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Needle Variations in Infinite-Horizon Optimal
Control

S.M. Aseev and V.M. Veliov

Abstract. The paper develops the needle variations technique in application to a class
of infinite-horizon optimal control problems in which an appropriate relation between
the growth rate of the solution and the growth rate of the objective function is satisfied.
The optimal objective value does not need to be finite. Based on the concept of weakly
overtaking optimality, we establish the normal form version of the Pontryagin maximum
principle with an explicitly specified adjoint variable. A few illustrative examples are
presented as well.

1. Introduction

Infinite-horizon optimal control problems arise in many fields of economics, in partic-
ular in problems of optimization of economic growth. Typically, the initial state is fixed
and the terminal state (at infinity) is free in such problems, while the utility functional
to be maximized is given by an improper integral on the time interval [0,∞). The infi-
nite time-horizon gives rise to some specific and challenging mathematical features of the
problems.

First, the infinite planning horizon may cause the appearance of various “pathological”
phenomena in the relations of the Pontryagin maximum principle. Although the state at
infinity is not constrained, such problems could be abnormal (ψ0 = 0 in this case) and
the “standard” transversality conditions of the form

(1.1) lim
t→∞

ψ(t) = 0

or

(1.2) lim
t→∞

〈ψ(t), x∗(t)〉 = 0
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may fail. Here x∗(·) is an optimal trajectory and (ψ0, ψ(·)) is a pair of adjoint variables
corresponding to the optimal pair (x∗(·), u∗(·)) according to the maximum principle. Ex-
amples demonstrating pathologies of these types are well known (see [5, 10, 12, 14, 17]).

Second, the utility functional given by an improper integral on the time interval [0,∞)
can diverge. In such a situation the notion of optimality should be specially adopted (see
the corresponding discussion in [10]). This creates additional difficulties in the analysis
of the problems.

To our knowledge for the first time a version of the maximum principle for the infinite-
horizon optimal control problem was proved in [16] in the case when the improper integral
utility functional converges and the optimal trajectories satisfy additional boundary con-
straint limt→∞ x∗(t) = x1, where x1 is a given point in Rn. In the case when the integral
utility functional not necessary converges, the maximum principle was proved in [12].
Both these results are formulated similarly. Their relations comprise the “core” condi-
tions of the maximum principle (adjoint system and the maximum condition), but they
do not provide any additional characterizations of the adjoint variables ψ0 and ψ(·) such
as normality of the problem and/or some boundary conditions for ψ(·) at infinity.

At the end of 1970s it was suggested in [8] that a normal form (ψ0 = 1) version of the
maximum principle involving a complementary integral condition on the adjoint variable
ψ(·) takes place if the discount rate ρ is sufficiently large. This condition provides bounds
(in appropriate L-spaces) for ψ(·) rather than only a condition for the asymptotics at
infinity. Such a stronger “transversality” condition was proved in [8] for linear autonomous
control systems. Then the result in [8] was extended in [4, 5] for nonlinear autonomous
systems. Moreover, it was proved in [4, 5] that if the discount rate ρ is sufficiently
large then the adjoint variable ψ(·) that satisfies the conditions of the maximum principle
admits an explicit single-valued representation similar to the classical Cauchy formula for
the solutions of systems of linear differential equations. In the linear case, this Cauchy
sort representation of ψ(·) implies the integral “transversality” condition suggested in [8]
and an even stronger exponential pointwise estimate for ψ(·) (see [5, 6] for more details).

The requirement for the discount rate ρ ≥ 0 to be sufficiently large was expressed in
[4, 5, 8] in the form of the following inequality:

(1.3) ρ > (r + 1)λ,

where r ≥ 0 and λ ∈ R1 are parameters characterizing the growth of the instantaneous
utility and the trajectories of the control system, respectively (see [4, 5, 8] for precise
definitions of the parameters r and λ). Condition (1.3) requires that the discount factor
ρ “dominates” the growth parameters r and λ. That is why conditions of this type are
usually referred as dominating discount conditions.

Recently, the results in [4, 5] were extended in [3]. In particular, the dominating
discount condition was expressed in [3] in a more general form of convergence of an
appropriate improper integral.

The approaches used in [8] and [3, 4, 5] for establishing additional characterizations
of the adjoint variable ψ(·) are different. The approach used in [8] is based on meth-
ods of functional and non-smooth analysis. The method of finite-horizon approximations
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used in [3, 4, 5] is based on an appropriate regularization of the infinite-horizon problem,
namely on its explicit approximation by a family of standard finite-horizon problems. No-
tice, that both approaches assume that the improper integral utility functional converges
uniformly for all admissible pairs.

In contrast, the original proof of the maximum principle for the infinite-horizon prob-
lem in [16] is based on application of the classical needle variations technique that does
not assume any uniformity in convergence of the integral utility functional. Nevertheless,
the straightforward application of needle variations faces some difficulties (see discussion
in [16, Chapter 4]) and does not provide additional conditions on the adjoint variable.
Recently, the application of needle variations technique to infinite-horizon problems was
revisited in [7] under a dominating discount condition similar to (1.3). Moreover, it is
demonstrated in [7] that under this condition the needle variations can be applied even
in the case when the objective value may be infinite. A local modification of the notion
of weakly overtaking optimality (see [10]) is employed in this case. The result obtained
in [7] involves the same explicit single-valued representation for the adjoint variable ψ(·)
as in [3, 4, 5] but under different assumptions.

The goal of the present paper is to extend and strengthen the results obtained in [7]
to general non-autonomous infinite-horizon problems without explicit discounting. The
“dominating discount” condition is adopted in an “invariant” form to this case.

The paper is organized as follows. In Section 2, we state the problem and introduce
the notion of optimality used in present paper. Some auxiliary results about the effect
of simple needle variations on the objective value are presented in Section 3. Section 4
is devoted to the formulation and the proof of a new version of the Pontryagin maxi-
mum principle for infinite-horizon problems. In Section 5, we consider a few illustrative
examples and discuss the obtained result. In particular, we demonstrate that the de-
veloped Cauchy sort single-valued characterization of the adjoint variable completes the
core conditions of the maximum principle in Halkin’s example [12] while the standard
transversality conditions are inconsistent with them in this case.

2. Statement of the problem

Let G be a nonempty open convex subset of Rn and U be an arbitrary nonempty set in
Rm. Let

f : [0,∞)×G× U 7→ Rn and g : [0,∞)×G× U 7→ R1.

Consider the following optimal control problem (P ):

(2.1) J(x(·), u(·)) =

∫ ∞

0

g(t, x(t), u(t)) dt → max ,

(2.2) ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U,

x(0) = x0.

Here x0 ∈ G is a given initial state of the system. The exact meaning of this problem will
be given below.

The following will be assumed throughout the paper.
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Assumption (A1): The functions f : [0,∞)×G×U 7→ Rn and g : [0,∞)×G×U 7→ R1

together with their partial derivatives fx(·, ·, ·) and gx(·, ·, ·) are defined and locally bounded,
measurable in t for every (x, u) ∈ G × U , and continuous in (x, u) for almost every
t ∈ [0,∞). 1

In what follows, we assume that the class of admissible controls in problem (P ) consists
of all measurable locally bounded functions u : [0,∞) 7→ U . Then for any initial state
x0 ∈ G and any admissible control u(·) plugged in the right-hand side of the control
system (2.2) we obtain the following Cauchy problem:

(2.3) ẋ(t) = f(t, x(t), u(t)), x(0) = x0.

Due to assumption (A1), this problem has a unique solution x(·) (in the sense of Carathéodory)
which is defined on some time interval [0, τ ] with τ > 0 and takes values in G (see e.g.
[11]). This solution is uniquely extendible to a maximal interval of existence in G and is
called admissible trajectory corresponding to the admissible control u(·).

If u(·) is an admissible control and the corresponding admissible trajectory x(·) exists
on [0, T ], T > 0, in G, then the integral

JT (x(·), u(·)) :=

∫ T

0

g(t, x(t), u(t)) dt

is finite. This follows from (A1), the definition of admissible control and the existence of
x(·) on [0, T ].

The following notion of optimality of an admissible control u∗(·) goes back to Halkin [12]
(see [10] for a discussion on different concepts of optimality in infinite-horizon problems).

Definition 2.1. An admissible control u∗(·) for which the corresponding trajectory
x∗(·) exists on [0,∞) is finitely optimal in problem (P ) if for any T > 0 and for an
arbitrary admissible control u(·) such that the corresponding admissible trajectory x(·) is
also defined on [0, T ] and satisfies x(T ) = x∗(T ) it holds that

JT (x∗(·), u∗(·)) ≥ JT (x(·), u(·)).
Notice that the finite optimality of an admissible control u∗(·) does not assume any

boundedness of the corresponding value of the utility functional in problem (P ).
Define the Hamilton-Pontryagin function H : [0,∞) × G × U × R1 × Rn 7→ R1 for

problem (P ) in the usual way:

H(t, x, u, ψ0, ψ) = ψ0g(t, x, u) + 〈f(t, x, u), ψ〉,
t ∈ [0,∞), x ∈ G, u ∈ U, ψ ∈ Rn, ψ0 ∈ R1.

In the normal case we will omit the variable ψ0 = 1 and write simply H(t, x, u, ψ) instead
of H(t, x, u, 1, ψ).

1The local boundedness of these functions of t, x and u (take φ(·, ·, ·) as a representative) means
that for every T > 0, every compact D ⊂ G and every bounded set V ⊂ U there exists M such that
‖φ(t, x, u)‖ ≤ M for almost all t ∈ [0, T ], and all x ∈ D and u ∈ V .



NEEDLE VARIATIONS IN INFINITE-HORIZON OPTIMAL CONTROL 5

According to [12, Theorem 4.2] any finitely optimal control u∗(·) satisfies the following
general version of the maximum principle2.

Theorem 2.2. Let u∗(·) be a finitely optimal control in problem (P ) and let x∗(·) be
the corresponding admissible trajectory. Then there is a non-vanishing pair of adjoint
variables (ψ0, ψ(·)) with ψ0 ≥ 0 and a locally absolutely continuous ψ(·) : [0,∞) 7→ Rn

such that the core conditions of the maximum principle hold, i.e.,

(i) ψ(·) is a solution to the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ0, ψ(t)),

(ii) the maximum condition takes place:

H(t, x∗(t), u∗(t), ψ0, ψ(t))
a.e.
= sup

u∈U
H(t, x∗(t), u, ψ0, ψ(t)).

In contrast with Definition 2.1, the next notion of optimality of an admissible control
u∗(·) assumes that the utility functional is bounded (see [10, Chapter 1.5]).

Definition 2.3. An admissible control u∗(·) for which the corresponding trajectory
x∗(·) exists on [0,∞) is strongly optimal if the value J(x∗(·), u∗(·)) is finite and for any
admissible control u(·) such that the corresponding admissible trajectory x(·) is defined
on [0,∞) it holds that

J(x∗(·), u∗(·)) ≥ limsup
T→∞

JT (x(·), u(·)).

Clearly, the strong optimality of an admissible control implies the finite one.
Let us illustrate these two concepts of optimality with a simple example [12].

Example 2.4 (Halkin, 1974). Consider the following problem (P1):

(2.4) J(x(·), u(·)) =

∫ ∞

0

(1− x(t))u(t) dt → max ,

ẋ(t) = (1− x(t))u(t), u(t) ∈ [0, 1],

x(0) = 0.

Set G = R1. Obviously problem (P1) is a particular case of problem (P ). For any
T > 0 and for an arbitrary admissible pair (x(·), u(·)) we have

(2.5) JT (x(·), u(·)) = x(T ) = 1− e−
∫ T
0 u(s) ds.

Hence, according to Definition 2.1 all admissible pairs (x(·), u(·)) are finitely optimal in
problem (P1) and due to Theorem 2.2 all of them satisfy the core conditions of the max-
imum principle together with the corresponding adjoint variables ψ0 and ψ(·). Moreover,

2The proof of this result in [12] is based on consideration of a family of auxiliary optimal control
problems on finite time intervals [0, T ], T > 0, with the fixed end-points x(0) = x0 and x(T ) = x∗(T )
and then taking a limit in the conditions of the maximum principle for these problems as T → ∞. It
should be noted that exactly the same result can be obtained with the strightforward application of the
needle variations technique. Indeed, the construction of the “initial cone” presented in [16, Chapter 4]
uses only the property of finite optimality of the reference admissible control u∗(·).
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it is easy to see that the adjoint variables ψ0 = 1 and ψ(t) ≡ −1, t ≥ 0, satisfy conditions
(i) and (ii) of Theorem 2.2 together with any admissible pair in problem (P1) .

On the other hand, the utility functional (2.4) is bounded and the set of strongly
optimal controls is nonempty in this problem. Due to (2.5) an admissible control u∗(·) is
strongly optimal in problem (P1) if and only if

∫∞
0

u∗(s) ds = ∞.

In particular, u∗(t)
a.e.
= 1, t ≥ 0, is a strongly optimal control and x∗(t) ≡ 1−e−t, t ≥ 0,

is the corresponding strongly optimal trajectory. Along this optimal pair (x∗(·), u∗(·)) the
adjoint system and the maximum condition are the following:

ψ̇(t) = u∗(t)(ψ(t) + ψ0) = ψ(t) + ψ0 and ψ(t) + ψ0 ≥ 0.

Further, according to Theorem 2.2 either ψ0 = 0 or ψ0 > 0. If ψ0 = 0 then ψ(t) =
ψ(0)et 6= 0, t ≥ 0, hence ψ(t) → ∞, as t → ∞ in this case. If ψ0 > 0 then one can put
ψ0 = 1. In this case ψ(t) = et (ψ(0) + 1)− 1, t ≥ 0, ψ(0) ≥ −1, and either ψ(t) ≡ −1 or
ψ(t) →∞ as t →∞. It is easy to see that both standard transversality conditions (1.1)
and (1.2) fail for the strongly optimal pair (x∗(·), u∗(·)) in this example.

The above example reveals two remarkable facts. First, Example 2.4 demonstrates
that the concept of finite optimality is too weak. It can happen that even in simple
situations such as problem (P1) this concept does not recognize strongly optimal pairs
(which exist) in the set of all admissible ones. Second, Example 2.4 shows that in some
cases the standard transversality conditions (1.1) and (1.2) are inconsistent with the core
conditions of the maximum principle (even with condition (i) alone). Thus, in general,
the complementary conditions on the adjoint variables must have a different form (if such
exists).

In this paper, we use the the following (local) modification of the notion of weakly
overtaking optimal control3 [10, 12].

Definition 2.5. An admissible control u∗(·) for which the corresponding trajectory
x∗(·) exists on [0,∞) is locally weakly overtaking optimal (LWOO) if there exists δ > 0
such that for any admissible control u(·) satisfying

meas {t ≥ 0 : u(t) 6= u∗(t)} ≤ δ

and for every ε > 0 and T > 0, one can find T ′ ≥ T such that the corresponding admissible
trajectory x(·) is either non-extendible to [0, T ′] in G or

JT ′(x∗(·), u∗(·)) ≥ JT ′(x(·), u(·))− ε.

3The weak overtaking optimality takes an intermediate place between strong optimality and finite
optimality, i.e. strong optimality ⇒ weak overtaking optimality ⇒ finite optimality (see [12, Chapter
1.5.] for details). The property of local weak overtaking optimality is obviously weaker than the property
of weak overtaking optimality, but it does not imply the finite optimality in general. In general case
the property of local weak overtaking optimality should be compared also with a ”local” version of the
property of finite optimality.
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Notice that the expression d(u(·), u∗(·)) = meas {t ∈ [0, T ] : u(t) 6= u∗(t)} generates a
metric in the space of the measurable functions on [0, T ], T > 0, which is suitable to use
in the framework of the needle variations technique (see [2]).

The proof of the necessary optimality conditions in the form of the Pontryagin max-
imum principle in a normal form, presented in Section 4, is based on some auxiliary
analysis given in the next section.

3. Auxiliary results about simple needle variations

Our analysis of problem (P ) with Definition 2.5 of optimality is based on the notion
of simple needle variation (see for example [1, Chapter 1.5.4]). Below we present some
auxiliary results which evaluate the effect of simple needle variations on the objective
functional.

Let u∗(·) be an admissible control and x∗(·) – the corresponding admissible trajectory,
which is assumed to be defined on [0,∞).

Let us fix an arbitrary v ∈ U and denote by Ω(v) the set of all τ > 0 which are Lebesgue
points of each of the measurable functions f(·, x∗(·), u∗(·)), g(·, x∗(·), u∗(·)), f(·, x∗(·), v),
g(·, x∗(·), v). This means (see [15]) that for every τ ∈ Ω(v) and each of these functions of
t (take ϕ(·) as a representative)

lim
α→0

1

α

∫ τ

τ−α

ϕ(t) dt = ϕ(τ).

Note that almost every τ ∈ [0,∞) belongs to Ω(v).
Let us fix an arbitrary τ ∈ Ω(v). For any 0 < α ≤ τ define

(3.1) uα(t) :=

{
u∗(t), t /∈ (τ − α, τ ],

v, t ∈ (τ − α, τ ].

The control uα(·) is called a simple variation of the admissible control u∗(·). Denote
by xα(·) the admissible trajectory that corresponds to uα(·).

If α is sufficiently small then due (A1) the admissible trajectory xα(·) is defined at least
on the time interval [0, τ ] (xα(·) coincides with x∗(·) on [0, τ − α]). Due to the property
that τ is a Lebesgue point of f(·, x∗(·), u∗(·)) and f(·, x∗(·), v), we obviously have that

(3.2) xα(τ)− x∗(τ) = α [f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))] + o(α),

where here and further o(α) denotes a function of α that satisfies ‖o(α)‖/α → 0 as α → 0.
Note that o(α) may depend on v and τ (which are fixed in the present consideration).

For an arbitrary τ ≥ 0, consider the following linear differential equation (the lin-
earization of (2.2) along (x∗(·), u∗(·)):
(3.3) ẏ(t) = fx(t, x∗(t), u∗(t)) y(t), t ≥ 0

with initial condition

(3.4) y(τ) = y∗(τ) := f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ)).
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Due to condition (A1) the partial derivative fx(·, x∗(·), u∗(·)) is measurable and locally
bounded. Hence, there is a unique (Carathéodory) solution y∗(·) of the Cauchy problem
(3.3), (3.4) which is defined on the whole time interval [0,∞). Moreover,

(3.5) y∗(t) = K∗(t, τ) y∗(τ), t ≥ 0,

where K∗(·, ·) is the state-transition matrix of differential system (3.3) (see [13]). Recall
that

(3.6) K∗(t, τ) = Y∗(t) Y −1
∗ (τ), t, τ ≥ 0,

where Y∗(·) is the fundamental matrix solution of (3.3) normalized at t = 0. This means
that the columns ξi(·), i = 1, . . . , n, of the (n × n)-matrix function Y∗(·) are (linearly
independent) solutions of (3.3) on [0,∞) that satisfy the initial conditions

ξj
i (0) = δi,j, i, j = 1, . . . , n,

where
δi,i = 1, i = 1, . . . , n, and δi,j = 0, i 6= j, i, j = 1, . . . , n.

Analogously, consider the fundamental matrix solution Z∗(·) (normalized at t = 0) of
the linear adjoint equation

ż(t) = − [fx(t, x∗(t), u∗(t))]
∗ z(t).

Then

(3.7) Z−1
∗ (t) = [Y∗(t)]

∗ , t ≥ 0.

The following condition is an “invariant” counterpart of the dominating discount con-
dition introduced in [7] in terms of the discount rate and some parameters characterizing
the growth rates of the admissible trajectories and of the instantaneous utility.

Assumption (A2): There exist a number γ > 0 and a nonnegative integrable function
λ : [0,∞) 7→ R1 such that for every ζ ∈ G with ‖ζ − x0‖ < γ equation (2.3) with
u(·) = u∗(·) and initial condition x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·) on
[0,∞) in G, and

max θ∈[x(ζ;t),x∗(t)]

∣∣∣〈gx(t, θ, u∗(t)), x(ζ; t)− x∗(t)〉
∣∣∣

a.e.≤ ‖ζ − x0‖λ(t).

Here [x(ζ; t), x∗(t)] = co {x(ζ; t), x∗(t)} denotes the line segment with vertices x(ζ; t) and
x∗(t).

Lemma 3.1. Let (A2) be satisfied. Then the following estimation holds:

(3.8)
∥∥∥ [Y∗(t)]

∗ gx(t, x∗(t), u∗(t))
∥∥∥ ≤ √

nλ(t) for a.e. t ≥ 0.

Proof. Define ζi ∈ Rn as the vector with components ζj
i = δi,j, i, j = 1, . . . n. Due

to (A2) for every α ∈ (0, γ), the solution x(x0 + αζi; ·) of equation (2.3) with u(·) = u∗(·)
and initial condition x(0) = x0 + αζi exists on [0,∞) and

(3.9)
∣∣∣〈gx(t, x∗(t), u∗(t)), x(x0 + αζi; t)− x∗(t)〉

∣∣∣
a.e.≤ αλ(t).
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Due to the theorem on differentiation of the solution of a differential equation with respect
to the initial conditions (see e.g. Chapter 2.5.6 in [1]) we get the following equality:

x(x0 + αζi; t) = x∗(t) + αξi(t) + oi(α, t), i = 1, . . . , n, t ≥ 0.

Here the vector functions ξi(·), i = 1, . . . , n, are columns of Y∗(·) and for any i = 1, . . . , n
we have ‖oi(α, t)‖/α → 0 as α → 0, uniformly with respect to t on any finite time interval
[0, T ], T > 0. Then in view of (3.9), we get

∣∣∣〈gx(t, x∗(t), u∗(t)), ξi(t) +
oi(α, t)

α
〉
∣∣∣

a.e.≤ λ(t), i = 1, . . . , n, t ≥ 0.

Passing to the limit with α → 0 in the last inequality for a.e. t ≥ 0 and i = 1, . . . , n, we
get ∣∣∣〈gx(t, x∗(t), u∗(t)), ξi(t)〉

∣∣∣
a.e.≤ λ(t), i = 1, . . . , n, t ≥ 0.

This implies (3.8). ¤
Due to (3.7) and Lemma 3.1, condition (A2) implies that for any t ≥ 0 the integral

(3.10) I∗(t) =

∫ ∞

t

[Z∗(s)]−1gx(s, x∗(s), u∗(s)) ds

converges absolutely. Hence, we can define a locally absolutely continuous function ψ :
[0,∞) 7→ Rn as follows:

(3.11) ψ(t) = Z∗(t)I∗(t), t ≥ 0.

By a direct differentiation, we verify that the so defined function ψ(·) satisfies on [0,∞)
the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)).

(Remind that in the case ψ0 = 1 we omit this variable in the Hamilton-Pontryagin
function.)

The following lemma provides the key tool for proving the maximum principle in the
next section.

Lemma 3.2. Let condition (A2) be satisfied. Then for arbitrarily fixed v ∈ U and
τ ∈ Ω(v) there is an α0 > 0 such that for all α ∈ (0, α0] the trajectory xα(·) corresponding
to the simple variation uα(·) (see (3.1)) is defined on the whole time interval [0,∞).
Moreover, for fixed τ and v as above there exist a constant c ≥ 0 and a function σ :
(0, α0]× [τ,∞) 7→ [0,∞) with limα→0 σ(α, t) → 0 for any fixed t ≥ τ , such that for every
α ∈ (0, α0] and T > τ

JT (xα(·), uα(·))− JT (x∗(·), u∗(·))
α

(3.12) = H(τ, x∗(τ), v, ψ(τ))−H(τ, x∗(τ), u∗(τ), ψ(τ)) + η(α, T ),

where the function η(α, T ) satisfies the following inequality for every T̃ ∈ [τ, T ]:

(3.13) |η(α, T )| ≤ σ(α, T̃ ) + c

∫ ∞

T̃

λ(t) dt.
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Proof. As argued above, for all sufficiently small α > 0 the trajectory xα(·) corre-
sponding to uα(·) exists at least on [0, τ ] (and equals x∗(t) for t ∈ [0, τ − α]) and from
(3.2) we have that ‖x∗(τ) − xα(τ)‖ ≤ c′ α with some constant c′. Consider the Cauchy
problem

(3.14) ẋ(t) = f(t, x(t), u∗(t)), x(τ) = xα(τ).

Due to the continuous dependence of the solution of a differential equation on the initial
condition (see e.g. Chapter 2.5.5 in [1]), there is a sufficiently small α0 > 0 such that for
all α ∈ (0, α0], the solution x̃α(·) of (3.14) exists on [0, τ ] and ‖x̃α(0)− x∗(0)‖ ≤ γ. Then
the first part of (A2) implies that the solution x̃α(·) exists in G on [0,∞). Thus for all
α ∈ (0, α0], the solution xα(·) also exists on [0,∞), since xα(t) = x̃α(t) for t ≥ τ .

Due to the theorem on differentiability of the solution of a differential equation with
respect to the initial conditions (see e.g. Chapter 2.5.6 in [1]), the following representation
holds:

(3.15) x̃α(t) = x∗(t) + αy∗(t) + o(α, t), t ≥ 0,

where y∗(·) is the solution of the Cauchy problem (3.3), (3.4). Here ‖o(α, t)‖/α → 0 as
α → 0 and the convergence is uniform in t on every finite interval [τ, T ], T > τ .

Let us prove that for any sufficiently small α > 0 the following estimate holds:

(3.16) max θ∈[xα(t),x∗(t)]

∣∣∣
〈
gx(t, θ, u∗(t)), y∗(t) +

o(α, t)

α

〉∣∣∣
a.e.≤ c1 λ(t), t ≥ τ,

where c1 ≥ 0 is independent of α and t.
Due to (A2),

max θ∈[x̃α(t),x∗(t)]

∣∣∣〈gx(t, θ, u∗(t)), x̃α(t)− x∗(t)〉
∣∣∣

a.e.≤ ‖x̃α(0)− x∗(0)‖λ(t), t ≥ 0.

Then using (3.15), we obtain that

max θ∈[x̃α(t),x∗(t)]

∣∣∣〈gx(t, θ, u∗(t)), αy∗(t) + o(α, t)〉
∣∣∣

a.e.≤ ‖αy∗(0) + o(α, 0)‖λ(t).

Choosing c1 ≥ ‖y∗(0)‖ + 1, dividing by α and taking into account that x̃α(t) = xα(t) for
t ≥ τ , we obtain (3.16).
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Now, using that τ ∈ Ω(v) and (3.15) (where x̃α(t) = xα(t) for t ≥ τ) for all α ∈ (0, α0],
we get

1

α

[
JT (xα(·), uα(·))− JT (x∗(·), u∗(·))

]
(3.17)

=
1

α

∫ τ

τ−α

[g(t, xα(t), v)− g(t, x∗(t), u∗(t))] dt

+
1

α

∫ T

τ

[g(t, xα(t), u∗(t))− g(t, x∗(t), u∗(t))] dt

= g(τ, x∗(τ), v)− g(τ, x∗(τ), u∗(τ)) +
o(α)

α

+

∫ T

τ

〈∫ 1

0

gx(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt.

On the other hand, according to (3.5), (3.6), (3.7), (3.4), (3.10) and (3.11)

∫ ∞

τ

〈gx(t, x∗(t), u∗(t)), y∗(t)〉 dt

=

〈
Z∗(τ)

∫ ∞

τ

[
Z∗(t)

]−1

gx(t, x∗(t), u∗(t)) dt, f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))

〉

= 〈ψ(τ), f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))〉.
Using this equality in (3.17) we obtain (3.12) with

η(α, T ) :=

∫ T

τ

〈∫ 1

0

gx(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt

−
∫ ∞

τ

〈gx(t, x∗(t), u∗(t)), y∗(t))〉 dt +
o(α)

α
.

Let T̃ be any number between τ and T . Define

σ(α, T̃ ) :=

∣∣∣∣∣
∫ T̃

τ

〈∫ 1

0

gx(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt

−
∫ T̃

τ

〈gx(t, x∗(t), u∗(t)), y∗(t))〉 dt +
o(α)

α

∣∣∣∣∣ .

Due to (A1), we apparently have for fixed T̃ that σ(α, T̃ ) → 0 as α → 0. Moreover, due
to (3.16) we have

∣∣∣∣
∫ T

T̃

〈∫ 1

0

gx(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt

∣∣∣∣ ≤ c1

∫ ∞

T̃

λ(t) dt.
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Moreover,
∣∣∣∣
∫ ∞

T̃

〈gx(t, x∗(t), u∗(t)), y∗(t))〉 dt

∣∣∣∣

=

∣∣∣∣
〈

Z∗(τ)

∫ ∞

T̃

[
Z∗(t)

]−1

gx(t, x∗(t), u∗(t)) dt, f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))

〉∣∣∣∣

≤ ‖Z∗(τ)‖
∥∥∥∥
∫ ∞

T̃

[Y∗(t)]
∗ gx(t, x∗(t), u∗(t)) dt

∥∥∥∥ ‖f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))‖

≤ c2

∫ ∞

T̃

λ(t) dt,

where in the last inequality we use Lemma 3.1.
Combining the above two inequalities and the definition of σ(α, T̃ ), we obtain (3.13)

with c := c1 + c2. ¤

4. Maximum principle

This section presents the main result in the paper – a version of the Pontryagin
maximum principle for the non-autonomous infinite-horizon problem (P ) with Definition
2.5 of optimality.

Theorem 4.1. Let u∗(·) be an admissible LWOO control and let x∗(·) be the corre-
sponding trajectory. Assume that (A2) holds. Then the vector function ψ : [0,∞) 7→ Rn

defined by (3.11) is (locally) absolutely continuous and satisfies the core conditions of the
normal form maximum principle, i.e.,

(i) ψ(·) is a solution to the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)),

(ii) the maximum condition takes place:

H(t, x∗(t), u∗(t), ψ(t))
a.e.
= sup

u∈U
H(t, x∗(t), u, ψ(t)).

Proof. Due to (A1), (A2), the vector function ψ : [0,∞) 7→ Rn defined by (3.11) is
locally absolutely continuous and satisfies condition (i). We shall prove condition (ii) by
using simple needle variations of the control u∗(·).

Let us fix an arbitrary v ∈ U . As in the preceding section, denote by Ω(v) the set of
all τ > 0 which are Lebesgue points of each of the measurable functions f(·, x∗(·), u∗(·)),
g(·, x∗(·), u∗(·)), f(·, x∗(·), v), g(·, x∗(·), v). Let us fix an arbitrary τ ∈ Ω(v) (notice that
[0,∞) \ Ω(v) is of measure zero).

Let α0 > 0 and c be the numbers from Lemma 3.2. Let uα(·) be defines as in (3.1).
According to Lemma 3.2 the corresponding trajectory xα(·) is defined on [0,∞).

Let us fix an arbitrary number ε0 > 0 and also the number T̃ > τ in such a way that∫∞
T̃

λ(t) dt ≤ ε0. According to Definition 2.5 for every α ∈ (0, α0]∩ (0, δ], for ε := α2, and
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for the number T = T̃ there exists Tα ≥ T̃ such that

JTα(xα(·), uα(·))− JTα(x∗(·), u∗(·)) ≤ α2.

Then from (3.12) we obtain that

H(τ, x∗(τ), v, ψ(τ))−H(τ, x∗(τ), u∗(τ), ψ(τ)) ≤ α− η(α, Tα).

Since T̃ ∈ [τ, Tα], we obtain from (3.13)

H(τ, x∗(τ), v, ψ(τ))−H(τ, x∗(τ), u∗(τ), ψ(τ)) ≤ α + σ(α, T̃ ) + c

∫ ∞

T̃

λ(t) dt

≤ α + σ(α, T̃ ) + cε0.

Passing to the limit with α → 0 and then taking into account that ε0 was arbitrarily
chosen, we obtain that

H(τ, x∗(τ), u∗(τ), ψ(τ)) ≥ H(τ, x∗(τ), v, ψ(τ)).

For the fixed v ∈ U , the last inequality holds for every τ ∈ Ω(v). Let Ud be a countable
and dense subset of U . From the above inequality we have

H(t, x∗(t), u∗(t), ψ(t)) ≥ H(t, x∗(t), v, ψ(t)) for every v ∈ Ud

and for every t ∈ ∩v∈UdΩ(v), that is, for almost every t. Due to the continuity of the
Hamiltonian with respect to u, the last inequality implies condition (ii). ¤

5. Discussions

In this section we demonstrate some advantages of the main result of this paper
compared with previously known results.

1. Let us return to the problem (P1) considered in Example 2.4. Obviously, condition

(A1) is satisfied. Let u∗(·) be an arbitrary admissible control. Then x∗(t) = 1−e−
∫ t
0 u∗(s) ds,

t ≥ 0, is the corresponding admissible trajectory. Further, let x(ζ; ·) be a solution of
equation (2.4) with u(·) = u∗(·) and initial condition x(0) = ζ ∈ R1 (instead of x(0) =
x0 = 0). Then x(ζ; ·) is defined on [0,∞) and

x(ζ; t) = 1− (1− ζ)e−
∫ t
0 u∗(s) ds for all t ≥ 0.

In this example g(t, x, u) = (1 − x)u, x ∈ G = R1, u ∈ U = [0, 1]. Hence, for any
θ ∈ R1 we have gx(t, θ, u∗(t)) = −u∗(t) for a.e. t ≥ 0. Thus, we get

max θ∈[x(ζ;t),x∗(t)] |gx(t, θ, u∗(t)) (x(ζ; t)− x∗(t))| a.e.
= |ζ − x0|λ(t),

where

λ(t) = u∗(t)e−
∫ t
0 u∗(s) ds for all t ≥ 0.

The function λ(·) is integrable on [0,∞). Hence, condition (A2) is also satisfied in prob-
lem (P1) (with an arbitrary γ > 0).
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Thus, due to Theorem 4.1 any LWOO control u∗(·) in problem (P1) satisfies the core
conditions of the maximum principle with adjoint variables ψ0 = 1 and

(5.1) ψ(t) = Z∗(t)I∗(t) = e
∫ t
0 u∗(s) ds

[
lim

T→∞
e−

∫ T
0 u∗(s) ds − e−

∫ t
0 u∗(s) ds

]
, t ≥ 0.

In problem (P1), the maximum condition takes the following form:

(5.2) u∗(t)
a.e.
=





0, if ψ(t) < −1,

ū ∈ [0, 1], if ψ(t) = −1,

1, if ψ(t) > −1.

Two cases are possible: either
∫∞

0
u∗(t) dt = ∞ or

∫∞
0

u∗(t) dt < ∞.
In the first case, due to (5.1) we have ψ(t) = −1 for a.e. t ≥ 0, that agrees with the

maximum condition (5.2).
In the second case, due to (5.1) we have ψ(t) > −1, t ≥ 0, and due to the maxi-

mum condition (5.2) we get u∗(t) = 1 for a.e. t ≥ 0, which contradicts the assumption∫∞
0

u∗(t) dt < ∞.

Hence, only admissible controls u∗(·) such that
∫∞
0

u∗(t) dt = ∞ together with the
unique adjoint variable ψ(t) ≡ −1, t ≥ 0, satisfies all conditions of Theorem 4.1. It
follows from (2.5) that indeed all such admissible controls are the only strongly optimal
(and hence they are LWOO controls) in problem (P1).

From this we conclude that condition (5.1) is the “right” complementary condition
to the core conditions of the maximum principle in problem (P1) while the standard
transversality conditions (1.1) and (1.2) are inconsistent with them in this case.

Notice that the stationarity condition

H(t, x∗(t), ψ(t)) := sup
u∈U

H(t, x∗(t), u, ψ(t)) → 0 as t →∞,

suggested in [14] for strongly optimal admissible pairs in autonomous problem (P ) with
possible discounting (see [3, 5, 14] for details) provides no useful information in this
example. Indeed, H(t, x(t),−1) ≡ 0, t ≥ 0, along any admissible trajectory x(·) in
problem (P1).

Notice also that [3, Theorem 4] contains the same as in Theorem 4.1 explicit single-
valued characterization (3.11) of the adjoint variable ψ(·), but this result is not applicable
here because the utility functional (2.4) does not satisfy the uniform estimate (A3) in [3].

2. Typical models of optimal economic growth (see for example [9]) are formulated
as infinite-horizon optimal control problems (P̃ ) with explicit discounting:

(5.3) J(x(·), u(·)) =

∫ ∞

0

e−ρtg̃(t, x(t), u(t)) dt → max ,

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U,

x(0) = x0.
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Here ρ ∈ R1 is a “discount” rate (which could be even negative). Functions f : [0,∞)×
G × U 7→ Rn and g̃ : [0,∞) × G × U 7→ R1 are assumed to satisfy condition (A1). All
other data in problem (P̃ ) are as in problem (P ).

Obviously, problem (P̃ ) is a particular case of problem (P ) with function g(t, x, u) =
e−ρtg̃(t, x, u), t ≥ 0, x ∈ G, u ∈ U (actually the two problem are equivalent). The only
difference between (P̃ ) and (P ) is that the integrand in (5.3) contains the discount factor
e−ρt explicitly.

Assume that u∗(·) is a LWOO control in problem (P̃ ) and x∗(·) – the corresponding
admissible trajectory.

Now let us specify some sufficient conditions for validity of (A2) (for problem (P ) with
function g(t, x, u) = e−ρtg̃(t, x, u), t ≥ 0, x ∈ G, u ∈ U) in terms of the discount rate ρ and
the growth parameters of problem (P̃ ). For this end let us introduce the corresponding
growth parameters λ ∈ R1, µ ≥ 0 and r ≥ 0 (see analogous conditions (A2) and (A3)
in [7]).

Assumption (A3): There exist numbers λ ∈ R1, µ ≥ 0, r ≥ 0, κ ≥ 0, γ > 0, c3 ≥ 0
and c4 > 0 such that

(i) ‖x∗(t)‖ ≤ c3e
µt for every t ≥ 0,

(ii) for every ζ ∈ G with ‖ζ − x0‖ < γ equation (2.3) with u(·) = u∗(·) and initial
condition x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·) on [0,∞) in G
and the following estimations hold:

‖x(ζ; t)− x∗(t)‖ ≤ c4‖ζ − x0‖eλt for every t ≥ 0,

‖g̃x(t, θ, u∗(t))‖
a.e.≤ κ (1 + ‖θ‖r) for every θ ∈ [x(ζ; t), x∗(t)], t ≥ 0.

(The number λ should not be confused with the function λ(·) in (A2).)

The following inequality gives a sufficient condition for the validity of (A2) in terms of
the growth parameters of problem (P̃ ) (see similar dominating discount conditions (A6)
in [3], (A7) in [5] and (A4) in [7]).

Assumption (A4):

ρ > λ + r max {µ, λ}.
Lemma 5.1. Conditions (A3) and (A4) imply the validity of condition (A2) for problem

(P ) with function g(t, x, u) = e−ρtg̃(t, x, u), t ≥ 0, x ∈ G, u ∈ U .

Proof. Indeed, due to (A3) (ii) for every ζ ∈ G with ‖ζ − x0‖ < γ, equation (2.3)
with u(·) = u∗(·) and initial condition x(0) = ζ (instead of x(0) = x0) has a solution
x(ζ; ·) on [0,∞) in G. Further, due to estimations (i) and (ii) of (A3), we get

max θ∈[x(ζ;t),x∗(t)]

∣∣∣〈e−ρtg̃x(t, θ, u∗(t)), x(ζ; t)− x∗(t)〉
∣∣∣

a.e.≤ κc3c4‖ζ − x0‖e−ρt
(
1 + er max {µ,λ}t) eλt, t ≥ 0.
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Due to (A4), the last estimation implies the validity of (A2) for problem (P ) with function
g(t, x, u) = e−ρtg̃(t, x, u), t ≥ 0, x ∈ G, u ∈ U with integrable function

λ(t) = κc3c4e
−(ρ−λ)t

(
1 + er max {µ,λ}t) , t ≥ 0.

¤

Lemma 5.1 together with Theorem 4.1 implies the following version of the maxi-
mum principle for non-autunomous infinite-horizon problem (P̃ ) with dominating discount
which is similar to [7, Theorem 1].

Theorem 5.2. Let u∗(·) be an admissible LWOO control in problem (P̃ ) and let x∗(·)
be the corresponding trajectory. Assume that (A3) and (A4) hold. Then

(i) For any t ≥ 0 the integral

I∗(t) =

∫ ∞

t

e−ρs[Z∗(s)]−1g̃x(s, x∗(s), u∗(s)) ds

converges absolutely.
(ii) The vector function ψ : [0,∞) 7→ Rn defined by

ψ(t) = Z∗(t)I∗(t), t ≥ 0

is (locally) absolutely continuous and satisfies the conditions of the normal form
maximum principle, i.e. ψ(·) is a solution of the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t))

and the maximum condition holds:

H(t, x∗(t), u∗(t), ψ(t))
a.e.
= sup

u∈U
H(t, x∗(t), u, ψ(t)).

Notice that in the case of problem (P1) considered in Example 2.4 the dominating
discount condition (A4) is not satisfied. Indeed, it is easy to see that ρ = 0, λ = 1, µ = 0
and r = 0 (see (A3)) in this case. Thus (A4) fails. Thus Theorem 5.2 is not applicable
to problem (P1) while Theorem 4.1 gives a complete description of all strongly optimal
solutions in this problem.

3. Now we consider another example that shows the advantage of a certain invariance
property of our assumption (A2).

Consider the following problem (P2):

J(x(·), u(·)) =

∫ ∞

0

(
1− 1

x(t)

)
dt → max ,

ẋ(t) = u(t) x(t), u(t) ∈ [0, 1],

x(0) = 1.

Here x ∈ R1 and G = (0,∞). Obviously condition (A1) is satisfied.
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Let u(·) be an admissible control in problem (P2). Then x(t) = e
∫ t
0 u(s) ds, t ≥ 0, is the

corresponding admissible trajectory and

(5.4) J(x(·), u(·)) =

∫ ∞

0

(
1− e−

∫ t
0 u(s) ds

)
dt

is the corresponding utility value. Obviously, if meas {t ≥ 0 : u(t) 6= 0} > 0 then the
corresponding utility value (5.4) is ∞, and hence the concept of strong optimality is not

applicable here. It is easy to see that u∗(t)
a.e.
= 1, x∗(t) ≡ et, t ≥ 0 is a unique LWOO pair

in (P2).
For problem (P2) the dominating discount condition (A4) in Theorem 5.2 (as far as

similar condition in [7, Theorem 1]) is read as ρ > λ, where ρ is the discount rate (in
our case ρ = 0) and the scalar λ (see (A3)) should be such that ‖x(ζ; t) − x∗(t)‖ ≤
c4‖ζ − x(0)‖ eλt is satisfied with some constant c4 ≥ 0 and all t ≥ 0. Clearly in our case
λ = 1, this dominating discount conditions that formulated in terms of growth parameters
of problem (P̃ ) is violated.

On the other hand, if we introduce the new state variable x̃(t) = e−ρtx(t), t ≥ 0 with
a ρ ∈ (0, 1) then in terms of the state variable x̃(·) we obtain the following (equivalent to
(P2)) optimal control problem (P3):

J(x̃(·), u(·)) =

∫ ∞

0

e−ρt
(
eρt − 1

x̃(t)

)
dt → max ,

˙̃x(t) = (u(t)− ρ) x̃(t), u(t) ∈ [0, 1],

x̃(0) = 1.

Set G = (0,∞). Obviously condition (A1) is satisfied.

Problem (P3) has a unique LWOO solution u∗(t)
a.e.
= 1, x̃∗(t) ≡ e(1−ρ)t, t ≥ 0. Here

we have a discount rate ρ ∈ (0, 1) and λ = 1 − ρ. Therefore the dominating discount
condition ρ > λ (see (A4)) holds in problem (P3) if ρ > 1/2.

The above example shows that the possibility to apply the results based on the domi-
nating discount conditions which are formulated in terms of the discount rate and growth
parameters of problem (P̃ ) (such as Theorem 5.2, [3, Lemma 4], [4, Theorem 4], [5, The-
orem 12.1] and [7, Theorem 1])) crucially depends on the particular reformulation of the
problem out of many possible.

Now let us consider condition (A2) in Theorem 4.1 for the first formulation of the
above problem (see (P2)). Here gx(t, θ, u∗(t)) = 1/θ2 and x(ζ; t) = ζ et, t ≥ 0. Then the
inequality in (A2) with ζ = 1 + β, |β| < 1/2, reads as

sup
s∈[0,1]

1

e2t(1 + sβ)2
etβ ≤ βλ(t), t ≥ 0,

which is obviously satisfied with the integrable function λ(·): λ(t) = 4 e−t, t ≥ 0. Thus
condition (A2) holds and hence Theorem 4.1 is applicable in this case.

It is easy to verify that condition (A2) holds also for the second version of the problem
(see (P3)) with the same function λ(·).
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Note also that in this example the alternative variant of the maximum principle with
“invariant” dominating discount condition [3, Theorem 4] is not applicable because the
optimal utility value is equal to ∞.
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