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Abstract

In this article we further develop the theory of adaptive dynamics

of function-valued traits. Previous work has concentrated on models

for which invasion fitness can be written as an integral in which the

integrand for each argument value is a function of the strategy value

at that argument value only. For this type of models of direct effect,

singular strategies can be found using the calculus of variations, with

singular strategies needing to satisfy Euler’s equation with environ-

mental feedback. In a broader, more mechanistically oriented class

of models, the function-valued strategy affects a process described by

differential equations, and fitness can be expressed as an integral in

which the integrand for each argument value depends both on the

strategy and on process variables at that argument value. In general,

the calculus of variations cannot help analyzing this much broader

class of models. Here we explain how to find singular strategies in this

class of process-mediated models using optimal control theory. In par-

ticular, we show that singular strategies need to satisfy Pontryagin’s

maximum principle with environmental feedback. We demonstrate

the utility of this approach by studying the evolution of strategies de-

termining seasonal flowering schedules.

Keywords: adaptive dynamics, function-valued traits, theory of opti-

mal control, Pontryagin’s maximum principle, environmental feedback

AMS classification:92D15, 49-00

1 Introduction

Adaptive dynamics (Metz et al., 1992, 1996; Dieckmann and Law, 1996;
Geritz et al., 1997, 1998) was originally formulated for scalar strategies s ∈ R.
Dieckmann et al. (2006) and Parvinen et al. (2006) presented theory for
the adaptive dynamics of function-valued traits, i.e., strategies of the form
s(a) ∈ R for a ∈ R. In addition to developing this theory, Dieckmann et al.
(2006) studied the evolution of metabolic investment strategies and the evo-
lution of seasonal flowering schedules. Parvinen et al. (2006) further investi-
gated models of metabolic investment strategies. The adaptive dynamics of
function-valued strategies has been examined in various other applications,
including maturation reaction norms (Ernande et al., 2004), foraging strate-
gies on resource gradients (Heino et al., 2008), condition-dependent dispersal
(Gyllenberg et al., 2008), timing of reproduction (Eskola, 2009; Eskola et al.,
2011), size-dependent flowering (Rees and Ellner, 2009), and age-dependent
sex-reversal (Calsina and Ripoll, 2010). This illustrates the wide applicability
of function-valued traits to questions in evolutionary ecology.
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Dieckmann et al. (2006) introduced the canonical equation of function-
valued adaptive dynamics, which describes the expected rate of evolutionary
change in a function-valued strategy. This canonical equation can be used to
study the transient dynamics and convergence towards evolutionarily singular
strategies (see, e.g., Heino et al., 2008). Already for vector-valued strategies,
conditions for such convergence are more complicated than for scalar strate-
gies (Christiansen, 1991; Marrow et al., 1996; Matessi and Di Pasquale, 1996;
Geritz et al., 1998; Leimar, 2001; Meszéna et al., 2001), usually requiring dy-
namical analysis of the kind the canonical equation allows. In some simple
cases, the equilibria of the canonical equation can be solved analytically, and
singular strategies thus can be obtained. For using the canonical equation,
the selection gradient needs to be calculated. The complexity of a model
determines how difficult that calculation is.

Alternatively, for single-species evolution, singular strategies can be found
by using the fact that they are local maxima or minima of a fitness function.
Therefore, it is natural that the optimization method provided by the calculus
of variations is a useful tool for finding singular strategies of function-valued
traits and, under some circumstances, for determining their evolutionary
stability (Parvinen et al., 2006). In particular, the calculus of variations is
applicable when the invasion fitness (Metz et al., 1992) of a mutant with
strategy smut in the environment Eres created by the resident population can
be written as an integral of the form

r(smut, Eres) =

∫ amax

amin

F (a, smut(a), s
′

mut(a), Eres)da, (1)

where smut(a) is defined for amin 6 a 6 amax. Analogous methods, as de-
scribed in section 7 of Parvinen et al. (2006), can be used in more com-
plex cases, in which the invasion fitness r(smut, Eres) = Z(I1, I2, . . . , In) is
a function of several integrals Ij =

∫ amax

amin

Fj(a, smut(a), s
′

mut(a), Eres)da with
j = 1, . . . , n. The main result of Parvinen et al. (2006) is that singular strate-
gies in models of type (1) need to satisfy Euler’s equation with environmental
feedback. See, e.g., Heino et al. (2008) and Gyllenberg et al. (2008) for ap-
plications. In some special cases, the integrand F (a, smut(a), s

′

mut(a), Eres)
does not depend on s′mut(a) and is a linear function of the strategy value
smut(a) of the mutant, so the resultant Euler’s equation does not depend on
smut. Finding singular strategies may then appear problematic, because smut

cannot be solved from an equation in which it does not appear. Instead,
one obviously needs to find a resident environment Eres such that Euler’s
equation is satisfied for any smut, for which model-specific methods may be
needed (Eskola, 2009; Calsina and Ripoll, 2010). From an ecological point of
view, the presence in equation (1) of the derivative s′mut(a) =

d
da
smut(a) may
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seem puzzling at first sight. Many problems of such type arise in physics, for
example when s(a) describes the position and s′(a) the velocity of an object.
Also in evolutionary ecology, fitness functions of this form may naturally
arise, albeit much more rarely, such as in the metabolic investment model of
Parvinen et al. (2006).

The main purpose of this article is to present methods for analysing the
evolution of function-valued traits in a broader class of models than those
in which fitness is of form (1). We call this broader class of models process-
mediated models. In this more mechanistically-oriented class of models, the
function-valued strategy affects a process described by ordinary differential
equations

d

da
yi(a) = fi(a, y1(a), . . . , yn(a), smut(a), Eres), (2a)

with state variables yi(a) for i = 1, . . . , n. The invasion fitness of a mutant
in the environment Eres created by the resident population is then assumed
to be of the form

r(smut, Eres) =

∫ amax

amin

F (a, y1(a), . . . , yn(a), smut(a), Eres)da. (2b)

In contrast, we refer to the simpler models of form (1) as direct-effect models.
For process-mediated models, the task of finding singular strategies be-

comes a problem of optimal control theory. The theory of optimal con-
trol has been used in the context of function-valued traits in game theory
(Hamelin and Lewis, 2010), in quantitative genetics (Gomulkiewicz and Kirk-
patrick, 1992; Gomulkiewicz and Beder, 1996; Beder and Gomulkiewicz, 1998;
Jaffrézic and Pletcher, 2000; Kingsolver et al., 2001), and in life-history the-
ory (Perrin and Sibly, 1993; Gilchrist et al., 2006). The novel feature consid-
ered in this article is the extension of the methods of optimal control theory
to problems with environmental feedback, which is essential for tackling bi-
ologically realistic models.

Below we show that singular strategies in process-mediated models (2)
need to satisfy Pontryagin’s maximum principle (Pontryagin et al., 1962)
with environmental feedback (section 2.2). To facilitate future applications,
we present two worked-out examples by extending the seasonal flowering
model of Dieckmann et al. (2006). In the first process-mediated extension
(section 5), plants have a limited amount of resources that they can allocate
to flower production at different times of the season. We illustrate that also in
process-mediated models, a monomorphic singular function-valued strategy
can be invadable by mutants, which can result in its evolutionary branching
(Dieckmann et al., 2006). In the second process-mediated extension (sec-
tion 6), plants split their allocation of the incoming energy flow between the
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growth of leaves and flowers. Both examples have been chosen such that
the singular strategies can alternatively be found also based on the canoni-
cal equation: in this way, we can show how much more straightforward the
analysis becomes by using the theory of optimal control.

2 Theory for direct-effect and process-mediated

models

Following Metz et al. (1992), let r(smut, Eres) denote the invasion fitness of
a mutant, i.e., the exponential growth rate of a rare mutant with strategy
smut in the environment Eres created by the resident. Let S denote the set of
possible strategies, often called the strategy space. According to Dieckmann
et al. (2006), the following equation, referred to as the canonical equation of
function-valued adaptive dynamics, describes the rate d

dt
s of expected evolu-

tionary change in a function-valued strategy s ∈ S,

d

dt
s(a) =

1

2
µ(s)n̄(s)

∫

σ2(a′, a)G(a′)da′, (3)

where a is the argument of the function s, µ(s) is the mutation probabil-
ity of trait s, n̄(s) is the trait-dependent equilibrium population size of the
evolving population, σ2 is the variance-covariance function of the mutation
distribution, and G is the selection gradient

G(a) =
d

dǫ
r(s+ ǫδa)

∣
∣
ǫ=0

= lim
∆s→δa

[
d

dǫ
r(s+ ǫ∆s)

∣
∣
ǫ=0

]

. (4)

The second equality specifies that the differentiation with respect to ǫ is to
be done before the disturbance function ∆s is let to approach the Dirac delta
function δa, where δa(a

′) = δ(a′ − a).
Obviously, strategies for which the selection gradient vanishes, G(a) = 0

for all a, are equilibria of the canonical equation (3), and are called evolution-
arily singular strategies. More in general, evolutionarily singular strategies
are defined as strategies satisfying

d

dǫ
r(s+ ǫ∆s)

∣
∣
ǫ=0

= 0 (5)

for all ∆s for which s+ ǫ∆s ∈ S when |ǫ| is sufficiently small.
As mentioned above, model complexity determines how easy (or difficult)

calculating the selection gradient is. Next we discuss applicable methods for
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the evolutionary analysis of function-valued traits in two classes of models.
First, we review the methods for direct-effect models, for which the calcula-
tion of the selection gradient is relatively easy, and singular strategies can be
found using the calculus of variations; this summarizes the theory presented
in Parvinen et al. (2006). Second, we extend the methods to process-mediated
models, for which there is no general simplifying rule for calculating the se-
lection gradient. We show how, instead, the theory of optimal control can
be used to find singular strategies in such models.

2.1 Direct-effect models and the calculus of variations

Let us first consider models of function-valued traits s(a), with amin 6 a 6

amax, for which a mutant’s fitness can be written as an integral of form (1).
As shown by Parvinen et al. (2006, their equation 63), the selection gradient
G(a) for amin < a < amax in this case becomes

G(a) = Fs(a, s(a), s
′(a), Eres)−

d

da
Fs′(a, s(a), s

′(a), Eres), (6)

where the subscripts denote partial derivatives,

Fs(a, s(a), s
′(a), Eres) =

∂

∂s(a)
F (a, s(a), s′(a), Eres),

Fs′(a, s(a), s
′(a), Eres) =

∂

∂s′(a)
F (a, s(a), s′(a), Eres).

(7)

When there are no constraints on the strategy, and the strategy space
S is thus the set of all piecewise continuous functions s : [amin, amax] →
R, evolutionarily singular strategies are strategies s for which the selection
gradient vanishes, G(a) = 0. According to (6), this condition is given by
complementing the Euler’s equation of the calculus of variations with the
condition for ecological equilibrium under environmental feedback (Parvinen
et al., 2006),

{
d
da
Fs′(a, s(a), s

′(a), E) = Fs(a, s(a), s
′(a), E),

r(s, E) = 0.
(8)

See Parvinen et al. (2006) for a more detailed description of the use of the
calculus of variations for finding singular strategies. Here we just discuss the
selection gradient and conditions for singular strategies at boundaries amin

and amax, because these require special attention when F depends on the
derivative s′(a).

When F does not depend on the derivative s′(a), the selection gradient
(6) reduces to G(a) = Fs(a, s(a)) (Dieckmann et al., 2006, their equation 3c).
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This equality is valid for all relevant arguments a, amin 6 a 6 amax, including
the boundaries, which thus require no special treatment. However, as we
show in Appendix A, for a dependence of F on s′(a), the selection gradient
at the boundaries is infinite, unless Fs′ = 0 at amin and amax. Therefore,
the selection pressure at the boundaries is infinitely stronger than elsewhere,
keeping Fs′ = 0 at the boundaries at all times.

Considering the other components of the selection gradient derived by Dieck-
mann et al. (2006), the mutation probability µ(s) and the equilibrium popu-
lation size n̄(s) require no special treatment compared with the case without
the s′ dependence. It is also reasonable to assume that the derivative s′ has
no effect on the variance-covariance function σ2 of the mutation distribution.
We thus obtain the following result:

Proposition 1. If the fitness function is of form (1), the selection gra-

dient (4) for amin < a < amax can be written as (6). For the canonical

equation (3), we obtain the boundary condition Fs′ = 0 at amin and amax.

Proof. The derivation of equation (6) was already given by Parvinen et al.
(2006). In Appendix A we repeat this proof of the first part of Proposition 1
and then complement it by proving the second part of Proposition 1.

While earlier work had already shown that Fs′ = 0 at the boundaries has
to be satisfied for singular strategies, i.e., for potential evolutionary outcomes,
Proposition 1 makes it clear that it has to hold for evolutionary transients.

We study an example of this type of model in section 4, by extending the
seasonal flowering model of Dieckmann et al. (2006). In that model, flowers
opening at different times of the season experience different conditions, such
as different probabilities of setting seed. It is therefore natural to study the
flowering intensity as a function-valued trait, in which case fitness can be
expressed as an integral of form (1).

A more mechanistic approach results from assuming that a plant’s flow-
ering intensity is determined by various processes, such as the use of energy
reserves for flower production at different times of the season, the time-
dependent resource allocation between leaf growth and flower production,
and the loss of flowers due to dropping or pests. This requires studying a
more general class of models, which we consider next.

2.2 Process-mediated models and the theory of opti-
mal control

Let us now consider the class of models (2) described by state variables yi(a)
for i = 1, . . . , n and by a function-valued strategy s(a) with amin 6 a 6 amax.
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We assume that the functions yi(a) satisfy the following system of ordinary
differential equations,

d

da
yi(a) = fi(a, y1(a), . . . , yn(a), s(a), Eres), (9)

and that the invasion fitness of a mutant with strategy smut in the environ-
ment Eres created by the resident can be expressed as

r(smut, Eres) =

∫ amax

amin

F (a, y1(a), . . . , yn(a), smut(a), Eres)da. (10)

In order to determine the selection gradient, we need to calculate the
derivative of r(s + ǫ∆s, Eres) with respect to ǫ. Since the state variables
yi(a) depend on the strategy, and thus on ǫ, this derivative does not yield as
simple an expression as for the previous class of models. Sections 5.1 and 6.1
nevertheless show examples of the model-specific calculation of such selection
gradients. For determining selection gradients in process-mediated models,
no general method exists.

For process-mediated models, the task of finding evolutionarily stable
strategies (Maynard Smith, 1976, 1982), or more in general, evolutionarily
singular strategies, is closely related to problems of optimal control. As in
models of form (1), singular strategies cannot be found through the straight-
forward application of a standard optimization method because of the envi-
ronmental feedback. More specifically, the task is to find a strategy s which
creates the environment Eres such that s solves the problem of optimal con-
trol given by (9) and (10). In other words, such singular strategies need
to satisfy Pontryagin’s maximum principle (Theorem 2) with environmental
feedback, r(s, E) = 0.

For the sake of completeness, we repeat the corresponding theorem below.
While the original theorem was presented for a minimization problem, here
we have formulated it for a maximization problem, because evolutionarily
stable strategies are local maxima of invasion fitness. The proof in its full
form is rather lengthy; details can be found in Pontryagin et al. (1962) or in
textbooks on optimal control theory.

Theorem 2 (Pontryagin’s maximum principle). If s(a) is a piecewise smooth

optimal control function maximizing

r(s, E) = Ψ(y(amax), E) +

∫ amax

amin

F (a,y(a), s(a), E)da (11a)
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with y(t) = {y1(t), . . . , yn(t)} and

d

da
yi(a) = fi(a,y(a), s(a), E) for i = 1, . . . , n,

yi(amin) = y0,i for i = 1, . . . , n,

yi(amax) = ŷi for i ∈ N ⊂ {1, . . . , n},

(11b)

then there exists a nonzero vector λ(a), that satisfies the conditions

d

da
λi(a) = −Hyi for i = 1, . . . , n,

λi(amax) = Ψyi(y(amax), E) for i /∈ N,
(12)

where

H(a,y(a), s(a), λ(a), E)

= F (a,y(a), s(a), E) +

n∑

i=1

λi(a)fi(a,y(a), s(a), E)
(13)

is called the Hamiltonian function, which is maximized by s(a) H for each a,

H(a,y(a), s(a), λ(a), E)

= min
ŝ(a)

H(a,y(a), ŝ(a), λ(a), E) for all a ∈ [amin, amax].
(14)

Corollary A necessary condition for a strategy s to be evolutionarily sta-

ble is that it satisfies the conditions for a piecewise smooth optimal control

function maximizing (11) together with r(s, E) = 0.

For the special case n = 1 with y′1(a) = f1(a, y1(a), s(a)) = s(a) the
optimal control problem (11) can be solved by the calculus of variations. If
there are no constraints on the optimal control function s, the maximization
of the Hamiltonian means that

0 = Hs(a, y1(a), s(a), λ1(a)) = Fs(a) + λ1(a), (15)

and thus λ1(a) = −Fs(a). Substituting that into the differential equation for
λ1 yields

d

da
Fs(a) = Fy1(a), (16)

which recovers Euler’s equation. Therefore, for direct-effect models (1) with
unconstrained strategies, approaches alternatively based on the calculus of
variations or on the theory of optimal control (Theorem 2) are equivalent.

To explain and demonstrate the utility of optimal control theory for an-
alyzing the adaptive dynamics of function-valued traits is the main purpose
of this article. For illustration, we apply the resultant methods to extensions
of the seasonal flowering model by Dieckmann et al. (2006). The conclusion
of this section on theory is the following table of available methods:
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Table 1: Description of methods applicable to different model classes
Direct-effect models Process-mediated models

Fitness
r(s, E) =

∫ amax

amin

F (a, s(a), s′(a), E)da
∫ amax

amin

F (a,y(a), s(a), E)da
with state variables yi
satisfying d

da
yi(a) =

fi(a,y(a), s(a), E)
Method
for
finding
singular
strate-
gies

Calculus of variations Theory of optimal con-
trol

Selection
gradient
G(a)

Fs(a, s(a), s
′(a)) −

d
da
Fs′(a, s(a), s

′(a))
for amin < a < amax

Model-specific, using
equation (4)

3 The seasonal flowering model by Dieckmann

et al. (2006)

Before presenting examples of applying the methods outlined above, we sum-
marize the model upon which the examples are built. Following Dieckmann
et al. (2006), we study the evolution of seasonal flowering schedules in plants
that inhabit a temporally varying environment. Flowers opening at differ-
ent times of the season experience different ecological conditions. Let s(a)
describe the flowering intensity of a plant at time a, with a scaled so that
0 6 a 6 1. The flowering intensity is naturally represented as a function-
valued trait (Dieckmann et al., 2006; Parvinen et al., 2006). Evidently, all
flowering intensities are non-negative, s(a) > 0. Flowers produced at any
time during the flowering season compete for pollinators and herbivore-free
space. The effect of such competition is to decrease a plant’s probability

p

(
Ns(a)

K(a)

)

(17)

of setting seed, where N is the plant’s population size, and Ns(a) is thus
the total number of flowers open at time a. The time-dependent carrying
capacity K(a) describes seasonal factors affecting pollination success. The
function p is assumed to be decreasing from a maximum of 1: p(0) = 1 and
p′(x) 6 0 for all x > 0. In the specific examples below, we use the functions

p(x) = e−x (18)
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and
K(a) = 100

(
2 + sin

(
2π((a− 1)2 − 1/4)

))
. (19)

Plants having a larger flowering intensity than other plants attract more
pollinators. We assume that this asymmetric competition affects the proba-
bility of setting seed according to a factor g (δ), where δ = (smut − sres)/s

β
res

describes the difference of flowering intensities, measured in a way that ranges
from absolute (β = 0) to relative (β = 1). The function g is assumed to have
the properties g (0) = 1 and g′(0) = α/2 > 0. In the specific examples below,
we use the function

g (δ) =
2

1 + e−αδ
. (20)

The total production of seeds can now be calculated by integrating re-
productive success over the flowering season. Therefore, fitness is given by
an integral of form (1), where the environment Eres is determined by sres and
Nres,

r(smut, sres, Nres)

=

∫ 1

0

smut(a)

[

p

(
sres(a)Nres

K(a)

)

g

(
smut(a)− sres(a)

sres(a)β

) ]

da− d,
(21)

where d is the death rate of plants. The resident population size Nres can be
solved from the condition for ecological equilibrium,

r(sres, sres, Nres) = 0. (22)

The production of flowers according to a schedule s(a) requires resources.
Dieckmann et al. (2006) assumed that flowering schedules are for this reason
constrained by the inequality constraint

∫ 1

0

s(a)da 6 1. (23)

Dieckmann et al. (2006) used this model as an illustration of the use of
the canonical equation of function-valued traits, and in this manner were the
first to demonstrate that evolutionary branching can occur also in function-
valued traits. As they already noted, the model summarized above is rather
simplistic: this fact was reflected by the observation of evolutionary branch-
ing resulting in two coexisting strategies with completely separate flowering
seasons, which implies abrupt changes in their flowering schedules (Dieck-
mann et al., 2006, their Fig. 3). Actually, such unrealistically complete
temporal separation could become even more extreme, since the model al-
lows evolutionary branching to occur over and over again, until infinitely
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many strategies coexist whose flowering periods are infinitesimally short and
non-overlapping. In nature, such abrupt changes are unrealistic. For this
reason, we study in this article three extensions of the seasonal flowering
model of Dieckmann et al. (2006); these extensions are intended to add more
ecological realism to the model, and to serve as examples of the use of theory
presented in this article.

In the first extension (section 4), we add a cost of plasticity directly to the
fitness function (21). Fitness is thus expressed as an integral that depends
on the strategy s(a) and its derivative s′(a), which means that it remains
a direct-effect model of form (1). Parvinen et al. (2006) already showed
how to use the calculus of variations to find singular strategies in models
of this type. Here we illustrate how to use the canonical equation with
derivative dependence (section 2.1) to study transient adaptive dynamics
and evolutionary convergence to the previously identified singular strategy.

The second (section 5) and third (section 6) extensions result in process-
mediated models of form (2), for which the calculus of variations is no longer
applicable. In the resultant more mechanistic setups, the strategy s(a) de-
scribes how resources are used, and the actual flowering schedule y(a) is
obtained from a (system of) ordinary differential equation(s) affected by
s(a). These extensions are used to show how the theory of optimal con-
trol (section 2.2) can help to find singular strategies. For better comparison
of methodologies, we also calculate the selection gradient for both exam-
ples, even though this is rather tedious. While it is not feasible to solve the
equilibria of the canonical equation (3) analytically, the canonical-equation
dynamics can be calculated numerically.

4 First extension: adding a direct cost of plas-

ticity using the derivative

In general, mechanisms that accurately separate the flowering intensities be-
tween two nearby moments in time can be expected to be costly. Therefore,
in the first model extension, we assume that deviations of the derivative
s′mut(a) =

d
da
smut(a) from zero have a direct negative effect on fitness,

r(smut, sres, Nres) =

∫ 1

0

[

smut(a)p

(
sres(a)Nres

K(a)

)

g

(
smut(a)− sres(a)

sres(a)β

)

−κ(s′mut(a))
2
]
da− d,

(24)

where κ measures the strength of these plasticity costs.
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4.1 Selection gradient

By differentiating the integrand in equation (24), we obtain the derivatives

Fsmut
(a, smut(a), sres(a)) =

[

g

(
smut(a)− sres(a)

sres(a)β

)

+smut(a)g
′

(
smut(a)− sres(a)

sres(a)β

)
1

sres(a)β

]

p

(
Nsres(a)

K(a)

) (25)

and Fs′
mut

(s′mut(a)) = −2κs′mut(a), and thus the selection gradient (6),

G(a) = Fsmut
(a, smut(a), sres(a))−

d

da
Fs′

mut
(s′mut(a))

∣
∣
∣
∣
smut=sres=s

=
(

1 +
α

2
s(a)1−β

)

p

(
Ns(a)

K(a)

)

+ 2κs′′(a).

(26)

4.2 Singular strategies with calculus of variations

Because of the inequality constraints (23) and s(a) > 0, the Euler-Lagrange
equation for singular strategies obtained with the calculus of variations is
G(a) = C > 0 for s(a) > 0 and G(a) < C for s(a) = 0.

Note that the population size N in (26) depends on the strategy s. There-
fore, N and s(a) must be solved together from (22) and (26). For κ = 0, this
solution is found algebraically, but for κ > 0, it requires solving a second-
order differential equation. The necessary boundary conditions, resulting
from equation (21) of Parvinen et al. (2006) (see also Proposition 1), are
Fs′ = −2κs′ = 0 at either boundary, yielding s′(0) = 0 and s′(1) = 0.
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Figure 1: (a) Evolutionarily singular flowering strategies for different costs
of plasticity, κ = 0, 0.005, 0.01, 0.05, 0.1, 0.5. (b) Evolution of the flowering
strategy according to the canonical equation, from the initial strategy s(a) =
1 towards the singular strategy, for κ = 0.005. Other parameters: α = 1,
β = 0.9, and d = 0.5.

13



Figure 1a illustrates singular strategies for different values of the plas-
ticity cost κ. Other parameters are chosen as in Dieckmann et al. (2006);
therefore, the singular strategy for κ = 0 in figure 1a matches that in figure
3 of Dieckmann et al. (2006). For κ = 0, it is easy to show that any singular
strategy can be invaded by some mutants with extremely concentrated flow-
ering schedules, so such a singular strategy is not evolutionarily stable. For
κ > 0, the corresponding analysis is not straightforward, but our numerical
results suggest that when κ is large enough, the singular strategy turns into
a fitness maximum, and thus becomes evolutionarily stable.

4.3 Canonical-equation dynamics

We have already calculated the selection gradient (26) for the model (24). It
is needed for applying the canonical equation (3), which describes the rate
of expected evolutionary change in a function-valued strategy (Dieckmann
et al., 2006). The equilibrium population size N for strategy s is obtained
from (24) by requiring r(s, s, N) = 0. In addition, we need to specify the
mutation probability µ(s) and the variance-covariance function σ2 of the
mutation distribution. Here we have assumed that σ2(a′, a) = σ2[δ(a−a′)−1],
which means that an increase or decrease of s at a particular argument value
a is compensated uniformly across all other argument values, thus ensuring
that the trait normalization (23) stays intact. Note, however, that the choice
of the variance-covariance function can substantially affect the dynamics and
evolutionary equilibrium of the canonical equation (Heino et al., 2008, their
figure 5).

Figure 1b illustrates the dynamics of the canonical equation starting from
a uniform initial strategy s(a) = 1. As expected, the monomorphic strat-
egy approaches the singular strategy predicted by the calculus of variations
(figure 1a).

5 Second extension: process-mediated flower

production through gradual resource allo-

cation

In the previous section, we have assumed that the flowering-intensity sched-
ule at time a within the season is the evolving strategy. However, it is
more reasonable to assume that the flowering schedule is actually a result
of the time-dependent intensity s(t) > 0 according to which resources are
allocated to flower production, and that it is this allocation intensity that
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is the function-valued trait under natural selection. The flowering-intensity
schedule thus becomes a state variable, denoted by y(t), which is assumed to
satisfy the differential equation

d

dt
y(t) = h(s(t))− ξy(t), y(0) = 0, (27)

where the function h(s) is the functional response of flower production, and
ξ is the rate at which flowers die. Since available resources are necessarily
limited, we have the constraint

∫ 1

0

s(t)dt 6 Smax, (28)

but note that in practice plants should not leave available resources unused,
so this inequality constraint will be satisfied as an equality constraint instead.
Flower and seed dynamics are otherwise as in section 3, except that in this
second example the cost of plasticity is included in the function h, so it is
not necessary to include it in the fitness function as a dependence on y′(t).
Furthermore, an inequality constraint on the total amount of flowers, as
in (23), is not needed, because such a constraint follows from (28). We thus
assume that fitness is given by

r(smut, Eres) =

∫ 1

0

ymut(a)p

(
yres(a)Nres

K(a)

)

g

(
ymut(a)− yres(a)

yres(a)β

)

︸ ︷︷ ︸

F (a,ymut(a),yres(a))

da− d,

(29)
where the environment Eres created by the resident is characterized by the
resident population size Nres and the flowering intensity yres which solves
the differential equation (27) for the resident allocation strategy sres. Anal-
ogously, the flowering intensity ymut of the mutant solves the differential
equation (27) for the mutant allocation strategy smut.

5.1 Selection gradient

Since the fitness function (29) is not of form (1), equation (6) for the selection
gradient cannot be used. We thus need to employ equation (4) directly. Let
us first note that the solution of the differential equation (27) with s∗(t) =
s(t) + ǫ∆s(t) can be written as

y∗(t) = e−ξt

∫ t

0

eξτh(s∗(τ))dτ = e−ξt

∫ t

0

eξτh(s(τ) + ǫ∆s(τ))dτ. (30)
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Thus we obtain

d

dǫ
y∗(t)

∣
∣
∣
ǫ=0

= e−ξt

∫ t

0

eξτh′(s(τ))∆s(τ)dτ

→

{
0, if t < t̂

eξ(t̂−t)h′(s(t̂)), if t > t̂,

(31)

when ∆s tends to the Dirac delta function δt̂. This result can be used in the
calculation of the selection gradient,

G(a) = lim
∆s→δa

[
d

dǫ
r(s+ ǫ∆s, Eres)

∣
∣
ǫ=0

]

= lim
∆s→δa

∫ 1

0

Fymut
(t, ymut(t), yres(t))

d

dǫ
y∗(t)

∣
∣
∣
ǫ=0

dt

= h′(s(a))

∫ 1

a

Fymut
(t, ymut(t), yres(t))e

ξ(a−t)dt.

(32)

Without constraints set on the evolving strategy s, singular strategies are
strategies for which the selection gradient vanishes, G(a) = 0. In the present
model, increased allocation intensity will always increase flowering intensity,
and thus fitness. Therefore, G(a) > 0 for all a < 1. Since allocatable re-
sources are necessarily limited, we have the global inequality constraint (28),
which for singular strategies is fulfilled with an equality. In addition, we
have the constraint s(a) > 0, because allocation intensity is necessarily non-
negative. For a singular strategy, a fitness increase due to increased resource
usage at one time must be exactly compensated by a fitness decrease due to
decreased resource usage at other times. More precisely, for singular strate-
gies s, a mutant strategy s + ǫ∆s belongs to the strategy space S for small
|ǫ| only if

∫ amax

amin

∆s(t)dt = 0, and if ∆s(a) = 0 for such a for which s(a) = 0.
The definition (5) of singular strategies can only be fulfilled if the first-order
fitness increase for increased resource usage at time a, which is measured by
the selection gradient G(a), is the same (= C) for such a for which s(a) > 0.
For such a for which s(a) = 0, the fitness increase must be less than C.
Altogether, we obtain

G(a)− C

{
= 0, if s(a) > 0
< 0, if s(a) = 0,

(33)

where the constant C > 0 is determined such that the constraint (28) holds
with equality. See also section 2.3.2 of Parvinen et al. (2006).
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5.2 Singular strategies with theory of optimal control

The model (27-29) can be written in a standard format used in the theory
of optimal control (11),

d
dt
y1(t) = h(s(t))− ξy1(t), y1(0) = 0,

d
dt
y2(t) = s(t), y2(0) = 0,

(34)

with the condition y2(1) 6 Smax, so that (28) is satisfied. As explained before,
this condition will actually be satisfied with equality, y2(1) = Smax. Now the
Hamiltonian (13) is given by

H = F (t, y1(t)) + λ1 (h(s(t))− ξy1(t)) + λ2(t)s(t). (35)

Because the Hamiltonian does not depend on y2, the condition (12) for λ2 is

d

dt
λ2(t) = −Hy2 = 0, (36)

so λ2(t) does not depend on t, λ2(t) = λ2. Note that since the value of y2(1)
is fixed, the value of λ2(1) is free, and is set to satisfy y2(1) = Smax. For λ1,
we obtain from (12) the differential equation

d

dt
λ1(t) = −Hy1(t) = −Fy1(t) + λ1(t)ξ with λ1(1) = 0. (37)

Because Fy1 > 0, the solution of (37) satisfies λ1(t) > 0 for 0 6 t 6 1. In each
moment, s(t) is chosen such that the Hamiltonian is maximized. The only
terms in the Hamiltonian (35) that depend on s are λ1h(s(t)) and λ2s(t).
If λ2 > 0, the Hamiltonian is maximized by s(t) → ∞, but that solution
cannot satisfy the constraint y2(1) 6 Smax. Therefore, λ2 < 0, and possible
values for s(t) are

s(t) = 0, if λ1(t)h
′(0) + λ2 < 0 (38a)

s(t) > 0, such that λ1(t)h
′(s(t)) + λ2 = 0. (38b)

Especially, if the functional response h is strictly concave, (h′′(s) < 0), equa-
tion (38b) has no solution if (38a) holds, and a unique solution if (38a) does
not hold.

We thus obtain the singular strategy s(t) by solving the differential equa-
tions (34) and (37) together with (38) from t = 0 with two unknowns: λ1(0)
and λ2, which are used to satisfy the conditions y2(1) = Smax and λ1(1) = 0.
In addition, we have the condition r(s,N) = 0 for a population at ecological
equilibrium, and thus this is a problem of optimal control with environmental
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feedback. Another option is to start solving the differential equations from
t = 1 with initial conditions λ1(1) = 0 and y2(1) = Smax, and then to use the
unknowns λ2 and y1(1) to satisfy the conditions y1(0) = y2(0) = 0.

In our numerical explorations we obtained better accuracy using the sec-
ond alternative. For the numerical examples below, we use the same param-
eters as Dieckmann et al. (2006) and assume that the functional response of
flower production is of Holling type II,

h(s) =
s

1 + γs
. (39)

Therefore, the possible values for s(t) from condition (38) are







s(t) = 0, if 0 6 λ1(t) 6 −λ2

s(t) = 1
γ

(√

−λ1(t)
λ2

− 1

)

if λ1(t) > −λ2 > 0.
(40)

Figure 2a illustrates singular allocation intensities s(t) obtained with the op-
timal control method described above for different values of γ. Figure 2b
illustrates the resulting flowering schedules. For comparison, Figure 2c illus-
trates the selection gradient calculated from (32) for the singular strategy
obtained with optimal control theory; this shows that the condition (33)
is satisfied. Note, however, that the theory of optimal control only gives
necessary conditions for a strategy to be a fitness maximum, and thus unin-
vadable. Unlike in the calculus of variations, there is no general theory that
would provide sufficient conditions for fitness maxima. Furthermore, the the-
ory of optimal control cannot be used to study whether a singular strategy
is convergence stable or not. For this purpose, we need to investigate the
corresponding canonical-equation dynamics, which we therefore do next.

5.3 Canonical-equation dynamics

Figure 3 illustrates the canonical-equation dynamics (3) of the model (27-
29) starting from a uniform allocation schedule, s(a) = 2. As in our first
example, we again assume that σ2(a′, a) = σ2[δ(a − a′) − 1]. We observe
that the allocation schedule converges to the same singular strategy that was
obtained with the theory of optimal control, as illustrated in figure 2. Our
numerical investigations suggest that this singular strategy is uninvadable,
and thus an evolutionary endpoint.

Figure 4a-c illustrates monomorphic canonical-equation dynamics for an-
other set of parameter values. In this case, however, the monomorphic sin-
gular strategy is not uninvadable. In such a case, evolutionary branching
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Figure 2: Evolutionarily singular strategies in the model (27-29) obtained
with the theory of optimal control for different functional-response parame-
ters, γ = 0.05, 0.1, 0.2, and 0.4. (a) Allocation schedule s(t). (b) Resultant
flowering schedule y(t). (c) Selection gradient according to equation (32) for
γ = 0.1. Other parameters: α = 1, β = 0.9, ξ = 0.1, Smax = 2, and d = 0.5.

can occur. Figure 4d-e illustrates dimorphic canonical-dynamics towards an
evolutionarily singular coalition of two strategies, shown for greater clarity
in Figure 4f-g, with the corresponding two selection gradients illustrated in
Figure 4h. While the two resource allocation schedules are strictly segre-
gated in time, the resulting flowering schedules show considerable overlap.
Furthermore, the dimorphic flowering schedules we obtain for this extended
model are much smoother than those in the original model of Dieckmann
et al. (2006).

6 Third extension: process-mediated flower

production through gradual and differen-

tial resource allocation

As another example of a process-mediated model formulation, we study the
third extension of the flowering model by Dieckmann et al. (2006). As in the
second extension, the function-valued trait affects a process of flower growth,
but this time the trait is about resource allocation between leaf growth and
flower production.

Let x(t) denote the density of leafs in a plant and y(t) the density of
flowers (flowering intensity). The leaf density at the beginning of season is
x0. Assume that there is incoming energy (from the sunlight) with intensity
E(t), and the plant uses its leafs to collect that energy. The plant allocates
the proportion s(t) > 0 to flower production and 1− s(t) > 0 to leaf growth.
There is a functional response in both duties described by the functions f
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Figure 3: Canonical-equation dynamics of the model (27-29), starting from
a uniform allocation schedule, s(a) = 2. (a) Allocation schedule s(t). (b)
Resultant flowering schedule y(t). (c) Selection gradient according to equa-
tion (32). The strategy converges towards the same singular strategy as
shown in Figure 2. Other parameters: α = 1, β = 0.9, γ = 0.2, ξ = 0.1,
Smax = 2, and d = 0.5.

and h, respectively. The nonlinearity described by the function h occurs at
the (global) plant level, while the nonlinearity described by the function f
occurs at the (local) level of leave tissue. The latter assumption is made
also because of technical reasons. Furthermore, leafs decay with the rate ω
and flowers with the rate ξ. As a result, we obtain the system of differential
equations

dx(t)

da
= x(t)f (E(t)(1− s(t)))− ωx(t) x(0) = x0

dy(t)

dt
= h (E(t)s(t)x(t))− ξy(t) y(0) = 0.

(41)

Otherwise the model is as described before, and thus fitness is given by
the equation (29), which is of the process-mediated form (10).

6.1 Selection gradient

As in the second extension, the fitness function is not of form (1). Therefore
the formula (6) for the selection gradient cannot be used and equation (4)
needs to be used directly. For this purpose note that the differential equation
for the leaf density x(t, s) in the system of differential equations (41) is linear
with respect to x(t, s) and does not depend on y(t, s). Therefore the solution
is

x(t, s) = x0 exp

(∫ t

0

f (E(τ)(1− s(τ)))− ωdτ

)

. (42)
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Using the notation Q(t, s) = h (E(t)s(t)x(t)), we can write the solution for
flowering intensity y(t, s) as

y(t, s) = e−ξt

∫ t

0

Q(τ, s)eξτdτ. (43)

From equation (42) we obtain

x∗(t, s,∆s) =
d

dǫ
x(t, s+ ǫ∆s)

∣
∣
∣
ǫ=0

= x(t, s)

∫ t

0

f ′ (E(τ)(1 − s(τ))) (−E(τ)∆s(τ)) dτ
(44)

and the limit when ∆s(τ) tends to the Dirac delta function δt̂ is

lim
∆s→δt̂

x∗(t, s,∆s) =

{
0 when t < t̂,
−x(t, s)E(t̂)f ′

(
E(t̂)(1− s(t̂))

)
when t > t̂.

(45)

From (43) we obtain the derivative

y∗(t, s,∆s) =
d

dǫ
y(t, s+ ǫ∆s)

∣
∣
∣
ǫ=0

=

e−ξt

∫ t

0

h′ (E(τ)s(τ)x(τ, s))E(τ) (∆s(τ)x(τ, s) + s(τ)x∗(τ, s,∆s)) eξτdτ

(46)

We also need the limit for y∗(t, s,∆s), when ∆s(τ) tends to the Dirac delta
function δt̂. Since changing the resource use with ǫδt̂ can only affect flowering
intensities at time t̂ and after, we have lim∆s→δt̂

y∗(t, s,∆s) = 0 when t < t̂.

For t > t̂ we have

ŷ(t, s, t̂) = lim
∆s→δt̂

y∗(t, s,∆s) = e−ξtE(t̂)
[

h′
(
E(t̂)s(t̂)x(t̂, s)

)
x(t̂, s)eξt̂

−f ′(E(t̂)(1− s(t̂)))

∫ t

t̂

h′ (E(τ)s(τ)x(τ, s))E(τ)s(τ)x(τ, s)eξτdτ

]

.
(47)

Finally, the selection gradient is

G(a) = lim
∆s→δa

[
d

dǫ
r(s+ ǫ∆s)

∣
∣
ǫ=0

]

=

∫ 1

a

Fymut
(t)ŷ(t, s, a)dt. (48)

The selection gradient is thus obtained with double integration, which
is tedious, but can be done numerically for any known strategy. Therefore
calculating the canonical-equation dynamics and waiting until it converges
can be used to find singular strategies numerically. However, to solve singular
strategies directly from equation (48) is out of our scope. Instead, it is
relatively easy to use the theory of optimal control for that purpose.
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6.2 Singular strategies with theory of optimal control

Like the second extension, the third model formulation (41) can be written
in a standard format of theory of optimal control (11) in the following way:

dy1(t)

dt
= y1(t)f (E(t)(1− s(t)))− ωy1(t), y1(0) = x0,

dy2(t)

dt
= h (E(t)s(t)y1(t))− ξy2(t), y2(0) = 0.

(49)

Now the Hamiltonian (13) is

H =F (t, y2) + λ1(t)
dy1(t)

dt
+ λ2(t)

dy2(t)

dt
=y2(t)p

∗(t)g∗ (y2(t), t) + λ1(t) [y1(t)f (E(t)(1− s(t)))− ωy1(t)]

+ λ2(t) [h (E(t)s(t)y1(t))− ξy2(t)] ,

(50)

where p∗(t) = p
(

yres(t)Nres

K(t)

)

and g∗ (y2(t), t) = g
(

y2(t)−yres(t)
yres(t)β

)

. The condi-

tions (12) for λ1 and λ2 are

d

dt
λ1(t) = −Hy1 =− λ1(t) [f (E(t)(1− s(t)))− ω]

− λ2(t)h
′ (E(t)s(t)y1(t))E(t)s(t)

(51)

and

d

dt
λ2(t) = −Hy2 = −p∗(t)

[

g∗ (y2(t), t) + y2(t)
∂

∂y2(t)
g∗ (y2(t), t)

]

+ λ2(t)ξ

(52)
with λ1(1) = λ2(1) = 0.

We thus obtain the singular strategy s(t) by solving the differential equa-
tions (49), (51) and (52) and choosing s(t) such that it maximizes the Hamil-
tonian (50) at each point. In addition we have the population size condition
r(s,N) = 0, and thus this is a problem of optimal control with environmen-
tal feedback. We can either start from t = 0 with two unknowns: λ1(0) and
λ2(0), which are used to get conditions λ1(1) = λ2(1) = 0 satisfied. Another
option is to start solving the differential equations from t = 1 with initial
conditions λ1(1) = λ2(1) = 0, and use the unknowns y1(1) and y2(1) to get
the conditions y1(0) = x0 and y2(0) = 0 satisfied.

Figure 5a illustrates singular resource allocation strategies s(t) obtained
with the optimal control method described above for different values of x0.
Figure 5b illustrates the resulting leaf intensity and Figure 5c the flowering
schedules. For comparison purposes, Figure 5d illustrates the selection gra-
dients calculated from (48) with the singular strategy obtained with optimal
control theory.
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6.3 Canonical-equation dynamics

Figure 6 illustrates the canonical-equation dynamics (3) in the model (41)
starting from a uniform resource use strategy s(a) = 0.75. This time we have
assumed that σ2(a′, a) = σ2δ(a− a′), which means that increase or decrease
of s at a particular argument value has no effect on other argument values.
We observe that the strategy of the evolving population approaches the same
singular strategy that was obtained with the theory of optimal control and
illustrated in figure 5 for x0 = 0.05.

7 Conclusions

In this article we have further developed the theory of adaptive dynamics
of function-valued traits. Previously, we had shown how the calculus of
variations can be used to find singular strategies in direct-effect models, in
which the invasion fitness can be written as an integral, in which the integrand
for each argument value is a function of the strategy value at that point only
(Parvinen et al., 2006). Here we have broadened our methods of analysis to
tackle process-mediated models, a rather general class of models that includes
direct-effect models as a subset. In particular, we have described how to
use optimal control theory to find singular strategies in process-mediated
models, in which the function-valued strategy affects a process described by
differential equations, and fitness can be expressed as an integral, with the
integrand depending both on the strategy and process variables. Our results
show that singular strategies of such models need to satisfy Pontryagin’s
maximum principle with environmental feedback.

Although the class of process-mediated models is wide, not all models
of interest are of such form. For example, the metapopulation model in
Section 7 of Parvinen et al. (2006) is an example of a direct-effect model
in which invasion fitness is a function of several integrals. Although Euler’s
equation of the calculus of variations cannot be used directly to analyze that
model, Parvinen et al. (2006) have shown how to adapt the derivation of
Euler’s equation to find singular strategies in that model. This approach
is applicable also for solving other direct-effect models in which invasion
fitness is a function of several integrals. Analogously, it is straightforward to
construct process-mediated models in which invasion fitness is a function of
several integrals. For such models, Pontryagin’s maximum principle cannot
be used directly, but one may be able to adapt its derivation.

The expansion of the theory of adaptive dynamics of function-valued
traits developed here is not only mathematically interesting, but also al-
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lows us to investigate biologically more realistic models. We hope this work
will further stimulate the application of function-valued traits in theoretical
evolutionary ecology. For example, here we have shown how function-valued
traits can be used to study evolution of flowering schedules. Our model in
Section 5 shows that in presence of asymmetric competition, temporal segre-
gation in flowering schedules can evolve. Known as staggered flowering, this
phenomenon is known in tropical plant communities and could be a mecha-
nism for reproductive isolation between closely related species (Snow, 1965;
Stiles, 1977). We plan to explore staggered flowering in a forthcoming paper.

A Proof of proposition 1

Proof. When the fitness function is of form (1), differentiation results in (See
also Equation 10 of Parvinen et al. (2006))

d

dǫ
r(s+ ǫ∆s)

∣
∣
ǫ=0

=

∫ amax

amin

d

dǫ
F (a, s(a) + ǫ∆s, s′(a) + ǫ∆s′)da

∣
∣
ǫ=0

=

∫ amax

amin

Fs(a, s(a), s
′(a))∆s+ Fs′(a, s(a), s

′(a))∆s′da.

(53)

Integration by parts yields

d

dǫ
r(s+ ǫ∆s)

∣
∣
ǫ=0

=

∫ amax

amin

[

Fs(a, s(a), s
′(a))−

d

da
Fs′(a, s(a), s

′(a))

]

∆s da

+ Fs′(amax, s(amax), s
′(amax))∆s(amax)

− Fs′(amin, s(amin), s
′(amin))∆s(amin).

(54)

For ∆s → δa with amin < a < amax, both ∆s(amin) → 0 and ∆s(amax) → 0,
and the integral tends to the value of the integrand at a, which gives

G(a) = Fs(a, s(a), s
′(a))−

d

da
Fs′(a, s(a), s

′(a)) for amin < a < amax. (55)

However, for ∆s → δa with a = amin, ∆s(amin) → ∞; the corresponding
limit for a = amax is also infinite. Therefore, unless Fs′ = 0 at a boundary, the
selection pressure at that boundary is an order of magnitude stronger than
elsewhere, forcing Fs′ to become zero practically immediately compared to
the speed of evolution elsewhere, from which the result follows.

Acknowledgements: K.P. wishes to thank the Academy of Finland for
financial support (grant number 128323). M.H. acknowledges support from

24



the Bergen Research Foundation U.D. gratefully acknowledges financial sup-
port by the European Science Foundation, the Austrian Science Fund, the
Austrian Ministry of Science and Research, and the Vienna Science and Tech-
nology Fund, as well as by the European Commission, through the Marie
Curie Research Training Network FishACE and the Specific Targeted Re-
search Project FinE.

References

Beder, J. H. and R. Gomulkiewicz (1998). Computing the selection gradi-
ent and evolutionary response of an infinite-dimensional trait. J. Math.

Biol. 36, 299–319.
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Figure 4: Monomorphic and dimorphic canonical-equation dynamics of the
model (27-29), starting from a uniform allocation schedule, s(a) = 1. (a-c)
Convergence towards a monomorphic evolutionarily singular strategy that is
not evolutionarily stable. (d-e) Dimorphic convergence, after evolutionary
branching, towards an evolutionarily singular coalition. (f-g) Members of
this coalition. (h) Corresponding selection gradients. Parameters: α = 1,
β = 0.9, γ = 0.2, ξ = 10.51, Smax = 1, d = 0.05.
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Figure 5: Evolutionarily singular strategies in the model (41) obtained with
the theory of optimal control for different values of initial leaf intensity
x0 = 0.05, 0.1, 0.15, and 0.2. (a) resource allocation strategy, s(t). (b-c)
Resultant leaf intensity, x(t), and flowering intensity, y(t). (d) Selection gra-
dient according to equation (48). As expected, the selection gradient is 0 for
0 < s(t) < 1 and positive for s(t) = 1. Parameters: α = 1, β = 0.5, ω = 0.1,
ξ = 0.1, d = 0.2, f(z) = h(z) = z/(1 + 0.5x), and E(t) = 10.
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Figure 6: Canonical-equation dynamics of the model (41) starting from the
uniform strategy s(a) = 0.75. (a) Resource allocation strategy s(t). (b-
c) Resultant leaf intensity, x(t) and flowering intensity, y(t). (d) Selection
gradient according to equation (48). The strategy converges towards the
same singular strategy as shown in Figure 5. Parameters as in Figure 5 with
x0 = 0.05.
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