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In spatial games players typically alter their strategy by imitating the most successful or one randomly
selected neighbor. Since a single neighbor is taken as reference, the information stemming from other
neighbors is neglected, which begets the consideration of alternative, possibly more realistic approaches.
Here we show that strategy changes inspired not only by the performance of individual neighbors but rather
by entire neighborhoods introduce a qualitatively different evolutionary dynamics that is able to support the
stable existence of very small cooperative clusters. This leads to phase diagrams that differ significantly from
those obtained by means of pairwise strategy updating. In particular, the survivability of cooperators is
possible even by high temptations to defect and over a much wider uncertainty range. We support the
simulation results by means of pair approximations and analysis of spatial patterns, which jointly highlight
the importance of local information for the resolution of social dilemmas.

C
ooperative behavior is extremely important, both in the animal world as well as across human societies1–4.
Yet it is also an evolutionary puzzle, as it is costly but has no immediate individual benefits, except in rare
exceptions, for example when cooperation is agreed upon as a risk-sharing mechanism. How cooperation

evolved amongst selfish and unrelated individuals is therefore still ardently investigated, as evidenced by recent
reviews5–10.

Evolutionary game theory11–13 provides an apt theoretical framework to address the subtleties of the evolution of
cooperation. One of the most popular games that is representative for situations constituting a social dilemma is the
prisoner’s dilemma game1. It can be summarized succinctly. Two individuals have to decide simultaneously whether
they wish to cooperate or not. Cooperator pays a cost c towards the mutual benefit b where b . c . 0, while defector
contributes nothing. This yields the temptation to defect T 5 b, reward for mutual cooperation R 5 b – c, punishment
for mutual defection P 5 0, and the sucker’s payoff S 5 –c, which for the prisoner’s dilemma game thus satisfy T . R
. P . S and 2R . T 1 S. Evidently, for an individual it is best to defect regardless of what the opponent does. As
rational players are aware of this, they both defect, in turn obtaining P rather than R, hence the social dilemma14.

Several mechanisms that facilitate the evolution of cooperation are known. Nowak summarizes five rules6,
which are kin selection15, direct reciprocity16, indirect reciprocity17, group selection18, and network reciprocity19.
Networks in particular, have received substantial attention in the recent past7. While scale-free networks appear to
provide the best environment for the evolution of cooperation20–27, small-world28–32 and hierarchical networks33–35

also received ample attention. Largely motivated by the discovery that complex networks facilitate the evolution
of cooperation, heterogeneity in general has emerged as an important property that may help keep defectors in the
minority36–39. Coevolutionary games10, where the structure of the network was subject to evolution just as the
strategies of players have been studied thoroughly too40–54, with the prevailing conclusion being that this may give
rise to robust cooperative states and lead to socially preferable interaction networks in a spontaneous manner.
Quite remarkably, this has recently been confirmed empirically55, although very extensive experiments also
indicate that the human behavior may suppress network reciprocity56,57.

In fact, how human decision-making affects the evolution of cooperation is of particular relevance for the
present work. Szabó et al.58 have recently considered a special type of strategy updating. Instead of players
exclusively caring only about their own payoffs when updating their strategies, they investigated what happens
when a pair of randomly chosen neighboring players tries to maximize their collective income by simultaneously
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updating their two strategies. It was reported that the proposed strat-
egy update rule produces the antiferromagnetic ordering structure of
cooperators and defectors on the square lattice at sufficiently low
noise intensities, and that this favors the evolution of cooperation
more than the traditional pairwise imitation updating. Human
decision-making dynamics has also been investigated experiment-
ally, whereby we are particularly interested in the so called ‘‘social
influence’’ effect reported by Lorenz et al.59. As stated in their paper,
social influence among group members plays an important role in
individual decision-making.

One may then ask how this affects the evolution of cooperation? To
address this question, we propose an adaptive strategy-adoption rule
in which the social influence is taken into account. In particular, as a
proxy for the social influence we assume that the decisions the players
make are affected by all their neighbors, not just a single randomly
selected or the most successful neighbor. Players can collect informa-
tion from their neighbors, and moreover, their decision-making is
more likely to be affected by the circle of ‘‘close friends’’ rather than
the whole social environment. We introduce this so-called local influ-
ence to the strategy updating simply so that, before a potential update,
each player considers the average performance of its own strategy and
that of the other strategy, if present, within its neighborhood. As we
will show in what follows, this introduces a qualitatively different
evolutionary dynamics that is able to support the stable existence of
very small cooperative clusters, which in turn supports the surviva-
bility of cooperative behavior even under very unfavorable conditions.
Besides simulation results60, we will also present results obtained with
pair approximation methods, which are, along with the game theor-
etical model, accurately described in the Methods section.

Results
We begin by presenting the fraction of cooperators rC as a function
of the cost-to-benefit ratio r 5 c/b at two temperatures, namely at K

5 0.1 and K 5 0.83. The usage of the latter value is motivated by
recent empirical research from behavioral science61, although essen-
tially, as we will show in what follows, the temperature, i.e., the level
of uncertainty by strategy adoptions, does not play a decisive role.
Results for both the pairwise and locally influenced strategy updating
are presented in Fig. 1(a,c). It can be observed that for K 5 0.1 the
evolution of cooperation is promoted across the whole applicable
span of r if the traditionally used pairwise strategy updating is
replaced by the proposed local influence based strategy updating.
For K 5 0.83, however, the outcome is a bit less clear-cut. While
pairwise imitation fails to sustain cooperative behavior at such high
values of r as locally influenced strategy updating, it is nevertheless
more apt for achieving complete cooperator dominance. As we will
show in what follows, it is indeed the case that locally influenced
strategy updating often fails to completely eliminate defectors at
small values of r, yet it opens up the possibility of survival of coop-
erators even under harsh defector-friendly conditions.

These simulation results can be corroborated by results of pair
approximations (see Methods for details), which we present in
Fig. 1(b,d). The general trends are predicted correctly, although as
expect, the beneficial effect of network reciprocity19 at low values of r
are underestimated. It is worth mentioning that the pair approxi-
mation is in general more accurate for larger values of K62, and indeed
it can be observed that the agreement with simulation results is better
for K 5 0.83 than it is for K 5 0.1. In particular, for K 5 0.83 the pair
approximation method correctly predicts the occurrence of an inter-
section point [compare panels (c) and (d)]. Altogether, results of pair
approximations corroborate the conclusion that the survivability of
cooperators, especially at high values of r, is substantially promoted
by locally influenced strategy updating.

Further adding to the robustness of this conclusion are results
presented in Fig. 2(a,c), where we present full K – r phase diagrams
for both considered updating rules. It can be observed that the

Figure 1 | Fraction of cooperators rC as a function of the cost-to-benefit ratio r, as obtained for K 5 0.1 [panels (a) and (b)] and K 5 0.83 [panels (c) and
(d)]. Results presented in panels (a) and (c) were obtained by means of Monte Carlo simulations, while those presented in panels (b) and (d) were

obtained by means of pair approximation (see Methods section for details). Figure legend indicates whether pairwise or locally influenced strategy

updating was used.
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positive impact of local influence on the evolution of cooperation
persists across large regions of K. On the other hand, the presented
phase diagrams also evidence more clearly the failure of the proposed
updating rule to lead to an absorbing C phase. Moreover, there is a
notable qualitative difference in the critical behavior that is evoked by
the updating rule. By focusing on the D R C1 D phase boundaries, it
can be observed that for pairwise strategy updating there exists an
optimal value of K at which cooperators thrive best. Note that the D
R C 1 D phase boundary is bellshaped, indicating that K < 0.3 is the
optimal temperature at which cooperators are able to survive at the
highest value of r. For strategy updating based on local influence,
however, this feature is absent. The D R C 1 D phase boundary is in
fact an inverted bell, indicating the existence of the worst rather than
an optimal value of K. Notably, the results for pairwise strategy
updating are in agreement with previous works62–64, where it was
shown that the lack of overlapping triangles, as is the case for the
square lattice as well as for random regular graphs, introduces an
optimal uncertainty for the evolution of cooperation. Conversely, the
results obtained by considering local influence suggest that the sys-
tem is behaving as if overlapping triangles were in fact present in the
interaction network. Note that in the latter case an optimal K for the
evolution of cooperation does not exist. This leads us to the conclu-
sion that the interaction network is effectively altered when the local
influence is taken into account. In particular, triplets of players that
are not connected by means of the original interaction graph (the
square lattice) become effectively connected through the joint par-
ticipation of players in the same local groups (neighborhoods) that
are subject to the same local influence. An identical effect was indeed
observed by the study of the public goods game65, where triplets also
became effectively connected because of the participation of players
in the same groups. Below, we will provide further evidence concern-
ing the effective linkage of triples of players, which is essentially a side
effect of locally influenced strategy updating. Another interesting
observation is that the parameter region of the mixed C 1 D phase

in general widens as K increases, which is in contract to the results
obtained by means of pairwise strategy updating.

We have also constructed full K – r phase diagrams by means of
pair approximations. Figure 2(b,d) features the obtained results,
from which it follows that qualitative features, compared to the
simulation results, are again captured fairly accurately, although
the extent of the parameter region of the mixed C 1 D phase is
overestimated. Expectedly, the predictions are also less accurate near
the phase boundaries, which is because the pair approximation does
not take into account loops nor does it take into account long-range
correlations, which however, have a noticeable effect especially in the
vicinity of critical transitions66.

In order to obtain an understanding of the reported observations,
we proceed with the presentation of characteristic spatial patterns, as
obtained for both pairwise and locally influenced strategy updating,
in Fig. 3. Regardless of which update rule is applied, cooperators form
compact clusters by means of which they are able to exploit the
mechanism of network reciprocity19. If the value of r is small, the
clusters are larger and more compact than for higher values of r. On
the other hand, the spatial patterns emerging under the two update
rules also have noticeable dissimilarities. Foremost, given a value of r,
pairwise strategy updating yields larger clusters than locally influ-
enced strategy updating, even if the density of cooperators is approxi-
mately the same [compare panels (a) and (c)]. Nearer to the
extinction threshold the stationary densities differ, yet the difference
in the spatial patterns the two rules generate becomes most apparent
[compare panels (b) and (d)].

The visual inspection of the characteristic spatial patterns invites a
quantitative analysis of the exposed differences, the results of which
are presented in Fig. 4 separately for both updating rules. It can be
observed that, in general, as r increases, the cluster size decreases. The
number of clusters, on the other hand, is maximal at an intermediate
value of r. Concrete r values, however, differ significantly for the two
considered strategy updating rules. In particular, by pairwise strategy

Figure 2 | Full K – r phase diagrams, as obtained by means of Monte Carlo simulations [panels (a) and (c)] and by means of pair approximation [panels
(b) and (d)]. Upper red (lower blue) lines denote the boundaries between the mixed C 1 D and homogeneous D (C) phases.
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updating both the clusters size and the number of clusters are shifted
significantly towards lower values of r. One reason is obviously that
pairwise strategy updating simply does not support the survivability
of cooperators by as high values of r as locally influenced strategy
updating. Nonetheless, the fact that for any given value of r, where
comparisons are possible, the typical cluster size obtained with pair-
wise strategy updating is much larger than the one obtained with
locally influenced strategy updating begets the conclusion that there
are significant differences in the way cooperators cluster to withstand
being wiped out by defectors. Note that for cooperators to survive
under pairwise updating the minimally required cluster size is
< 76.18, while for locally influenced updating it is only 6.61. More-
over, for pairwise strategy updating the cluster size decreases much
faster, which speaks in favor of the increased stability of the clusters
under locally influenced strategy updating.

To confirm these conjectures, we present in Fig. 5 two typical C-
cluster configurations and analyze the survivability of cooperators
separately for each particular case. For the sake of simplicity but
without loss of generality, we consider for the following analysis only
the K R 0 limit. Then if the payoff of each cooperator along the
boundary is larger than that of each defector in its neighborhood, we
are allowed to conclude that such a C-cluster will survive. For the left
C-cluster pattern in Fig. 5 under pairwise updating, the payoffs of a
cooperator C (PC) and defector D (PD) along the boundary are

PC~2 and PD~1z4r, ð1Þ

respectively. For locally influenced updating, however, the average
payoff of cooperators (�PC) and the average payoff of defectors (�PD)
along the boundary are given by

�PC~2 and �PD~1z4r, ð2Þ

respectively. Thus for such a C-cluster pattern to survive, both update
rules lead to r , –0.25. Indeed, neither locally influenced nor pair-
wise strategy updating support the survivability of such a pattern.
Performing the same analysis for the configuration on the right,
however, yields a different outcome. The payoff of a cooperator C2

(PC2 ) on the boundary and that of the two types of defectors D1 and
D2 (PD2 and PD1 ) are

PC2~1, PD1~2z4r and PD2~1z4r, ð3Þ

respectively. For locally influenced updating the corresponding pay-
offs are

�PC~
5
2

and �PD~
5
3
z4r: ð4Þ

Accordingly, we find that under pairwise updating the condition for
survivability is r , –0.25, while under locally influenced updating it is

only rv
5

24
. Hence, locally influenced strategy updating can warrant

the survivability of cooperators when grouped in this way, while
pairwise updating can not. Note also that the C-cluster configuration
on the right of Fig. 5 is the smallest one which can persist in the
population under the most hostile conditions under locally

Figure 3 | Characteristic snapshots of spatial patterns formed by
cooperators (blue) and defectors (red) under pairwise imitation [(a) r 5
0.004, (b) r 5 0.019] and under strategy updating based on local influence
[(c) r 5 0.004, (d) r 5 0.221]. The size of the square lattice was 100 3 100

and K 5 0.83. (a) In this snapshot there are 77 clusters, ranging in size from

a single cooperator to 3042 cooperators, with a weighted average size of

1925.21. The stationary fraction of cooperators is rC < 0.52. (b) In this

snapshot there are 99 clusters, ranging in size from a single cooperator to

162 cooperators, with a weighted average size of 70.01. The stationary

fraction of cooperators is rC < 0.19. These characteristics are significantly

different in the bottom two snapshots. (c) In this snapshot there are 439

clusters, ranging in size from a single cooperator to 427 cooperators, with a

weighted average size of 137.69. The stationary fraction of cooperators is

rC < 0.52. (d) In this snapshot there are 164 clusters, ranging in size from a

single cooperator to 19 cooperators, with a weighted average size of 6.63.

The stationary fraction of cooperators is rC < 0.05. Note that in snapshots

(a) and (c) the densities of cooperators for both update rules are practically

identical, while nearer to the extinction thresholds [panels (b) and (d)]

they differ quite significantly.

Figure 4 | Macroscopic properties of cooperative clusters in the
dependence on the cost-to-benefit ratio r. Cluster size (a) and cluster

count (b) are depicted for pairwise and locally influenced strategy

updating. In both cases the cluster size decreases as r increases, while the

cluster count reaches a maximum at a certain value of r and then decreases.

Note that for pairwise imitation a minimum cluster size of about 76.18 is

required for cooperators to survive. Taking into account the local influence

of the neighbors reduces this to 6.61. The depicted results were determined

in the stationary state on 100 3 100 square lattices and by using K 5 0.83.

Error bars indicate the standard deviation.
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influenced strategy updating. Based on this analysis, we can in fact

estimate the extinction threshold r~
5

24
<0:21 in the limit K R 0,

and indeed we find excellent agreement between this analytical
approximation and the simulation results presented in Fig. 2(c).

With these insights, we argue that local influence based strategy
updating can support the survivability of cooperative behavior
only if the core of the C-cluster is isolated from defectors (com-
pare left and right configuration of Fig. 5), because cooperators
along the boundary can then gain a higher level of support from
the cluster and thus protect themselves against being exploited by
defectors. In previous works, where only pairwise strategy updat-
ing was considered, individual players were concerned only with
their own payoffs when updating their strategies. However, if
individuals are exposed to the local influence, i.e., they care about
the average performance of the strategies in their neighborhood,
cooperators can benefit not only from their own payoffs, but also
from the payoffs of their cooperative neighbors. In this sense,
locally influenced strategy updating further strengthens the link-
age between cooperators within cooperative clusters, and so coop-
erators can reciprocate with each other on a profounder and
altogether more effective level.

In terms of the robustness of the described mechanism to varia-
tions of the interaction network, our preliminary investigations indi-
cate that cooperation is always promoted on regular small-world
networks with different rewiring probabilities67, as well as on scale-
free networks68 provided the payoffs are normalized with the number
of neighbors25. If the payoffs on scale-free networks are not normal-
ized with the number of neighbors20, the promotion of cooperation
due to local influence, compared to the traditional pairwise strategy
updating, may be compromised. Additional research is needed, how-
ever, to clarify conclusively the potential negative impact of strongly
heterogeneous degree distributions on the newly identified mech-
anism for the promotion of cooperation. It would also be of much
interest to clarify the role of zero-determinant strategies69,70, which
point to major paradigm shifts in the resolution of social dilemmas.

Discussion
Summarizing, we have analyzed the impact of ‘‘local influence’’ on
the evolution of cooperation in the spatial prisoner’s dilemma game.
Instead of the performance of a single neighbor, players considered
the average performance of the two strategies within their neighbor-
hoods. We have shown that by going beyond the traditionally

assumed pairwise strategy updating, the evolution of cooperation
can be promoted. We have determined full K – r phase diagrams
by means of simulations and pair approximation methods, which
both indicate that this effect is robust against uncertainty by strategy
adoptions. Moreover, the phase separation lines indicate that the
consideration of local influence effectively changes the interaction
network as an optimal K is no longer inferable. This is characteristic
for interaction networks with overlapping triangles62,64, which are
obviously not part of the square lattice topology that we have
employed. By analyzing the macroscopic features of emerging spatial
patterns as well as the survivability of typical cooperative clusters, we
have provided further insights as to how the consideration of local
influence changes the evolutionary dynamics.

Lastly, it is worth relating the presently considered strategy updat-
ing rule to previous gametheoretical models. By the win-stay-lose-
shift rule32,71–74, for example, each individual has an aspiration
according to which it judges whether or not to change strategy.
The aspiration, however, is traditionally assumed to be constant. In
our case, on the other hand, we relax this assumption by considering
the aspiration as a dynamical quantity. Note that the average payoff
of the strategy that is not adopted by the focal player can in fact be
regarded as the aspiration level. This in turn implies that here the
aspiration depends on the outcome of the game, and hence is subject
to change. Moreover, the present rule can be regarded as a learning
rule. The difference from the traditional single role model learning
rule is that in the present case the strategy update depends not on the
comparison of a pair of individuals, but on the comparison of two
groups of individuals, each involving several individuals adopting the
same strategy. Overall, we hope that these considerations, and in
particular the consideration of local influence and the ‘‘wisdom of
crowds’’59,75,76, will motivate further research aimed at promoting our
understanding of the evolution of cooperation.

Methods
Mathematical model. Players are located on the vertices of a L 3 L square lattice with
periodic boundary conditions. Each individual is initially designated either as a
cooperator C or defector D with equal probability. For the pairwise imitation strategy
updating rule77 (we use the label ‘‘pairwise’’ in the figure legends when applying this
rule), Monte Carlo simulations of the game are carried out comprising the following
elementary steps. First, a randomly selected player x collects its payoff Px by
interacting with its four nearest neighbors. For the purpose of payoff evaluation, it is
worth introducing unit vectors S 5 [1, 0]T and [0, 1]T for cooperators and defectors,
respectively. The payoff matrix is

M~
1 0

1zr r

� �
, ð5Þ

where r[ 0,1ð Þ is the cost-to-benefit ratio. The payoff of player x is thus

Px~
X

z[C xð Þ
ST

x MSz , ð6Þ

where C(x) represents its neighborhood. Subsequently, one randomly chosen
neighbor y of player x also acquires its payoff Py identically as previously player x.

After the evaluation of payoffs, players consider changing their strategies. In par-
ticular, player x adopts the strategy Sy of the randomly selected neighbor with the
probability

T Py{Px
� �

~
1

1zexp Px{Py
� ��

K
� � , ð7Þ

where K is the uncertainty by strategy adoptions7. If the local influence is taken into
account (we use the label ‘‘local’’ in the figure legends when applying this rule),
however, the elementary steps are as follows. First, we randomly choose a player x
with the strategy Sx. Next, we evaluate the average payoff �PSx of those players who
adopt the same strategy Sx, as well as the average payoff �P�Sx

of those players who adopt
the opposite strategy �Sx of player x, if any, within the neighborhood. In particular, we
have

�PSx ~

P
z[C xð Þ

Pzd �ST
x Sz

� �
zPx

P
z[C xð Þ

d �ST
x Sz

� �
z1

and �P�Sx
~

P
z[C xð Þ

Pzd ST
x SZ

� �
P

z[C xð Þ
d ST

x SZ
� � , ð8Þ

Figure 5 | Schematic presentation of two representative cooperative
(blue) clusters surrounded by defectors (red). The cluster depicted left has

no chances of survival under pairwise or locally influenced strategy

updating. The cluster on the right, however, cannot prevail under pairwise

imitation, but can do so under locally influenced strategy updating. This is

because the core of the cooperative cluster (C1 in the figure) is quarantined

from defectors in case imitation proceeds according to local influence (see

main text for details).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 740 | DOI: 10.1038/srep00740 5



where the Dirac delta function d(x) satisfies

d xð Þ~
0, if x=0

1, if x~0
:

	
ð9Þ

Lastly, player x will adopt the strategy �Sx with the probability

T �P�Sx
{�PSx

� �
~

1

1zexp { �P�Sx
{�PSx

� ��
K

� � , ð10Þ

where K is, as by pairwise imitation, the uncertainty by strategy adoptions.
The presented simulation results were obtained by using L 5 100 – 400 depending

on the proximity to phase separation lines and the size of the emerging spatial patterns.
In accordance with the random sequential update, each full Monte Carlo step, which
consists of repeating the elementary steps L3L times corresponding to all players, gives
a chance once on average for every player to alter its strategy. The stationary frequency
of cooperators rC is determined by averaging over 104 Monte Carlo steps in the
stationary state after sufficiently long relaxation times. In general, the stationary state
has been considered to be reached when the average of the cooperation level becomes
time-independent. To further increase the accuracy of our simulations, we have
averaged the final outcome over 50 independent initial conditions.

Pair approximations. Let pC and pD 5 1 – pC denote the frequencies of cooperators
and defectors, respectively, and let pCC, pCD, pDC and pDD represent the frequencies of
CC, CD, DC and DD pairs, respectively. Then qXjY 5 pXY/pY with X,Y[C,D specifies
the conditional probability to find an X-player given that the neighboring node is
occupied by an Y-player. Note that here X, Y and Z denote either C or D. Instead of the
first-order approximation considering the frequency of strategies as in the well-mixed
population, the pair approximation tracks the frequencies of strategy pairs
pXY X,Y[C,Dð Þ. The probabilities of larger configurations are approximated by the
frequencies of configurations not more complex than pairs. Based on the
compatibility condition pX 5 SYpXY, the symmetry condition pXY 5 pYX, and closure
conditions, pC and pCC can fully determine the dynamics of the system. While the pair
approximation for pairwise imitation is well-known and can be looked up for
example in the Appendix of7 or more recently78, for the imitation based on local
influence the derivations are as follows.

A defector is selected for strategy updating with the probability pD. Let kC and kD

denote the number of cooperators and defectors amongst the neighbors on a regular
lattice with degree k, respectively. The frequency of such a configuration is

k!

kC !kD!
qkC

CjDqkD
DjD, ð11Þ

and the payoff of the defector is PD(kC, kD) 5 (1 1 r) ? kC 1 r ? kD. The configuration
probability with which a neighboring cooperator has k0C cooperators and k0D defectors
as its neighbors is

k{1ð Þ!
k0C !k0D!

q
k0C
CjCDq

k0D
DjCD, ð12Þ

where qXjYZ gives the conditional probability that a player next to the YZ pair is in
state X. The payoff of the neighboring cooperator is PC k0C ,k0D

� �
~k0C . Similarly, the

configuration probability with which a neighboring defector has k0C cooperators and
k0D defectors as its neighbors is

k{1ð Þ!
k0C !k0D!

q
k0C
CjDDq

k0D
DjDD, ð13Þ

and the payoff of the neighboring defector is PD k0C ,k0D
� �

~ 1zrð Þ:k0Czr: k0Dz1
� �

.
Thus, the average payoff �PC of cooperators that are neighbors of the focal defector is

�PC~
Xk{1

k0C~0

k{1ð Þ!
k0C !k0D!

q
k0C
CjCDq

k0C
DjCD

:PC k0C ,k0D
� �

~ k{1ð Þ:qCjCD:

ð14Þ

The average payoff �PD of defectors that are neighbors of the focal defector, on the
other hand, is

�PD~

kD
: Pk{1

k0C~0

k{1ð Þ!
k0C !k0D!

q
k0C
CjDDq

k0D
DjDD

:PD k0C ,k0D
� �

zPD kC ,kDð Þ

kDz1

~
kD
: k{1ð Þ:qCjDDzrk
� �

zrkzkC

kDz1
:

ð15Þ

Consequently, pC increases by 1/N where N 5 L2, with probability

Pr ob DpC~
1
N


 �
~pD

:
Xk

kC~1

k!

kC !kD!
qkC

CjDqkD

DjD
:T �PC{�PDð Þ, ð16Þ

where T �PC{�PDð Þ is the individual transition probability given by Eq. 10. The
number of CC pairs increases by kC, and thus pCC increases by 2kC/(kN) with prob-
ability

Pr ob DpCC~
2kC

kN


 �
~pD

: k!

kC !kD!
qkC

CjDqkD
DjD
:T �PC{�PDð Þ: ð17Þ

A cooperator, on the other hand, is selected for strategy updating with the probability
pC. The frequency of a configuration that there are kC cooperators and kD defectors in
the neighborhood of the focal cooperator is

k!

kC !kD!
qkC

CjCqkD
DjC , ð18Þ

and the payoff of the focal cooperator is PC(kC, kD) 5 kC. The configuration prob-
ability with which a neighboring cooperator has k0C cooperators and k0D defectors as its
neighbors is

k{1ð Þ!
k0C !k0D!

q
k0C
CjCCq

k0D
DjCC , ð19Þ

and the payoff of the neighboring cooperator is PC k0C ,k0D
� �

~k0Cz1. Similarly, the
configuration probability with which a neighboring defector has k0C cooperators and
k0D defectors as its neighbors is

k{1ð Þ!
k0C !k0D!

q
k0C
CjDCq

k0D
DjDC , ð20Þ

and the payoff of the neighboring defector is PD k0C ,k0D
� �

~ 1zrð Þ: k0Cz1
� �

zrk0D .
Thus the average payoff �PC of cooperators in the neighborhood of the focal coop-
erator is

�PC~

kC
: Pk{1

k0C~0

k{1ð Þ!
k0C !k0D!

q
k0C
CjDCq

k0D
DjCC

:PC k0C ,k0D
� �

zPC kC ,kDð Þ

kCz1

~
kC
: k{1ð Þ:qCjCCz2
� �

kCz1
,

ð21Þ

while, the average payoff �PD of defectors in the neighborhood of the focal cooperator
is

�PD~
Xk{1

k0C~0

k{1ð Þ!
k0C !k0D!

q
k0C
CjDCq

k0C
DjDC

:PD k0C ,k0D
� �

~ k{1ð Þ:qCjDCz1zrk:

ð22Þ

Thus pC decreases by 1/N with probability

Pr ob DpC~{
1
N


 �
~pC

:
Xk

kC~1

k!

kC !kD!
qkC

CjCqkD

DjC
:T �PD{�PCð Þ: ð23Þ

Moreover, the number of CC pairs decreases by kC and thus pCC decreases by 2kC/(kN)
with probability

Pr ob DpCC~{
2kC

kN


 �
~pC

: k!

kC !kD!
qkC

CjCqkD
DjC
:T �PD{�PCð Þ: ð24Þ

These derivations lead us to the master equations

_pC~Pr ob DpC~
1
N


 �
{Pr ob DpC~{

1
N


 �
ð25Þ

and

_pCC~
Xk

kC~0

2kC

k
Pr ob DpCC~

2kC

kN


 �
{Pr ob DpCC~{

2kC

kN


 �� �
: ð26Þ

Although these equations are per derivation exact, they do depend on the density of
triplet configurations which are outside their scope. Thus, in order to ‘‘close’’ the
system of differential equations, the triplet configuration probabilities have to be
approximated by probabilities of configurations that are not more complex than
pairs. Note that by using different closure conditions, we can in general obtain
different pair approximations. Here we employ the so-called ordinary pair approxi-
mation method, where only the first-order pair correlations are considered. We thus
have qXjYZ < qXjY.
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