brought to you by CORE

Life-stage specific environments in a cichlid fish: Implications for inducible maternal effects

Kotrschal, A., Heckel, G., Bonfils, D. and Taborsky, B.

H

H H M

1

IIASA Interim Report 2012 Kotrschal, A., Heckel, G., Bonfils, D. and Taborsky, B. (2012) Life-stage specific environments in a cichlid fish: Implications for inducible maternal effects. IIASA Interim Report. IR-12-045 Copyright © 2012 by the author(s). http://pure.iiasa.ac.at/10230/

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

Interim Report IR-12-045

Life-stage specific environments in a cichlid fish: Implications for inducible maternal effects

Alexander Kotrschal Gerald Heckel Danielle Bonfils Barbara Taborsky (barbara.taborsky@iee.unibe.ch)

Approved by

Ulf Dieckmann Director, Evolution and Ecology Program

February 2015

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.

- 1 Life-stage specific environments in a cichlid fish:
- 2 Implications for inducible maternal effects
- 3
- 4 Alexander Kotrschal^{1,2}, Gerald Heckel^{3,4}, Danielle Bonfils², Barbara Taborsky^{2,5}
- 5
- ⁶ ¹Department of Animal Ecology, Institute of Ecology and Evolution, EBC, Uppsala
- 7 University, Uppsala, Sweden
- 8 ²Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Switzerland
- 9 ³Computational and Molecular Population Genetics (CMPG), Institute of Ecology and
- 10 Evolution, University of Bern, Switzerland
- ⁴Swiss Institute of Bioinformatics (SIB), Genopode, Lausanne, Switzerland
- ⁵Evolution and Ecology Program, International Institute of Applied Systems Analysis,
- 13 Laxenburg, Austria
- 14
- 15 Running title: Life-stage specific maternal effects
- 16 Key words: Maternal effect, life-stage specific, juvenile and adult environment, cichlid fish
- 17 Words total: 6648
- 18 Words per section: Abstract 187; Introduction 857; Material and Methods 1674; Results 586;
- 19 Discussion 1708; Acknowledgements 98.
- 20 References cited: 60
- 21 Figures: 3
- Tables: 3
- 23 Online appendix: 1 Body size measurements of three fish species (including 1 Figure)
- 24

- 2 DNA extraction and microsatellite analysis (including 1 Table)

- 25 Correspondence:
- 26 Alexander Kotrschal
- 27 Animal Ecology/Department of Ecology and Evolution
- 28 Evolutionary Biology Centre (EBC)
- 29 Uppsala University
- 30 Norbyvägen 18D
- 31 75236 Uppsala, Sweden
- 32 alexander.kotrschal@ebc.uu.se
- 33 office: 0046 18 471 2930
- 34 mobile: 0046 73 751 2785
- 35

36 Abstract

37

38 Through environmentally induced maternal effects females may fine-tune their offspring's 39 phenotype to the conditions offspring will encounter after birth. If juvenile and adult 40 ecologies differ, the conditions that mothers experienced as juveniles may better predict their 41 offspring's environment than the adult females' ambient conditions. Maternal effects induced 42 by the environment experienced by females during their early ontogeny should evolve when 43 three ecological conditions are met: (i) Adult ecology does not predict the postnatal 44 environmental conditions of offspring; (ii) Environmental conditions for juveniles are 45 correlated across successive generations; and (iii) Juveniles occasionally settle in conditions 46 that differ from the juvenile habitat of their mothers. By combining size-structured population 47 counts, ecological surveys and a genetic analysis of population structure we provide evidence 48 that all three conditions hold for Simochromis pleurospilus, a cichlid fish in which mothers 49 adjust offspring quality to their own juvenile ecology. Adults of many species cannot predict 50 their offspring's environment from ambient cues. Hence, we predict that life-stage specific 51 maternal effects are common in animals. Therefore, it is important to incorporate parental 52 ontogeny in the study of parental effects when juveniles and adults inhabit different 53 environments.

55 Introduction

56

57 Environmentally induced parental effects represent a form of phenotypic plasticity spanning 58 generations (Uller 2008) and appear to occur ubiquitously across all major taxa (Lacey et al 59 1998; Mousseau and Fox 1998; Räsänen et al 2008). Adaptive transgenerational plasticity is 60 expected to be favoured when environments across generations are heterogeneous in space or 61 time (Uller 2008). In the presence of reliable environmental cues, non-genetic maternal 62 effects allow females to fine-tune the offspring's phenotype to the expected environmental 63 conditions, which can confer fitness advantages for both generations (Galloway and Etterson 64 2007).

65

66 When maternal and offspring ecologies are correlated the environment can often provide 67 reliable cues about the postnatal conditions offspring will experience (e.g. Galloway and 68 Etterson 2007; Räsänen and Kruuk 2007; Badyaev 2009). In many species, however, juvenile 69 and adult ecologies differ greatly because animals undergo ontogenetic shifts in feeding niche 70 [reptiles (Clark and Gibbons 1969; Pough 1973; Ballinger et al 1977), fish (Werner and 71 Gilliam 1984), annelids (Davies et al 1981), insects (Johannsson 1978; Amarillo-Suarez and 72 Fox 2006), echinoderms (Town 1981), spiders (Turner 1979)]. Juveniles may occupy a different, often much narrower niche than adults in a common habitat [e.g. crustaceans (Lind 73 74 and Welsh 1994; Dionne et al 2003)] or juveniles and adults may even be separated spatially 75 [e.g. birds (Gillanders et al 2003), fish (Mumby et al 2004)]. In these cases, precise 76 forecasting of offspring conditions from the ambient environment is often difficult or even 77 impossible, whereas the conditions females experienced themselves in early life might predict 78 their offspring's future environment quite reliably (Jonsson et al 1996; Rotem et al 2003; 79 Taborsky 2006a). This situation can give rise to 'life-stage specific maternal effects', where

the environmental conditions experienced by females during a certain life stage (e.g. the early juvenile stage) induce a maternal effect that affects the *same* life stage in the offspring generation. To date, no study has: (a) Identified which ecological cues experienced by females during their own early life are more reliable than cues experienced during reproduction; or (b) Tested whether these conditions hold true in the natural habitat of animals known to have life-stage specific maternal effects.

86

87 After detecting that cues perceived by females early in life can induce a maternal effect on 88 offspring performance early in life, Taborsky (2006a) proposed two necessary conditions for 89 the evolution of this life-stage specific maternal effect: (1) Ecologies across *different* life 90 stages must differ such that adults cannot predict their offspring's environment during early 91 ontogeny; and (2) Conditions for juveniles are correlated across successive generations. Here 92 we add a third condition, necessary for *plastic* offspring adjustment via maternal effects to 93 evolve: (3) Offspring must occasionally end up in a non-matching environment, for example, 94 due to moderate rates of dispersal to divergent habitats or because of temporal fluctuations. 95 This additional condition is important, because if the correlation between the early 96 environment of mothers and that of offspring were perfect, juveniles would always grow up 97 in the same habitat type as their mothers. In this case, a fixed egg size would perform equally 98 well as an environmentally induced anticipatory maternal effect to prepare offspring for post-99 natal conditions.

100

In a laboratory experiment, females of the mouthbrooding cichlid *Simochromis pleurospilus*were shown to adjust egg size to the experimental environment they experienced as juveniles,
and not those that they experienced during egg production. Irrespective of current food
availability, females reared under reduced access to food produced larger offspring (Taborsky)

2006a). Further experiments suggest that this maternal effect prepares young for harsh postnatal conditions, as larger *S. pleurospilus* young grew faster than smaller conspecific
competitors when food was scarce, whereas larger body size did not yield benefits when food
was abundant (Segers and Taborsky in revision). Thus, *S. pleurospilus* exhibits a life-stage
specific maternal effect and represents a suitable model to test whether the three ecological
conditions outlined above apply to this species.

111

112 Condition 1 demands that adults are not able to predict their offspring's post-natal 113 environment. This is relevant if adult and juvenile habitats differ or are spatially segregated. 114 To assess spatial segregation and differences in habitat we combined size-structured 115 population counts and habitat surveys of five neighbouring *S. pleurospilus* populations in 116 Lake Tanganyika. Condition 2 demands that juvenile environments are correlated across 117 successive generations. The natural habitat of *S. pleurospilus* is stable over time. Thus, a 118 correlation between the juvenile habitat of females and offspring is expected if juveniles of 119 successive generations of the same population grow up in the same area. We tested for this by 120 applying a population genetics approach predicting that genetic differentiation among 121 neighbouring populations should occur, but not genetic differentiation between adult and 122 juvenile habitats of the same population. Finally, condition 3 demands that occasional 123 mismatch between the juvenile environment of a mother and her offspring occurs, for 124 example, as a result of dispersal. To test for this, we applied a combined population genetics 125 approach with a habitat quality survey in five neighbouring populations along a continuous 20 km stretch of Lake Tanganyika shoreline. We investigated the genetic data for signals of 126 127 weak gene flow between neighbouring populations, and we tested for habitat quality 128 differences between neighbouring populations.

130

131 Material and Methods

132 Study species

133 S. pleurospilus is a maternally mouthbrooding cichlid of the tribe Tropheini endemic to Lake 134 Tanganyika, East Africa. It inhabits the rocky shoreline between 0 to 12m depth (depending 135 on study site; pers. obs.), where it feeds exclusively on epilithic turf algae. These algae 136 constitute the sole food source of *S. pleurospilus* and their productivity declines exponentially 137 with depth, differing by two orders of magnitude within the first 2 meters (Taborsky 1999). 138 The observed reduction in algal productivity with depth correlates with a declining biomass 139 of algae-grazing cichlids (B. Taborsky, unpub. data; this study). *S. pleurospilus* reproduces year-round, with adult males defending small, adjoining territories of 2-4 m² which females 140 141 visit to spawn. Juveniles and females are non-territorial, but inhabit large home ranges 142 (Kotrschal and Taborsky 2010a). After spawning, females leave the male territory 143 immediately, and care for the clutch on their own. The young are independent after four 144 weeks (Taborsky 2006b). The environmental conditions juveniles are exposed to after 145 independence until they reach maturity are known to strongly influence their adult physiology 146 (Kotrschal et al in press), behaviour (Kotrschal and Taborsky 2010b) and life history 147 (Taborsky 2006a, b; Segers and Taborsky 2011; Segers and Taborsky in revision).

148

149 *Study sites*

150 Data were collected at the southern tip of Lake Tanganyika, Zambia; we surveyed 20 km of

151 Lake Tanganyika coastline and found populations of *S. pleurospilus* at five sites (Figure 1)

152 further referred to as: 'Mbete' (8°48`41.74``S, 31°02`08.56``E); 'Kasakalawe Point'

153 (8°46`48.05``S, 31°04`58.60``E); 'Simo Paradise' (west of the town Mpulungu,

154 8°46`46.05``S, 31°05`47.48``E); 'Mpulungu' (near Fisheries Department, Mpulungu,

155 8°45`55.04``S, 31°06`10.56``E); and, 'Simo Bay' (at Nkumbula Island; 8°45`16.40``S,
156 31°5`28.81``E).

157

158 *Population size structure along depth gradient*

Previously, the size structure - depth gradient correlation was known for only one of the study populations (Kasakalawe Point, KP; Taborsky 2006a). To investigate whether the correlation applies to *S. pleurospilus* populations in general, we determined the size-frequency distribution in a second population (Simo Bay, SB), which differs most strongly from KP with regard to habitat and climate. In contrast to KP, SB is largely protected from waves (see Figure 1) and strongly affected by sedimentation, and consequently has reduced algae

165 growth.

166

167 We conducted 100-m transect counts in parallel to the shore every 0.5 depth-meter between 168 0.5 and 12m depth. We repeated these transect counts three times during a 10 hour period 169 7.00-17.00), during daylight (which was from 6.00-18.00), on three different days, adding up 170 to a total of 720 (3 x 10 x 24) 100-m transects. During each transect count, we dived 171 approximately 1m above the lake bottom along the transect line and estimated the size (to the 172 nearest 0.5 cm) of each male, female and juvenile S. pleurospilus occurring 2m to the left and to the right of the transect line. In the lab, S. pleurospilus females start to reproduce at a 173 174 minimal size of 5.7 cm total length (TL) (Taborsky 2006 b). Therefore, we considered 175 individuals <5.5 cm as 'juveniles' and individuals ≥ 5.5 cm as 'adults'. The transects were carried out by two observers (AK and MJ). To minimize bias both observers sampled all 176 177 depths. Furthermore, when the observer was included as a factor in the statistical analyses, it 178 was non-significant (p>0.7).

180 *Ecological parameters*

To measure habitat parameters, we conducted transects in parallel to the shore every 0.5m between 0.5 and 3m depth except at Mbete and Simo Paradise, where the habitat for *S. pleurospilus* extends only down to 1.5 and 2.5m, respectively (only sandy bottom below these depths). We distinguished between 'shallow' (0.5m, 1.0m and 1.5m) and 'deep' (2.0m, 2.5m and 3.0m) habitats. Since the sandy bottom began at 1.5m at Mbete, we numbered the 1.5m transect among the 'deep' habitats.

187

188 Algal cover. At our study sites four distinct categories of substrate occurred: solid rock (the 189 lakebed consists of a flat surface of solid rock); stones (large pebbles and rounded rocks); 190 sand; and plants. We placed a weighted 2-m yardstick on the lakebed and measured the 191 distance d covered by the different classes of substrate. Starting each transect at the western 192 edge of a population and proceeding eastwards, we sampled the substrate at every second 193 2m-section and repeated this 10 times for each depth, yielding 60 samples per population 194 (except Mbete, for which there are only 30 samples). Data points of equal depth were entered 195 into the statistical analysis as independent values, since the sample sizes per depth are equal, 196 which allows for data pooling without biasing the results (Leger and Didrichsons 1994). We 197 calculated an index of algal cover by assuming that rocks have a flat surface and stones are 198 spherical. Since only the top half of a stone is exposed to sunlight and can hence be colonised by turf algae we multiplied the distances covered by stones by $\frac{\pi}{2}$. For each 2m section we 199

200 calculated an index for algal cover as:
$$A = \frac{d_{rock} + d_{stones} \times \frac{\pi}{2}}{200}$$
 with $A \le \frac{\pi}{2}$ cm. As the turf algae

used as food by *S. pleurospilus* only grow on hard surfaces, plants and sand are not included
in the equation. Note that *A* represents an index of the area available for feeding only and
does not incorporate depth-specific algal productivity (see 'Discussion').

204

205 *Food competition*. After determining algal cover, we rested motionless near the 2-m vardstick 206 placed at the lake bottom for 5 min. During this period the fish habituated to the yardstick and 207 to our presence and resumed feeding. We noted species, size (estimated by eve to the nearest 208 1.0 cm) and number of all food competitors (algae grazers) within 2m of both sides of the stick $(8m^2)$. We converted length to mass using allometric relationships of all algae eating 209 210 species, established during previous field studies (see Appendix 1. Finally, we converted total algae eater biomass into total metabolic rate MR_{total} (in g×m⁻²) by MR_{total} = body mass^{0.79}, 211 which is the typical allometric relationship in teleost fish (Clarke and Johnston 1999). MR_{total} 212 213 best reflects the amount of algae removed by food competitors. 214 215 Food availability. To obtain an estimate of food availability we built a model with log-216 transformed A as the dependent variable and study site and habitat (shallow or deep) as fixed 217 factors. Because we wanted to test for potential differences in food availability, which must also take the presence of food competitors into account, we controlled for the effect of MR_{total} 218 on A by including it as a covariate. We first tested for significant interactions between MR_{total} 219 220 and the fixed factors in our model. All interaction terms with MR_{total} were non-significant 221 (p>0.3) and were therefore excluded from our final model. 222 223 We log-transformed the data or used non-parametric statistics whenever the distributions 224 violated the assumptions of parametric testing. All analyses were conducted in SPSS 17.0

226

225

227 DNA sampling and microsatellite analysis

(SPSS Inc., Chicago, IL, USA).

228 In total, we collected 550 tissue samples from shallow (<1m) and deep (>1.5m depth) water 229 habitats. Sample sizes per population ranged between 85 and 146 individuals (Mbete: shallow 230 (s) 47, deep (d) 45; Kasakalawe Point: s 44, d 41; Simo Paradise: s 55, d 40, Mpulungu: s 83, 231 d 49, Simo Bay: s 54, d 92). Using hand nets each fish was driven slowly towards a fence net, where the fishes fins were caught and it could be removed quickly and without damage. 232 233 Supported by local professional fish catchers, we managed to sample most individuals of a 234 population during a 2h session. However, in the case of very large populations, we obtained 235 only a representative subsample. Fish caught in shallow habitats were found to be mostly 236 juveniles, whereas those caught in deep habitats were exclusively adults. Fish of a specific 237 population were kept in two tanks of 200 litres separated according to habitat type (shallow 238 or deep) for up to 3 hours with frequent water exchanges. All fish survived and were released 239 after sampling. Fin clips were taken from the tip of the anal fin, and stored in 98% ethanol for 240 later processing (see Appendix 2 for details on sample collection and processing).

241

242 We used fourteen polymorphic microsatellite loci with protocols specifically adapted for *S*.

243 *pleurospilus* (loci NP007 (=UME002), NP773 (=US-758/773), NP781 (=US-781/784):

244 (Schliewen et al 2009); Pzeb2, Pzeb3, Pzeb4: (Van Oppen et al 1997); TmoM5, TmoM13,

TmoM25: (Zardoya et al 1996); UME003: (Parker and Kornfield 1996); UNH106, UNH130,

246 UNH154: (Lee and Kocher 1995) and UNH1009 (Carlton et al 2002); see Appendix 2 for

247 details on DNA extraction and microsatellite analysis).

248

249 Statistical analyses of microsatellite data

250 We computed estimates of genetic diversity including allelic richness and heterozygosity, as

251 well as tests for departure from Hardy-Weinberg proportions and linkage equilibrium for

each sampling locality and depth separately in Arlequin 3.1 (Excoffier and Laval 2005).

Overall and sample-specific inbreeding coefficients (F_{IS}) were used to assess *S. pleurospilus* samples for internal kin structure or evidence of inbreeding (Schweizer et al 2007). The nominal significance level of 0.05 was corrected with the sequential Bonferroni procedure whenever applicable (Holm 1979).

257

258 The level of genetic differentiation among *S. pleurospilus* from different sampling depths and 259 localities was quantified separately by pairwise and overall F_{ST}-values (Weir and Cockerham 260 1984), and statistically tested with 10,000 permutations using Arlequin 3.1. Analyses of 261 molecular variance (AMOVA) (Excoffier et al 1992) were performed to assess the amount of 262 genetic variation explained by differences between the two sampling depths relative to 263 differences between sampling localities. Furthermore, we used Mantel tests (Smouse et al 264 1986) implemented in Arlequin 3.1 to test the relationship between spatial and genetic 265 distances (F_{ST}) among sites as expected under isolation by distance. We tested both the 266 logarithm of Euclidean distances and the logarithm of distances along the coastline against F_{ST}. A linear relationship between F_{ST} and the logarithm of distance is expected under short-267 distance dispersal among neighbouring populations (Rousset 1997). 268

269

270 Ethical note

271 Animal care procedures during genetic sampling are in accordance with the 'Memorandum of

272 Understanding' between the Fisheries Department of the Ministry of Agriculture and

273 Cooperatives, Mpulungu, Zambia, and the Universities of Lusaka (Zambia), Bern and Basel

274 (Switzerland) and Graz (Austria). We adhered to the "Guidelines for the treatment of animals

in behavioural research and teaching" published in 'Animal Behaviour' 2006, 71, 245-253.

276

277 Results

278

279 *(i) Differences between juvenile and adult habitats*

Spatial segregation. At Simo Bay the depth distributions of juveniles and adults differed significantly (Chi-square test, $\chi^2_{24} = 66.66$, p<0.001). Juveniles occurred exclusively at depths ≤ 1.5 m, whereas adults were found regularly at all depths between 1.0 and 10.0m (Figure 2). While this pattern resembles the size-structure at 'Kasakalawe Point' (Taborsky 2006a), adults inhabit a much broader depth range at Simo Bay.

Habitat differences. Algal cover (controlled for the effect of food competition) was higher in shallow than in deep habitats (Table 1; Figure 3). Of note, the variances of algal cover and food competition were greater in deep habitats (Levene's test for equality of variances: algal cover, F=51.9; food competitor metabolic requirement F=42.3; both N=130 and p<0.001).

291 *(ii) Genetic differentiation within and among populations*

292 Genetic data from 550 individuals revealed very high levels of genetic diversity at the 14 293 microsatellite loci analyzed. The number of alleles per locus ranged from four for locus 294 Pzeb3 to 43 for locus TmoM5 with a mean value of 25.2. The observed heterozygosity per 295 locus and sampling locality ranged from 0.4 to 1 with a mean value of 0.84 over all sampling 296 localities. After sequential Bonferroni correction, significant deviations from Hardy-297 Weinberg equilibrium were detected for 6/140 tests per locus and sampling locality. Locus 298 UNH130 was affected three times, locus UNH1009 twice and locus NP-007 once, but this 299 low number of significant tests suggests no overall departure from Hardy-Weinberg 300 equilibrium. Tests for linkage disequilibrium provided no evidence for physical linkage 301 among loci in the data set.

303 Estimates of the inbreeding coefficient F_{IS} per *S. pleurospilus* sample from different sampling 304 depths and localities provided no evidence for extensive kin substructure or inbreeding. 305 Neither the overall F_{IS} -value of 0.004 (p > 0.2) nor sample-specific F_{IS} -values (range: -0.016) 306 to 0.029; p > 0.05) were significantly different from zero.

307

308 Genetic differentiation between S. pleurospilus sampling localities and sampling depths was 309 relatively low at this very fine geographical scale with an overall F_{ST} -value of 0.0158 (p < 310 0.0001). There was no evidence for genetic structure between sampling depths within 311 sampling localities. An AMOVA with each sampling locality defined as its own group 312 consisting of deep and shallow samples revealed significant variation between sampling 313 locality ($F_{CT} = 0.0149$; p < 0.0001) but not between deep and shallow samples ($F_{SC} = 0.0008$; p = 0.112). Pairwise F_{ST}-values between deep and shallow samples from a locality ranged 314 315 between 0.0006 and 0.0019 and were all not significantly different from zero (all p > 0.11). 316 317 *S. pleurospilus* from the five sampling locations were significantly genetically structured with 318 an overall F_{ST} -value of 0.0154 (p < 0.0001). Pairwise genetic distances between sampling 319 locations ranged from 0.0011 for Kasakalawe Point - Simo Paradise (the only non-significant 320 comparison; p = 0.081) to 0.030 (Simo Bay - Mbete; p < 0.0001; Table 2). 321 322 Mantel tests provided no evidence for a dependence of genetic structure among S.

323 *pleurospilus* populations with either Euclidean distances between sampling localities (r =

0.13, $p \ge 0.2$) or distances measured along the shoreline (r = 0.45, $p \ge 0.2$).

325

324

326 (iii) Heterogeneity of juvenile habitats 327 Food availability (algae cover controlled for competitor metabolic requirement) differed 328 greatly across the shallow habitats (ANCOVA, F = 4.222, df = 4, N = 70, p = 0.006, Figure 329 3) and pairwise comparisons between study sites (based on estimated marginal means) 330 revealed significant differences between most sites (Table 3). Moreover, study sites differed distinctly in several other features including shore orientation and wave impact, 331 332 sedimentation, plant coverage and turbidity (A. Kotrschal, pers. obs.). 333 334 Discussion 335 336 In *Simochromis pleurospilus* egg size is influenced by cues mothers are exposed to during 337 their juvenile period (Taborsky 2006a). We propose three general conditions that should 338 favour the evolution of such a life-stage specific maternal effect: (1) Juveniles and adults 339 inhabit different ecological niches that do not allow females to predict their offspring's 340 juvenile environment; (2) Juveniles usually grow up under similar conditions as their parents, 341 allowing females to obtain cues that predict the juvenile conditions of their future offspring; 342 (3) Occasionally juveniles mature in different habitats to their mothers', and hence a flexible 343 strategy to determine egg size should be favoured. As many species occupy different 344 ecological niches during different ontogenetic stages, often living even in spatial separation, 345 life-stage specific maternal adjustment of offspring phenotype is likely to be common among 346 animals. In the following sections we discuss our results in light of the three proposed 347 conditions.

348

(i) Differences between juvenile and adult habitats. We found that juvenile and adult *S. pleurospilus* inhabit different water depths with only a limited overlap. As observed also in
other algae grazing species (Power 1984) the shallow areas were predominantly used by

352 smaller, juvenile fish, whereas larger fish inhabited deeper areas. As this pattern is similar at 353 Kasakalawe Point (Taborsky 2006a) and at Simo Bay (this study), two qualitatively and 354 quantitatively distinct habitats, we conclude that this pattern is typical for *S. pleurospilus*. In 355 shallow depths algal cover controlled food competitor metabolic requirements were higher in 356 all but one population. Shallow areas provide better feeding grounds than deep areas because 357 a larger surface area of rocks and stone overgrown by algae is present, relative to the 358 metabolic requirements of algae eaters. In addition, deeper habitats provide worse grazing 359 grounds due to the exponential decline of sunlight with increasing depth, which corresponds 360 to an exponential decline in algae productivity with depth (Taborsky 1999). Hence shallow 361 and deep habitats usually differ with respect to the quality of feeding opportunities (cf. Figure 362 3). Most likely the disparate distribution of juvenile and adult *S. pleurospilus* across the depth 363 gradient is not solely explained by differences in feeding opportunities, but also by size-364 dependent predation risk. Wading and diving birds, which do not prey upon fish under a 365 certain size threshold, hunt more effectively in shallow water or near the surface (Whitfield 366 and Blaber 1979; Kramer et al 1983) whereas piscivorous fish that predate on juveniles of all 367 sizes increase in number and size with increasing depth (Ruiz et al 1993). Additionally, it 368 may be risky for large fish to forage too close to the waterline because of the possibility of 369 becoming beached, while small fish may use minute quantities of interstitial water to return 370 to safer depths. In support of this consideration is the observation that the shoreline of Lake 371 Tanganyika is frequently and heavily exposed to waves.

372

Overall, we can conclude that juvenile and adult habitats of *S. pleurospilus* differ with respect to several important ecological parameters. Here we compared only depths above 1.5m with depths between 2.0 and 3.0m. Adult *S. pleurospilus* use a much broader depth range than sampled by us, spanning over 9 or more meters in depth. The differences between shallow

waters and a habitat at 10 m depth are likely to be even more pronounced. The larger variance
in ecological parameters in the adult compared to the juvenile habitat indicates that adults
occupy a much wider niche than juveniles. Females that solely rely on cues in their current
(adult) habitat during egg production should therefore not be able to precisely predict juvenile
conditions.

382

383 (ii) Correlation between juvenile environments across generations. Life-stage specific 384 maternal effects can occur when successive generations of juveniles usually grow up under similar ecological conditions. In the case of *S. pleurospilus*, where adults and juveniles occur 385 386 at different depths, this can be checked by investigating genetic structure between depths of 387 the same population and between fish of neighbouring populations. Our microsatellite 388 analyses revealed that in all populations occurring along a 20-km stretch of shoreline 389 shallow-water and deeper-water fish of the same study site were not genetically 390 differentiated. In contrast, neighbouring populations were genetically differentiated as 391 indicated by F_{ST} values significantly deviating from zero, except for the two closest 392 populations (p=0.081). Kasakalawe Point and Simo Paradise are only 1100 m apart and there 393 is no obvious dispersal barrier for S. pleurospilus (sand, mud, or solid rock) between them, 394 making gene flow between these populations more likely.

395

The observed pattern of genetic differentiation between populations despite the very finegrained, local scale of this study suggests that *S. pleurospilus* is mostly philopatric and gene flow rarely occurs over large distances. This observation differs clearly for the much larger congener, *S. diagramma*, which readily covers larger distances (Wagner and McCune 2009). Dedicated analyses including more populations covering larger geographical scales and several points in time will be necessary to provide a better understanding of dispersal patterns

and frequency in *S. pleurospilus* (e.g. Hamilton et al 2005; Heckel et al 2005; Schweizer et al
2007). This will also allow further assessment of the effects of distance and habitat structure
on dispersal properties more specifically, as our analyses of isolation by distance do not
detect significant patterns at this spatial scale.

406

407 *(iii) Occasional mismatch between maternal and offspring juvenile habitats. S. pleurospilus* 408 occurred only along certain stretches of the lake's rocky shore, in discrete populations, 409 separated by unoccupied habitat. Although we detected significant genetic differentiation 410 between neighbouring populations, it is remarkable that observed F_{ST} values are low. The 411 high levels of genetic polymorphism present within populations and relatively low levels of 412 genetic differentiation between our five study populations are compatible with relatively 413 large local populations with occasional dispersal between them. Occasional dispersal is 414 crucial for a flexible egg size to be advantageous over a fixed egg size, but only if dispersing 415 fish may encounter habitats different from their natal population. In the case of our study 416 populations the latter is likely. Juvenile habitats of neighbouring populations differed 417 significantly in algal cover controlled for food competitor metabolic requirement and in 418 several other qualitative features. Remarkably, there was no gradual change of ecological 419 parameters along the shore. Most pairwise comparisons between neighbouring populations 420 revealed significant differences in the index of food availability. Hence, whenever fish 421 disperse they are likely to encounter variable conditions, and so the ability of females to fine-422 tune offspring phenotype may therefore confer an advantage.

423

424 Conclusions

425 Maternal effects, by which females adjust offspring phenotype to current environmental

426 conditions, are widespread among fish (Mousseau and Fox 1998; Einum and Fleming 1999;

427 Bashey 2006). However, the critical influence of environment during one life stage on 428 shaping a maternal effect acting on the same life stage of the following generation has only 429 been shown by one experiment so far. In a laboratory study, the food available to juvenile S. 430 *pleurospilus* females determined the size of eggs produced later in life (Taborsky 2006a). 431 Females that mature with experimentally manipulated high food availability produced smaller 432 eggs than females growing up in low-food conditions. Here we investigated under which 433 conditions life-stage specific maternal effects induced during the juvenile period of mothers 434 may evolve.

435

We demostrate that for a given study site, *S. pleurospilus* adults from deeper water and juveniles from shallow water belong to the same population, and that dispersal between populations differing in habitat quality occurs to a limited degree. Without dispersal between populations natural selection should favour genetically determined local adaptation of egg size (Kinnison et al 2001). Under the reported conditions of limited dispersal, however, selection should favour the evolution of flexible egg size adjustment induced by the conditions that mothers encountered as juveniles (life-stage specific cues).

443

444 In our study species, adult and juvenile ecologies differ only at a fine scale, and their habitats 445 partially overlap. Life-stage specific maternal effects should be even more important when 446 juveniles and adults have entirely different ecologies like in many metamorphosing animals 447 or anadromous fishes. There is evidence that such species do indeed adjust offspring phenotype to their juvenile environment (Jonsson et al 1996; Rotem et al 2003; Amarillo-448 449 Suarez and Fox 2006). In salmonids, this can be beneficial as these fish occasionally end up 450 in spawning habitats that differ substantially from their natal sites, despite high spawning site 451 fidelity (reviewed in Quinn 1993). Also, in amphibians an occasional mismatch of early

452 maternal and offspring environment is possible if females fail to return exactly to their own 453 raising ponds (reviewed in Smith and Green 2005), since these can vary greatly in their 454 climatic and ecological conditions even on small spatial scales (Van Buskirk and Arioli 2005; 455 Räsänen et al 2008). Even for species with pelagic larvae previously believed to have no 456 opportunity to obtain information on their offspring's postnatal environment, evidence of a 457 certain level of philopatry is accumulating (Gerlach et al 2007). Hence, the early maternal 458 environment may well predict the conditions experienced shortly after settlement, as many 459 juveniles of reef fish grow up in nursery grounds entirely disparate from the adult habitat, 460 such as mangroves or sea grass beds (Heck et al 2003; Mumby et al 2004).

461

462 In conclusion, we outline the conditions when maternal adjustment of offspring phenotype to 463 life-stage specific environmental differences should be beneficial. We furthermore show that 464 these conditions are fulfilled in the natural environment of a species where females do adjust 465 the offspring phenotype to their own early environment. Females thus possess a mechanism 466 that allows them, via maternal effects, to match offspring phenotype to the postnatal 467 environment, even if they are unable to obtain information about the environment that future 468 offspring will experience while producing eggs. This strongly suggests that the previously 469 detected ability of *S. pleurospilus* females to adjust offspring size according to their own 470 juvenile conditions represents a beneficial maternal effect in the natural environment of this species. As in several animal species, including *S. pleurospilus*, larger offspring have survival 471 472 advantages under adverse growth conditions, while smaller young do equally well under 473 benign conditions (Hutchings 1991; Mousseau and Fox 1998; Einum and Fleming 1999). 474 This fine-tuning of offspring is likely to be adaptive. Finally we propose that life-stage 475 specific maternal effects should be common in animals and it therefore will often be

476 inevitable to incorporate parental ontogeny when aiming to understand the evolution of477 parental effects.

480 Acknowledgements

482	We thank Martin Jiskra for help with the collection of field data, and Michael Taborsky,
483	Catherine Wagner, Alex Hayward and two anonymous referees for comments on the
484	manuscript, Dik Heg and Göran Arnqvist for help with statistics, Roger Schürch, Fardo
485	Witsenburg, Oliver Otti and the Fisheries Department Mpulungu of the Ministry of
486	Agriculture and Cooperatives, Zambia for logistic and scientific support in Zambia, and Evi
487	Zwygart and Janne Schöning for logistic support in Europe. This study was funded by the
488	Swiss National Science Foundation (grant 3100A0-111796 to B.T) and the Austrian Science
489	Fund (FWF; grant P18647-B16 to B.T.).
490	
491	
492	References
493 494	Amarillo-Suarez AR Fox CW (2006) Population differences in host use by a seed-beetle
495	local adaptation, phenotypic plasticity and maternal effects. Oecologia 150:247-258
495 196	Badyaev AV (2009) Evolutionary significance of phenotypic accommodation in povel
407	anvironments: an ampirical test of the Paldwin effect. Phil Trans P. Soa P. 264:1125-1141
497	Pallinger DE Newlin ME Newlin SI (1077) Age gradifie shift in diet of arovide gniny lizzed
498	Salar area a singetti in conthemation Namine Are Midland Net 07:482-484
499	Sceloporus poinsetti in southwestern New Mexico. Am Midland Nat 97:482-484
500	Bashey F (2006) Cross-generational environmental effects and the evolution of offspring size
501	in the Trinidadian guppy Poecilia reticulata. Evolution 60:348-361
502	Carlton KL, Streelman JT, Lee BY, Garnhart N, Kidd M, and Kocher TD (2002) Rapid
503	isolation of CA microsatellites from the tilapia genome. Anim Gen 33:140-144

- 504 Clark DB, Gibbons JW (1969) Dietary shift in turtle Pseudemys scripta (Schoepff) from
- 505 youth to maturity. Copeia:704-708
- 506 Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in
- 507 teleost fish. J Anim Ecol 68:893-905
- 508 Davies RW, Wrona FJ, Linton L, Wilkialis J (1981) Interspecific and intraspecific analyses
- 509 of the food niches of 2 sympatric species of eprobdellidae (Hirudinoidea) in Alberta, Canada.
- 510 Oikos 37:105-111
- 511 Dionne M, Sainte-Marie B. Bourget E, Gilbert D (2003) Distribution and habitat selection of
- 512 early benthic stages of snow crab Chionoecetes opilio. Mar Ecol Progr Ser 259:117-128
- 513 Einum S, Fleming IA (1999) Maternal effects of egg size in brown trout (Salmo trutta):
- 514 norms of reaction to environmental quality. Proc R Soc B 266:2095-2100
- 515 Excoffier L, Laval G (2005) An integrated software package for population genetics data
- 516 analysis. Evol Bioinfo Online 1:47-50
- 517 Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from
- 518 metric distances among DNA haplotypes: application to human mitochondrial DNA
- 519 restriction data. Genetics 131:479-491
- 520 Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science
 521 318:1134-1136
- 522 Gerlach GJ, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can
- 523 prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104:858-863
- 524 Gillanders BM, Able KW, Brown JA, Eggleston DB, Sheridan PF (2003) Evidence of
- 525 connectivity between juvenile and adult habitats for mobile marine fauna: an important
- 526 component of nurseries. Mar Ecol Progr Ser 247:281-295
- 527 Hamilton G, Currat M, Ray N, Heckel G, Beaumont M, Excoffier L (2005) Bayesian
- 528 estimation of recent migration rates after a spatial expansion. Genetics 170:409-417
- 529 Heck KL, Hays G, Orth RJ (2003) Critical evaluation of the nursery role hypothesis for
- 530 seagrass meadows. Mar Ecol Progr Ser 253:123-136
- 531 Heckel G, Burri R, Fink S, Desmet JF, Excoffier L (2005) Genetic structure and colonization
- processes in European populations of the common vole, Microtus arvalis. Evolution 59:2231-
- 533 2242
- Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65-70
- 535 Hutchings JA (1991) Fitness consequences of variation in egg size and food abundance in
- 536 brook trout Salvelinus fontinalis. Evolution 45:1162-1168

- 537 Johannsson OE (1978) Coexistence of larval zygoptera (Odonata) common to Norfolk
- 538 Broads UK. 1. Temporal and spatial separation. Oecologia 32:303-321
- 539 Jonsson N, Jonsson B, Fleming IA (1996) Does early growth cause a phenotypically plastic
- response in egg production of Atlantic Salmon? Funct Ecol 10:89-96
- 541 Kinnison MT, Unwin MJ, Hendry AP, Quinn TP (2001) Migratory costs and the evolution of
- 542 egg size and number in introduced and indigenous salmon populations. Evolution 55:1656-
- 543 1667
- 544 Kotrschal A, Taborsky B (2010a) Resource defence or exploded lek A question of
- 545 perspective. Ethology 116:1-10
- 546 Kotrschal A, Taborsky B (2010b) Environmental change enhances cognitive abilities in fish.
- 547 PLoS Biol 8:e1000351
- 548 Kotrschal A, Fischer B, Taborsky B (2011) A non-invasive method to determine fat content
- 549 in small fish based on swim bladder size estimation. J Exp Zool A in press
- 550 Kramer DL, Manley D, Bourgeois R (1983) The Effect of respiratory mode and oxygen
- 551 concentration on the risk of aerial predation in fishes. Can J Zool 61:653-665
- 552 Lacey EP, Mousseau TA, Fox CW (1998) What is an adaptive environmentally induced
- parental effect? In: Lacey EP, Mousseau TA, Fox CW (eds) Maternal effects ad adaptations.
- 554 Oxford University Press, Oxford, pp. 54-66
- 555 Lee WJ, Kocher TD (1995) Microsatellite DNA markers for genetic mapping in Oreochromis
- niloticus J Fish Biol 49:169-171
- 557 Leger DW, Didrichsons IA (1994) An assessment of data pooling and some alternatives.
- 558 Anim Behav 48:823-832
- 559 Lind AJ, Welsh HH (1994) Onotogenetic changes in foraging bahavior and habitat use by the
- 560 oregon garter snake, Thamnophis atratus hydrophilus. Anim Behav 48:1261-1273
- 561 Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol
- 562 Evol 13:403-407
- 563 Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, Gall A,
- 564 Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004)
- 565 Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature
- 566 427:533-536
- 567 Parker A, Kornfield I (1996) Polygynandry in Pseudotropheus zebra , a cichlid fish from
- 568 Lake Malawi. Env Biol Fish 47:345-352
- 569 Pough FH (1973) Lizard energetics and diet. Ecology 54:837-844

- 570 Power ME (1984) Depth distributions of armored catfish predator-induced resource
- 571 avoidance. Ecology 65:523-528
- 572 Quinn TP (1993) A review of homing and straying of wild and hatchery-produced salmon.
- 573 Fisher Res 18:29-44
- 574 Räsänen K, Kruuk LEB (2007) Maternal effects and evolution at ecological time-scales.
- 575 Funct Ecol 21:408-421
- 576 Räsänen K, Soderman F, Laurila A, Merila J (2008) Geographic variation in maternal
- 577 investment: Acidity affects egg size and fecundity in Rana arvalis. Ecology 89:2553-2562
- 578 Rotem K, Agrawal AA, Kott L (2003) Parental effects in Pieris rapae in response to variation
- in food quality: adaptive plasticity across generations ? Ecol Entom 28:211-218
- 580 Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under
- isolation by distance. Genetics 145:1219-1228
- 582 Ruiz GM, Hines AH, Posey MH (1993) Shallow-water as a refuge habitat for fish and
- 583 crustaceans in nonvegetated estuaries An example from Chesapeake Bay. Mar Ecol Progr
- 584 Ser 99:1-16
- 585 Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D (2009) Genetic and
- 586 ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions
- 587 in Lake Ejagham, Cameroon. Mol Ecol 10:1471-1488
- 588 Schweizer M, Excoffier L, Heckel G (2007) Fine-scale genetic structure and dispersal
- patterns in the common vole Microtus arvalis Mol Ecol 16:2463-2473
- 590 Segers FHID, Taborsky B (2011) Egg size and food abundance interactively affect juvenile
- growth and behaviour. Funct Ecol 25:166-176
- 592 Segers FHID, Taborsky B (in revision) Fast growth of large offspring by effects of
- 593 aggression in harsh environments. Behav Ecol
- 594 Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian
- 595 ecology and conservation: are all amphibian populations metapopulations? Ecography
- 596 28:110-128
- 597 Smouse PE, Long JC, Sokal RR (198) Multiple regression and extension of the Mantel test of
- 598 matrix correspondence. Syst Zool 35:627-632
- 599 Taborsky B (1999) Size-dependent distribution in littoral fish: optimization or competitive
- 600 exclusion? In: Almada VC, Oliveira RF, Goncalves EJ (eds) Behaviour and conservation of
- 601 littoral fishes. Lisboa, pp 351-376
- 602 Taborsky B (2006a) Mothers determine offspring size in response to own juvenile growth
- 603 conditions. Biol Lett 2:225-228

- 604 Taborsky B (2006b) The influence of juvenile and adult environments on life-history
- 605 trajectories. Proc R Soc B 273:741-750
- 606 Town JC (1981) Prey characteristics and dietary emposition in intertidal Astrostole scabra
- 607 (Echinodermata, Asteroidea). N Z J Mar Freshw Res 15:69-80
- 608 Turner M (1979) Diet and feeding phenology of the green lynx spider, Peucetia viridans
- 609 (Araneae, Oxyopidae). J Arachn 7:149-154
- 610 Uller T (2008) Developmental plasticity and the evolution of parental effects. Trends Ecol
- 611 Evol 23:432-438
- 612 Van Buskirk J, Arioli M (2005) Habitat specialization and adaptive phenotypic divergence of
- anuran populations. J Evol Biol 18:596-608
- 614 Van Oppen MJH, Rico C, Deutsch TC, Turner GF, Hewitt GM (1997) Isolation and
- 615 characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra. Mol Ecol
- 616 6:387-388
- 617 Wagner CE, McCune AR (2009) Contrasting patterns of spatial genetic structure in sympatric
- 618 rock-dwelling cichlid fishes. Evolution 63:1312-1326
- 619 Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population
- 620 structure. Evolution 38:1358-1370
- 621 Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size
- 622 structured populations. Ann Rev Ecol Syst 15:393-425
- 623 Whitfield AK, Blaber SJM (1979) Feeding ecology of piscivorous birds at Lake St Lucia .2.
- 624 Wading Birds. Ostrich 50:1-9
- 625 Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl SA, Meyer A (1996) Evolutionary
- 626 conservation of microsatellite flanking regions and their use in resolving the phylogeny of
- 627 cichlid fishes (Pisces: Perciformes). Proc R Soc 263:1589-1598.
- 628
- 629

- area surveyed for occurrence of S. pleurospilus
- sampling sites = all populations of S. pleurospilus
 - unsuitably habitat for S. pleurospilus (mud)

Figure 1: Study sites at the southern tip of Lake Tanganyika, Zambia. Shaded areas indicate the area surveyed for the occurrence of *Simochromis pleurospilus*, thick black lines mark the range along the shoreline inhabited by the five study populations and dark grey areas indicate habitats that are *a priori* unsuitable for *S. pleurospilus*. MB, Mbete; KP, Kasakalawe Point; SP, Simo Paradise; MU, Mpulungu; SB, Simo Bay.

Figure 2: Size-depth distribution of *Simochromis pleurospilus*. Colours indicate frequencies of fish recorded for each size class and depth (mean of 30 surveys). Dashed line indicates size at maturity.

Figure 3: Potential food availability in juvenile and adult habitats of *Simochromis pleurospilus*. Filled and empty circles represent the estimated marginal means of shallow and deep habitats respectively (\pm S.E.). Values are derived from a model in which we used the surface area as dependent variable, study site and habitat (shallow or deep) as fixed factors and metabolic requirement of food competitors as a covariate (see main text). No data for deep habitat in Mbete (see main text).

1 Table 1: Potential food availability (algae cover, controlled for the effect of food competition)

		Food availability		
	df	F	Sig.	
Corrected Model	8	16.511	< 0.001	
Water depth	1	26.761	< 0.001	
Study site	4	10.589	< 0.001	
depth * site	3	4.747	0.004	
Competitors MR _{total}		0.664	0.417	

2 compared between water depths study sites.

3

4

5

6 Table 2: Pairwise F_{ST} -values between different sampling localities of *Simochromis* 7 *pleurospilus*. All comparisons were significantly different from zero (p<0.002, highlighted in 8 bold) except for fish from the geographically closest sites Simo Paradise and Kasakalawe 9 Point (p=0.081).

	Mpulungu	Simo Paradise	Simo Bay	Mbete
Simo Paradise	0.0077			
Simo Bay	0.0193	0.0219		
Mbete	0.0135	0.0047	0.0301	
Kasakalawe Point	0.0089	0.0011	0.0264	0.0030

10

11

- 12
- 14

15	Table 3: Pairwise comparison of food availability in shallow habitats of five study
16	populations. MB, Mbete; KP, Kasakalawe Point; SP, Simo Paradise; MU, Mpulungu; SB,
17	Simo Bay. Mean difference between study sites (mean Δ) and p-values (based on estimated
18	marginal means) obtained from a general linear model with algae surface area as dependent
19	variable, study site as factor and metabolic requirement of food competitors as covariate;
20	significant p-values are highlighted in bold.

	MB		КР		SP		MU	
	mean Δ	р						
ΚP	0.166	0.036						
SP	-0.341	0.001	-0.175	0.003				
ΜU	-0.319	0.001	-0.153	0.009	0.021	0.685		
SB	-0.307	0.005	-0.140	0.030	0.034	0.529	0.013	0.814

21

Appendix 1 – Body size and mass allometry of three cichlid species

Relationship of body size and mass of *Simochromis pleurospilus, Eretmodus cyanostictus and Tropheus moorii.* Data for *S. pleurospilus* were obtained when taking the fin clips during this study, and for *E. cyanostictus* and *T. moorii* during previous field projects (Taborsky 1999; Taborsky et al. 2009); body size is measured as total length (*TL*), from the tip of the snout to the end of the tail fin; body mass (*M*) as live wet weight). (a) *S. pleurospilus*: $W = 0.0198 \times TL^{2.97}$; (b) *Eretmodus cyanostictus*: $W = 0.036 \times TL^{2.89}$; (c) *Tropheus moorii*: $W = 0.035 \times TL^{2.75}$; *Petrochromis sp.*: no data available for this species; we used the equation

for *S. pleurospilus*, as these species have a similar body shape.

- Taborsky, B. 1999. Size-dependent distribution in littoral fish: optimization or competitive exclusion? Pp. 351-376 *in* V. C. Almada, R. F. Oliveira, and E. J. Goncalves, eds. Behaviour and conservation of littoral fishes, Lisboa.
- Taborsky, B., L. Guyer, and M. Taborsky. 2009. Size-assortative mating in the absence of mate choice. Animal Behaviour 77:439-448.

Appendix 2: Sample collection, DNA extraction and microsatellite analysis Sample collection. We took fin clips from the tip of the anal fin (1-2 mm²) with sharp dissection scissors and kept them in 98% ethanol for later processing. All instruments were daily cleaned and rinsed in 98% ethanol to avoid cross contamination between sites. Unnoticed cross contamination between samples is highly unlikely as the ratio of sample DNA to potential contamination DNA is very high. Due to the extremely variable microsatellites we should expect to find evidence of tri- or tetraploidy, if contamination had occurred. As part of our analysis protocol, we screened for these artefacts, and there was not a single one detected in our samples.

DNA extraction. Genomic DNA was extracted from ethanol-preserved fin clip samples using a manual 96 well format DNA extraction protocol on the basis of a magnetic separation technique: Tissue lysis was done in a Lysis-Buffer containing Nuclei Lysis Solution (Promega), 0.5M EDTA and Proteinase K according to the Wizard Genomic DNA Isolation Protocol (Technical Manual No. TM050, Promega). DNA was captured in solution by adding Paramagnetic Particles (MagneSil Blue, Promega) to the lysate and washed 2-3 times with 80% ethanol with the aid of a magnetic separator (MagnaBot®96 Magnetic Separation Device, Promega, Cat.# V8151) to eliminate residual contaminants. Finally, genomic DNA was eluted directly from the Paramagnetic Particles with 50-100µl of Nuclease Free Water.

Microsatellite analysis. For PCR amplification, all 14 microsatellite primer pairs (table A1) were multiplexed in one PCR reaction using the QIAGEN Multiplex PCR Kit (Qiagen). PCR reactions were carried out in 10µl volume containing 1µl of the genomic DNA, 1x QIAGEN Multiplex PCR Master Mix (consisting of QIAGEN Multiplex PCR buffer with a final concentration of 3 mM MgCl₂, dNTP mix, and HotStarTaq DNA polymerase), 0.1 µM of locus-specific 5' fluorescent labeled forward primer [fluorescent dyes: 6-FAM, HEX

(Microsynth), VIC, NED and PET (Applied Biosystems)], and non labelled reverse primer. Twelve reverse primers (NP007, NP773, UNH106, UNH130, ULI2, UME003, Pzeb2, Pzeb3, Pzeb4, TmoM5, TmoM13, TmoM25) were additionally modified by placing the nucleotide sequence GTTTCTT on the 5' end. This reverse-primer tailing results in nearly 100% adenylation of the 3' end of the forward strands, thereby facilitating accurate genotyping as a result of consistent allele calls. Amplification was achieved in a 96-well GeneAmp® PCR System 9700 (Applied Biosystems) by using the following cycling protocol: 15 min at 95°C; 35 cycles consisting of 30 sec at 94°C, 3 min at 57°C and 1 min at 72°C, followed by a final 15 min extension at 72°C. Fluorescent PCR fragments were visualized by capillary electrophoresis on an ABI PRISM® 3100 Genetic Analyzer. Genotypes were scored with the Genemapper software version 3.7 (Applied Biosystems)

against an internal size standard (LIZ, Applied Biosystems). Automatic scoring was checked and revised manually to ensure consistency of genotyping (Schweizer et al. 2007).

Reference

Schweizer, M., L. Excoffier, and G. Heckel. 2007. Fine-scale genetic structure and dispersal patterns in the common vole Microtus arvalis Molecular Ecology 16:2463-2473.

Locus	Sequences of primers
NP-007 F	TCA GAG TGC AAT GAG ACA TGA
NP-007-PT R	GTT TCT TAA TTT AGA AGC AGA AAA TTA GAC G
NP-773 F	ATC AGC ACG TCA TCT GCA TGA G
NP-773-PT R	GTT TCT TGC AAA GCA AAG CTG AGA AAC AA
NP-781 F	GAG CGA AAC CTG AAC AGA ATA C
NP-784 R	AGA GCC TGC TGG GGA CAA GAG T
Pzeb2 F	TTCGGTAGACTGATGCTTTCATA
Pzeb2-PT R	GTT TCT TAA AGC CAA AGG GTG TGA ACT GA
Pzeb3 F	GAG CCT GCA AAC CTT ACT GTA AA
Pzeb3-PT R	GTT TCT TAA GCT ACA CAA ATT CCA CTC ATA
Pzeb4 F	GCT TGT TTT GGG TTG GTT TTG T
Pzeb4-PT R	GTT TCT TAT GGA CAC GTG GAC TCA AAG AC
TmoM5 F	GCT CAA TAT TCT CAG CTG ACG CA
TmoM5-PT R	GTT TCT TAG AAC AGC GCT GGC TAT GAA AAG GT
TmoM13 F	CGC AGG GTG TTC TTC AGG TGT AT
TmoM13-PT R	GTT TCT TAA ATC ACC ATA TTC ATA TGT T
TmoM25 F	CTG CAG TGG CAC ATC AAG AAT GAG CAG CGG T
TmoM25-PT R	GTT TCT TCA AGA ACC TTT CAA GTC ATT TTG
UME003 F	GCC ACA TGT AAT CAT CTA ACT GC
UME003-PT R	GTT TCT TGA GAT TTT TTT TGG TTC CGT TG
UNH106 F	CCT TCA GCA TCC GTA TAT
UNH106-PT R	GTT TCT TGT CTC TTT CTC TCT GTC ACA AG
UNH130 F	AGG AAG AAT AGC ATG TAG CAA GTA
UNH130-PT R	GTT TCT TGT GTG ATA AAT AAA GAG GCA GAA A
UNH154 F	ACG GAA ACA GAA GTT ACT T
UNH154 R	TTC CTA CTT GTC CAC CT
UNH1009 F	CCATCTGCATGCTGTAAGACA
UNH1009-PT R	GTT TCT TTC CCA TTT GTC AGG TTC AGG

Table A1. Sequences of 14 primers for *S. pleurospilus* (in 5'-3' direction)