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Democratic societies are built around the principle of free and fair
elections, and that each citizen’s vote should count equally. Na-
tional elections can be regarded as large-scale social experiments,
where people are grouped into usually large numbers of electoral
districts and vote according to their preferences. The large number
of samples implies statistical consequences for the polling results,
which can be used to identify election irregularities. Using a suit-
able data representation, we find that vote distributions of elec-
tions with alleged fraud show a kurtosis substantially exceeding
the kurtosis of normal elections, depending on the level of data
aggregation. As an example, we show that reported irregularities
in recent Russian elections are, indeed, well-explained by system-
atic ballot stuffing. We develop a parametric model quantifying
the extent to which fraudulent mechanisms are present. We for-
mulate a parametric test detecting these statistical properties in
election results. Remarkably, this technique produces robust out-
comes with respect to the resolution of the data and therefore,
allows for cross-country comparisons.
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Free and fair elections are the cornerstone of every democratic
society (1). A central characteristic of elections being free

and fair is that each citizen’s vote counts equal. However, Joseph
Stalin believed that “[i]t’s not the people who vote that count; it’s
the people who count the votes.” How can it be distinguished
whether an election outcome represents the will of the people or
the will of the counters?
Elections can be seen as large-scale social experiments. A

country is segmented into a usually large number of electoral
units. Each unit represents a standardized experiment, where
each citizen articulates his/her political preference through a
ballot. Although elections are one of the central pillars of a fully
functioning democratic process, relatively little is known about
how election fraud impacts and corrupts the results of these
standardized experiments (2, 3).
There is a plethora of ways of tampering with election out-

comes (for instance, the redrawing of district boundaries known
as gerrymandering or the barring of certain demographics from
their right to vote). Some practices of manipulating voting results
leave traces, which may be detected by statistical methods. Re-
cently, Benford’s law (4) experienced a renaissance as a potential
election fraud detection tool (5). In its original and naive for-
mulation, Benford’s law is the observation that, for many real
world processes, the logarithm of the first significant digit is
uniformly distributed. Deviations from this law may indicate that
other, possibly fraudulent mechanisms are at work. For instance,
suppose a significant number of reported vote counts in districts
is completely made up and invented by someone preferring
to pick numbers, which are multiples of 10. The digit 0 would
then occur much more often as the last digit in the vote counts
compared with uncorrupted numbers. Voting results from Russia
(6), Germany (7), Argentina (8), and Nigeria (9) have been tested
for the presence of election fraud using variations of this idea
of digit-based analysis. However, the validity of Benford’s law

as a fraud detection method is subject to controversy (10, 11).
The problem is that one needs to firmly establish a baseline of
the expected distribution of digit occurrences for fair elections.
Only then it can be asserted if actual numbers are over- or un-
derrepresented and thus, suspicious. What is missing in this con-
text is a theory that links specific fraud mechanisms to statistical
anomalies (10).
A different strategy for detecting signals of election fraud is to

look at the distribution of vote and turnout numbers, like the
strategy in ref. 12. This strategy has been extensively used for the
Russian presidential and Duma elections over the last 20 y (13–
15). These works focus on the task of detecting two mechanisms,
the stuffing of ballot boxes and the reporting of contrived num-
bers. It has been noted that these mechanisms are able to produce
different features of vote and turnout distributions than those
features observed in fair elections. For Russian elections between
1996 and 2003, these features were only observed in a relatively
small number of electoral units, and they eventually spread and
percolated through the entire Russian federation from 2003 on-
ward. According to the work by Myagkov and Ordeshook (14),
“[o]nly Kremlin apologists and Putin sycophants argue that
Russian elections meet the standards of good democratic prac-
tice.” This point was further substantiated with election results
from the 2011 Duma and 2012 presidential elections (16–18).
Here, it was also observed that ballot stuffing not only changes
the shape of vote and turnout distributions but also induces a
high correlation between them. Unusually high vote counts tend
to co-occur with unusually high turnout numbers.
Several recent advances in the understanding of statistical reg-

ularities of voting results are caused by the application of sta-
tistical physics concepts to quantitative social dynamics (19). In
particular, several approximate statistical laws of how vote and
turnout are distributed have been identified (20–22), and some
of them are shown to be valid across several countries (23, 24). It
is tempting to think of deviations from these approximate sta-
tistical laws as potential indicators for election irregularities,
which are valid cross-nationally. However, the magnitude of
these deviations may vary from country to country because of
different numbers and sizes of electoral districts. Any statistical
technique quantifying election anomalies across countries should
not depend on the size of the underlying sample or its aggregation
level (i.e., the size of the electoral units). As a consequence, a
conclusive and robust signal for a fraudulent mechanism (e.g.,
ballot stuffing) must not disappear if the same dataset is studied
on different aggregation levels.
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In this work, we expand earlier work on statistical detection
of election anomalies in two directions. We test for reported
statistical features of voting results (and deviations thereof) in
a cross-national setting and discuss their dependence on the level
of data aggregation. As the central point of this work, we pro-
pose a parametric model to statistically quantify to which extent
fraudulent processes, such as ballot stuffing, may have influenced
the observed election results. Remarkably, under the assumption
of coherent geographic voting patterns (24, 25), the parametric
model results do not depend significantly on the aggregation
level of the election data or the size of the data sample.

Data and Methods
Election Data. Countries were selected by data availability. For
each country, we require availability of at least one aggregation
level where the average population per territorial unit npop ≤
5; 000. This limit for npop was chosen to include a large number of
countries that have a comparable level of data resolution. We use
data from recent parliamentary elections in Austria, Canada,
Czech Republic, Finland, Russia (2011), Spain, and Switzerland,
the European Parliament elections in Poland, and presidential
elections in France, Romania, Russia (2012), and Uganda. Here,
we refer by unit to any incarnation of an administrative boundary
(such as districts, precincts, wards, municipals, provinces, etc.)
of a country on any aggregation level. If the voting results are
available on different levels of aggregation, we refer to them by
Roman numbers (i.e., Poland-I refers to the finest aggregation
level for Poland, Poland-II to the second finest aggregation level,
and so on). For each unit on each aggregation level for each
country, we have the data of the number of eligible persons to
vote, valid votes, and votes for the winning party/candidate.
Voting results were obtained from official election homepages
of the respective countries (Table S1). Units with an electorate
smaller than 100 are excluded from the analysis to prevent ex-
treme turnout and vote rates as artifacts from very small

communities. We tested robustness of our findings with respect to
the choice of a minimal electorate size and found that the results
do not significantly change if the minimal size is set to 500.
The histograms for the 2-d vote turnout distributions (vtds) for

the winning parties, also referred to as “fingerprints,” are shown
in Fig. 1.

Data Collapse. It has been shown that, by using an appropriate
rescaling of election data, the distributions of votes and turnouts
approximately follow a Gaussian distribution (24). Let Wi be
the number of votes for the winning party and Ni be the number
of voters in any unit i. A rescaling function is given by the log-
arithmic vote rate νi =  log Ni −Wi

Wi
(24). In units where Wi ≥ Ni

(because of errors in counting or fraud) or Wi = 0, νi is not de-
fined, and the unit is omitted from our analysis. This definition is
conservative, because districts with extreme but feasible vote and
turnout rates are neglected (for instance, in Russia in 2012, there
are 324 units with 100% vote and 100% turnout).

Parametric Model. To motivate our parametric model for the vtd,
observe that the vtd for Russia and Uganda in Fig. 1 are clearly
bimodal in both turnout and votes. One cluster is at intermediate
levels of turnout and votes. Note that it is smeared toward the
upper right parts of the plot. The second peak is situated in the
vicinity of the 100% turnout and 100% votes point. This peak
suggests that two modes of fraud mechanisms are present: in-
cremental and extreme fraud. Incremental fraud means that,
with a given rate, ballots for one party are added to the urn and/
or votes for other parties are taken away. This fraud occurs
within a fraction fi of units. In the election fingerprints in Fig. 1,
these units are associated with the smearing to the upper right
side. Extreme fraud corresponds to reporting a complete turnout
and almost all votes for a single party. This fraud happens in
a fraction fe of units and forms the second cluster near 100%
turnout and votes for the winning party.
For simplicity, we assume that, within each unit, turnout and

voter preferences can be represented by a Gaussian distribution,
with the mean and SD taken from the actual sample (Fig. S1).
This assumption of normality is not valid in general. For exam-
ple, the Canadian election fingerprint of Fig. 1 is clearly bimodal
in vote preferences (but not in turnout). In this case, the devi-
ations from approximate Gaussianity are because of a significant
heterogeneity within the country. In the particular case of
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Fig. 1. Election fingerprints. Two-dimensional histograms of the number of
units for a given voter turnout (x axis) and the percentage of votes (y axis) for
the winning party (or candidate) in recent elections from different countries
(Austria, Canada, Czech Republic, Finland, France, Poland, Romania, Russia
2011, Russia 2012, Spain, Switzerland, and Uganda) are shown. Color repre-
sents the number of units with corresponding vote and turnout numbers. The
units usually cluster around a given turnout and vote percentage level. In
Uganda and Russia, these clusters are smeared out to the upper right region
of the plots, reaching a second peak at a 100% turnout and 100% of votes
(red circles). In Canada, there are clusters around two different vote values,
corresponding to the Québécois and English Canada (SI Text). In Finland, the
main cluster is smeared out into two directions (indicative of voter mobili-
zation because of controversies surrounding the True Finns).
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Fig. 2. A simple way to compare data from different elections in different
countries on a similar aggregation level is to present the distributions of the
logarithmic vote rates νi of the winning parties as rescaled distributions with
zero mean and unit variance (24). Large deviations from other countries can
be seen for Uganda and Russia with the plain eye. More detailed results are
found in Table S3.

16470 | www.pnas.org/cgi/doi/10.1073/pnas.1210722109 Klimek et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210722109/-/DCSupplemental/pnas.201210722SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210722109/-/DCSupplemental/pnas.201210722SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210722109/-/DCSupplemental/pnas.201210722SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210722109/-/DCSupplemental/pnas.201210722SI.pdf?targetid=nameddest=ST3
www.pnas.org/cgi/doi/10.1073/pnas.1210722109


Canada, this heterogeneity is known to be due to the mix of the
Anglo- and Francophone population. Normality of the observed
vote and turnout distributions is discussed in Table S2.
Let Vi be the number of valid votes in unit i. The first step in

the model is to compute the empirical turnout distribution, Vi/Ni,
and the empirical vote distribution, Wi/Ni, over all units from the
election data. To compute the model vtd, the following protocol
is then applied to each unit i.

i) For each i, take the electorate size Ni from the election data.
ii) Model turnout and vote rates for i are drawn from normal

distributions. The mean of the model turnout (vote) distri-
bution is estimated from the election data as the value that
maximizes the empirical turnout (vote) distribution. The
model variances are also estimated from the width of the
empirical distributions (details in SI Text and Fig. S1).

iii) Incremental fraud. With probability fi, ballots are taken away
from both the nonvoters and the opposition, and they are
added to the winning party’s ballots. The fraction of ballots
that is shifted to the winning party is again estimated from
the actual election data.

iv)Extreme fraud. With probability fe, almost all ballots from the
nonvoters and the opposition are added to the winning
party’s ballots.

The first step of the above protocol ensures that the actual
electorate size numbers are represented in the model. The sec-
ond step guarantees that the overall dispersion of vote and
turnout preferences of the country’s population are correctly
represented in the model. Given nonzero values for fi and fe,
incremental and extreme fraud are then applied in the third and
fourth step, respectively. Complete specification of these fraud
mechanisms is in SI Text.

Estimating the Fraud Parameters. Values for fi and fe are reverse-
engineered from the election data in the following way. First,
model vtds are generated according to the above scheme for
each combination of (fi, fe) values, where fi and fe ∈ {0, 0.01,
0.02, . . . 1}. We then compute the pointwise sum of the square
difference of the model and observed vote distributions for each
pair (fi, fe) and extract the pair giving the minimal difference.

This procedure is repeated for 100 iterations, leading to 100
pairs of fraud parameters (fi, fe). In Results, we report the average
values of these fi and fe values, respectively, and their SDs. More
details are in SI Text.

Results
Fingerprints. Fig. 1 shows 2-d histograms (vtds) for the number of
units for a given fraction of voter turnout (x axis) and the per-
centage of votes for the winning party (y axis). Results are shown
for Austria, Canada, Czech Republic, Finland, France, Poland,
Romania, Russia, Spain, Switzerland, and Uganda. For each of
these countries, the data are shown on the finest aggregation
level, where npop ≤ 5; 000. These figures can be interpreted as
fingerprints of several processes and mechanisms, leading to the
overall election results. For Russia and Uganda, the shape of
these fingerprints differs strongly from the other countries. In
particular, there is a large number of territorial units (thousands)
with ∼100% turnout and at the same time, ∼100% of votes for
the winning party.

Approximate Normality. In Fig. 2, we show the distribution of νi
for each country. Roughly, to first order, the data from different
countries collapse to an approximate Gaussian distribution as
previously observed (24). Clearly, the data for Russia fall out of
line. Skewness and kurtosis for the distributions of νi are listed
for each dataset and aggregation level in Table S3. Most strik-
ingly, the kurtosis of the distributions for Russia (2003, 2007,
2011, and 2012) exceeds the kurtosis of each other country on
the coarsest aggregation level by a factor of two to three. Values
for the skewness of the logarithmic vote rate distributions for
Russia are also persistently below the values for each other
country. Note that, for the vast majority of the countries, skew-
ness and kurtosis for the distribution of νi are in the vicinity of
zero and three, respectively (which are the values that one would
expect for normal distributions). However, the moments of the
distributions do depend on the data aggregation level. Fig. 3
shows skewness and kurtosis for the distributions of νi for each
election on each aggregation level. By increasing the data res-
olution, skewness and kurtosis for Russia decrease and ap-
proach similar values to the values observed in the rest of the
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Fig. 3. For each country on each aggregation level, skewness and kurtosis of the logarithmic vote rate distributions are shown as a function of the average
electorate per unit npop in A and B, respectively, and as a function of the number of units n in C and D. Results for Russia and Uganda are highlighted. The
values for all other countries cluster around zero and three, which are the values expected for normal distributions. On the largest aggregation level, election
data from Uganda and Russia cannot be distinguished from other countries.
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countries (Table S3). These measures depend on the data res-
olution and thus, cannot be used as unambiguous signals for
statistical anomalies. As will be shown, the fraud parameters fi

and fe do not significantly depend on the aggregation level or total
sample size.

Voting Model Results. Estimation results for fi and fe are given in
Table S3 for all countries on each aggregation level. They are
zero (or almost zero) in all of the cases except for Russia and
Uganda. In Fig. 4, Right, we show the model results for Russia
(2011 and 2012), Uganda, and Switzerland for fi = fe = 0. The
case where both fraud parameters are zero corresponds to the
absence of incremental and extreme fraud mechanisms in the
model and can be called the fair election case. In Fig. 4, Center,
we show results for the estimated values of fi and fe. Fig. 4, Left
shows the actual vtd of the election. Values of fi and fe signifi-
cantly larger than zero indicate that the observed distributions
may be affected by fraudulent actions. To describe the smearing
from the main peak to the upper right corner, which is observed
for Russia and Uganda, an incremental fraud probability around
fi = 0.64(1) is needed for United Russia in 2011 and fi = 0.39(1)
is needed in 2012. This finding means fraud in about 64% of the
units in 2011 and 39% in 2012. In the second peak close to 100%
turnout, there are roughly 3,000 units with 100% of votes for
United Russia in the 2011 data, representing an electorate of
more than 2 million people. Best fits yield fe = 0.033(4) for 2011
and fe = 0.021(3) for 2012 (i.e., 2–3% of all electoral units ex-
perience extreme fraud). A more detailed comparison of the
model performance for the Russian parliamentary elections of
2003, 2007, 2011, and 2012 is found in Fig. S2. Fraud parameters
for the Uganda data in Fig. 4 are found to be fi = 0.49(1) and
fe = 0.011(3). A best fit for the election data from Switzerland
gives fi = fe = 0.
These results are drastically more robust to variations of the

aggregation level of the data than the previously discussed dis-
tribution moments skewness and kurtosis (Fig. 5 and Table S3).
Even if we aggregate the Russian data up to the coarsest level of
federal subjects (∼85 units, depending on the election), fe esti-
mates are still at least 2 SDs above zero and fi estimates more
than 10 SDs. Similar observations hold for Uganda. For no other
country and no other aggregation level are such deviations ob-
served. The parametric model yields similar results for the same
data on different levels of aggregation as long as the values
maximizing the empirical vote (turnout) distribution and the
distribution width remain invariant. In other words, as long as
units with similar vote (turnout) characteristics are aggregated
to larger units, the overall shapes of the empirical distribution
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the values for fi and fe as given in Table S3 are shown
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in A and B, and for the number of units n in C and D,
respectively. Results for Russia and Uganda are
highlighted. The values for all other countries are
close to zero, indicating that the data are best de-
scribed by the absence of the ballot stuffing mech-
anism. Parameter values for fi and fe for Russia and
Uganda remain significantly above zero for all ag-
gregation levels. Note that, in D, the error margins
for fe values in the range 10 < n < 100 (as well as for
the corresponding values fe in C) get increasingly
large, whereas fi estimates in this range stay robust.
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functions are preserved, and the model estimates do not change
significantly. Note that more detailed assumptions about possible
mechanisms leading to large heterogeneity in the data (such as
the Québécois in Canada or voter mobilization in the Helsinki
region in Finland) (SI Text) may have an effect on the estimate of
fi. However, these assumptions can, under no circumstances,
explain the mechanism of extreme fraud. Results for elections in
Sweden, the United Kingdom, and the United States, where
voting results are only available on a much coarser resolution
(npop > 20; 000), are given in Table S4.
Another way to visualize the intensity of election irregularities is

the cumulative number of votes as a function of the turnout (Fig.
6). For each turnout level, the total number of votes fromunits with
this level or lower is shown. Each curve corresponds to the re-
spective election winner in a different country with average elec-
torate per unit of comparable order of magnitude. Usually, these
cumulative distribution functions (cdfs) level off and form a pla-
teau from the party’s maximal vote count. Again, this result is not
the case for Russia and Uganda. Both show a boost phase of in-
creased extreme fraud toward the right end of the distribution (red

circles). Russia never even shows a tendency to form a plateau. As
long as the empirical vote distribution functions remain invariant
under data aggregation (as discussed above), the shape of these
cdfs will be preserved as well. Note that Fig. 6 shows that these
effects are decisive for winning the 50%majority in Russia in 2011.

Discussion
We show that it is not sufficient to discuss the approximate nor-
mality of turnout, vote, or logarithmic vote rate distributions to
decide if election results may be corrupted. We show that these
methods can lead to ambiguous signals, because results depend
strongly on the aggregation level of the election data. We de-
veloped a model to estimate parameters quantifying to which ex-
tent the observed election results can be explained by ballot
stuffing. The resulting parameter values are shown to be insensitive
to the choice of the aggregation level. Note that the error margins
for fe values start to increase by decreasing n below 100 (Fig. 5D),
whereas fi estimates stay robust, even for very small n.
It is imperative to emphasize that the shape of the fingerprints in

Fig. 1 will deviate from pure 2-d Gaussian distributions as a result
of nonfraudulent mechanisms as well because of heterogeneity in
the population. The purpose of the parametricmodel is to quantify
to which extent ballot stuffing and themechanism of extreme fraud
may have contributed to these deviations or if their influence can
be ruled out on the basis of the data. For the elections inRussia and
Uganda, they cannot be ruled out. As shown in Fig. S2, assump-
tions of their widespread occurrences even allow us to reproduce
the observed vote distributions to a good degree.
In conclusion, it can be said with almost certainty that an

election does not represent the will of the people if a substantial
fraction (fe) of units reports a 100% turnout with almost all votes
for a single party and/or if any significant deviations from the
sigmoid form in the cumulative distribution of votes vs. turnout
are observed. Another indicator of systematic fraudulent or ir-
regular voting behavior is an incremental fraud parameter fi,
which is significantly greater than zero on each aggregation level.
Should such signals be detected, it is tempting to invoke G. B.

Shaw, who held that “[d]emocracy is a form of government that
substitutes election by the incompetent many for appointment by
the corrupt few.”
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Fig. 6. The ballot stuffing mechanism can be visualized by considering the
cumulative number of votes as a function of turnout. Each country’s election
winner is represented by a curve, which typically takes the shape of a sig-
moid function reaching a plateau. In contrast to the other countries, Russia
and Uganda do not tend to develop this plateau but instead, show a pro-
nounced increase (boost) close to complete turnout. Both irregularities are
indicative of the two ballot stuffing modes being present.
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