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Abstract

Land fragmentation is a widespread problem and schemes for consolidating

land are required to improve agricultural efficiency. This paper explains the

development of a module called LandParcelS (Land Parcelling System) that is

part of an integrated planning and decision support system called LACONISS

which is being developed to assist land consolidation planning in Cyprus.

LandParcelS is the component of the system that automates the land

partitioning process by optimising land parcels in terms of shape, size and

value. The methodology employs a genetic algorithm and results are presented

when treating the partitioning task as either a single or multi-objective problem.
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LandParcelS: A Module for Optimum Land

Partitioning

1 Introduction

Land consolidation planning is required when there is inefficient use of land for

agricultural purposes because of fragmented land ownership. This paper

explains the development of the module called LandParcelS (Land Parcelling

System), part of an integrated planning and decision support system called

LACONISS which is being developed to assist land consolidation planning. The

purpose of the system and its theoretical framework are explained in Demetriou

et al. (2012). LACONISS involves a suite of subsystems including a module to

measure land fragmentation (LandFragmentS), a module to design and

evaluate alternative land redistributions (LandSpaCES) and a module to

generate a set of new parcels (LandParcelS) that represent the best land

partitioning solution based on the optimum distribution of parcel centroids

produced by LandSpaCES. The first two modules are explained in detail in

Demetriou et al. (2010; 2011a; 2011b). This paper explains the structure of the

land partitioning module and exemplifies its use with case study blocks of land

from a land consolidation area in Cyprus.

The structure of the paper is as follows. Section 2 sets out the land partitioning

problem as it is carried out in practice and discusses existing related studies.

Thereafter, section 3 focuses on modelling the land partitioning process as a

single and multi-objective optimisation problem. Section 4 deals with the design

and the operation of a genetic algorithm in terms of its representation and the

definition of genetic operators. Section 5 presents the module toolbar that

operationalises the model in a GIS environment and section 6 reports an

application of the model using two blocks of land in the case study area that

treats land partitioning as either a single or a multi-objective problem. The

performance of the algorithm is tested based on various combinations of

optimisation parameters.
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2 Land partitioning

2.1 The conventional process

The first step in the preparation of a land reallocation plan involves the

subdivision of the consolidated area into blocks of land, where each land block

is enclosed by roads and/or streams, canals or the external boundary of the

study area. Then a process of land relocation is carried out, which involves two

sub-processes, land redistribution and land partitioning, although in practice this

is treated as a unified procedure. Land redistribution, the reallocation of

properties, has been already automated through the Design and Evaluation

LandSpaCES modules as elaborated in Demetriou et al. (2010). Land

partitioning receives the outputs of the land redistribution exercise as inputs and

involves the design of the subdivision of land into smaller ‘sub-spaces’, i.e. land

parcels. This is conventionally a trial-and-error process on a block by block

basis that relies on legislation, the existing land structure, empirical design

criteria, physical and technical constraints and rules of thumb.

In particular, legislation provides the following constraints: the minimum area of

a new parcel should be: 2 donums (0.27 ha) for permanently or seasonally

irrigated land, plants and vines; 4 donums (0.54 ha) for land which is able to be

seasonally irrigated; and 10 donums (1.34 ha) for dry and unplanted land.

These minimum size figures can be reduced by half with the approval of the

Head of the Land Consolidation Department (LCD). In addition, the legislation

states that all the new parcels must be readily accessible via a rural road.

Furthermore, existing boundaries especially if they are physical objects such as

a stream, a river, a high stone wall, a series of trees or a wild plantation should

be taken into account if possible. Other technical constraints are the existence

of buildings (e.g. a farmstead) or other kinds of construction (e.g. fencing).

Moreover, parcel shape criteria based on heuristics, i.e. the generation of

parcels with regular shapes as discussed by Demetriou et al. (2011b), are set

out as well.

The process is currently carried out by two land consolidation planners normally

using a CAD system and/or GIS. Given the set of constraints outlined above,



the planners try to design the new parcels based on a predefined total value of

land for each owner. The land value of each parcel may vary in order to reach

the overall value of land given to each owner. Thus, for each land block,

planners attempt to create a predefined number of parcels (as a result of a

preliminary study), each with as regular a shape as possible, approximating a

desired land value (because the latter is the basic land reallocation criterion

according to legislation) and size, subject to the limitation that the latter exceeds

the minimum limits as noted earlier and that a parcel should have access via a

road.

The land value of a parcel is calculated by overlaying a layer of parcel shapes

with the land valuation thematic map that consists of various categories. As a

result, a parcel may be divided into sub-areas since it might overlap with more

than one category; hence the total land value of a parcel is computed by

multiplying the size of each sub-area with the corresponding land value of each

category and then summing these. Parcel shape, size and land value are

interrelated variables which may conflict. An example of such a subdivision that

has been carried out by land consolidation experts for land blocks with IDs B25

and B14 for the case study area is described in Demetriou et al. (2010) and

illustrated in Figure 1. Both land blocks will be utilised later for applying

LandParcelS. The number within each parcel represents the parcel ID.
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The conventional process described above suggests that, in computational

terms, land partitioning is a design and optimisation problem (Tourino et al.,

2003) that focuses on how to optimally divide the space enclosed by a land

block, given a set of points representing the centroids of new parcels so that the

final parcels have as regular a shape as possible with a predefined size and

land value. These centroids and their associated main characteristics such as

size and land value are the basic output of the Design module of LandSpaCES.

In addition, the Evaluation module of LandSpaCES identified the best

alternative distribution of centroids based on seven evaluation criteria as

demonstrated in the case study in section 8. An example of the output from this

best alternative for the above two land blocks is shown in Figure 2 where both

land blocks are enclosed by roads. Note that in one case in each block, a

centroid has two parcel IDs, namely, 45/15 and 160/189 in blocks B25 and B14,

respectively. This means that two co-landowners have been granted a separate

parcel in approximately the same location. In practice, these parcels need to be

adjacent to one another.
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predefined size and land value. Deb (2001) distinguishes hard and soft

constraints. Whilst a hard constraint cannot be violated without making the

solution infeasible, a soft constraint permits a range of variation within which a

solution is feasible or alternatively, a maximum variation can be specified. Thus,

road accessibility is a hard constraint whereas the size and land value of each

parcel are soft constraints with an acceptable maximum variation employed in

practice of ±10%. In addition, there are secondary but also important practical

constraints such as: existing boundaries (e.g. a stone wall or an ecological line),

buildings (a house, a farmstead) and other constructions (e.g. a fence, a well).

As the primary constraints are the most important, they are the only ones

involved in this version of the model.

2.2 Related work

There is very little literature on studies of land partitioning. Two studies by Buis

and Vingerhoeds (1996) and by Tourino et al. (2003) both employed artificial

intelligence techniques with GIS. In particular, Buis and Vingerhoeds (1996)

used knowledge-based systems (KBS or ES) and GIS for the design of a new

parcel layout in land consolidation projects, based on the principle that land

partitioning “is largely a hand crafted process, involving a balanced approach of

optimization, handling constraints and experience” (Buis and Vingerhoeds,

1996, p.308). The search for an optimal solution is obtained using a control

strategy of steering the search process in a promising direction using heuristics

and rules of thumb. It is a hierarchical generate-and-test process, in which

solutions are incrementally constructed and tested to ensure each constraint

holds so it is basically a kind of hill-climbing method. An advantage of this

approach is that, further to agricultural efficiency issues (i.e. the shape and size

of the parcels), ecological considerations are strongly taken into account. The

basic limitations of this method are that it is semi-automated and also does not

frame the problem as an optimization search process; hence, an optimum (or

near optimum) solution cannot be obtained. Another system limitation is that the

GIS and KBS are separate systems joined by loose coupling hence their

communication is not efficient. In addition, this approach does not provide

evaluation metrics regarding the performance of the algorithm in terms of

finding the optimal solution or the computational time.
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Tourino et al. (2003) built a complex GIS-based tool to support several of the

tasks involved in land consolidation. The most sophisticated module is that

which handles land partitioning and which has been automated by combining a

region-growing algorithm and a simulated annealing optimization routine. An

iterative seed-growing method is used to generate an initial distribution of the

tessellated area among the domains (parcels). The area is divided into ‘stands’

(called land blocks in this research) and each stand is divided into square cells

(pixels). Region-growing uses a heuristic flooding process, based on a linear

objective function. It is a heuristic function comprised of six terms where each

term is a constraint to guide the growth of the parcels. The planner may guide

the process by weighting the importance of each term via a coefficient. The

algorithm works separately for each stand, trying to obtain the most feasible set

of parcels possible (in terms of shape). Region-growing may generate many

alternative parcel partitions by changing the weights. Simulated annealing is

then used to generate the new parcels (in terms of shape without changing their

location) by minimising a non-linear objective function which is comprised of two

terms; one to represent the objective to obtain parcels with regular shapes and

the other as a constraint to maintain the score for each landowner (meaning the

land value in this research).

The reason for trying to obtain the initial parcel shapes using the region-growing

algorithm is that simulated annealing depends strongly on the starting solution.

This is a disadvantage of this method as well as other classical optimization

methods because the search for an optimum solution relies on one initial

solution which iteratively may converge to an optimum or near optimum

solution. As a result, even though simulated annealing is robust, fast and

capable for solving large combinatorial problems, it does not guarantee the

global optimum solution (Datta et al., 2006). In addition, simulated annealing is

not capable of providing a set of trade-off solutions in just one simulation run as

in the case of MODM problems with conflicting objectives (which genetic

algorithms can do). Another limitation of the system is that it does not take all

the factors of the process into account, such as barriers (e.g. buildings,

irrigation channels, wells) and pictorial elements (e.g. contour map, slope map).
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System evaluation showed that the results were strongly influenced by the

shape of the stand and the size of the original parcels. In addition, authors note

that the final output was very different from that which experts would have

produced.

The authors suggest that new optimization techniques should be considered

and that the objective functions need to be improved. The research presented

here follows on from these suggestions but genetic algorithms have been used

to optimise the fit. Genetic algorithms use a population of solutions while

searching for the optimum, instead of a single initial solution. Similar to Buis and

Vingerhoeds (1996), Tourino et al. (2003) do not provide adequate evidence of

evaluation regarding the performance of the algorithm in terms of finding the

optimal solution and the computational time. In addition, the algorithm was

applied to only one small block of five parcels.

3 Single and multi-objective land partitioning

3.1 Single-objective land partitioning

Based on the previous considerations, land partitioning can be modelled as a

single objective minimisation problem subject to a set of constraints:





N

i i

i

Pperimeter

Parea

1
2 )(

)(
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1
min (1)

where N is the total number of parcels per land block and i represents one

parcel. Equation 1, which has been employed by Tourino et al. (2003), is an

area-perimeter ratio which results in a value for rectangular shapes with a

length-breadth ratio 4:1. However, this formula, which in essence represents the

compactness of shape, presents significant weaknesses for evaluating the

shape of land parcels. Thus, a new index called the PSI (parcel shape index)

has been developed (Demetriou et al., 2011b) which outperforms other indices

because it takes into account six parameters instead of two, namely: length of

sides, acute angles, reflex angles, boundary points, compactness and regularity

and, in addition, it considers the desired shape of parcels. The PSI takes values



of between 0 and 1 representing the worst and optimum parcel shape,

respectively. Therefore, the above objective can be restated using the PSI as

follows:
14

(2)

Ideally, the above function equals zero if all parcels of a block have the optimum

shape, which is a rectangule with a breadth: length ratio 2:1.

If the aim is to generate parcels with regular shapes independently of their size

and land value, then the above objective function can be used and the task

could be completed using a single objective function optimisation and therefore

a single optimum solution would exist. The definitions of an optimum or regular

shape for a land consolidation plan and specification of the relevant PSI values

have been discussed elsewhere (Demetriou et al., 2011b). A shape is regular or

near regular if it has a PSI of 0.7 to 0.9 and optimum or near optimum if the PSI

is more than 0.9. Therefore, for optimisation purposes, any parcel with a PSI of

more than 0.7 will be considered as acceptable with a gradual increase in terms

of quality from near regular to optimum, meaning a PSI from 0.7 to 1.0. Thus, a

kind of scaling is applied to PSI values that fall within this range. Namely, the

term (1-PSI) is divided by 10, thereby favouring parcel shapes with PSI values

between 0.7 and 1.0 and penalising parcel shapes with a PSI less than 0.7.

The following seven constraints relate to parcel: size, land value, length of

frontage side, number of corners, linearity of boundary sides, how close to

perpendicular are the frontage border lines to a road and cell adjacency in the

case of a raster representation. As noted earlier, the PSI depends on six

parameters; three represent corresponding constraints, namely, length of

frontage side, number of corners, and how perpendicular the frontage border

lines are to a road. In other words, the violation of these constraints is inherently

penalised by the calculation of the PSI. Thus, no further consideration is

required for these constraints since they are inherently included in the objective

function. In addition, the constraint regarding the linearity of boundary sides is

݉ ݅݊ ෍ 1 − ܲ ௜ܫܵ

ே

௜ୀଵ



always fulfilled inherently by the Thiessen polygons method for the creation of

parcel shape. Furthermore, the cell continuity constraint is not relevant because

creation of Thiessen polygons is a vector-based process.

Based on the above analysis, three constraints must be taken into account in

the optimisation process: size, land value and the accessibility of a parcel from

a road. As noted, the first two are soft constraints and the latter is hard.

However, these constraints are manageable in the context of optimisation only if

a mechanism for generating feasible solutions is available, that is, solutions

which do not violate any constraint. In such cases, the optimisation process only

needs to find the optimum or near optimum solution in terms of parcel shape.

Unfortunately, this is not the case and the problem is more complicated since

the generation of parcels with a predefined size and/or land value is part of the

problem. As a result, both parameters must be incorporated into the

optimisation process. In other words, the two soft constraints can be treated as

objective functions (Deb, 2001); hence land partitioning is converted from a

single to a multi-objective optimisation problem as outlined in the next section.

3.2 Multi-objective land partitioning

Land partitioning can be formulated as a multi-objective problem with three

objective functions representing shape, size and land value as follows:

s

w

a

th

0

e

(3)

ubject to the following constraint:
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(4)

here dArea and dValue are the percentage differences between the desired

nd designed size and land value of a parcel, respectively and w1, w2, w3 are

e weights for each objective function that sum up to 1. The function R equals

or 1 when a parcel has access to a road or not, respectively. This is an

quality constraint, that is, a hard constraint which, if not fulfilled, renders the

෍ ܴ௜

ே

௜
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solution infeasible. This constraint can be used as a penalty function that equals

the number of parcels without accessibility in a land block and it can be added

to the overall fitness function. The use of a penalty function in order to penalise

solutions that violate one or more objectives is a popular constraint handling

strategy although it may distort the objective function and hence lead to a sub-

optimal solution (Deb, 2001).

Based on the above, an overall fitness function can be generated by combining

the above two equations that compose four functions: F1, F2, F3 and R. Ideally

the sum of the fitness will equal zero if all the parcels included in a land block

have an optimum shape (F1) with the desired size (F2), land value (F3) and

access from a road (R):

(5)

In contrast to single-objective optimisation that involves a unique optimum

solution, multi-objective problems with conflicting objectives involve a different

optimum solution for each objective. In addition, there is not a single optimum

solution which simultaneously optimises all objectives. As a result, the outcome

is a set of solutions that are all optimal in varying degrees of trade off between

the objectives. Graphically, these optimal solutions lie on a curve called the

Pareto-optimal front. In particular, if all objective functions are to be minimised,

this front lies close to the bottom-left corner of the search space. In principle, in

multi-objective problems, there exists at least one solution in the Pareto-optimal

set which will be better than any other non-Pareto optimal solution (Deb, 2001).

Therefore, the task in multi-objective optimisation is to find the Pareto-optimal

solutions which are also called non-dominated solutions because none of these

solutions is the best with respect to all objectives unless the importance of each

objective can be defined. Thus, in the case where there is a confidence

regarding the weights of objective functions, there is no reason to find other

trade-off solutions (Deb, 2001) and the multi-objective problem can then be

converted to a single-objective solution by utilising an appropriate vector of

ܨ ݐ݅݊ =ݏݏ݁ ൭෍ (1 − ܲ (௜ܫܵ ∗ ଵݓ + ෍ ݎ݁ܣ݀| |ܽ௜∗ ଶݓ + ෍ |ܸ݈݀ܽ ݑ |݁௜∗ ଷݓ
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weights for objective functions. This requirement of multi-objective optimisation

which focuses on finding multiple optimal solutions in one single simulation run

is what makes genetic algorithms a unique method for this purpose. This is the

principal difference between genetic algorithms and classical or other stochastic

search optimisation algorithms that use a point-by-point approach where one

solution in each iteration is modified to a different, and hopefully better, single

optimised solution. In contrast, genetic algorithms use a population of solutions

in each iteration. It should also be noted that if the objectives of an optimisation

problem are not conflicting independent of the number of objectives, then there

is a single optimum solution and all members of the population are expected to

converge to that optimum solution.

4 Genetic algorithms

Genetic algorithms have the potential to solve the land partitioning problem as

described in this section of the paper.

4.1 Representation

Use Vector or raster structure?

The land partitioning problem can be represented using both available GIS data

structures, namely, raster and vector, although the latter is the normal structure

used to represent the problem in CAD systems. Thus, a critical question

regarding representation of the problem is whether to employ a raster or a

vector data structure. A raster representation was initially adopted as discussed

but this effort was abandoned early on in the research because the process of

crossover (which is the fundamental GA operator) between two raster solutions

presented significant weaknesses when executed on a pixel by pixel basis as

explained below.

Firstly, it was inherently very time consuming and, in addition, extra time was

needed for the calculation of the various parameters involved in the fitness

function (the six factors of the PSI noted earlier and the land value of a parcel)

which required the conversion from raster to vector because of the limitation of
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the former structure. Secondly, the crossover operator was tested, and resulted

in completely infeasible solutions at times in terms of the number of parcels

generated. This is because parcels with the same ID in the crossed solutions

may have not any common pixel so these parcel(s) were not included in the

child solution. Thirdly, crossover resulted in parcels with non-linear boundary

sides and thus an additional constraint would have been a necessary addition to

the process. Moreover, many parcels have numerous boundary edges with

completely irregular shapes so the consequence was that much more time was

required for optimisation. Fourthly, the accuracy of a vector representation is

much higher than the raster (centimetres vs metres). Finally, the vector format

is fundamentally the representation utilised in CAD systems where the actual

task of land partitioning is currently carried out.

The only advantage of using a raster representation for the particular problem is

that it would be easier to reach the desired size and land value of a parcel

because it provides a detailed cell based representation of space in contrast to

a vector structure that does not divide space into cells. Thus, taking into

account the above considerations, it was decided that a vector based structure

would be utilised for representing the land partitioning problem.

The evolutionary structure

The conventional process of land partitioning is carried out on a block by block

basis until the whole plan is completed. The optimisation process follows the

same rationale, suggesting that optimisation is carried out separately on a block

by block basis, because no reallocation changes between blocks are permitted

at this stage, since the relevant decisions have been already taken in

LandSpaCES. In addition, the complexity of the problem and the computational

time are significantly reduced. Thus, the land block is the basic unit on which

evolution is undertaken.

In particular, in evolutionary terms, a land block represents an individual (or

organism) which is evolved during the optimisation process. A land block is

divided into parcels representing chromosomes. A chromosome encodes the

characteristics that define an individual such as: shape, size, land value,



accessibility to a road. In addition, shape is further represented through the PSI

by the six aforementioned features. Each chromosome has a core gene,

namely, a centroid which is defined by its X,Y coordinates. A set of individuals

compose a population. Summarising the above, the genetic algorithm has the

following hierarchical vector-based structure: population-individuals-

chromosomes-genes; representing respectively: a set of subdivision solutions

for a land block; one subdivision solution for a land block; land parcels; and

centroids of parcels. A graphical representation of this structure is illustrated in

Figure 3. The attribute table of an individual including all the relevant

parameters is illustrated in Figure 4.

Figure 3

Figure 4

A chromosome (a parcel

A gene (the X,Y coordinates of a centroid)
19

: A graphical representation of the GA structure

: The attribute table of an individual

with ID 182)

An individual (a subdivision of

the land block)
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The genetic process

The genetic process is illustrated by the following sequence:

Create initial population

Evaluate initial population

Do

• select individuals for mating

• create offspring by crossover with a probability Pc

• mutate selected individuals with a probability Pm

• evaluate new individuals

• terminate process if a certain criterion is satisfied

• keep a percentage e of individuals from previous population for mating

Loop

End of the process

Initially, a random population of individuals is created and evaluated using all

the terms or a combination of terms in equation 5. Then an iterative process

begins whereby an iteration is called a generation. In particular, a selection

method is employed to fill the mating pool with the same number of individuals

as found in the initial population based on their fitness value. Afterwards, new

individuals (offspring) are created by applying the genetic operators to parent

individuals. In particular, crossover combines the genetic code of two randomly

selected parent individuals from the mating pool. Then, changes are introduced

into the genetic code of an individual by mutation. Eventually, new offspring are

evaluated using the fitness measure, and if the termination criterion is met, then

the iterative process ends (exits loop) and hopefully the best solution is

returned. Otherwise, a new population is created by keeping a percentage (e%)

of best individuals from the previous population to be put directly into the new

mating pool and selecting from the rest of the individuals (using the employed

selection method) to complete the mating pool with the equal number of

individuals as the initial population. The basic steps of the process are

discussed further below.
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4.2 Generation of a random population

This initialisation operation is used to generate a random population consisting

of a defined number of individuals. As noted by Deb (2001), the size of the

population is a critical point in GAs in terms of the success of the algorithm for

finding the global optimum and not a sub-optimal solution. The size of the

population depends on the complexity of the problem concerned. This

initialisation operator is based on a well-known GIS mechanism for sub-dividing

space into smaller sub-spaces based on a given set of points called Thiessen

polygons or Voronoi diagrams/network. This paper uses the former term. The

use of the Thiessen polygon method is based on the fact that the input in land

partitioning is the output of LandSpaCES which, as shown in Figure 2, is a set

of points for each block representing the approximate centroid of each new

parcel accompanied by a set of attributes.

Creating Thiessen polygons is a method for dividing the 2-D Euclidean space

into a number of regions equal to the number of points provided (Figure 3).

Thiessen polygons have the unique property that each polygon contains only

one input point, and any location within a polygon is closer to its associated

point than to the point of any other polygon (Chrisman, 2002). The concept of

Thiessen polygons has been widely applied for space partitioning problems in a

variety of disciplines (Dong, 2008) and it has gained a lot of attention for

modelling spatial related problems (Gong et al., 2011). In ArcGIS (with an

ArcInfo license), Thiessen polygons can be generated either in a vector form

using the Create Thiessen Polygons geoprocessing tool or in a raster form

using the Euclidean Allocation tool in the Spatial Analyst Extension. In the

former case, all points are represented as a triangulated irregular network (TIN)

that meets the Delaunay criterion (Chrisman, 2002). Then, the perpendicular

bisectors for each triangle edge are generated, forming the edges of the

Thiessen polygons. The locations at which the bisectors intersect determine the

locations of the Thiessen polygon vertices. In the latter case, every cell in the

Euclidean allocation output raster is assigned the value of the source to which it

is closest, as determined by the Euclidean distance algorithm.
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Although Thiessen polygons provide a ready to use tool for space partitioning,

the only criterion used for this purpose is the nearest-neighbour rule between

points, without taking into account any associated value, e.g. any attributes of

the points. Dong (2008) and Gong et al. (2011) have constructed algorithms for

the generation of weighted Thiessen polygons based on an attribute of the

points using a raster and a vector based structure, respectively. Although both

methods have drawbacks, a wider range of spatial situations can be modelled

compared to those using ordinary Thiessen polygons. However, both methods

are not appropriate for land partitioning, e.g. by employing parcel size or the

land value as weights, because the constructed shapes tend to be cyclical and

not regular. As a result, ordinary Thiessen polygons are utilised for randomly

generating alternative sub-divisions of a land block. The aim to steer Thiessen

polygons towards the creation of parcels with regular shapes and a predefined

size and/or land value with access to roads is left to the genetic algorithm.

The random generation of different subdivisions is based on the simple logic

that: if the initial layout of centroids within a land block provided by

LandSpaCES is randomly moved to new locations, then a new solution can be

created and so on. This random movement (ܴ௠ ) of centroids can be any

distance in a 0.5m step, in any direction and may reach a ݔܴܽ݉ ௠ which is

calculated as the square root of the desired size (Ai) of the associated parcel

with the centroid concerned, multiplying by a constant (c) which is capable of

varying (increasing or decreasing) the searching distance of the algorithm as

shown in equation 6.

ݔܴܽ݉ ௠ = ඥܿܣ௜ (6)

This figure is based on the assumption that, in the case of a square shaped

parcel which is very close to the optimum parcel shape, the maximum

movement equals the length of the side of the square. As a result, the

movement is limited to a circle with radius ݔܴܽ݉*2 ௠ .
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The reason for defining this maximum distance of movement is to limit the

region in which a new parcel is created so as to be as close as possible to the

original centroid while on the other hand not limiting the diversity of the

population because this prevents the convergence of the algorithm to a global

optimum solution. Thus, the constant c largely determines the diversity of the

initial population and the search performance during the evolution of the

algorithm. Another critical issue related to the ݔܴܽ݉ ௠ is to check if a new

location of a centroid falls outside the land block concerned; in such a case a

new random location is provided until the new point is located within the block.

Another issue is that some centroids provided by LandSpaCES are in a

common location because the original parcels in that location are owned by two

or more co-owners (Figure 2). In practice, these owners are usually allocated

new parcels in the neighbourhood. Thus, before beginning the creation of the

polygons, these common centroids should be separated. This task is done

randomly using the ݔܴܽ݉ ௠ distance with a small constant c.

Another problem tackled was how to represent the residual area of a block that

has not been allocated to any landowner. This ’unallocated area‘, which is

allocated later before completing the final plan or may be allocated by the LCD,

should be represented as a parcel; hence the creation of an extra centroid for

each block was needed. Common sense says that this unallocated parcel area

should be located in the least dense part of the block. In other words, the new

centroid should be the point that has the longest distances from all existing

centroids.

For this purpose the Euclidean Distance tool of Spatial Analyst was employed,

which provides an output raster that contains the measured distance from every

cell to the nearest source, that is, the existing centroids. The distances are

measured as the crow flies (Euclidean distance) in the projection units of the

raster, such as feet or metres and are computed from cell centre to cell centre.

Then the cell with the largest value (having the furthest distance) is the one that

will be searched for and its coordinates are used to create the new centroid. An

example for land block B14 is illustrated in Figure 5 in which the centroid with ID
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1000 is the new point having the farthest distance from all of the other points.

Cells with the longest distances are represented by a deep brown colour. The

algorithm reads this maximum distance and identifies the X,Y coordinates of the

relevant cell in order to create a new centroid in this location.

Figure 5: The outcome of the Euclidean Distance tool to identify the furthest

point (with ID 1000) from existing centroids for land block B14

Once the common centroids are separated, the new centroid representing the

unallocated part of the block is created and the initialisation algorithm randomly

moves the initial location of the centroids, for a number of times defined by the

user, to create a random population, including different subdivisions of the block

using Thiessen polygons. This is the starting solution of the model from which

the GA begins its search. An example showing six different random solutions for

land block B25 is illustrated in Figure 6. The first three solutions are feasible

whilst the other three are not. In addition to the initial operator utilised for the

generation of a random population, the following five evolutionary operators are

involved in the process: fitness function, selection-mating, crossover, mutation

and an elite preserving operator which is discussed in the sequent section.



25

Figure 6: A set of six random individuals for land block B25 picked up from a

population

4.3 Genetic operators

Fitness function

The fitness function is applied at two levels: focal and zonal operators referring

to the parcel (chromosome) and block (individual) levels respectively. When the

initial population is created, a fitness function is used to measure the quality of

each individual with respect to the model objectives. All model objectives are

set out in the fitness function shown in equation 5. However, the fitness function

may vary depending on the number of terms (objective functions) included in it,

defining land partitioning as a single or multi-objective problem. Thus, taking

into account the land consolidation practice, three different multi-objective

optimisation schemes can be defined for investigation: shape and size; shape



26

and land value; and shape, size and land value. Initially the fitness of each

chromosome (parcel) is calculated and then the overall fitness of the individual

is simply the average fitness of all chromosomes that comprise that individual.

The way this is undertaken is analogous to focal and zonal statistics in ArcGIS.

A focal operator is a measure over the sub-space of a zone centred over a focal

point while the zonal operator is a metric of the whole zone.

Selection-mating

A selection operator selects which individuals will be involved in the

reproduction process. The main aim of this operator is to make multiple copies

of good solutions based on their fitness score and to eliminate bad solutions

from a new population, while keeping the population size stable. A number of

methods exist for doing this such as tournament selection, proportionate

selection, roulette wheel selection and ranking selection (Deb, 2001). Goldberg

and Deb (1991) showed that tournament selection outperforms or is at least

equivalent both in terms of the convergence and computational time compared

to any other selection method that exists in the literature. Therefore, tournament

selection was chosen for this evolutionary model as used in other similar spatial

problems (Delahaye, 2001; Krzanowski and Raper, 2001; Van Dijk, et al., 2002;

Bacao et al., 2005; Datta, et al., 2006).

In tournament selection, two solutions are randomly selected from the current

population and the best between the two is placed in the mating pool. Then, two

other solutions are selected (excluding those already selected) and the best one

fills the mating pool. The process is carried out systematically so that each

solution participates in two tournaments and hence the best solutions always

win in both rounds. Two copies of these solutions are then transferred to the

mating pool. In contrast, the worst solutions will lose in both rounds and will thus

not participate in the mating pool while bad solutions may have only one copy in

the mating pool. With this iterative process and combined with the fact that the

crossover operator has many possibilities to produce a better solution than its

parents, an improved population in terms of fitness is gradually created from

generation to generation, until a convergence of the algorithm to the global

optimum solution will be achieved.
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Crossover

Crossover is the process of the mating of two individuals (parents) by

exchanging or combining genetic material (genes) to create a new individual (an

offspring). In particular, this model’s crossover involves the combination of

genes (X,Y coordinates of a centroid) between two corresponding

chromosomes (land parcels) that belong in two parents. Whilst the most popular

GA encoding is the binary string system (0 and 1), the genes of this GA are

represented by real numbers, i.e. X,Y coordinates, and thus a real parameter

crossover encoding is utilised. This is the most common encoding utilised in

complex problems (Renner and Ekart, 2003; Datta, et al., 2006) when objective

functions include real valued parameters because it avoids extra processing

associated with decoding the consequents, involving the so called ‘Hamming

cliff problem’ (Krzanowski and Raper, 2001).

As noted earlier, initially a raster based, cell by cell crossover was tried but it did

not work properly. Then a crossover was used that was based on the average

X,Y coordinates of two parents which was also used by Krzanowski and Raper

(2001). This crossover led to the premature convergence of the algorithm in a

sub-optimal solution because the diversity of the population quickly reduced

towards the mean centre of the centroids of the initial population. This is due to

the fact that the crossover search performance is low since it is limited to the

coordinates of the line that connects the centroids of the two parents. Thus, the

exploitation (selecting best solutions) and exploration (find better solutions)

performance of a GA, which is represented by the selection and crossover

operator respectively, are critical to the success of the algorithm.

After examining a plethora of real-parameter operators found in the literature

and presented in Gwiazda (2006) as well as the relevant suggestions noted by

Deb (2001), the BLX-a crossover operator introduced by Eshelman and

Schaffer (1993) was utilised in the model. An advantage of this operator is that

it may search outside the line that connects the centroid of the two parent

solutions. It also has the property that the location of the offspring depends on

the difference between the parent solutions. Thus, this operator follows an

adaptive search strategy which involves searching the entire space early on



while also maintaining a focused search when the population tends to

convergence in some region of the search space (Deb, 2001). As a result, this

operator enhances the diversity of a population which is reduced by the

selection operator to avoid premature convergence. It is called the Blend

Crossover operator and the way it works for the X coordinate is shown in Figure

7. Similarly, it can be applied for the Y coordinate.
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the searching power of the algorithm and maintains the diversity of the

population (Van Dijk et al., 2002).

Mutation

Mutation, which is rare in nature, involves a random change to the genetic

material (to the gene) of an individual. Although fitness may be worse than

before mutation, the process is necessary to maintain diversity in the population

and avoid premature convergence to local optima. In the case of binary coding,

it involves the random flipping of a selected gene (e.g. from 1 to 0 or vice versa)

in a chromosome. Similarly, in our case, it involves a random change or

displacement of a gene (X, Y coordinates) of a chromosome (a parcel) of an

individual (land block) in a new location. It can be applied at two levels: parcel

based or in just one chromosome of an individual which is randomly selected, or

block based where all the chromosomes of an individual are randomly selected

and subject to the mutation operator.

Krzanowski and Raper (2001) defined a ‘small’ and a ‘big’ mutation affecting an

individual and the whole population, respectively. The reason for utilising parcel

based and block based mutation is that the former type of mutation only affects

the fitness of an individual slightly, especially when an individual consists of

many chromosomes. This is due to the fact the fitness of an individual is the

average fitness of all the chromosomes that belong to it; hence, even in a

positive change to the fitness of one chromosome, the expected overall change

will be small. This remark is aligned with the finding of Krzanowski and Raper

(2001) that the mutation operator (both ‘small’ and ‘big’) has no effect in the

evolution process for solving spatial problems, which has also been confirmed

by further studies (Krzanowski, 1997).

As for crossover operators, after examining a plethora of real-parameter

mutation operators found in the literature and presented in Gwiazda (2007), a

random mutation scheme was used for parcel based and block based levels

involving a random displacement in any direction of the current centroid(s)

location of a parcel or all parcels, respectively. The maximum displacement

bound of the centroids set at ݔܴܽ݉ ௠ (equation 6). A similar mutation operator
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has been applied in Delahaye (2001) for airspace sectoring. No reference is

made for the effects of this operator in the evolution process. When a mutation

probability ௠ܲ of 0.05 is used, two individuals from a population of 40 are

subject to the mutation operator.

Elite - preserving operator

A way of speeding up the convergence of a GA is by utilising an elite preserving

operator that enhances the possibilities for creating better offspring. Such an

operator favours the best or elite members of a population, which are

automatically transferred into the next generation. Although it has been proved

that an elitist operator is important in the success of a GA (Rudolph, 1996), it is

not clear as to what degree the operator should be used. In its simplest form

application is determined by a percentage (e) of members of the current

population. However, attention should be paid to defining e% because if it is too

small, then the influence of elite members will not have a positive effect on the

next population. If it is too large, the population may lose its diversity and

premature convergence is then possible. Deb (2001) suggests trial and error to

define e% for a given problem although a commonly used value is 10%. Thus,

some initial runs to monitor the improvement in the mean fitness may assist in

determining an appropriate e%.

Termination criterion

A termination criterion was not used when applying the GA as the goal was to

find the best performance balanced by allowing the GA to run for a reasonable

amount of computational time.

5 Module toolbar

The LandParcelS module is operationalised as a toolbar (Figure 8) consisting of

four icons: ‘Optimisation parameters’; ‘Generate Population’; ‘GA Run’; and

‘Outputs’. Each icon launches a separate window with one or more

functionalities. Icons appear on the toolbar in the order in which they must be

executed. The functionality of each icon is described below.
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Figure 8: The toolbar of LandParcelS

The first icon launches the window shown in Figure 9. If only one input

parameter is to be optimised, then the weights are not required. If more than

one parameter is selected, then weights need to be entered that sum to 1. The

penalty function is an added term in the fitness function that penalizes infeasible

solutions.

Figure 9: The ‘Optimisation parameters’ window

Once the optimisation parameters have been defined, the initial step in the

evolutionary process is the generation of a random population of solutions by

defining which land block will be partitioned and the size of the population, using

the relevant icon that launches the window as shown in Figure 10.
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Figure 10: The ‘Generate random population’ window

The GA is then run by defining the number of generations and the elitist factor

as explained earlier in the window illustrated in Figure 11, which is launched by

the ‘GA Run’ icon.

Figure 11: The ‘Run the genetic algorithm’ window
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The Outputs icon launches the window illustrated in Figure 12, which displays

two database tables: the OFitness table (Figure 13) and the GFitness table

(Figure 14). Both tables contain useful information regarding the evolution of the

process for each generation. In particular, the OFitness table presents

evolutionary statistics for each generation including minimum, maximum and

mean values for each objective function (F1, F2 and F3) and the minimum and

mean overall fitness. The GFitness table lists the mean value of the objectives

functions F1, F2 and F3 and the overall fitness for each solution for the current

generation. The graphical outputs consisting of the block subdivision design can

be seen by utilising simple functions within the GIS environment. Eventually, the

user may store all outputs in a separate folder using e.g. ArcCatalog and delete

the solutions by selecting the relevant buttons in the ‘Outputs’ window.

Figure 12: The ‘Outputs’ window
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Figure 13: The OFitness table

Figure 14: The GFitness table
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6 Application of the model

For the application of the model, we selected two typical land blocks (they are

surrounded by roads and they have quite regular shapes) of the case study land

consolidation area presented in Demetriou et al. (2010), reflecting a different

complexity of land partitioning. Problem complexity is defined by three main

factors: the number of parcels that need to be created, the size of the search

space and the shape of the block. In particular, block B25 was selected, which

involves six parcels and its size equals about 3 ha, and block B14, which

involves 10 parcels with a size of around 5 ha. The tests that follow reveal the

behaviour of the algorithm for solving these problems for different optimisation

cases in the context of both single and multi-objective approaches.

6.1 Single-objective land partitioning

Shape optimisation for land block B25

When partitioning is carried out by utilising the Thiessen polygons tool without

any optimisation process, the result is shown in Figure 15a. This solution and

similarly for land block B14 is referred to as the initial subdivision where the

parcel shapes are defined according to the principles of Thiessen polygons. As

a result, parcel shape depends entirely upon the layout of the centroids and is

therefore neither necessarily regular nor optimum. The relevant metrics for the

three objective functions are the following: F1 (0.264), F2 (0.634), F3 (0.621)

and R (0).

On the other hand, if land partitioning is treated as a single optimisation problem

aimed at generating parcels with regular shapes, then the best subdivision is

illustrated in Figure 15b. Further to the considerable visual improvement of

parcel shape, the overall fitness outcome is very close to zero (0.073), which

represents an improvement of 72.4% compared to that of the initial subdivision.

In particular, all parcels have a PSI greater than 0.7 with the exception of parcel

with ID 15 which has a slightly lower PSI, namely, 0.673. As the external shape

of the land block is not involved in the optimisation process, it cannot change,

and therefore the parcel shapes limit the amount of regularity achievable.
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Furthermore, in order to undertake a more in-depth investigation of the

behaviour of the algorithm and the effects of its main operators in the

evolutionary process, the program ran for six different sets of parameters as

follows:

Case I: no elitist, block based mutation, no penalty function

Case II: e=10%, no mutation, no penalty function

Case III: e=10%, block based mutation, no penalty function

Case IV: e=10%, parcel based mutation, no penalty function

Case V: e=10-40%, block based mutation, with penalty function

Case VI: e=40%, parcel based mutation, no penalty function

For all cases, the population size is set to 40. The population takes 10 minutes

to be created and consists of 1/3 feasible and 2/3 infeasible solutions. It should

be noted that before defining the size of the initial population to 40, some trials

with a smaller population size, e.g. 20, and larger size, e.g. 60 and 80, were

carried out. The former is too small and hence the algorithm cannot converge

whilst the latter increased the computational time too much. Therefore, the

population size was set to 40 for all optimisation cases presented here. It is

worthwhile mentioning that a similar population (with 50 members) has been

used by Datta et al. (2006) for a similar spatial problem (land use management).

In addition, Krzanowski and Raper (2001) suggest a population size of 40 to 80

for spatial problems.

A detailed representation of the behaviour of the GA for the cases I to V is

illustrated in Figures 16-20, respectively, showing four evolutionary statistics,

namely, minimum, maximum, mean values of F1 and the overall fitness for each

generation. The latter is involved only when the penalty function is added to the

fitness measure. Otherwise the overall fitness equals the mean F1.
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Figure 16: The evolutionary statistics for case I

Figure 17: The evolutionary statistics for case II

Figure 18: The evolutionary statistics for case III
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Figure 19: The evolutionary statistics for case IV

Figure 20: The evolutionary statistics for case V
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that solution) and remains stable for several generations. Then the search

moves out of this local optimum through the crossover operator and quickly

reaches the optimum feasible solution. In the other three cases (I, IV and V) the

smallest minF1 value rises later, (in the 21st, 20th and 86th generations

respectively) while this is not observed in case II where no mutation is applied.

As expected, in such a single-objective problem, all members of the population

converge to one optimum solution and the minF1, meanF1 and fitness level off

(Figure 18) after 18 generations. In addition, it is notable that case I, which

involves the same parameters as those of case III except for the use of the

elitist operator, took a longer time to converge than the latter (in the 55th

generation which lasted 14.67 hours). This finding highlights the importance of

the elitist operator for speeding up the process, in this example by 9.87 hours.

However, the elitist operator should be introduced very carefully because if it is

high (e.g. in case IV), it may lead to premature convergence in a non-optimum

solution since the diversity of the population is lost. Furthermore, it is worthwhile

mentioning that case II, which involves a block based mutation, converged

faster by nine generations compared with case III, which involved a parcel

based mutation. However, it was ranked as having the second fastest

convergence (in 27 generations which lasted 7.2 hours). Despite this, it seems

that the block based mutation converges faster; however, this finding is not

repeated in the second example involving block B14. Moreover, it is notable that

convergence can be also achieved even without mutation but in a much longer

time as shown in case II (in 42 generations that took 11.2 hours). This happens,

because the BLX-a crossover operator is powerful in maintaining the diversity of

the population without the involvement of a mutation operator, although the time

is significantly increased.

Another noticeable outcome is that when the penalty function was included in

the fitness, the convergence of the algorithm was considerably extended, (in

102 generations that lasted 27.2 hours), achieving the maximum computational

time (hence the worst case) for this test. This is due to the fact that a penalty

function distorts the fitness measure through penalising non-feasible solutions

by adding a number to the overall fitness. As a result, the overall fitness and the



other metrics as well present continuous fluctuations of varying degrees (Figure

20) until all solutions become feasible and eventually converge to the optimum.

Therefore, penalty functions need to be treated carefully in terms of the value(s)

of the constraint violation(s) so as to steer the search towards the feasible

region (Deb, 2001) and should be used only if it is really necessary. For

example, in this situation the penalty function was not necessary because the

algorithm was able to lead the search into the feasible region without it.

Shape optimisation for land block B14

The initial subdivision for land block B14 without optimisation is shown in Figure

21a. The relevant metrics for the three objective functions are the following: F1

(0.221), F2 (0.957) and F3 (0.610) and R=1 meaning that the solution is not

feasible since the parcel with ID 159 has no access from a road.
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middle of the block. In particular, the algorithm presents a weakness to do that

so the joins of parcels are not identical. This limitation suggests again that the

process utilised for generating polygons through Thiessen polygons needs

additional guidance. Despite this limitation, it is clear again that the algorithm is

able to reach a near optimum solution for even a more complex land partitioning

problem. In this case, the convergence achieved is better than that for block

B25 and reached very close to the absolute optimum, because in contrast to

block B25, the boundary of block B14 is almost rectangular.

For a more in-depth investigation of the performance of the algorithm, the model

ran for the following five cases representing different sets of parameters:

Case I: e=10-40%; block based mutation, no penalty function

Case II: e=10-40%; no mutation, with penalty function

Case III: e=10-40%; parcel based mutation, with penalty function

Case IV: e=10-40%; block based mutation, with penalty function

Case V: no elitist, block based mutation, with penalty function

Initially, the algorithm ran (case I) without the penalty function as we did with

block B25 but a feasible solution could not be created even after 50

generations. Thus, the penalty function was introduced in the fitness measure

with F1 for the next three cases. In addition, taking into account the previous

experience gained from the behaviour of the algorithm for case V that includes

a penalty function, a varying elitist factor from 10 to 40% was included, to speed

up the process as much as possible whilst avoiding premature convergence.

Therefore, in cases I to IV, the elitist factor begins with a value of 10% and

gradually increases to 20%, 30% and 40% when the number of feasible

solutions exceeds a certain percentage. For instance, when the number of

feasible solutions in a population of 40 members exceeds 20%, e.g. 8 out of 40

solutions are feasible, then the elitist factor is set to 20% and so on. This trick

was also necessary because the initial random population had only a few

feasible solutions, and hence a strategy to preserve feasible solutions in the

next generations was necessary.
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A detailed representation of the behaviour of the GA for cases II, III, IV and V is

illustrated in Figures 22-25 respectively. The initial population (40 random

solutions), which took 23 minutes to be created, consisted of only a few feasible

solutions (3-6) out of 40 and as a result, the initial mean fitness score is very

high for all cases (around 2.5). The best outcome obtained in case III occurred

after 42 generations (12.0 hours) although the other two cases (case II and

case IV) converged shortly afterwards with 43 (12.3 hours) and 46 (13.2 hours)

generations, respectively. This finding is sharply in contrast to the previous

example for block B25, which showed that block based mutation considerably

speeded up the process compared with that involving parcel based mutation or

even more with no mutation at all.

Thus, this case agrees with the findings of Krzanowski and Raper (2001) that

the mutation operator has no effect on the evolutionary search in spatial

problems. However, it is not possible to apply this statement to all spatial

problems and there may be situations where the mutation operator has a

considerable influence on the evolutionary process depending on the particular

features of a problem and the other optimisation parameters set out. In addition,

the mutation operator is always useful for maintaining the diversity of a

population from generation to generation, especially if the crossover used does

not have this ability.

In terms of the evolutionary statistics, all of the cases shown in Figures 22-25

present a very similar picture regarding the minimum, maximum and mean

values of F1. In particular, they remain stable across the whole evolution with

very small fluctuations until the last few generations before their convergence to

the optimum solution. This is in contrast with what happened in cases with

similar parameters for land block B25, where in many cases they present

significant fluctuations. It seems that this phenomenon is due to the shape of

the land block B14 which is almost rectangular, hence not favouring

considerably worse or better solutions.

Another interesting finding is that without the use of an elitist operator,

convergence was achieved after 62 generations (17.77 hours), whilst after the
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introduction of a varying elitist factor, the evolutionary process was speeded up

by 32.3%, again indicating the importance of this operator.

The computational time needed to achieve the convergence (12.0 hours and

4.8 hours in the two examples) is very high compared to the time a human

expert could design near optimum subdivisions in terms of parcel shape. The

reason is that the human brain can easily perceive a rectangular shape from an

irregular shape or symmetrical shapes (Delahaye, 2001) but for a computer, this

remains a difficult problem. This happens for many complex problems related to

spatial planning or engineering design because the evaluation of the fitness

function is time consuming (Renner and Ekart, 2003, Stewart et al., 2004). For

example, in a land use management multi-objective problem (Datta et al.,

2006), the algorithm needed 5000 generations and took 3.82 days to converge.

In addition, the simulated annealing algorithm of Tourino et al. (2003) needed

10,000 stages (time is not noted) for solving a land partitioning with a block

involving five parcels. The computational time could be considerably reduced by

employing parallel computing that permits the parallel evaluation of individuals

and the other computations so as to solve large and difficult problems in a

reasonable time (Renner and Ekart, 2003).

Figure 22: The evolutionary statistics for case II

0.000

0.500

1.000

1.500

2.000

2.500

3.000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

F

i

t

n

e

s

s

Generation number

minF1

maxF1

meanF1

Fitness



45

Figure 23: The evolutionary statistics for case III

Figure 24: The evolutionary statistics for case IV

Figure 25: The evolutionary statistics for case V
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6.2 Multi-objective land partitioning

As already noted, in a multi-objective problem with conflicting objectives there is

not a single optimum solution. Instead, there are a number of optimal solutions

that lie on a curve called the Pareto-optimal front. None of these solutions is the

best in all the objectives involved and thus the planner may decide which

solution is best only if he/she defines the importance of each objective. We

treated the land partitioning problem based on three optimisation cases: shape

and size (F1 and F2); shape and land value (F1 and F3) and shape, size and

land value (F1, F2 and F3). These cases have been applied to blocks B25 (the

best outcomes shown in Figure 26) and B14 (the best outcomes shown in

Figure 27). The Pareto-optimal front for each case is presented in Figures 28-

32. These include the solution with the minimum overall fitness (final population)

and a few other selected populations having a fitness value close to the

minimum.
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lowest F2 value; this is marked with a triangle and falls on the Pareto-optimal

front, which is marked as a dashed line (Figure 28). All the other solutions

belong in the non-Pareto-optimal set. The best solution resulted in F1 of 0.181,

F2 of 0.094 and overall fitness of 0.112 meaning that: F1 has been improved by

31.44% and F2 by 85.17% compared to the initial subdivision. Furthermore, the

parcel shape (F1) and size (F2) are on average only 18.1% and 9.4% from the

optimum, respectively. These are very encouraging results because the PSI is

on average 0.819 and the variation of parcel size is within the acceptable range

in practice (±10%) suggesting that if a guidance operator was utilised to create

the parcels, then the Pareto-optimal front will be shifted even closer to the origin

point of the two axes, hence to the optimum solution.

In the case of block B14, the results are slightly worse compared to those of

block B25 because of the higher complexity of the former block. In particular,

the best solution (Figure 27a) is shown again with a triangle (Figure 29) that

falls at the bottom of the Pareto-optimal front and has an overall fitness of

0.298, F1 of 0.089 and F2 of 0.35. This represents an improvement of 59.73%

and 63.43% in F1 and F2 respectively, compared with the initial subdivision. It

can be also said that parcel shape (F1) and size (F2) are on average far from

the optimum by 8.9% and 35.0%, respectively. The latter outcome regarding the

size of the parcels exceeds the desirable variation noted above emphasising

the need for improving the performance of the algorithm for more complex land

partitioning problems.

Figure 28: A set of solutions and the Pareto-optimal front for land block B25
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Figure 29: A set of solutions and the Pareto-optimal front for land block B14

Minimise shape and land value (F1 and F3)

Similar to the outcome for minimising the shape and the size of the parcels, the

results for minimising the shape and the land value for land block B25 are

encouraging. In particular, the best solution (Figure 26b) marked in the Pareto-

optimal front (Figure 30) has a fitness of 0.130, F1 of 0.079 and a F3 of 0.142

meaning that F1 has been improved by 70.07% and F3 by 77.13% compared to

the initial subdivision. The parcel shape (F1) and land value (F3) are on

average far from the optimum by 7.9% and 14.2%, respectively.

Figure 30: A set of solutions and the Pareto-optimal front for land block B25
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As expected, the outcome for land block B14 is not as good as that for land

block B25. In particular, the best solution (Figure 27b) marked in the Pareto-

optimal front (Figure 31) has an overall fitness of 0.281, F1 of 0.128 and F3 of

0.319. This indicates that F1 has been improved by 42.1% and F3 by 47.7%

compared to the initial subdivision. Moreover, the parcel shape (F1) and land

value (F3) are on average far from the optimum by 12.8% and 31.9%,

respectively.

Figure 31: A set of solutions and the Pareto-optimal front for land block B14

Minimise shape, size and land value (F1, F2 and F3)

The best solutions for simultaneously optimising shape, size and land value of

parcels for block B25 and B14 are shown in Figures 26c and 27c, respectively.

In addition, Figures 32 and 33, show in a 3D plane the projection of a set of
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(0.138), F2 (0.176) and F3 (0.113) involving an average improvement of F1, F2

and F3 by 47.7%, 72.2% and 81.8%, respectively. In other words, F1, F2 and

F3 are on average far from the absolute optimum by 13.8%, 17.6% and 11.3%,

respectively. Despite the complexity of simultaneously optimising three
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objectives, the results are very encouraging. It is obvious from Figure 32 that

several trade-off solutions from the cloud of points representing the overall

fitness (large points) are close to the origin of the three axes that reflect the

optimum solution. It should also be noted that in this case, the size (F2) and the

land value (F3) are not conflicting but correlated as shown below.

Figure 32: A set of solutions for simultaneous optimisation of parcel shape, size

and land value for land block B25

In the case of block B14, the outcome is worse as expected although it is in

general moderate. In particular, the best solution gave the following results:

overall Fitness (0.332), F1 (0.193), F2 (0.355) and F3 (0.378). This represents

an improvement in each optimisation parameter compared with the initial

subdivision of 12.7%, 62.9% and 38.0%, respectively. In other words, F1, F2

and F3 are on average far from the absolute optimum by 19.3%, 35.5% and

37.8%, respectively. This result is reflected graphically in Figure 33 where the

cloud of points representing the overall fitness is quite far from the origin of the

three axes that reflect the optimum solution.
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Figure 33: A set of solutions for simultaneous optimisation of parcel shape, size

and land value for land block B14

7 Conclusions

This paper discusses the design, development and evaluation of a new model

called LandParcelS, which integrates GIS and genetic algorithms for automating

the land partitioning problem. Land partitioning is a very complex spatial multi-

objective problem that involves the optimisation of three parameters, i.e. parcel

shape, size and land value which are represented by separate minimization

objective functions. In addition, the problem is subject to the constraint that

each new parcel should have access from a road. To date this problem has not

been solved satisfactorily in an automated fashion.

The model was applied to two land blocks of different complexity. These

examples were chosen from a real land consolidation case study area and the

land partitioning was treated as both a single and multi-objective problem. The

evaluation of the performance of the algorithm was based on metrics that
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addressed three critical questions: How far is the obtained solution(s) from the

absolute optimum? How much improvement has been achieved compared to

the original solution, that is, the partition which is automatically obtained by the

regular Thiessen polygons process? How much time is needed to arrive at a

reasonable solution? Thus, the evaluation of the model, which considered these

critical questions, suggests the following findings.

In the case of single optimisation, involving optimising the shape of parcels, the

results are near optimum, that is, close to zero (0.07 and 0.019) for both land

blocks. Therefore, the algorithm may successfully steer the Thiessen polygon

process to generate polygons with regular shapes. This may have relevance to

spatial problems. Thus, the PSI has been shown to be an efficient and reliable

index for evaluating parcel shapes.

In the case of multi-objective optimisation with two objectives, namely, the

shape and size or shape and land value results, present a different picture

depending on the complexity of the block. In particular, for the block with the

lower complexity, the outcome is fairly close to the optimum, namely the

optimisation of the shape and the size of the parcels are on average far from

the absolute optimum by 18.1% and 9.4%, respectively; and for the second

case, optimisation of the shape and the land value of the parcels, are on

average far from the absolute optimum by 7.9% and 14.2%, respectively. In

contrast, for the block with the higher complexity, the outcomes are further from

the optimum in the case of size and land value. In particular, in the case of

optimisation of shape and size of parcels are on average far from the absolute

optimum by 8.9% and 35.0%, respectively and for the case of optimisation of

shape and land value of parcels are on average far from the absolute optimum

by 12.8% and 31.9%, respectively. Similarly, in the case of multi-objective

optimisation with three objectives (shape, size and land value), the results

present a different picture depending on the complexity of the block. In

particular, for the easier block, optimisation of shape, size and land value of

parcels are on average far from the absolute optimum by 13.8%, 17.6% and

11.3%, respectively, whilst for the more difficult block the results are 19.3%,

35.5% and 37.8%, respectively.
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The above outcomes are encouraging taking into account the complexity of the

problem although undoubtedly there is a need for improving the performance of

the algorithm for reaching optimum solution(s) for both single and multi-

objective land partitioning, especially for the latter case. The weaknesses of the

algorithm stem from the fact that optimisation treats the problem through a

generic mechanism for space partitioning (Thiessen polygons). Hence the

genotype of the algorithm involves only the two input parameters (the X and Y

coordinates of the centroid of each parcel) in the optimisation process, on which

the other parameters of the problem i.e. shape, size and land value are defined.

Therefore, the improvement of the performance of the algorithm can be

achieved either by developing a new generic space partitioning algorithm or by

introducing a so called guidance (or learning or local optimiser) within the

Thiessen polygons process. In the former case, the algorithm will take as input

parameters the geometric features of shapes through the PSI and the size/land

value of parcels that will then be optimized through LandParcelS. In the latter

case, size and land value will be considered as constraints and the guidance

operator will try to satisfy them during both the initialization and optimisation

process.

Another limitation of the algorithm is that the computational time is quite long for

both single and multi-objective land partitioning compared to what a planner

would expect from such a sophisticated planning system. Two potential

solutions to decrease the computation times are: firstly, parallel computing that

permits the simultaneous processing of various functionalities of the algorithm

and secondly the use of a more powerful/efficient programming language.

Further to the evaluation of the results, several interesting findings have been

draw on by investigating the behaviour of the algorithm in various changes to its

parameters. In particular, the elitist operator is necessary to significantly speed

up the process since a test carried out showed a decrease in computational

time by 32.3% and 67.3% for both examples in single optimisation. Although the

algorithm may converge without the introduction of a mutation operator, in the

one example (land block B25), it speeded up the process by 58% while for the
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other example (land block B14) it did not have any significant positive or

negative effect. This suggests that the mutation operator may not always be

necessary for all spatial problems although its use may benefit the performance.

Similarly, block based mutation may benefit the performance of the algorithm

compared with the parcel based mutation or they may both have no

considerable influence in the process. In addition, the introduction of a penalty

function definitely extends computational time but on the other hand it is

necessary sometimes to steer solutions in the feasible region. For instance, the

example for land block B14 could not converge without the penalty function.

Moreover, it seems that a population size of around 40 fits for several spatial

problems including land partitioning.

This paper proved that the integration of genetic algorithms with GIS may

satisfactorily solve the land partitioning problem although further efforts are

needed to improve the algorithm. This research also contributes to the broader

field of spatial planning, especially for those disciplines that focus on space

partitioning.
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