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Evolutionary-branching lines and areas in bivariate trait spaces 1 
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Schlossplatz 1, A-2361 Laxenburg, Austria 4 
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ABSTRACT 6 

Aims: Evolutionary branching is a process of evolutionary diversification induced by fre-7 

quency-dependent ecological interaction. Here we show how to predict the occurrence of evo-8 

lutionary branching in bivariate traits when populations are evolving directionally. 9 

Methods: Following adaptive dynamics theory, we assume low mutation rates and small 10 

mutational step sizes. On this basis, we generalize conditions for evolutionary-branching 11 

points to conditions for evolutionary-branching lines and areas, which delineate regions of 12 

trait space in which evolutionary branching can be expected despite populations still evolving 13 

directionally along these lines and within these areas. To assess the quality of predictions pro-14 

vided by our new conditions for evolutionary branching lines and areas, we analyse three eco-15 

evolutionary models with bivariate trait spaces, comparing the predicted evolutionary-16 

branching lines and areas with actual occurrences of evolutionary branching in numerically 17 

calculated evolutionary dynamics. In the three examples, a phenotype’s fitness is affected by 18 

frequency-dependent resource competition and/or predator–prey interaction. 19 

Conclusions: In the limit of infinitesimal mutational step sizes, evolutionary branching in 20 

bivariate trait spaces can occur only at evolutionary-branching points, i.e., where the evolving 21 

population experiences disruptive selection in the absence of any directional selection. In con-22 

trast, when mutational step sizes are finite, evolutionary branching can occur also along evo-23 

lutionary-branching lines, i.e., where disruptive selection orthogonal to these lines is suffi-24 

ciently strong relative to directional selection along them. Moreover, such evolutionary-25 

branching lines are embedded in evolutionary-branching areas, which delineate all bivariate 26 

trait combinations for which evolutionary branching can occur when mutation rates are low, 27 
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while mutational step sizes are finite. Our analyses show that evolutionary-branching lines 1 

and areas are good indicators of evolutionary branching in directionally evolving populations. 2 

We also demonstrate that not all evolutionary-branching lines and areas contain evolutionary-3 

branching points, so evolutionary branching is possible even in trait spaces that contain no 4 

evolutionary-branching point at all. 5 

INTRODUCTION 6 

Evolutionary branching is a process of evolutionary diversification induced by ecological in-7 

teraction (Metz et al., 1992; Geritz et al., 1997, 1998; Dieckmann et al., 2004), which can 8 

occur through all fundamental types of ecological interaction, including competition, preda-9 

tor-prey interaction, and mutualism (Doebeli and Dieckmann, 2000; Dieckmann et al., 2007). 10 

Therefore, evolutionary branching may be an important mechanism underlying the sympatric 11 

or parapatric speciation of sexual populations driven by frequency-dependent selection pres-12 

sures (e.g., Doebeli, 1996; Dieckmann and Doebeli, 1999; Kisdi and Geritz, 1999; Doebeli 13 

and Dieckmann, 2003; Dieckmann et al., 2004; Claessen et al., 2008; Durinx and Van Door-14 

en, 2009; Heinz et al., 2009; Payne et al., 2011). 15 

In asexual populations with rare and small mutational steps, evolutionary branching oc-16 

curs through trait-substitution sequences caused by the sequential invasion of successful mu-17 

tants. In univariate trait spaces, a necessary and sufficient condition for evolutionary branch-18 

ing is the existence of a convergence stable trait value, called an evolutionary-branching 19 

point, at which directional selection is absent and the remaining selection is locally disruptive 20 

(Metz et al., 1992; Geritz et al., 1997). 21 

Real populations, however, have undergone, and are usually undergoing, evolution in 22 

many quantitative traits, with large variation in their evolutionary speeds (e.g., Hendry and 23 

Kinnison, 1999; Kinnison and Hendry, 2001). Such speed differences among traits may be 24 

due to smaller mutation rates and/or magnitudes in some traits than in others, and will also 25 

arise when fitness is less sensitive to some traits than to others. 26 

Only a few previous studies have analytically investigated evolutionary branching in mul-27 

tivariate trait spaces (Ackermann and Doebeli, 2004; Egas et al., 2005; Leimar, 2005; Ravi-28 
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gné et al., 2009). Those studies assumed that all considered traits evolve at comparable 1 

speeds, and analyzed possibilities of evolutionary branching by examining the existence of 2 

evolutionary-branching points having the following four properties: evolutionary singularity 3 

(no directional selection), convergence stability (local evolutionary attractor for monomorphic 4 

evolution), evolutionary instability (locally disruptive selection), and mutual invasibility (lo-5 

cal coexistence of dimorphic trait values). All of these studies have therefore considered the 6 

vanishing of directional selection as a prerequisite for evolutionary branching. 7 

On the other hand, Ito and Dieckmann (2007) have numerically shown that, when muta-8 

tional step sizes are not infinitesimal, evolutionary branching can occur even in directionally 9 

evolving populations, as long as directional evolution is sufficiently slow. This implies that 10 

trait spaces may contain evolutionary-branching lines that attract monomorphic evolution and 11 

then induce evolutionary branching while populations are directionally evolving along them. 12 

Furthermore, Ito and Dieckmann (submitted) derived sufficient conditions for the existence of 13 

such evolutionary-branching lines, by focusing on trait-substitution sequences formed by in-14 

vasions each of which possesses maximum likelihood, called maximum-likelihood invasion 15 

paths (MLIPs). 16 

In this study, we heuristically extend the derived sufficient conditions for evolutionary-17 

branching lines to sufficient conditions for evolutionary-branching areas, and apply these two 18 

sets of conditions to three eco-evolutionary models with bivariate trait spaces. Our study is 19 

structured as follows. The next section explains conditions for evolutionary-branching lines 20 

and extends those to evolutionary-branching areas. In the first example, we apply the two sets 21 

of conditions to a resource-competition model with two evolving niche positions. In the se-22 

cond example, we show their application to another resource-competition model with evolv-23 

ing niche position and niche width. In the third example, a predator-prey model with two 24 

evolving niche positions is analyzed. The last section discusses how our conditions improve 25 

understanding of evolutionary branching in multivariate trait spaces. 26 
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CONDITIONS FOR EVOLUTIONARY-BRANCHING LINES AND AREAS 1 

In this section, we review and explain the sufficient conditions for evolutionary-branching 2 

lines (Ito and Dieckmann, submitted) and extend them to evolutionary-branching areas. We 3 

consider bivariate trait spaces spanned by two scalar traits X  and Y , denoted by 4 

T( , )X Y=S  (where T  denotes transposition). The conditions for evolutionary-branching 5 

lines and areas are analyzed by introducing a locally normalized coordinate system 6 

T( , )x y=s  at each point of the original coordinate system T( , )X Y=S . Throughout this pa-7 

per, all model definitions, figures, and verbal discussions of the models are presented in terms 8 

of the original coordinate systems, while the analytic conditions, e.g., in Eqs. (1-3), are pre-9 

sented using the locally normalized coordinate systems. 10 

Local normalization of invasion-fitness function 11 

We consider an asexual monomorphic population in an arbitrary bivariate trait space 12 

T( , )X Y=S . Throughout this study, we assume low mutation rates and small mutational step 13 

sizes. Under the former assumption, the population is almost always close to population-14 

dynamical equilibrium when a mutant emerges. It can then also be shown that, in the absence 15 

of population-dynamical bifurcations and when mutational step sizes are not only small, but 16 

infinitesimal, the population remains monomorphic in the course of directional evolution 17 

(Geritz et al., 2002): under these conditions, a mutant phenotype ′S  can invade and replace a 18 

resident phenotype S  if its invasion fitness is positive, resulting in what is called a trait sub-19 

stitution. 20 

The invasion fitness of ′S  under S , denoted by ( ; )F ′S S , is defined as the exponential 21 

growth rate of a small population of phenotypes ′S  in the environment created by a mono-22 

morphic population of phenotypes S  at its population-dynamical equilibrium (Metz et al., 23 

1992). The invasion-fitness function F  can be interpreted as a fitness landscape in ′S , 24 

whose shape depends on S . For small mutational step sizes, repeated invasion and replace-25 

ment of S  by ′S  in the direction of the fitness gradient ( ; ) / |F ′=′ ′∂ ∂ S SS S S  brings about a 26 

trait-substitution sequence, resulting in gradual directional evolution (Metz et al., 1992; 27 

Dieckmann et al., 1995; Dieckmann and Law, 1996; Geritz et al., 2002). 28 
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When a mutant emerges, which occurs with probability µ  per birth, we assume that its 1 

phenotype ′S  follows a mutation probability distribution ( )M ′ −S S  given by a bivariate 2 

normal distribution with mean S  (Appendix A). The distribution of mutational step sizes 3 

may depend on the direction of ′ −S S , according to the variance-covariance matrix of M . 4 

In this trait space, evolutionary dynamics depend on the invasion-fitness function F  and 5 

the mutation probability distribution M . To describe this dependence, we consider a mono-6 

morphic population of phenotypes 0S , and to simplify notation and analysis, we introduce a 7 

locally normalized coordinate system T( , )x y=s  having its origin at 0S . This local coordi-8 

nate system is scaled so that the standard deviation of mutational step sizes, equaling the root-9 

mean-square mutational step size, is σ  in all directions. The asymmetry (non-isotropy) of 10 

mutations is thus absorbed into the invasion-fitness function, resulting in a normalized inva-11 

sion-fitness function denoted by ( ; )f ′s s . 12 

The local shape of f  around the origin 0=s  ( 0=S S ) can be approximated by a Taylor 13 

expansion in s  and T( , )x yδ δ ′= = −δs s s  up to second order, 14 

 ( ; )f ′ =s s G
T1

2
+δs s C

1

2
+δs

Tδs D δs , (1) 15 

with the row vector x y( , )G G=G  and the matrices T
xx xy yx yy(( , ), ( , ))C C C C=C  and 16 

T
xx yy(( ,0),(0, ))D D=D . The other possible terms in this expansion, proportional to s  and 17 

T
s s , vanish because ( ; ) 0f =s s  holds at population-dynamical equilibrium for arbitrary s . 18 

The vector ( ; ) / |f ′= =′ ′=∂ ∂ s s 0G s s s  is the fitness gradient: it measures the steepest ascent of 19 

f  with respect to ′s , and thus describes directional selection for a population at the origin. 20 

The matrix 2 ( ; ) / ( ) |f ′= =′ ′= ∂ ∂ ∂
s s 0C s s s s  measures how directional selection changes as the 21 

population deviates from the origin, and thus describes evolutionary convergence to, and/or 22 

divergence from, the origin. The symmetric matrix 2 2( ; ) / |f ′= =′ ′=∂ ∂
s s 0D s s s  measures the 23 

second derivative, or curvature, of f  with respect to ′s , and thus describes disruptive 24 

and/or stabilizing selection at the origin. The local coordinate system T( , )x y=s  can always 25 

be chosen, by adjusting the directions of the x -and y -axes, so that D  is diagonal and 26 

xx yyD D≥ . Thus, when disruptive selection exists, it has maximum strength along the x -axis. 27 

Notice that G , C , and D  are functions of the base point 0S . 28 
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Conditions for evolutionary-branching lines 1 

A typical situation allowing evolutionary branching of a directionally evolving population 2 

occurs when mutational step sizes are significantly smaller in one trait direction than in the 3 

other, when considered in the original coordinate system T( , )X Y=S . In this case, the popu-4 

lation quickly evolves in the direction of the larger step size until it no longer experiences 5 

directional selection in that direction, while it continues slow directional evolution in the other 6 

direction. Then, if the population experiences sufficiently strong disruptive selection along the 7 

fast direction compared to directional selection along the slow direction, evolutionary branch-8 

ing may occur. 9 

This conclusion has been demonstrated by Ito and Dieckmann (submitted), who analyti-10 

cally derived sufficient conditions for the existence of an evolutionary-branching line passing 11 

through 0S  (by focusing on trait-substitution sequences formed by invasions each of which 12 

possesses maximum likelihood, so-called maximum-likelihood invasion paths or MLIPs). In 13 

the locally normalized coordinate system T( , )x y=s  at 0S , these conditions come in three 14 

parts, 15 

 x 0G = , (2a) 16 

 xx 0C < , (2b) 17 

and 18 

 xx

y

2
D

G

σ > . (2c) 19 

While Eqs. (2) were analytically derived assuming that yyC , xyC , yxC , and yyD  are negli-20 

gible, it is expected that these conditions work well even when this simplifying assumption is 21 

relaxed, as explained by Ito and Dieckmann (submitted). Eq. (2a) ensures the absence of di-22 

rectional selection in x . Eqs. (2a) and (2b) ensure convergence, through directional evolu-23 

tion, of monomorphic populations to the evolutionary-branching line 0x = . After sufficient 24 

convergence, inequality (2c) ensures evolutionary branching, which according this is inequali-25 

ty occurs when disruptive selection xxD  orthogonal to 0x =  is sufficiently strong com-26 
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pared to directional selection yG  along 0x = . The smaller the standard deviation σ  of 1 

mutation step sizes, the stronger disruptive selection xxD  must be relative to directional se-2 

lection yG  for evolutionary branching to occur. 3 

Notice that as y 0G → , inequality (2c) converges to xx 0D > , so that in this limiting case 4 

conditions for evolutionary-branching lines in bivariate trait spaces become identical to condi-5 

tions for evolutionary-branching points in univariate trait spaces (Metz et al., 1992; Geritz et 6 

al., 1997). Similarly, when 0σ → , inequality (2c) requires y 0G =  and xx 0D > , which 7 

shows that for infinitesimal mutation steps evolutionary branching can occur only in the ab-8 

sence of all directional selection. 9 

By examining conditions (2) for all phenotypes 0S  in a considered trait space, and by 10 

then connecting those phenotypes that fulfill these conditions, evolutionary-branching lines 11 

are identified. According to the derivation of conditions (2), it is ensured that any MLIP start-12 

ing from a monomorphic population of phenotypes sufficiently close to an evolutionary-13 

branching line immediately converges to that line and then brings about evolutionary branch-14 

ing (Ito and Dieckmann, submitted). Also trait-substitution sequences that are not MLIPs then 15 

show a very high likelihood of evolutionary branching (Ito and Dieckmann, submitted). 16 

Conditions for evolutionary branching areas 17 

We now extend conditions for evolutionary-branching lines to evolutionary-branching areas. 18 

As explained below, two special cases are analytically tractable; the extended conditions are 19 

then obtained heuristically by treating intermediate cases through interpolation. 20 

While conditions (2) were derived as sufficient conditions for evolutionary branching, it is 21 

likely that in particular the equality condition (2a) is too strict, as evolutionary branching does 22 

not require x 0G = , but only that xG  be sufficiently small. But how small is small enough? 23 

To answer this question, we have to extend inequality (2c) to phenotypes that are not on an 24 

evolutionary-branching line. For such phenotypes, the orthogonality between the directions of 25 

directional selection and of maximum disruptive selection, which strictly holds on evolution-26 

ary-branching lines and is only negligibly disturbed in their immediate vicinity (Ito and 27 

Dieckmann, submitted), is increasingly relaxed the farther these phenotypes are displaced 28 
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from such lines. Fortunately, the emergence of a protected dimorphism along MLIPs, which 1 

underlies inequality (2c), can be studied analytically also for the opposite case, in which the 2 

direction of directional selection is parallel to that of maximum disruptive selection (Appen-3 

dix B). By interpolating between these two special cases, we can generalize inequality (2c) to 4 

intermediate cases, in which directional selection is neither orthogonal nor parallel to disrup-5 

tive selection, 6 

 xx
x y2  with  ( 2 , ).

D
G G

σ > =G
G


  (3a) 7 

The factor 2  in the definition of G  means that directional selection in x  hinders evolu-8 

tionary branching in y  slightly more, but this factor of 2 , than directional selection in 9 

y . 10 

By combining inequalities (2b) and (3a), we obtain conditions for evolutionary-branching 11 

areas, as it was Eq. (2a) that limits conditions (2) to being fulfilled just along lines. Evolution-12 

ary-branching areas always surround evolutionary-branching lines when such lines exist, but 13 

additionally comprise phenotypes for which, in violation of Eq. (2a), directional evolution has 14 

not yet converged to those lines. 15 

Since the conditions for evolutionary-branching lines and areas are derived as sufficient 16 

conditions (for the emergence of a protected dimorphism along MLIPs), the length of these 17 

lines and the size of these areas are expected to be conservative. Thus, adjusting the threshold 18 

value in Eq. (3a) may be useful for explaining observed patterns of evolutionary branching. 19 

For this purpose, we introduce the parameter ρ  with 0 1ρ< ≤  into Eq. (3a), which gives 20 

 xx 2
Dσ ρ>
G

. (3b) 21 

Below, we illustrate the effect of ρ  by considering 0.2ρ = . We call the combination of 22 

inequalities (2b) and (3b) the 20%-threshold condition for evolutionary-branching areas, and 23 

we refer to areas fulfilling this condition as 20%-threshold areas. For specific procedures that 24 

are useful for the practical identification of evolutionary-branching lines and areas, see Ap-25 

pendix C. 26 



Page 9 of 40 

Sizes and shapes of evolutionary-branching lines and areas 1 

As a simple example, we now briefly explain how an evolutionary-branching line and area are 2 

identified around an evolutionary-branching point located at the origin of a trait space 3 

T( , )X Y=S . See Appendix E for details. 4 

We assume that the strengths of convergence stability of the origin along the X - and Y -5 

axes are given by the two negative scalars XXC  and YYC , respectively. We also assume that 6 

the maximum disruptive selection in this original coordinate system occurs along the X -7 

axis, quantified by the positive scalar XXD  (i.e., XX YYD D> ). In addition, we denote the 8 

standard deviations of mutational step sizes along the X - and Y -axes by Xσ  and Yσ , 9 

respectively. We assume that these steps have no mutational correlation, XY 0σ = , and that 10 

they are largest along the X -axis, X Yσ σ> . In this case, for each phenotype T
0 0 0( , )X Y=S  11 

close to the origin, local normalization provides the matrices G , C , and D  in Eq. (1), 12 

without the need for any coordinate rotation; i.e., the x -axis is parallel to the X -axis. 13 

By examining Eqs. (2) and Eq. (3a) based on the derived matrices G , C , and D , we 14 

find, expressed in the original coordinate system, an evolutionary-branching line as a straight 15 

line segment, 16 

 0 0 Y0 and ,X Y r=<  (4) 17 

and an evolutionary-branching area as a filled ellipse, 18 

 
2 2
0 0
2 2

X Y

1
X Y

r r
+ < , (5a) 19 

with a radius of  20 

 X XX
X

XX2

D
r

C

σ=  (5b) 21 

along the X -axis and a radius of 22 

 X XX X
Y

YYY2

D
r

C

σ σ
σ= ⋅  (5c) 23 

along the Y -axis. 24 
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Notice that the length of the evolutionary-branching line coincides with the radius of the 1 

evolutionary-branching area along the Y -axis. According to Eqs. (5), if the difference in 2 

magnitude between Xσ  and Yσ  is kept small, large mutational step sizes and/or strong dis-3 

ruptive selection pressures result in large evolutionary-branching areas. On the other hand, 4 

according to Eq. (5c), when Yσ  is small compared to Xσ , the shape of the evolutionary-5 

branching area is elongated along the Y -axis, even if Xσ  is small. Since infinitesimally 6 

small Yσ  make this situation identical to that of a univariate trait space comprising trait X  7 

alone, Eq. (5b) may work also for predicting one-dimensional evolutionary-branching areas 8 

surrounding evolutionary-branching points in univariate trait spaces. 9 

FIRST EXAMPLE: RESOURCE-COMPETITION MODEL WITH 10 

EVOLVING NICHE POSITIONS 11 

In this section, we apply our conditions for evolutionary-branching lines and areas to a model 12 

of niche evolution under intraspecific resource competition (Vukics and Meszéna, 2003; Ito 13 

and Dieckmann, 2007), which is a bivariate extension of seminal models by MacArthur and 14 

Levins (MacArthur and Levins, 1967; MacArthur, 1972) and Roughgarden (1974, 1976). This 15 

example illustrates how an evolutionary-branching point transforms into an evolutionary-16 

branching line when differences in mutational step sizes among two trait directions become 17 

sufficiently large. 18 

Model description 19 

We consider a bivariate trait space T( , )X Y=S , with X  and Y  denoting evolving traits 20 

that determine a phenotype’s bivariate niche position. The growth rate of phenotype iS  is 21 

given by 22 

 
1

d
[1 ( ) / ( )]

d

Li
i i j j ij

n
n n K

t
α==− −∑ S S S , (6a) 23 

where L  is the number of resident phenotypes. The carrying capacity ( )iK S  of phenotype 24 

iS  is given by an isotropic bivariate normal distribution, 25 

 
2 21

0 K2( ) exp( / )i iK K σ= −S S , (6b) 26 
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with maximum 0K , mean T(0,0) , and standard deviation Kσ . The strength ( )i jα −S S  of 1 

competition between phenotype iS  and phenotype jS  is also given by an isotropic bivari-2 

ate normal distribution, 3 

 
2 21

α2( ) exp( / )i j i jα σ− = − −S S S S , (6c) 4 

with maximum 1, mean T(0,0) , and standard deviation ασ , so the strength of competition is 5 

maximal between identical phenotypes i j=S S  and monotonically declines with phenotypic 6 

distance 
i j−S S . 7 

In this model, carrying capacity is maximal at the origin T(0,0)=S , which therefore 8 

serves as a unique convergence stable phenotype, or global evolutionary attractor, to which 9 

monomorphic populations converge through directional evolution. After sufficient conver-10 

gence, if the width ασ  of the competition kernel is narrower than the width Kσ  of the car-11 

rying-capacity distribution, the resultant fitness landscape has a minimum at the origin, which 12 

induces evolutionary branching of the evolving population. Thus, α Kσ σ<  is the condition 13 

for existence of an evolutionary-branching point in this model (Vukics and Meszéna, 2003), 14 

in analogy with the univariate case (Roughgarden, 1972; Dieckmann and Doebeli, 1999). 15 

As for the mutation probability distribution, we define its variance-covariance matrix so 16 

that the standard deviation of mutational step sizes has a maximum 1σ  in the direction of 17 

T
1 ( 1,1)= −e  and a minimum 2σ  in the direction of T

2 (1,1)=e . 18 

Notice that fitness in this model is rotationally symmetric in terms of the traits X  and 19 

Y  (i.e., rotating all phenotypes around the origin does not change their fitnesses). Thus, a 20 

sensitivity difference of the normalized invasion-fitness function can arise only from the con-21 

sidered difference in mutational step sizes along the two directions 1e  and 2e . 22 

Predicted evolutionary-branching lines and areas 23 

When mutational step sizes are isotropic, the predicted evolutionary-branching area forms a 24 

circle around the evolutionary-branching point, and contains no evolutionary-branching line 25 

(not shown). In this case, occurrences of evolutionary branching are explained well by the 26 

evolutionary-branching point alone. Because of the rotational symmetry in fitness, there is no 27 
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restriction on the direction of evolutionary branching, so that evolutionary diversification can 1 

occur in any direction (Vukis and Meszéna, 2003). Although this case is reminiscent of that of 2 

a univariate trait defined by the distance from the evolutionary-branching point, these two 3 

cases are not equivalent: this is because in the univariate case disruptive selection and direc-4 

tional selection are always parallel, while in the isotropic bivariate case disruptive selection 5 

may be orthogonal to directional selection. 6 

Figure 2a shows that when the difference in mutational step size between directions 1e  7 

and 2e  is substantial (e.g., 1 2/ 3σ σ = ), the evolutionary-branching line and area expand in 8 

the direction of the smaller mutational step size ( 2e  in this case). In addition, the direction of 9 

expected evolutionary diversification is getting the more restricted to 1e  the larger this dif-10 

ference becomes. [If 1e  and 2e  were pointing along the Y - and X -axes, respectively, the 11 

situation would correspond to Eqs. (4) and (5).] In Fig. 2a, the short purple line and the small 12 

purple area (both situated within the light-purple area) depict the predicted evolutionary-13 

branching line and area, with their colors indicating the predicted direction of diversification. 14 

Because of the difference in mutational step sizes between the two directions, it is expected 15 

that a monomorphic population quickly converges to the line Y X=  (gray arrows) and then 16 

slowly converges to the evolutionary-branching area. Evolutionary branching is expected to 17 

occur at the latest once evolution has reached this area, because our conditions for an evolu-18 

tionary-branching area are derived as sufficient conditions and imply the possibility of an 19 

immediate start of evolutionary branching of a monomorphic population in its inside. Accord-20 

ingly, evolutionary branching may occur well before the population has reached the evolu-21 

tionary-branching area. The light-purple area shows the corresponding 20%-threshold area, 22 

comprising all phenotypes that fulfill the 20%-threshold condition for evolutionary-branching 23 

areas. By definition, an evolutionary-branching area is always included in the corresponding 24 

20%-threshold area. The larger the difference in mutational step sizes between the two direc-25 

tions, the longer the evolutionary-branching line and the more elongated the evolutionary-26 

branching area, as predicted by Eq. (5c) 27 
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Comparison with actual evolutionary dynamics 1 

Figure 2b shows occurrences of evolutionary branching in numerically calculated evolution-2 

ary dynamics starting from monomorphic populations with phenotypes randomly chosen 3 

across the shown trait space: each occurrence is depicted by an open triangle whose color in-4 

dicates the direction of that particular evolutionary branching. The evolutionary dynamics are 5 

numerically calculated as trait-substitution sequences according to the oligomorphic stochas-6 

tic model of adaptive dynamics theory (Ito and Dieckmann, 2007; for the sake of computa-7 

tional efficiency, phenotypes with densities below a threshold eε  are removed, with the val-8 

ue of eε  being immaterial as long as it is small enough). The relative shape of the cluster of 9 

occurrences is characterized well by the evolutionary-branching area, or here almost equiva-10 

lently, by the evolutionary-branching line. Moreover, the absolute shape, and hence the size, 11 

of this cluster is well matched by that of the 20%-threshold area. The fact that the colors of 12 

the triangles in Fig. 2b are very similar to that of the evolutionary-branching area in Fig. 2a 13 

demonstrates that also the predicted and actual directions of diversification are in good 14 

agreement. 15 

Figure 2b shows two evolutionary trajectories, depicted as dark-yellow and green curves, 16 

respectively. These illustrate that monomorphic populations initially converge to the line 17 

Y X= . Then, if the population is already inside the evolutionary-branching area, it immedi-18 

ately undergoes evolutionary branching, as expected (green curves in Fig. 2b and Fig. 2d). In 19 

contrast, if the population still remains outside the evolutionary-branching area, it continues 20 

directional evolution along the line Y X=  towards the evolutionary-branching area. As ex-21 

pected, evolutionary branching may occur before the population has reached the evolutionary-22 

branching area (dark-yellow curves in Fig. 2b and Fig. 2c). 23 

In summary, this first example shows how differences in mutational step sizes among trait 24 

directions can transform an evolutionary-branching point into an evolutionary-branching line 25 

or an elongated evolutionary-branching area. 26 
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SECOND EXAMPLE: RESOURCE-COMPETITION MODEL WITH EVOLV-1 

ING NICHE POSITION AND NICHE WIDTH 2 

In this section, based on another type of resource-competition model, we show that an evolu-3 

tionary-branching area can exist without containing any evolutionary-branching point. 4 

Model description 5 

For phenotypes T( , )X Y=S  in our second example, the trait X  still determines the pheno-6 

type’s niche position, like in the first model, whereas the trait Y  now determines the pheno-7 

type’s niche width, differently from the first model. This niche width can be interpreted in 8 

terms of the variety of resource types utilized by the phenotype. We assume a constant and 9 

unimodal distribution ( )R z  of univariate resource types z , given by a normal distribution, 10 

 2
0 R R( ) N( , , )R z R z m σ= , (7a) 11 

with 2 2 21
2N( , , ) exp( ( ) / ) / ( 2 )σ σ πσ= − −z m z m . Here, 0R , Rm , and Rσ  denote the re-12 

source distribution’s integral, mean, and standard deviation. Similarly, the niche of a pheno-13 

type 
iS  is specified by a normal distribution across resource types z , with mean 

iX  (niche 14 

position) and standard deviation 
iY  (niche width), 15 

 2( , ) N( , , )i i ic z z X Y=S . (7b) 16 

The rate of potential resource gain of phenotype 
iS  per unit of its biomass is given by the 17 

overlap integral, over all resource types z , of its niche ( , )ic z S  and the resource distribution 18 

( )R z . The corresponding rate of actual resource gain ( )ig S  incorporates a functional re-19 

sponse, derived in Appendix D as an extension of the Beddington-DeAngelis-type functional 20 

response (Beddington, 1975; DeAngelis et al., 1975), known to ensure both saturation of con-21 

sumption and interference competition among consumers. On this basis, the growth rate of 22 

phenotype 
iS  is given by 23 

 
d

[ ( ) ( )]
d

i
i i i

n
n g d Y

t
λ= −S , (7c) 24 



Page 15 of 40 

where the constant λ  measures trophic efficiency (i.e., biomass production per biomass 1 

gain) and ( )id Y  is the biomass loss of phenotype iS  due to basic metabolism and natural 2 

death, with the dependence on iY  reflecting costs of specialization or generalization. 3 

As for the mutation distribution, we use a simple bivariate normal distribution in which 4 

the standard deviation of mutational step sizes has its maximum Xσ  in the X -direction and 5 

its minimum Yσ  in the Y -direction. See Appendix E for further model details. 6 

Predicted evolutionary-branching lines and areas 7 

Figure 3a shows the directional evolution (gray arrows) of monomorphic populations and the 8 

predicted evolutionary-branching lines and areas, as in Fig. 2a, for the case that specialization 9 

(narrow niche width) is costly. This shows that niche position and niche width directionally 10 

evolve so as to become more similar, respectively, to the center and width of the resource 11 

distribution. We find two kinds of evolutionary-branching areas. As indicated by the color 12 

coding, the small blue evolutionary-branching area around the center of the shown trait space 13 

induces evolutionary branching in the direction of niche width. This evolutionary-branching 14 

area contains an evolutionary-branching point at its center and is attracting any monomorphic 15 

population in the trait space. In this regard, this evolutionary-branching area is similar to that 16 

in the first model. In contrast, the red evolutionary-branching area around the bottom of the 17 

shown trait space contains no evolutionary-branching point, although it does contain an evo-18 

lutionary-branching line along 0.5X = . Moreover, as indicated by the color coding, this evo-19 

lutionary-branching line and area induce evolutionary-branching in the direction of niche po-20 

sition. It is therefore clear that the two identified evolutionary-branching areas are qualitative-21 

ly different from each other. 22 

Comparison with actual evolutionary dynamics 23 

Figure 3b shows occurrences of evolutionary branching in numerically calculated evolution-24 

ary dynamics, as in Fig. 2b. There exist three clusters: a blue one around the center, a small 25 

red one around T(0.5,0.16)=S , and a large red one along the bottom of the shown trait 26 

space. Except for the small red cluster, the shapes of these clusters coincide well with the two 27 
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identified evolutionary-branching areas. Also, as shown by the color coding, the directions of 1 

observed diversifications are predicted well by those areas. 2 

As for the blue evolutionary-branching area, the observed process of evolutionary branch-3 

ing in niche width (dark-yellow curves in Fig. 3b) is always slow, as shown in Fig. 3c. In con-4 

trast, the large red evolutionary-branching area induces fast and repeated evolutionary branch-5 

ing in niche position (green curves in Fig. 3b), generating four lineages at the end of the time 6 

window in Fig. 3d. The timescale difference between these two types of branching dynamics 7 

exceeds a factor of 100. 8 

This difference in evolutionary speed can be explained as follows. When a population 9 

comes close to the blue evolutionary-branching area, the shape of its niche is similar to the 10 

resource distribution, resulting in weak selection pressures, including disruptive selection. In 11 

this case, the process of evolutionary branching is therefore expected to be slow. On the other 12 

hand, when a population is close to, or located inside, the red evolutionary-branching area, its 13 

niche is much narrower than the resource distribution. This situation creates strong disruptive 14 

selection in niche position. In this case, the process of evolutionary branching is thus expected 15 

to proceed rapidly. 16 

This second example shows that our conditions for evolutionary-branching areas can iden-17 

tify such areas containing no evolutionary-branching point. Here, such an area induces a qual-18 

itatively different mode of evolutionary branching than the also existing evolutionary-19 

branching area that contains an evolutionary-branching point. Notice, however, that our con-20 

ditions for evolutionary-branching areas do not explain the separation between the small and 21 

large red clusters in Fig. 3b. In addition, the size of the blue cluster in Fig. 3b is much larger 22 

than that of the corresponding 20%-threshold area in Fig. 3a, which is not explained either. 23 

THIRD EXAMPLE: PREDATOR-PREY MODEL WITH EVOLVING NICHE 24 

POSITIONS 25 

In this section, based on a predator-prey model, we show that evolutionary branching can oc-26 

cur even if a model’s entire trait space contains no evolutionary-branching point, so that any 27 

occurrence of evolutionary branching is explained by evolutionary-branching lines and areas. 28 
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Model description 1 

The third model is a modification of the second model towards predator-prey interactions. 2 

This model was developed by Ito et al. (2009); see Appendix F for details. As in the first and 3 

second models, trait X  still determines a phenotype’s niche position. Now, however, trait 4 

Y  is not a niche width as in the second model, but describes the niche position at which the 5 

corresponding phenotype can be consumed as a resource, and is therefore potentially preyed 6 

upon by other phenotypes. We thus refer to X  and Y  as predator-niche position and prey-7 

niche position, respectively. Accordingly, phenotype iS  exists not only as a consumer (pred-8 

ator) with niche 9 

 2
c( , ) N( , , )i ic z z X σ=S , (8a) 10 

but also provides a resource (prey) distribution for predators, with each of its biomass units 11 

contributing according to 12 

 2
r( , ) N( , , )i ir z z Y σ=S , (8b) 13 

where the widths of these two distributions are constant and given by cσ  and rσ , respec-14 

tively. The basal-resource distribution 2
0 R R( ) N( , , )B z R z m σ= , with integral 0R , mean Rm , 15 

and standard deviation Rσ , is analogous to the resource distribution in Eq. (7a) for the se-16 

cond model. In analogy with the second model, the rates of resource gain and biomass loss of 17 

phenotype 
iS , denoted by ( )ig S  and ( )il S , respectively, are obtained as overlap integrals 18 

of niches and existing resources. Consequently, the growth rate of phenotype 
iS  is given by 19 

 
d

[ ( ) ( ) ]
d

i
i i i

n
n g l d

t
λ= − −S S , (8c) 20 

where the rate d  of biomass loss by metabolism and natural death is now assumed to be 21 

constant, differently from the second model. 22 

As in the second model, we use a simple bivariate normal mutation distribution in which 23 

the standard deviation of mutational step sizes has its maximum Xσ  in the X -direction and 24 

its minimum Yσ  in the Y -direction. 25 
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Predicted evolutionary-branching lines and areas 1 

Figure 4a shows the directional evolution (gray arrows) and predicted evolutionary-branching 2 

lines and areas, as in Fig. 2a and Fig. 3a. This shows that monomorphic populations direc-3 

tionally evolve so that their prey-niche positions become more distant from their predator-4 

niche positions, while their predator-niche positions become closer to their prey-niche posi-5 

tion and/or the mean of the basal-resource distribution (Ito et al., 2009). 6 

A unique evolutionarily singular point at T(0.5,0.5)=S  matches the center of the basal-7 

resource distribution at R 0.5z m= = . This corresponds to a cannibalistic population exploit-8 

ing both the basal resource and itself. As the basal-resource distribution is assumed to be wid-9 

er than the predator niche, R cσ σ> , disruptive selection along X  is expected, similarly to 10 

the first example. However, the zero-isocline of the fitness gradient in the Y -direction (thick 11 

grey curve in Fig. 4a) repels monomorphic populations in the Y -direction, although the cor-12 

responding zero-isocline in the X -direction (thin black curve) attracts them in the X -13 

direction. Therefore, depending on the relative mutation probabilities and mutational step siz-14 

es in X  and Y , the evolutionarily singular point at the intersection of those two zero-15 

isoclines may not be convergence stable (Dieckmann and Law, 1996; Leimar, 2009; for anal-16 

ogous results for multilocus genetics, see Mattessi and Di Pasquale, 1996), in which case 17 

there is no evolutionary-branching point in this trait space. 18 

According to our conditions for evolutionary-branching lines, evolutionary branching by 19 

disruptive selection in X  may occur when a phenotype’s prey-niche position becomes suffi-20 

ciently distant from its predator-niche position, so that directional selection on the prey-niche 21 

position becomes sufficiently weak. As thus expected, there exist evolutionary-branching 22 

lines along the evolutionary zero-isocline for X  (red line segments). Evolutionary-23 

branching areas also exist, but are very thin; only the 20%-threshold areas are sufficiently 24 

large to become visible in Fig. 4a (light-red areas). As shown by the color coding for evolu-25 

tionary-branching lines and areas, evolutionary branching is solely expected in the direction 26 

of predator-niche position. 27 
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There also exists a very small evolutionary-branching area around the evolutionarily sin-1 

gular point at the center, which, however, may induce evolutionary branching only when the 2 

initial phenotype is located within this area, as this singular point is lacking convergence sta-3 

bility. 4 

Comparison with actual evolutionary dynamics 5 

Figure 4b shows occurrences of evolutionary branching in numerically calculated evolution-6 

ary dynamics, as in Fig. 2b and Fig. 3b. The shapes of the clusters, as well as the directions of 7 

observed evolutionary branching, are predicted well by the evolutionary-branching lines and 8 

areas. Also the sizes of these clusters are predicted well by the 20%-threshold areas. 9 

As shown in Fig. 4b (green curves) and Fig. 4d, a monomorphic population first converg-10 

es to the evolutionary zero-isocline for X  (thin black curve), and then brings about evolu-11 

tionary branching when it has come sufficiently close to one of the evolutionary-branching 12 

lines. 13 

Also, as predicted, evolutionary branching in the small evolutionary-branching area at the 14 

center is possible, provided the initial phenotype is located within this area (dark-yellow 15 

curves in Fig. 4b and Fig. 4c). However, since this evolutionary-branching area is very small 16 

and does not contain an evolutionary attractor, almost all observed diversifications are in-17 

duced by the identified evolutionary-branching lines. 18 

Even when the predator niche is wider than the prey niche and the basal-resource distribu-19 

tion ( c r R,σ σ σ> ; e.g., when c 0.081σ =  slightly exceeds r R 0.08σ σ= = , while 20 

X 0.003σ =  and X 0.0003σ = ), evolutionary-branching lines can exist and induce diversifi-21 

cation (not shown). In any case, the initial evolutionary branching always occurs adjacent to 22 

the evolutionary-branching lines. 23 

Interestingly, evolutionary branching in this model can be recurrent: this may result in 24 

complex food webs of coexisting phenotypes, including the evolutionarily stable emergence 25 

of multiple trophic levels (Ito et al., 2009). 26 
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DISCUSSION 1 

In this study we have presented conditions for evolutionary-branching lines and areas, and 2 

have explored their utility by numerically analyzing evolutionary branching in three different 3 

eco-evolutionary models defined with bivariate trait spaces. The first model, a resource-4 

competition model with evolving niche positions, has shown how an evolutionary-branching 5 

point transforms into an evolutionary-branching line and elongated evolutionary-branching 6 

area, due to differences in mutational step sizes among the two trait directions. The second 7 

model, a resource-competition model with evolving niche position and niche width, has 8 

shown the existence of an evolutionary-branching line and area containing no evolutionary-9 

branching point, which induce a qualitatively different mode of evolutionary branching than 10 

the also existing evolutionary-branching point. The third model, a predator-prey model with 11 

evolving predator- and prey-niche positions, has shown that even when a model’s entire trait 12 

space contains no evolutionary-branching point, evolutionary branching may still be bound to 13 

occur along evolutionary-branching lines and within evolutionary-branching areas. Below we 14 

discuss these phenomena in greater detail. 15 

To understand the transformation of an evolutionary-branching point into an evolutionary-16 

branching line and an elongated evolutionary-branching area in the first model, it is helpful to 17 

recognize that an evolutionary-branching line becomes straight and infinitely long in the limit 18 

of mutational step sizes parallel to that line converging to 0. In this limit, the resultant evolu-19 

tionary dynamics are effectively univariate and occur vertically to the evolutionary-branching 20 

line. In the resultant effectively univariate trait space, the evolutionary-branching line then 21 

corresponds to an evolutionary-branching point. Thus, the curvatures and finite lengths of 22 

evolutionary-branching lines can be appreciated as resulting from eco-evolutionary settings 23 

that are intermediate between the two extremes of effectively univariate trait spaces (Metz et 24 

al., 1992; Geritz et al., 1997) and fully bivariate ones (Ackermann and Doebeli, 2004; Egas et 25 

al., 2005; Vukics and Meszéna, 2003; Ito and Dieckmann, 2007). 26 

In our examples, such settings are created by considering different mutational step sizes in 27 

two directions of trait space. Importantly, the very same effects also arise when invasion-28 
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fitness functions possess different sensitivities to trait changes in two directions of trait space. 1 

This is simply because such sensitivity differences can be translated into differences in muta-2 

tional step sizes by suitably rescaling trait space. In many settings, these two types of differ-3 

ences are formally indistinguishable, and are jointly captured by the local normalization of 4 

trait space we have described. The situation is different when the traits contributing to a mul-5 

tivariate phenotype happen to be defined on the same, or naturally comparable, scales. In such 6 

special settings, it is feasible to assess whether the emergence of evolutionary-branching lines 7 

and areas is due to differences in mutational steps, differences in fitness sensitivities, or a 8 

combination thereof. 9 

The existence of evolutionary-branching lines and areas containing no evolutionary-10 

branching points, observed in our second and third examples, will go unnoticed by any analy-11 

sis restricted to identifying evolutionary-branching points. Extending past and future theoreti-12 

cal studies by accounting for our conditions for evolutionary-branching lines and areas is 13 

therefore advisable, as modes of evolutionary diversification in the underlying models may 14 

otherwise be missed. 15 

For instance, our conditions have revealed that if disruptive selection is particularly 16 

strong, evolutionary branching can occur even in the face of considerable directional selec-17 

tion. This mode is characterized by a rapid progression of the diversification, as illustrated by 18 

our second example when a population’s niche is much narrower than the resource distribu-19 

tion. In this situation, evolutionary branching in niche position is rapidly repeated, accompa-20 

nied by gradual evolutionary generalization. Consequently, such evolutionary dynamics are 21 

expected to occur also in models examined in previous studies of the joint evolution of niche 22 

position and niche width (Ackerman and Doebeli, 2003; Egas and Dieckmann, 2004; Ito and 23 

Shimada, 2007). Accordingly, this finding could open up new perspectives for understanding 24 

empirically observed instances of adaptive radiation, such as in Darwin’s finches (Grant and 25 

Grant, 2008), cichlid fish (Seehausen, 2006), sticklebacks (Bell and Foster, 1994; Schluter, 26 

2000), and anolis lizards (Losos, 2009). 27 

Our third model, a predator-prey model with evolving niche positions, illustrates how it is 28 

straightforward to draw qualitative conclusions from our conditions for evolutionary-29 
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branching lines and areas. Specifically, when the width of the predator niche is similar to that 1 

of the basal-resource distribution, there can be no particularly strong disruptive selection. 2 

Therefore, directional selection vertical to the disruptive selection needs to be sufficiently 3 

weak if evolutionary branching is to occur. This is possible only when a phenotype’s prey-4 

niche position is distant from its predator-niche position, giving rise to the evolutionary-5 

branching lines and areas shown in Fig. 4a. Applying our conditions, analogous evolutionary-6 

branching lines and areas can be identified also in other predator-prey models (Ito and 7 

Ikegami, 2006; Ito et al., 2009) that are comparable to our third model (not shown). 8 

In a similar vein, we can consider predator-prey models that differ from our third model. 9 

For example, in the predator-prey model by Brännström et al. (2010), the predator-niche and 10 

prey-niche positions are given by a single trait, resulting in a univariate trait space that has a 11 

single evolutionary-branching point. While univariate trait spaces naturally cannot contain 12 

evolutionary-branching lines or areas, our findings here suggest that it will be interesting to 13 

extend the model by Brännström et al. (2010) so that the predator-niche and prey-niche posi-14 

tions can evolve separately: the previously found evolutionary-branching point is then ex-15 

pected to transform into evolutionary-branching lines and areas, and additional evolutionary-16 

branching lines and areas containing no evolutionary-branching point might emerge. 17 

It may also be worthwhile to revisit, in light of our conditions, a study by Doebeli and 18 

Dieckmann (2000) that also demonstrated evolutionary branching driven by predator-prey 19 

interactions. Their model considered two univariate traits, one for a predator’s predator-niche 20 

position and one for a prey’s prey-niche position: thus, the predator can adapt only in terms of 21 

its predator-niche position, while the prey can adapt only in terms of its prey-niche position. 22 

Although this doubly univariate setting formally differs from the bivariate setting we have 23 

analyzed in the present study, applying our conditions might help reveal the existence of evo-24 

lutionary-branching lines and areas in the model by Doebeli and Dieckmann (2000). 25 

Our conditions for evolutionary-branching lines and areas are analytically derived from 26 

assessing the potential for immediate evolutionary branching of a monomorphic population 27 

(Ito and Dieckmann, submitted). Since these conditions are sufficient, but not necessary, evo-28 

lutionary branching in numerically calculated evolutionary dynamics may occur under a wid-29 
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er range of conditions, reflecting the gradual integration of local probabilistic rates of evolu-1 

tionary branching along monomorphic evolutionary trajectories. Accordingly, no full agree-2 

ment between these two perspectives can be expected. It is therefore encouraging that the re-3 

sults presented here have demonstrated that the positions and shapes of clusters of occurrenc-4 

es of evolutionary branching are well predicted by evolutionary-branching areas. Moreover, 5 

the sizes of those clusters are well predicted by the corresponding 20%-threshold areas in 6 

many, but not all, cases (see, e.g., the small blue evolutionary-branching area in Fig. 3a). A 7 

further potential cause of disparity is that our conditions for evolutionary-branching areas use 8 

only partial information about the local selection pressures, assuming that the second-order 9 

derivatives yyC , xyC , yxC , and yyD  (as measured in the locally normalized coordinate sys-10 

tems) are not important. Occasionally, these additional characteristics of the local shapes of 11 

fitness landscapes might well affect the local probabilistic rates of evolutionary branching. A 12 

formal analysis of these effects, if it turned out to be technically feasible, might improve pre-13 

dictive performance. 14 

Our results in this study are based on restrictive assumptions, such as small mutation rates, 15 

large population sizes, bivariate normal mutation distributions, and asexual reproduction. It 16 

will therefore be desirable to examine the robustness of our results by relaxing or varying 17 

those assumptions. First, when mutation rate is large, evolutionary dynamics are no longer 18 

described by trait-substitution sequences, but instead amount to gradual changes of polymor-19 

phic trait distributions. In this case, one could attempt to define an effective mutation proba-20 

bility distribution by considering the convolution of the phenotype distribution with the actual 21 

mutation probability distribution. As this convolution is always wider than the actual mutation 22 

probability distribution alone, and as the conditions for evolutionary-branching lines and areas 23 

predict higher likelihoods of evolutionary branching for larger mutational step sizes, large 24 

mutation rates may effectively increase those likelihoods. Second, when population sizes are 25 

not sufficiently large, demographic stochasticity may destroy protected dimorphisms shortly 26 

after their emergence, as the two coexisting phenotypes initially are almost ecologically neu-27 

tral (Claessen et al., 2007, 2008). This can suppress evolutionary branching. Third, variations 28 

of the mutation probability distribution, keeping its variance-covariance matrix constant, may 29 
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enhance or suppress the likelihood of evolutionary branching, depending on the specific 1 

shapes considered. Fourth, sexual reproduction is expected to suppress evolutionary branch-2 

ing, as the continuous production of intermediate offspring phenotypes counteracts diversifi-3 

cation by disruptive selection (Dieckmann and Doebeli, 1999; Kisdi et al., 1999). 4 

As for mutation rates and mutation probability distributions, Ito and Dieckmann (submit-5 

ted) have already shown that (for yy xy yx yy, , , 0C C C D =  in the normalized coordinate sys-6 

tems) the derived conditions for evolutionary-branching lines are reasonably robust to making 7 

mutation rates larger and letting mutation distributions deviate from being normal. This ro-8 

bustness may nevertheless be affected by making population sizes smaller than those already 9 

analyzed, so that demographic stochasticity becomes relatively more important. As for sexual 10 

reproduction, evolutionary branching of sexual populations induced by evolutionary-11 

branching lines has been demonstrated numerically by Dieckmann and Ito (2007). This pre-12 

ceding work considered the joint evolution of several quantitative traits, an ecological trait 13 

and mating traits, with additive multilocus genetics, free recombination, and not-small muta-14 

tion rates. This analysis has demonstrated that when the evolution of assortative mating is 15 

difficult, evolutionary branching will often be suppressed, which implies that sexual repro-16 

duction may cause likelihoods of evolutionary branching to be overestimated by the condi-17 

tions reported here for evolutionary-branching lines and areas in asexual populations. 18 

Although we have focused on bivariate trait spaces in this study (to facilitate visual in-19 

spection), the conditions for evolutionary-branching lines derived by Ito and Dieckmann 20 

(submitted) readily apply to multivariate trait spaces, and our conditions for evolutionary-21 

branching areas generalize analogously. Moreover, our conditions for evolutionary-branching 22 

lines and areas are expected to be applicable also to coevolutionary dynamics and to the dy-23 

namics of subsequent evolutionary branching after a primary evolutionary branching has oc-24 

curred. From a computational perspective, it is promising to interleave the application of our 25 

conditions with the time integration of the canonical equation of adaptive dynamics theory 26 

(Dieckmann and Law, 1996): in this way, the deterministic approximation of evolutionary 27 

branching provided by our conditions can be integrated with the deterministic approximation 28 
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of directional evolutionary and coevolutionary dynamics provided by the canonical equation, 1 

resulting in a deterministic oligomorphic model of phenotypic evolution. 2 

In conclusion, our conditions for evolutionary-branching lines and areas have yielded two 3 

new insights into evotionary branching. First, evolutionary-branching points can transform 4 

into evolutionary-branching lines and areas, due to differences in mutational steps and/or fit-5 

ness sensitivities among directions in trait spaces. Second, evolutionary-branching lines and 6 

areas can exist independently of evolutionary-branching points, which allows diversification 7 

even when an entire trait space contains not a single evolutionary-branching point. 8 
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FIGURE CAPTIONS 5 

Figure 1. Illustration of the local characteristics of an evolutionary-branching line. For check-6 

ing the conditions for an evolutionary-branching line (grey line), the trait space ( , )X Y  7 

(frame axes) is locally normalized so that in the new coordinates ( , )x y  (black lines) muta-8 

tional steps are isotropic and disruptive selection is maximal in the direction of x . If at a 9 

phenotype 0S  the maximum disruptive selection xxD  in the direction of x  is sufficiently 10 

strong compared to the directional selection yG  in the direction of y , and if 0S  is moreover 11 

convergence stable in the direction of x , then an evolutionary branching-line is passing 12 

through 0S . 13 

Figure 2. Prediction and observation of evolutionary-branching lines and areas in a resource-14 

competition model with evolving bivariate niche positions and non-isotropic mutational steps. 15 

(a) Predicted evolutionary-branching line, evolutionary-branching area, and 20%-threshold 16 

area, depicted by a line segment and by two nested areas filled with dark and light colors, re-17 

spectively. The colors of the line and areas follow a red-blue gradation indicating the predict-18 

ed directions of evolutionary branching: pure red and pure blue correspond to evolutionary 19 

branching in the directions of the X -axis and Y -axis, respectively. Gray arrows indicate the 20 

directional evolution of monomorphic populations. The black and gray lines are zero-isoclines 21 

of the fitness gradient in the directions of the traits X  and Y , respectively. (b) Occurrences 22 

of evolutionary branching (triangles) in numerically calculated evolutionary dynamics starting 23 

from 200 phenotypes randomly chosen from a uniform distribution across the shown trait 24 

space. Observed directions of evolutionary branching are indicated by the same colors as in 25 

(a). To facilitate comparison, the dashed curve repeats the boundary of the 20%-threshold area 26 

from (a). Two example trajectories of evolutionary dynamics are shown as dark-yellow and 27 
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green curves, respectively, with initial phenotypes marked by the letters ‘c’ and ‘d.’ These 1 

marks match the panels on the right, showing evolutionary dynamics over time, with thick 2 

and thin curves corresponding to the traits X  and Y , respectively. Filled circles in (b) indi-3 

cate the final phenotypes shown in (c) and (d), while filled triangles in (b) indicate the pheno-4 

types at which evolutionary branching occurs in the two example trajectories. Parameters: 5 

K 0.8σ = , α 0.5σ = , 0 1000K = , 5
e 10ε −= , 510µ −= , 1 0.01σ = , 2 0.003σ = . 6 

Figure 3. Prediction and observation of evolutionary-branching lines and areas in a resource-7 

competition model with evolving niche positions and widths. (a) Predicted evolutionary-8 

branching line (red line at the center bottom), evolutionary-branching areas (red and small 9 

blue areas), and 20%-threshold areas (light-red and light-blue areas). Other elements are as in 10 

Fig. 2a. The inset shows a magnified view of the evolutionary-branching areas and corre-11 

sponding 20%-threshold area around the evolutionary-branching point at ( , ) (0,0.282)X Y = . 12 

(b) Occurrences of evolutionary branching (triangles) in numerically calculated evolutionary 13 

dynamics starting from 700 phenotypes randomly chosen from a uniform distribution across 14 

the shown trait space. Two example trajectories of evolutionary dynamics are shown as in 15 

Figs. 2b. Other elements are as in Fig. 2b. Parameters: R 0.2σ = , R 60m = , 0 400R = , 16 

0.3λ = , 1α β γ= = = , 0 0.1d = , 1 0.5d = , 5
e 10ε −= , 510µ −= , X 0.01σ = , Y 0.003σ =  17 

(α , β , and γ  are introduced in Appendix D, while 0d  and 1d  are introduced in Appendix 18 

E). 19 

Figure 4. Prediction and observation of evolutionary-branching lines and areas in a predator-20 

prey model with evolving predator-niche and prey-niche positions. (a) Predicted evolutionary-21 

branching lines (red lines), evolutionary-branching areas (red areas), and 20%-threshold areas 22 

(light-red areas). Other elements are as in Figs. 2a and 3a. (b) Occurrences of evolutionary 23 

branching (triangles) in numerically calculated evolutionary dynamics starting from 200 phe-24 

notypes randomly chosen from a uniform distribution across the shown trait space. Two ex-25 

ample trajectories of evolutionary dynamics are shown as in Fig. 2b and 3b. Other elements 26 

are as in Figs. 2b and 3b. Parameters: c r 0.06σ σ= = , R 0.08σ = , 0 4000R = , R 60m = , 27 
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0.3λ = , 5α = , 1β γ= = , 0.1d = , 5
e 10ε −= , 510µ −= , X 0.003σ = , Y 0.001σ =  (α , β , 1 

and γ  are introduced in Appendix D). 2 

APPENDIX A: MUTATION PROBABILITY DISTRIBUTIONS 3 

Here we explain how the mutation probability distributions used in our three examples are 4 

defined and interpreted in terms of mutational step sizes. For all three examples, we define the 5 

mutation probability distributions as bivariate normal distributions in the original coordinate 6 

system T( , )X Y=S , 7 

 (M 1
2) exp(= −δS TδS 1−Λ ) / (2πδS det )Λ , (A1a) 8 

where Λ  is the mutational variance-covariance matrix, given by 9 

 
2 2 2
X XY

2 2 2
XY Y

( )d d
X XY

M X Y
XY Y

σ σ
σ σ
   ==      ∫∫Λ S . (A1b) 10 

The two eigenvalues of the symmetric matrix Λ  are real and give the maximum and mini-11 

mum variances of mutational step sizes, and the two corresponding eigenvectors give the di-12 

rections in which these extrema are attained. 13 

For the first model, Λ  is given by 14 

 

2
11

2
2

1 2

0
,

0

1 11 1
( , ),

1 12 2

σ
σ − =   

− ==   

Λ Λ

Λ

Λ P P

P e e
 (A2) 15 

with 1 2 0σ σ≥ > . Accordingly, the standard deviation of mutational step sizes has its maxi-16 

mum 1σ  in the direction of T
1 ( 1,1)= −e , and its minimum 2σ  in the direction of 17 

T
2 (1,1)=e . For the second and third model, Λ  is given by 2 2 T

X Y(( ,0),(0, ))σ σ , with 18 

X Y 0σ σ≥ > . 19 
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APPENDIX B: CONDITIONS FOR PROTECTED DIMORPHISMS FOR DIS-1 

RUPTIVE SELECTION PARALLEL TO DIRECTIONAL SELECTION 2 

Here we derive conditions for the emergence of protected dimorphisms along maximum-3 

likelihood-invasion paths (MLIPs) for settings in which the maximum disruptive selection is 4 

parallel to directional selection in the locally normalized coordinate system. We first examine 5 

which mutants in such settings create maximum-likelihood invasions (MLI mutants), which 6 

then enables us to derive the aforementioned conditions. 7 

We consider a locally normalized coordinate system T( , )x y=s  with origin at 0S , in 8 

which akin to Eqs. (1) the normalized invasion-fitness function is expressed as 9 

 

x y

xx yy xy yx

2 2
xx yy

( ; )

1 1 1 1

2 2 2 2
1 1

.
2 2

f G x G y

C x x C y y C x y C y x

D x D y

δ δ
δ δ δ δ
δ δ

′ = +
+ + + +
+ +

s s

 (B1a) 10 

As before, we assume that s  is under disruptive selection and that the strength of disruptive 11 

selection is maximal along the x -axis ( xx 0D > ). 12 

We assume that the resident is located at the origin, T(0,0)=s , corresponding to 0S , 13 

without loss of generality. Because directional selection is assumed to be parallel to the direc-14 

tion of maximum disruptive selection, we can infer that y 0G = . Then, , 0x y =  and Eq. 15 

(B1a) reduces to 16 

 2 2
x xx yy

1 1
( ; )

2 2
f G x D x D yδ δ δ′ = + +s s . (B1b) 17 

According to Dieckmann and Law (1996) and Ito and Dieckmann (submitted), the probability 18 

for mutant ′s  to invade resident s  is given by 19 

 ˆ( ; ) (P T nMµ′ =s s ) ( ; )f +′δs s s , (B2a) 20 

where T  is a normalization ensuring ( ; )d 1P ′ ′ =∫ s s s , and the subscript “+” indicates the 21 

conversion of negative values h to 0. Below, we can omit this subscript since we focus on the 22 

maximum of ( ; )P ′s s , for which ( ; )f ′s s  always is positive. In this normalized trait space, 23 

the distribution ( )M δs  of mutational steps δs  is given by an isotropic bivariate normal 24 
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distribution, 2 2( ) ( ,0, ) ( ,0, )M N x N yδ σ δ σ=δs . Substituting this and Eq. (B1b) into Eq. 1 

(B2a) yields 2 

 
2 2

2 2
x xx yy2

1 1
( ; ) exp

2 2 2

x y
P A G x D x D y

δ δ δ δ δσ
 +  ′ = − + +     s s , (B2b) 3 

where 2ˆ / (2 )A nTµ πσ= . The mutant with maximum likelihood of invasion (MLI mutant), 4 

denoted by T
MLI MLI MLI( , )x y′ ′ ′=s , maximizes ( ; )P ′s s . The mutational step taken by the MLI 5 

mutant is T
MLI MLI MLI MLI( , )x yδ δ ′= = −δs s s . For convenience, we express mutational steps in 6 

polar coordinate T T( , ) ( cos , sin )x yδ δ ε θ ε θ= , which yields 7 

 

2
2 2 2 2

x xx yy2

2
2 2 2

yy xx yy xx2

1 1
( ; ) exp cos cos sin

2 2 2

1 1
exp ( ) cos cos .

2 2 2

P A G D D

A D D D G

ε ε θ ε θ ε θσ
ε ε ε θ ε θσ

   ′ =− + +     
   = − + − +     

s s

 (B2c) 8 

Notice that xx yy 0D D− > , because disruptive selection is maximal in the direction of x . As 9 

cosθ  is maximal and minimal at 0θ =  and θ π= , respectively, while 2cos θ  is maximal 10 

at 0θ =  and θ π= , the invasion probability above has is maximum at 0θ =  for positive 11 

xxG ε  and at θ π=  for negative xxG ε . Thus, the MLI mutant fulfills MLI 0yδ =  and MLIxδ  12 

is given by the xδ  that maximizes 13 

 
2

2
x xx2

1
( ; ) exp

2 2

x
P A G x D x

δ δ δσ
   ′ = − +     s s . (B2d) 14 

The terms above are symmetric with respect to the sign of xδ , except for xG xδ . Therefore, 15 

when xG  is positive, ( ; )P ′s s  for any negative xδ  is smaller than ( ; )P ′s s  for a positive 16 

xδ  with the same absolute value. Thus, MLI 0xδ >  holds for x 0G > . Analogously, 17 

MLI 0xδ <  holds for x 0G < . 18 

In addition, MLIx xδ δ=  has to fulfill 19 

 
2

2 2 2 2
x xx2 2

( ; ) 1 1
exp ( ) (2 ) 0

2 2

P x
A G x D x x

x

δ σ δ δ σ δδ σ σ
′  ∂  = − − + − =   ∂   

s s
. (B3) 20 

For positive xG , this requires MLI 2xσ δ σ≤ ≤  (because xx MLI 0D xδ > , as xxD  is as-21 

sumed to be positive and MLI 0xδ >  for x 0G > ). For negative xG , similarly, 22 
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MLI2 xσ δ σ− ≤ ≤ −  is required (because then xx MLI 0D xδ < ). In summary, the MLI mutant 1 

thus always fulfills MLI 2xσ δ σ≤ ≤  and MLI 0yδ = . 2 

On the basis of these features of MLI mutants, we now examine whether the MLI mutant 3 

and the considered resident can coexist. The conditions for protected dimorphism are given by 4 

conditions for mutual invasiblity, MLI( ; ) 0f ′ >s s  and MLI( ; ) 0f ′ >s s . By substituting 5 

T
MLI MLI( , )x x yδ′ = +s  and 0x y= =  into Eq. (B1a), these conditions are expressed as 6 

 2
MLI x MLI xx MLI

1
( ; ) 0

2
f G x D xδ δ′ = + >s s , (B4a) 7 

and 8 

 2 2
MLI x MLI xx MLI xx MLI

1 1
( ; ) 0

2 2
f G x C x D xδ δ δ′ =− − + >s s . (B4b) 9 

If 10 

 xx 0C < , (B5) 11 

a sufficient condition for inequalities (B4) to be fulfilled is given by 12 

 MLI xx

x

1
2

x D

G

δ > . (B6) 13 

As MLI 2xσ δ σ≤ ≤ , a sufficient condition for this inequality to be fulfilled is given by 14 

 xx

x

1
2

D

G

σ > . (B7) 15 

APPENDIX C: IDENTIFYING EVOLUTIONARY-BRANCHING LINES AND 16 

AREAS 17 

General procedure 18 

Here we explain how to identify evolutionary-branching lines and areas in an arbitrary trait 19 

space, according to Ito and Dieckmann (submitted). For checking conditions for evolutionary-20 

branching lines in an arbitrary trait space S , the vector G  and the matrices C  and D  of 21 

the locally normalized invasion-fitness function ( ; )f ′s s  are all that is needed. To obtain the-22 
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se vector and matrices, the trait space S  is first transformed so that mutational steps become 1 

isotropic, and then it is further rotated so that D  becomes diagonal. Specifically, ( ; )F ′S S  2 

is approximated as the normalized invasion-fitness function, Eq. (1a), 3 

 ( ; )F ′ =S S G


T
0

1
( )

2
+ −δS S S C

 1

2
+δS

TδS D

δS , (C1a) 4 

where 5 

 T

,

,

,

′
′ ′ ′ ′
′ ′

=
= − + −
=

S

S S SS SS SS

S S

G F

C F F F F

D F






 (C1b) 6 

with 7 
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F
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 (C1c) 8 

where αF  for α = X ,Y ,X,Y′ ′  and αβF  for α,β = X ,Y ,X,Y′ ′  denote the first and second 9 

partial derivatives of ( ; )F ′S S  with respect to α  and β , respectively. 10 

By locally normalizing the trait space through an affine transformation, i.e., by substitut-11 

ing T
0− =S S Q Bs  and T=δS Q B δs  into Eq. (C1a) and comparing with Eq. (1a), we see 12 

that G , C  and D  are given by 13 

 

T

T T

T T

,

,

.

=
=
=

G GQ B

C B QCQ B

D B QDQ B





 (C2a) 14 

The matrix Q  describes the scaling of mutational step sizes to make them isotropic, 15 

 
2

X XY X

2 2 4
X Y XY X

/1

0 /

σ σ σ
σ σ σ σ σ
  =  − 

Q , (C2b) 16 

where 2
Xσ , 2

Yσ , and 2
XYσ  are the components of the mutational variance-covariance matrix 17 

Λ , and 2σ  is the dominant eigenvalue of Λ , measuring the maximum variance of muta-18 

tional step sizes among all directions in trait spaces. The matrix Q  can be obtained as the 19 
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Cholesky decomposition of 2/σΛ , 2 T/σ =Λ Q Q , with Q  having upper-triangular form. 1 

The matrix B  describes the rotation of the trait axes to align them with the direction of max-2 

imum disruptive selection, 3 

 1 2( , )=B v v , (C2c) 4 

where 1v  and 2v  are the eigenvectors of T
QDQ


, ordered so that the corresponding eigen-5 

values fulfill 1 2λ λ> , which makes D  diagonal with xx yyD D> . 6 

By substituting Eqs. (C2) into the conditions for evolutionary-branching lines, Eqs. (2a-c), 7 

the set of phenotypes 0S  fulfilling those conditions is found, thus yielding the evolutionary-8 

branching lines. 9 

Illustrative example 10 

Here we elaborate on the illustrative analysis of evolutionary-branching lines and areas 11 

around an evolutionary-branching point in the simple example briefly explained in the subsec-12 

tion “Sizes and shapes of evolutionary-branching lines and areas” in the main text. 13 

As explained there, we suppose that a trait space T( , )X Y=S  possesses an evolutionary-14 

branching point at its origin. For a point 0S  close to the origin, the invasion-fitness function 15 

( ; )F ′S S  can be expanded as shown in Eq. (C1a). By further expanding G


, C


, and D


 in 16 

terms of 0S  around the origin, these are approximately given by 17 

 T
0 , , and ,=+ = =G G S C C C D D

         
 (C3) 18 

where G


, C


, and D


 denote the matrices G


, C


, and D


 at T
0 (0,0)=S , respectively. 19 

For the origin to be an evolutionarily singular point, =G 0


 is required. For the sake of illus-20 

tration, we assume that T
XX YY(( ,0), (0, ))D D=D


, XX YYD D≥ , and T

XX YY(( ,0), (0, ))C C=C


. 21 

And for the origin to be an evolutionary-branching point, we assume that it is strongly con-22 

vergence stable, XX YY, 0C C < , and that it is not evolutionarily stable, XX 0D > . In addition, 23 

we assume that mutational steps in the traits X  and Y  have no correlation, XY 0σ = , and 24 

are largest along the X -axis, X Yσ σ≥ . Then, the matrices Q  and B  are given by the 25 

constant matrices, 26 
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Y X

1 0 1 0
and

0 / 0 1σ σ
   ==     Q B , (C4) 1 

with Xσ σ= . Substituting Eqs. (C3) and (C4) into Eqs. (C2a) yields 2 
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D

 (C5) 3 

with Y X/r σ σ= . Substituting Eqs. (C5) into the conditions for evolutionary-branching lines 4 

and areas, Eqs. (2) and (3a), then yields Eqs. (4) and (5). 5 

APPENDIX D: FUNCTIONAL RESPONSE IN SECOND AND THIRD MOD-6 

ELS 7 

Here we explain how the functional response used in the second and third model is derived. 8 

Extending results by Beddington (1975) and DeAngelis et al. (1975), we start by deriving the 9 

functional response of phenotype S  to resource type z , 10 

 R R( , ) ( ) ( , ) ( )g z Ac z e R zφ=S S S , (D1a) 11 

where ( )φ S  is the search effort per consumption effort, A  is the total rate of consumption 12 

effort, and ( , )c z S  describes the probability density of consumption effort over resources 13 

types z  by phenotype S  per unit of its biomass. Thus, ( ) ( , )Ac zφ S S  is the probability 14 

density of search effort per unit time invested on resource type z  by phenotype S  per unit 15 

of its biomass (search effort for short). As a first-order approximation, the encounter rate of 16 

phenotype S  with resource type z  is assumed to be proportional to this search effort and to 17 

the density ( )R z  of resource type z , resulting in the proportionality constant Re . 18 

The first-order approximation is also applied to the rate of interference competition expe-19 

rienced by phenotype S  while consuming resource type z , 20 

 C C( , ) ( ) ( , ) ( )g z Ac z e C zφ=S S S , (D1b) 21 
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which is thus assumed to be proportional to the search effort and to the total consumption 1 

effort ( )C z  invested on resource type z  by all phenotypes, with a proportionality constant 2 

Ce . ( )C z  is given by 3 

 
1

( ) ( , )
L

j jj
C z A n c z== ∑ S . (D2) 4 

The sum of energy invested into resource search, resource handling, and interference 5 

competition, measured in terms of rates and integrated over all resource types z , equals the 6 

total rate A  of consumption effort, 7 

 R R C C( ) ( , )d ( , )d ( , )dAc z z h g z z h g z z Aφ + + =∫ ∫ ∫S S S S , (D3) 8 

where Rh  and Ch  scale the energy requirements for resource handling and interference 9 

competition relative to those for resource search. Here it is assumed that these relative energy 10 

requirements do not depend on resource type, and that they are not complicated by spatial 11 

population structure. Substituting Eqs. (D1) into Eq. (D2) yields 12 

 
R R C C

1
( )

1 ( ) ( )h e R h e C
φ = + +S

S S , (D4) 13 

and substituting this into Eq. (D1a) yields 14 

 R

( , ) ( )
( , )

( ) ( )

Ac z R z
g z

R Cα β γ= + +
S

S
S S , (D5) 15 

where 16 

 ( ) ( , ) ( )dR c z R z z= ∫S S , ( ) ( , ) ( )dC c z C z z= ∫S S , (D6) 17 

R1/ eα = , Rhβ = , and C C R/h e eγ = . Integrating Eq. (D4) over all resource types z , 18 

R( ) ( , )dg g z z= ∫S S , finally yields the sought functional response, 19 

 
( )

( )
( ) ( )

AR
g

R Cα β γ= + +
S

S
S S


 . (D7) 20 

Here the parameters α , β , and γ  measure, respectively, the costs for resource search, 21 

resource handling, and interference competition. 22 
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APPENDIX E: INVASION FITNESS IN SECOND MODEL 1 

Here we derive the invasion-fitness function for the second model. First, for the functional 2 

response in Eq. (D7) we need to specify the total amounts of resource and competitors en-3 

countered by phenotype iS , ( )iR S  and ( )iC S , which according to Eq. (D6) are given by 4 

the following overlap integrals, 5 

 

2 2
0 R R

2 2

1

( ) ( , ) ( )d N( , , ),

( ) ( , ) ( )d N( , , ),

i i i i

L

i i j i j i jj

R c z R z z R X m Y

C c z C z z A n X X Y Y

σ
=

= =+
== +
∫

∑∫
S S

S S




 (E1) 6 

where ( )C z  is the total consumption effort invested on resource type z  by all phenotypes 7 

jS , as given by Eq. (D2). 8 

Second, we describe the costs of specialization or generalization by an additional death 9 

rate that linearly varies with the niche width Y  of a phenotype S , 10 

 0 1( )d Y d d Y= − , (E2) 11 

as specified by the two parameters 0d  and 1d : a positive 1d  results in a cost of 12 

specialization, whereas a negative 1d  results in a cost of generalization. 13 

Third, for a monomorphic population with phenotype S  and equilibrium biomass n̂ , the 14 

invasion fitness of a mutant with phenotype ′S  is then derived according to Eq. (7c) as 15 

 
0

1 d
( ; ) lim ( ) ( ),

dn

n
F g d Y

n t
λ′→

′′ ′ ′= = −′S S S  (E3a) 16 

with ( )g ′S  as specified in Eq. (D7) with 17 

 
2 2

R

2 2

( ) N( , , ),

ˆ( ) N( , , ).

RR X m Y

C An X X Y Y

σ′ ′ ′=+
′ ′ ′=+

S

S


  (E3b) 18 

APPENDIX F: INVASION FITNESS IN THIRD MODEL 19 

Here we derive the invasion-fitness function for the third model. First, the total resource dis-20 

tribution is given by 21 

 
1

( ) ( ) ( , )
L

j jj
R z B z n r z== +∑ S . (F1a) 22 
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The rate of actual resource gain by phenotype iS  is then given by ( )ig S  as specified in Eq. 1 

(D7) with 2 

 

2 2 2 2
0 R c c r1

2
c1

( ) ( , ) ( )d ( , , ) N( , , ),

( ) ( , ) ( )d N( , , ),

L

i i i R j i jj

L

i i j i jj

R c z R z z R N X m n X Y

C c z C z z A n X X

σ σ σ σ
σ

=

=

= = + + +
==

∑∫
∑∫

S S

S S




 (F1b) 3 

according to Eq. (D6), where ( )C z  is the total consumption effort invested on resource type 4 

z  by all phenotypes jS , as given by Eq. (D2) By assuming that predators do not distinguish 5 

phenotypes of prey when they share a same resource quality z , we obtain the functional 6 

response of phenotype 
iS  to jS  as ( )ig S  multiplied by the fraction of jS  in the re-7 

sources preyed upon by 
iS , 8 

 2 2
p c r( , ) ( ) ( , ) ( , )d / ( ) ( ) N( , , ) / ( )i j i i j j i i j i j ig g c z n r z z R g n X Y Rσ σ= =+∫S S S S S S S S  . (F1c) 9 

Second, the rate of biomass loss of phenotype 
iS  per its unit biomass is then given by 10 

 p1

1
( ) ( , )

L

i j j ij
i

l n g
n == ∑S S S  (F2) 11 

Third, for a monomorphic population with phenotype S  and equilibrium biomass n̂ , the 12 

invasion fitness of a mutant phenotype ′S  is then derived according to Eq. (8c) as 13 

 p
0

1 d
( ; ) lim ( ) ( , )

dn

n
F g g d

n t
λ′→

′′ ′ ′= = − −′S S S S S , (F3a) 14 

with 15 

 
2 2 2 2

R c c r

2
c

ˆ( ) N( , , ) N( , , ),

ˆ( ) N( , , ).

RR X m n X Y

C An X X

σ σ σ σ
σ
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′ ′=
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  (F3b) 16 
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