (B.10) and eq. (B.15) into eq. (B.7) completes the deriva-
tion of the canonical equation of adaptive dynamics with interaction struc-
ture, eq. (10).

B.6 Explicit expression for, and positivity of, struc-
ture coefficient

We can also derive an expression for σ in terms of partial derivatives of ρ
with respect to game payoffs. For this we first observe that, as a consequence
of Assumption D5,

(
∂ρ

∂aMM

+
∂ρ

∂aMR

+
∂ρ

∂aRM

+
∂ρ

∂aRR

) ∣
∣
∣
∣
G=( 1 1

1 1 )
= 0.

Combining this with eq. (B.15) and eq. (B.6) and solving for σ yields

σ =

[(
∂ρ

∂aMM

−
∂ρ

∂aRR

)/(
∂ρ

∂aMR

−
∂ρ

∂aRM

)] ∣
∣
∣
∣
G=( 1 1

1 1 )
. (B.16)
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We can use this expression to show the positivity of σ. Assumption D6
implies that

∂ρ

∂aMM

∣
∣
∣
∣
G=( 1 1

1 1 )
> 0,

∂ρ

∂aMR

∣
∣
∣
∣
G=( 1 1

1 1 )
> 0,

∂ρ

∂aRM

∣
∣
∣
∣
G=( 1 1

1 1 )
< 0,

∂ρ

∂aRR

∣
∣
∣
∣
G=( 1 1

1 1 )
< 0.

In combination with eq. (B.16), we can thus conclude that σ must be positive.

C Generalization to multilateral interactions

The evolutionary dynamics of multilateral interactions, which can be de-
scribed by games involving three or more players, are often more complex
than dynamics arising from pairwise games (Gokhale and Traulsen, 2010).
One might therefore expect that the canonical equation, eq. (10), would in-
crease in complexity when applied to n-player games for n ≥ 3. Yet, we show
here that—perhaps surprisingly—this is not the case, as long as the game
satisfies a reasonable symmetry property.

C.1 Mathematical framework for multilateral interac-
tions

We model a multilateral interaction as an n-player continuous game with
payoff function B(x; y1, . . . , yn−1), where x ∈ R

d is the strategy of the focal
player receiving the payoff and y1, . . . , yn−1 ∈ R

d are the strategies of the
other participants in the game. We assume B satisfies the following two
conditions:

G1. For any x ∈ R
d, B is positive and twice differentiable in all arguments

at y1 = . . . = yn−1 = x.

G2. The value of B does not change if the arguments y1, . . . , yn−1 are per-
muted.

We suppose the strategy x evolves according to a model satisfying the
analogues of Assumptions D1–D6 and E1–E3 (with the payoff matrix G being
replaced by an n-dimensional array, as described by Gokhale and Traulsen,
2010).
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C.2 Reduction to pairwise games

We now show that the adaptive dynamics of x can equivalently be described
by a model based on the pairwise game A with A(x; y) = B(x; y, . . . , y). This
means that each instance of the game B can effectively be replaced by an
interaction in which the game A is played against each interaction partner
and the resulting payoffs are averaged. Thus, the adaptive dynamics of n-
player games reduce to those of pairwise games, as long as the former games
are symmetric under the rearrangement of interaction partners (Assumption
G2).

This simplification follows from combining the aforementioned symmetry
with the multivariate chain rule, as we now demonstrate. By the analogues
of eq. (B.2) and eq. (B.4), dx/dt depends on x only insofar as the first-order
behavior, in |x′ − x|, of the entries of the payoff array (the analogue of G)
depends on x. By symmetry (Assumption G2), each entry of the payoff array
is equal to one of the quantities

rj = B(x;

j
︷ ︸︸ ︷

x′, . . . , x′,

n−j−1
︷ ︸︸ ︷
x, . . . , x),

mj = B(x′;

j
︷ ︸︸ ︷

x′, . . . , x′,

n−j−1
︷ ︸︸ ︷
x, . . . , x),

for j = 0, . . . , n − 1. These denote, respectively, the payoff to a resident
and to a mutant when interacting with j mutants and n − j − 1 residents.
Expanding rj to first order in |x′ − x| yields

rj = B(x; x, . . . , x)

+ (x′ − x)
∂B

∂x′
(x;

j
︷ ︸︸ ︷

x′, . . . , x′,

n−j−1
︷ ︸︸ ︷
x, . . . , x)

∣
∣
∣
x′=x

+O(|x′ − x|2).

Invoking the symmetry property, the multivariate chain rule, and the defini-
tion of A, we obtain

rj = B(x; x, . . . , x) + j(x′ − x)
∂B

∂x′
(x; x′, x, . . . , x)

∣
∣
∣
x′=x

+O(|x′ − x|2)

= B(x; x, . . . , x) +
j

n− 1
(x′ − x)

∂B

∂x′
(x; x′, . . . , x′)

∣
∣
∣
x′=x

+O(|x′ − x|2)

= A(x; x) +
j

n− 1
(x′ − x)

∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

+O(|x′ − x|2).
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Algebraic rearrangement yields

rj =
n− j − 1

n− 1
A(x; x)

+
j

n− 1

(

A(x; x) + (x′ − x)
∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

)

+O(|x′ − x|2).

Using the first-order Taylor expansion of A(x; x′) around x′ = x, we obtain
the substitution

A(x; x) + (x′ − x)
∂A(x; x′)

∂x′

∣
∣
∣
∣
x′=x

= A(x; x′) +O(|x′ − x|2),

which finally yields

rj =
n− j − 1

n− 1
A(x; x) +

j

n− 1
A(x; x′) +O(|x′ − x|2).

By an analogous argument, we can show that

mj =
n− j − 1

n− 1
A(x′; x) +

j

n− 1
A(x′; x′) +O(|x′ − x|2).

In summary, the payoff obtained from playing the n-player game B with a set
of n−1 interaction partners is equal, to first order in |x′−x|, to the arithmetic
mean payoff obtained from playing the pairwise game A separately with each
interaction partner. Since the canonical equation, eq. (10), depends only on
the first derivatives of the payoff function at x′ = x, the adaptive dynamics
of x based on the n-player game B is therefore fully described by a model
based on the pairwise game A with averaged payoffs.
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Table 1: Effective Population Size and Structure Coefficient for IBEG Models

Model Effective pop. size, Ne Structure coefficient, σ

Well-mixed Wright-Fisher
process (Fisher, 1930;
Wright, 1931)

N
N − 2

N

Well-mixed continuous-time
birth-death process
(Dieckmann, 1994)

N

2

N − 2

N

Well-mixed Moran process
(Nowak et al., 2004)

N

2

N − 2

N

Transitive graph,
birth-death updating
(Ohtsuki et al., 2006; Taylor
et al., 2007a)

N

2

N − 2

N

Transitive graph,
death-birth updating
(Ohtsuki et al., 2006; Taylor
et al., 2007a)

k2 (k + 1)N − 4k

(k − 1)N

Group selection without
migration (Traulsen and
Nowak, 2006)

N

2

ℓ+ ng − 2

N − 1
1 +

2ng − 4

ℓ

Group selection with
migration (Traulsen and
Nowak, 2006)

N
2(N−1)

(

ℓ− 1 + ℓ(q−λ)(ng−1)

λ+ℓq

)

1−
2

ℓ
+

2q(ng − 1)

λ+ ℓq

Infinite island model
(Wright, 1931; Taylor, 1992;
Ohtsuki, 2010)

Unknown 1

Phenotypic assortment
(Antal et al., 2009)

Unknown 1+4Nν
2+4Nν

(

1 +
√

3+12Nν
3+4Nν

)

N = population size, k = degree of graph, ng = number of groups, ℓ = number
of individuals per group, q = group splitting probability, λ = migration rate, ν =
phenotypic mutation rate. Transitive graphs are spatially homogeneous; see Taylor
et al. (2007a) and Grafen and Archetti (2008). The result for the island model of
Wright (1931) and Taylor (1992) applies to the limit of infinitely many islands, as
analyzed by Ohtsuki (2010).
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Figure 1: Bifurcation diagram showing the adaptive dynamics of cooper-
ativity in eq. (11) under different interaction structures and update rules.
The structure coefficient σ serves as a control parameter. Arrows indi-
cate the direction of cooperativity evolution. For this example, B(x) =
4x + 4x2 and C(x) = x + x5/5. Equilibrium points lie on the curve
σ = [B′(x) + C ′(x)]/[B′(x) − C ′(x)] and on the line x = 0. At σ ≈ 1.29
a saddle-node bifurcation occurs, resulting in the creation of a stable equilib-
rium with positive cooperativity and an unstable cooperativity threshold. As
σ increases, the cooperativity at the stable equilibrium grows and its basin
of attraction expands. The leftmost arrow at σ = 1 corresponds to a large
well-mixed population. The central arrows at σ = 109/75 ≈ 1.45 could cor-
respond, for example, to a 5× 5 square lattice with death-birth updating, or
to 19 groups of size 75 without migration. The rightmost arrows at σ = 2
could correspond to a large cyclically structured population, or 12 groups of
size 10 without migration. See Table 1 for these and other interpretations of
values of σ in terms of specific IBEG models.
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(a) σ → 0 (b) σ = 1

(c) σ = (b+ c)/(b− c) (d) σ → ∞

Figure 2: Adaptive dynamics of stochastic reactive strategies in the iterated
Prisoner’s Dilemma for different interaction structures and update rules. The
value of the structure coefficient σ increases from panel (a) to panel (d). Thin
continuous lines depict evolutionary trajectories, with arrowheads and line
color indicating the direction of evolutionary change. Thick continuous lines,
rendered in blue/gray, depict stable equilibria, while thin dashed lines depict
unstable equilibria or boundary points. The evolutionary dynamics along the
boundaries are obtained by ignoring the outward-pointing component, if any,
of dx/dt. (a) In the limit σ → 0, all equilibrium strategies deterministically
respond to D with D. In this case, TFT is the only equilibrium strategy
that achieves a positive payoff against itself. (b-d) As σ increases, a range of
“generous tit-for-tat” (GTFT; Nowak and Sigmund, 1990) strategies become
stable equilibria. These GTFT strategies are characterized by p = 1 and
q > 0, and are therefore situated on the right-hand edge of the domain.
Analysis of condition (15) shows that the GTFT strategy (1, q) is a stable
equilibrium if and only if q < [2σ(−c + b)]/[σ(−c + b) + c + b]. (b) For
σ = 1, corresponding to large well-mixed populations, the classical GTFT
strategy (1, 1 − c/b) (Nowak and Sigmund, 1990) becomes stable. (c) For
σ = (b + c)/(b − c) ALLC is a stable equilibrium, along with the full range
of GTFT strategies. (d) In the limit σ → ∞, the set of GTFT strategies is
a global evolutionary attractor.
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