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Abstract 

Ecological interaction, including competition for resources, often causes frequency-dependent 

disruptive selection, which, when accompanied by reproductive isolation, may act as driving 

forces of adaptive speciation. While adaptive dynamics models have added new perspectives 

to our understanding of the ecological dimensions of speciation processes, it remains an open 

question how best to incorporate and analyze genetic detail in such models. Conventional ap-

proaches, based on quantitative genetics theory, typically assume a unimodal character distri-

bution and examine how its moments change over time. Such approximations inevitably fail 

when a character distribution becomes multimodal. Here, we propose a new approximation, 

oligomorphic dynamics, to the quantitative genetics of populations that include several 

morphs and that therefore exhibit multiple peaks in their character distribution. To this end, 

we first decompose the character distribution into a sum of unimodal distributions corres-

ponding to individual morphs. Characterizing these morphs by their frequency (fraction of 

individuals belonging to each morph), position (mean character of each morph), and width 

(standard deviation of each morph), we then derive the coupled eco-evolutionary dynamics of 

morphs through a double Taylor expansion. We show that the demographic, convergence, and 

evolutionary stability of a population’s character distribution correspond, respectively, to the 

asymptotic stability of frequencies, positions, and widths under the oligomorphic dynamics 

introduced here. As first applications of oligomorphic dynamics theory, we analytically derive 

the effects (a) of the strength of disruptive selection on waiting times until speciation, (b) of 
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mutation on conditions for speciation, and (c) of the fourth moments of competition kernels 

on patterns of speciation. 

 

Keywords: adaptive dynamics, quantitative genetics theory, moment dynamics, adaptive 

speciation, evolutionarily stable strategy, convergence stability 

 

Classification code: MSC 92 (Biology and other natural sciences) -- 92D10 (Genetics), 

92D15 (Problems related to evolution), or 92D40 (Ecology). 

1. Introduction 

Quantitative genetics theory has been successful in analyzing a wide variety of evolutionary 

processes, including trait shifts under directional, disruptive, or temporally fluctuating natural 

or artificial selection (Lande 1979; Bulmer 1992; Falconer 1996); mechanisms for maintain-

ing standing genetic variation by mutation-selection balance, fluctuating selection, or hetero-

sis (Kimura and Crow 1964; Bulmer 1972; Lande 1975; Felsenstein 1976; Ellner and Hairs-

ton 1994; Ellner and Sasaki 1996; Kondrashov and Yampolsky 1996; Sasaki and Ellner 

1997); as well as escalations of male ornaments and female preferences through runaway se-

lection (Lande 1981; Lande and Kirkpatrick 1988; Iwasa et al. 1991). 

A limitation in many applications of quantitative genetics theory arises from a focus 

on unimodal character distributions, which simplifies the derivation of equations for the tem-

poral change of population genetics quantities. To justify the required moment closures, cha-

racter distributions have been assumed to be of Gaussian shape (e.g., Lande 1979) or to be 

narrowly localized around a single mean (e.g., Iwasa et al. 1991). Moreover, many applica-

tions of quantitative genetics theory assume genetic variances and covariances to be constant, 

to make the analyzed models more tractable. Such approximations must therefore fail once 

the distribution of a quantitative character starts becoming bimodal. The latter is expected 

under frequency-dependent disruptive selection. Such selection can arise from a great variety 

of ecological processes, including symmetric intraspecific competition (Metz et al. 1996; Sa-

saki 1997; Doebeli 1996a, 1996b; Dieckmann and Doebeli 1999), asymmetric intraspecific 

competition (Kisdi 1999; Doebeli and Dieckmann 2000; Kisdi et al. 2001), interspecific 

competition (Law et al. 1997; Kisdi and Geritz 2001), resource specialization (Meszéna et al. 

1997; Geritz et al. 1998; Day 2000; Kisdi 2001; Schreiber and Tobiason 2003; Egas et al. 

2004, 2005), temporally fluctuating selection with storage effect (Ellner and Hairston 1994; 

Sasaki and Ellner 1995, 1997; Ellner and Sasaki 1996), ontogenetic niche shifts (Claessen and 

Dieckmann 2002), mixotrophy (Troost et al. 2005), phenotypic plasticity (Sasaki and Ellner 

1995; Sasaki and de Jong 1999; Van Dooren and Leimar 2003; Ernande and Dieckmann 

2004; Leimar 2005), dispersal evolution (Levin et al. 1984; Cohen and Levin 1991; Ludwig 

and Levin 1991; Doebeli and Ruxton 1997; Johst et al. 1999; Parvinen 1999; Mathias et al. 
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2001; Parvinen and Egas 2004), mutation evolution (Haraguchi and Sasaki 1996), mutualism 

(Doebeli and Dieckmann 2000; Law et al. 2001; Ferdy et al. 2002; Ferrière et al. 2002; Day 

and Young 2004), emergent cooperation (Doebeli et al. 2004), predator-prey interactions 

(Brown and Pavlovic 1992; Van der Laan and Hogeweg 1995; Doebeli and Dieckmann 2000; 

Bowers et al. 2003), cannibalism (Dercole 2003), evolution of virulence (Boots et al. 2004; 

Kamo et al. 2007), host-parasite interactions (Haraguchi and Sasaki 1996, 1997; Boots and 

Haraguchi 1999; Sasaki and Godfray 1999; Koella and Doebeli 1999; Regoes et al. 2000; 

Gudelj et al. 2004), sex-ratio evolution (Metz et al. 1992; Reuter et al. 2004), evolution of 

selfing (Cheptou and Mathias 2001; De Jong and Geritz 2001), evolution of mating traits 

(Van Doorn et al. 2001, 2004), evolution of anisogamy (Matsuda and Abrams 1999; Maire et 

al. 2001), evolution of cytoplasmic inheritance (Iwanaga and Sasaki 2004), seed-size evolu-

tion (Rees and Westoby 1997; Geritz et al. 1999; Mathias and Kisdi 2002), microbial 

cross-feeding (Doebeli 2002), prebiotic evolution (Meszéna and Szathmáry 2001), resource 

competition among digital organisms (Chow et al. 2004), and evolutionary community as-

sembly (Jansen and Mulder 1999; Bonsall et al. 2004; Loeuille and Loreau 2005). These 

processes are important for understanding adaptive speciation and many other processes in-

volving frequency-dependent interactions within or between species. Analyses of character 

distributions with an evolutionarily variable number of modes have therefore relied on nu-

merical investigations or on game theory and adaptive dynamics theory (e.g., Eshel and Motro 

1981; Eshel 1983; Ludwig and Levin 1991; Sasaki and Ellner 1995, 1997; Dieckmann and 

Law 1996; Sasaki 1997; Dieckmann and Doebeli 1999; Sasaki and Godfray 1999; Doebeli 

and Dieckmann 2000, 2003). The latter have to assume a minimal degree of population ge-

netic complexity and often do not account for polymorphic genetic variation around a distri-

bution’s modes. 

In this study, we propose a new approximation, oligomorphic dynamics, to describe 

the quantitative genetic dynamics of asexually reproducing populations that contain multiple 

morphs and therefore exhibit multiple peaks in their character distribution. The main idea of 

this approximation is simple and our approach proceeds in three steps: we (1) decompose a 

population’s character distribution into a sum of single-peaked distributions, each corres-

ponding to one morph; (2) characterize each morph by its frequency (fraction of individuals 

belonging to the morph), position (mean character of the morph), and width (standard devia-

tion of the morph); and (3) derive the equations that govern the dynamics of these quantities. 

A central purpose of the oligomorphic approximation is to analyze the transitions 

through which an evolving character distribution becomes divided into several morphs and 

reaches a multimodal stationary state. We derive the approximate moment dynamics in terms 

of the frequencies, mean phenotypes, and variances of the morphs. Assuming that the widths 

of morphs are small relative to their distances, we derive the equations for the first three mo-
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ments through a novel approach of double Taylor expansion. Importantly, the distances be-

tween morphs do not have to be small for the oligomorphic approximation to be accurate. 

Our theory builds on the dynamics of mean quantitative characters pioneered by 

Lande (1976, 1979, 1981, 1982), who showed that changes in a unimodal distribution's mean 

character are proportional to the gradient of mean fitness as a function of mean character. 

Further work derived the dynamics of higher central moments (such as variance and skew-

ness) and made analyses more mathematically tractable by focusing on small deviations of 

characters from a population’s mean character (Barton and Turelli 1991). Another important 

extension of Lande's work occurred through the inclusion of frequency-dependent selection 

(Iwasa et al. 1991; Abrams et al. 1993; Vincent et al. 1993). If restricted to unimodal charac-

ter distributions, our oligomorphic approximation reduces to the theory of Taylor and Day 

(1997). Our oligomorphic approximation is also related to character-displacement models 

(Roughgarden 1972, 1976; Bulmer 1974; Slatkin 1980; Matessi and Jayakar 1981; Taper and 

Case 1985). These earlier models, however, assumed either a fixed variance for each species 

(e.g., Roughgarden 1976), a fixed Gaussian shape of each species’ character distribution (e.g., 

Slatkin 1980), or simple major-locus inheritance (based, e.g., on single-locus two-allele ge-

netics; Bulmer 1974). Reasons why character distributions are expected to exhibit distinctly 

separated peaks were elucidated by May (1973), Sasaki and Ellner (1995), Sasaki (1997), 

Gyllenberg and Meszéna (2005), Doebeli et al. (2007), Pigolotti et al. (2007, 2009), Leimar et 

al. (2008), and Fort et al. (2009). 

To illustrate the utility of the oligomorphic approximation, we consider evolutionary 

processes driven by resource competition (MacArthur 1970; Rosenzweig 1978; Roughgarden 

1972). In these models, individuals with similar phenotypes compete more intensely than 

phenotypically distant individuals. Two antagonistic selection pressures then need to be con-

sidered: the first results from frequency-dependent disruptive selection due resource competi-

tion, and the second from frequency-independent stabilizing selection towards an optimal 

phenotype at which, in the absence of competition, the resource is most abundant. Under these 

conditions, disruptive selection may cause the character distribution to split into several 

morphs. To derive the moment dynamics for each morph, it is necessary to evaluate the com-

petitive effects between individuals belonging to different morphs. This is why a standard 

moment-closure approach based on Taylor expansions assuming small character deviations 

around a common mean fails for processes allowing multimodal character distributions. By 

contrast, the oligomorphic dynamics proposed here successfully overcome this limitation by 

expanding the phenotypic effect of a competitor around the mean of the morph to which the 

competitor belongs, rather than around the mean of the morph to which the focal individual 

belongs. 
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2. Model description 

We call a character distribution oligomorphic if it comprises a finite number of distinct peaks. 

Below, we first derive the dynamics of an oligomorphic character distribution and then ap-

proximate these in terms of moment equations. Throughout, we illustrate our approach by us-

ing a continuous-time model of character-mediated competition. 

2.1. Resource competition 

We consider a continuum of ecological characters x  describing the peak of an organism's 

resource utilization spectrum along a one-dimensional niche space. The resource abundance at 

niche position x  is denoted by ( )K x , and the density of individuals with character x  is 

denoted by ( )N x . The competition coefficients between individuals with characters x  and 

y  are given by ( )a x y- . Because of the formal role it plays in the integral in eq. (1), the 

function ( )a d  is called the competition kernel. It is assumed to attain its maximum at 

0d = , implying that competition is strongest between individuals with identical characters, 

and to decrease monotonically towards 0 as d  increases. We also assume that competition 

is symmetric, so that ( ) ( )a x y a y x- = -  for all x  and y . 

The dynamics of ( )N x  are thus given by Lotka-Volterra competition equations for a 

continuum of characters, 

 
( ) 1

1 ( ) ( ) ( ),
( )

dN x
r a x y N y dy N x

d K xt

¥

- ¥

æ ö÷ç= - - ÷ç ÷ç ÷è øò  (1) 

where r  denotes the intrinsic growth rate. The carrying capacity ( )K x  is usually assumed 

to be unimodal around an optimum 0x = , where the resource is most abundant. Without loss 

of generality, we assume that (0) 1a =  and (0) 1K = . By definition, (0)a¢  = (0)K¢  = 0. 

For the sake of brevity, below we leave out the integration limits shown in eq. (1). 

We denote the total population density by ( )N N x dx= ò . The dynamics of N  are 

obtained by integrating both sides of eq. (1), 

 
1

1 ( ) ( ) ( ) ,
( )

dN
rN N a y x y dy x dx

d K x
f f

t

æ ö÷ç= - - ÷ç ÷ç ÷çè øò ò  (2) 

where ( ) ( ) /x N x Nf =  is the relative frequency of character x . 

2.2. Character dynamics 

The dynamics of the character distribution ( ) ( ) /x N x Nf =  are obtained by applying the 

chain rule and using eqs. (1) and (2), 
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( )

1 ( ) 1 1 ( ) 1
( )

( )

1 1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ),

d d N x dN x dN
x

dt rN d N rN N x d N d

a y x y dy x dx a x y y dy x
K x K x

w x w x

f
f

t t t

f f f f

f

æ ö÷ç= = - ÷ç ÷ç ÷çè ø

æ ö÷ç= - - - ÷ç ÷ç ÷çè ø

= -

ò ò ò  (3) 

where time is rescaled as 
0

( )t r N d
t

t t¢ ¢= ò  to eliminate the dependence on total population 

density in the frequency dynamics. Thus, the frequency ( )xf  of a character x  changes ac-

cording to its fitness 

 
1

( ) 1 ( ) ( ) ,
( )

w x a x y y dy
K x

f= - -ò  (4) 

which depends on the population's character distribution f , making selection frequen-

cy-dependent. The population's mean fitness is denoted by ( ) ( )w w x x dxf= ò . For a uni-

form competition kernel, ( ) 1a d =  for all d , the fitness ( )w x  is frequency-independent 

and stabilizing around 0x = , where the carrying capacity ( )K x  is largest. For sufficiently 

narrow competition kernels, the fitness landscape has a valley where the character distribution 

f  is peaked, implying frequency-dependent disruptive selection. The dynamics of f  are 

governed by the interplay between these selective forces. 

3. Results 

In the following, we introduce oligomorphic dynamics to describe how a population's charac-

ter distribution may split into several modes under the influence of frequency-dependent dis-

ruptive selection, and how these modes and their shapes are expected to change over time. We 

then examine the conditions for such splits, which can be seen as describing sympatric specia-

tion and/or character displacement in asexual populations. Next, we discuss the relationship of 

these conditions with three key stability concepts: demographic stability, convergence stabili-

ty, and evolutionary stability. We then investigate the effects of mutation, and of the shape of 

competition kernels and resource distributions, on these conditions, on the possible patterns of 

speciation, and on the expected times to speciation. 

3.1. Oligomorphic dynamics 

We assume that the character distribution ( )xf  consists of a few morphs 1,2, ,i n= L  ("a 

few" in English = "oligo" in Latin). These morphs have relative frequencies ip , with 

1
1

n

ii
p

=
=å , so that 

 
1

( ) ( ).
n

i ii
x p xf f

=
= å  (5) 

For the sake of brevity, below we leave out the summation limits shown in eq. (5). Each 

morph i  can be regarded as a quasispecies, characterized by its character distribution ( )i xf , 
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with ( ) 1i x dxf =ò . We define the dynamics of the frequencies ip  so that for each x  the 

contribution of morphs to ( ) /d x dtf  is proportional to their contribution to ( )xf , 

 
( ) ( ) ( )

.
( )

i i i idp x p x d x

dt x dt

f f f

f
=  (6) 

Integrating this equation over all characters x  and using eq. (3), we obtain 

 ( )
( ) ( )

( ) ( ) ( ) ,
( )

i i
i i i i i

dp x d x
p dx p x w x w dx w w p

dt x dt

f f
f

f
= = - = -ò ò  (7) 

where ( ) ( )i iw w x x dxf= ò  is the mean fitness of morph i . 

To derive the dynamics of the character distribution ( )i xf  of morph i , we use the 

product rule, ( ) ( ) ( )d d d
i i i i i idt dt dtp x p x x pf f f= + , solve for ( )d

idt xf , and then use eqs. (3), (6), 

and (7), 

 ( )

( )

( ) 1 ( )
( )

( ) ( ) ( )( )

( ) ( ).

i i i i
i

i

i i i

i i

d x dp x dp
x

dt p dt dt

x w x w x w w

w x w x

f f
f

f f

f

æ ö÷ç= - ÷ç ÷çè ø

= - - -

= -

 (8) 

3.2. Moment approximation of oligomorphic dynamics 

We now derive the approximate dynamics of the first three moments of the character distribu-

tions of morphs, given by their frequencies ip , means ( )i ix x x dxf= ò , and variances 
2( ) ( )i i iV x x x dxf= -ò . For this purpose, we first approximate the selection differentials 

( ) iw x w-  in eq. (8). 

3.2.1. Approximation of selection differentials 

We denote by i ix xx = -  the deviation of character x  from the mean character ix  of 

morph i . If x  is sufficiently close to ix , i.e., if ix  is of order e , where e  is a suffi-

ciently small positive constant, we can use a first Taylor expansion, of the interaction coeffi-

cients ( )a x y-  around the morph means jy x= , to approximate the fitness ( )w x  of cha-

racter x  by 

 2 3

3

1
( ) 1 ( ) ( )

( )

1 1
1 ( ) ( ) ( ) ( ) ( )

( ) 2

1 1 1
1 ( ) ( ) ( ).

( ) 2 ( )

j jj

j j j j j j j j j jj

j j j j jj j

w x p a x y y dy
K x

p a x x a x x a x x O x d
K x

p a x x p a x x V O
K x K x

f

x x e f x x

e

= - -

æ ö÷ç ¢ ¢¢= - - + - + - + +÷ç ÷çè ø

¢¢= - - - - +

å ò

å ò

å å

(9) 

Furthermore, we can use a second Taylor expansion of the fitness ( )w x  around the morph 

mean ix x= , 
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2

2 3
2

( ) 1 ( )
( ) ( ) ( ).

2
i i

i i i
x x x x

w x w x
w x w x O

x x
x x e

= =

¶ ¶
= + + +

¶ ¶
 (10) 

Multiplying this equation with ( )i xf  and integrating over all x  yields 

 
2

4
2

1 ( )
( ) ( ).

2
i

i i i

x x

w x
w w x V O

x
e

=

¶
= + +

¶
 (11) 

The selection differential for morph i  is obtained, up to second order in e , by subtracting 

eq. (11) from eq. (10), 

 
2

2 3
2

( ) 1 ( )
( ) ( ) ( ).

2
i i

i i i i
x x x x

w x w x
w x w V O

x x
x x e

= =

¶ ¶
- = + - +

¶ ¶
 (12) 

The two partial derivatives are obtained from eq. (9), in leading order of e , as 

 ( ) 2( )
( ) ( ) ( ) ( ) ( ),

i

j i j i i j ij
x x

w x
p a x x v x a x x v x O

x
e

=

¶ ¢ ¢= - - + - +
¶ å  (13) 

 ( )
2

2
2

( )
( ) ( ) 2 ( ) ( ) ( ) ( ) ( ),

i

j i j i i j i i j ij
x x

w x
p a x x v x a x x v x a x x v x O

x
e

=

¶ ¢¢ ¢ ¢ ¢¢= - - + - + - +
¶ å (14) 

where v  is the inverse of carrying capacity, ( ) 1/ ( )v x K x= , which implies 

 
2

( )
( )

( )

K x
v x

K x

¢
¢ = -  and 

2

3 2

2 ( ) ( )
( ) .

( ) ( )

K x K x
v x

K x K x

¢ ¢¢
¢¢ = -  (15) 

The approximation provided by eqs. (12)-(15) is accurate if two conditions are met: (i) 

for all morphs i , the character distribution of that morph is sufficiently narrowly distributed 

around its mean, i.e., maxi iV  is small (of order e ); and (ii) for all morphs i  and j , the 

distance ij i jd x x= -  is sufficiently larger than iV  and jV , ensuring multimodality. 

The first condition is required for the double Taylor expansion in eqs. (9) and (10), while the 

second condition is required, not for the derivation of those equations, but only for a natural 

decomposition of the character distribution in eq. (5). Combining these two requirements, the 

oligomorphic approximation is applicable whenever 

 
max

,
min

i i

ij ij

V

d
e¢<  (16) 

where e¢ is a sufficiently small positive constant. 

3.2.2. Dynamics of morph frequencies 

The growth rate of the frequency of morph i  is obtained from eq. (11), in leading order of e , 

as 
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2

2

( ) ( ) ( )

( ) ( )
( ).

( ) ( )

i i k kk

k j j i j jj j
kk

k i

w w w x w x p O

a x x p a x x p
p O

K x K x

e

e

- = - +

- -
= - +

å
å å

å
 (17) 

Inserting this into eq. (7) gives the dynamics of the frequency ip  of morph i , in leading or-

der of e , 

 2
( ) ( )

( ).
( ) ( )

k j j i j jj ji
k ik

k i

a x x p a x x pdp
p p O

dt K x K x
e

ì üï ï- -ï ïï ï= - +í ýï ïï ïï ïî þ

å å
å  (18) 

Since this result has the form of a replicator equation, ( )d
i i idt p w w p= - , with 

i ii
w w p= å , we can interpret ( ) / ( )ij i j ib a x x K x= -  as the effective interaction coefficient 

describing the effect of morph j  on the frequency of morph i . 

3.2.3. Equilibria of morph frequencies 

Morph means T
1( , , )nx x x= K  usually change much more slowly than morph frequencies 

T
1( , , )np p p= K . This is because the ecological dynamics in eq. (18), which have rates of 

order 0 , are much faster than the evolutionary dynamics in eq. (24) below, which have rates 

of order 2 , as long as the within-morph variances 2( )iV O   are sufficiently small. Ac-

cordingly, morph means stay almost constant while morph frequencies approach a qua-

si-equilibrium ( )p x  with ( ) ( ) ( )ij j kj j kj jk
b p x b p x p x=å å  for all 1, ,i n= K . These 

conditions can be spelled out as 

 
1 1

( ) ( ) ( ) ( ) ( ) ,
( ) ( )i j j k j j kj jk

i k

a x x p x a x x p x p x
K x K x

- = -å å  (19) 

or rewritten in matrix form as 

 ( ) ( )VA p x cu=  with T( ) ( ) ( ),c p x VA p x=  (20) 

where ( ) ( ( ))ij i jA A a x x= = -  is the interaction matrix, 1diag(1 / ( ), ,1 / ( ))nV K x K x= K , 

and T(1,1, ,1)u = K . With T 1
1( ( ), , ( ))nK K x K x V u-= =K , we thus obtain the qua-

si-equilibrium frequencies of morphs with means x , 

 
1

1
1

( ) .
( ) jj

A K
p x cA K

A K

-
-

-
= =

å
 (21) 

3.2.4. Demographic stability 

Eq. (18) shows that the dynamics of morph frequencies are locally asymptotically stable 

around ( )p x , if the eigenvalues of the Jacobian ( )ijD D=  with elements 
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{ }T

( )

T 1

T 1 T 1

1

1 1

( ) ( )

( ) 2
( )

( ) ( )

( ) ( ) 2

( ) ( ) ( ) ( ) ( )

ij i i
j p p x

i
ij

il l ijl

kl l kl l ikl kl

D p p VA p VAp
p

e VA u
VA

u VA u u VA u

A K x A

A K x A K x K x

=

-

- -

-

- -

¶
= -

¶

é ù
ê ú= -
ê úë û

é ù
ê ú= -ê ú
ê úë û

å
å å

 (22) 

all have negative real parts, where ie  is the unit vector along the i th coordinate. Hence, this 

is the condition for the demographic stability of a population comprised of morphs with 

means T
1( , , )nx x x= K  and quasi-equilibrium frequencies T

1( ) ( ( ), , ( ))np x p x p x= K  ac-

cording to eq. (21). If this condition is violated, at least one morph will go extinct before the 

population becomes demographically stable. 

3.2.5. Dynamics of morph means 

The mean character ( )i ix x x dxf= ò  of morph i  changes according to 

 
{ }

{ }

( )
( ) ( )

( ) ( ) ,

i i
i i

i i i

dx d x
x dx x w x w x dx

dt dt

w x w x dx

f
f

x f

= = -

= -

ò ò

ò
 (23) 

where i ix xx = - . Substituting eqs. (12)-(15) into the right-hand side of eq. (23) yields, in 

leading order of e , 

 

3

3
2

( )
( )

( )

( )1
( ) ( ) ( ).

( ) ( )

i

ji
i jj

x x

i
i i j j i j jj j

i i

a x xdx
V p O

dt x K x

K x
V a x x p a x x p O

K x K x

e

e

=

ì üï ï-¶ï ïï ï= - +í ýï ï¶ï ïï ïî þ
ì ü¢ï ïï ï¢= - - + - +í ýï ïï ïî þ

å

å å

 (24) 

By noting that ( ) 1 ( ) / ( )j jj
w x p a x x K x= - -å , we see that this is equivalent to Wright’s 

formula 

 
( )

,
i

i
i

x x

dx w x
V

dt x =

¶
=

¶
 (25) 

for the change in a character's mean. Thus, the mean of each morph evolves in the direction 

towards which its fitness increases, with the rate of this adaptation being proportional to the 

morph variance and to the steepness of the fitness gradient. The fitness gradient, given by the 

curly brace on the right-hand side of eq. (24), comprises two components. The first term 

drives morphs away from each other, while the second term pushes morphs towards the car-

rying capacity's maximum. 



SASAKI AND DIECKMANN : OLIGOMORPHIC DYNAMICS 

11 

3.2.6. Equilibria of morph means 

It is clear from eq. (24) that the equilibrium morph means and their stability depend only on 

the means ix  and frequencies ip , since the variances iV  affect only the speed of conver-

gence to, or divergence from, those equilibrium morph means. The equilibrium means and 

frequencies of morph i  then satisfy the following equations, in conjunction eq. (21), 

 
( )

( ) ( ) .
( )

i
i j j i j jj j

i

K x
a x x p a x x p

K x

¢
¢ - = -å å  (26) 

Defining the matrix ( ) ( ( ))ij i jA A a x x¢ ¢ ¢= = -  and the diagonal matrix 

1 1diag( ( ) / ( ), , ( ) / ( ))n nU K x K x K x K x¢ ¢= K , eq. (26) can be rewritten in matrix form as 

A p UAp¢ = . Substituting for p  the equilibrium frequencies 1( )p x cA K-=  derived in eq. 

(21), we obtain 1A A K UK K-¢ ¢= =  with T
1( ( ), , ( ))nK K x K x¢ ¢ ¢= K . Spelled out, this gives 

 1( )( ) ( ) ( )i j jk k ijk
a x x A K x K x-¢ ¢- =å  (27) 

for 1, ,i n= K , which determines the equilibrium means ix  of each morph. 

3.2.7. Convergence stability 

To assess the stability of the equilibrium morph means T
1 2( , , , )nx x xL  under the dynamics in 

eq. (24), we investigate the corresponding Jacobian. The diagonal elements of this Jacobian 

are given by 

 
( )1 (0)

/ ( ) ( ) ( ) ( ),
( ) ( ) ( )

i
ii i i j i j j ij

i i i

K x a
J V a x x a x x p x p x

K x K x K x

ì ü¢¢ ¢¢ï ïï ï¢¢= - - - +í ýï ïï ïî þ
å  (28) 

where we used eq. (26). Similarly, the off-diagonal elements of the Jacobian are given by 

 
2

( )1
/ ( ) ( ) ( ) ( ).

( ) ( )
i

ij i i j j i j j
i i

K x
J V a x x p x a x x p x

K x K x

¢
¢¢ ¢= - - -  (29) 

It is interesting to compare the condition for the stability of the dynamics of morph 

means in eq. (24) with the condition for convergence stability (Eshel and Motro 1981; Eshel 

1983). In general, a character value x  is said to be convergence stable if character values 

closer to x  can invade when the resident character value of the otherwise monomorphic 

morph is slightly displaced from x . To establish this link, we consider a resident population 

consisting of an atomic distribution composed of n  monomorphic peaks at character values 

jx  and with frequencies ( )jp x  for 1, ,j n= K , which can be represented as 

( ) ( )j jj
p x x xd -å , where d  is Dirac’s delta function. The invasion fitness ( )ys x  (Metz et 

al. 1992) of a variant character value x  in a population in which the resident character value 

y  of morph i  is slightly displaced from its equilibrium value ix , while the other morphs 

are at their equilibrium value jx , is then given by 

 
1 1

( ) ( ) ( ) ( ) ( ).
( ) ( )y j j ij i

s x a x x p x a x y p x
K x K x¹

= - - - -å  (30) 
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The condition for the convergence stability of the character value ix  is 

 
2 2

2 2

( ) ( )
0.

i i

y y

x y x x y x

s x s x

x y
= = = =

¶ ¶
- <

¶ ¶
 (31) 

This is equivalent to the condition 0iiJ <  for the asymptotic stability of the dynamics in eq. 

(24) in the special case that only a single morph mean ix  is displaced at a time. A more gen-

eral result for a character distribution's stability against simultaneous perturbation in the posi-

tions of multiple morphs will be presented elsewhere (Sasaki and Dieckmann, in preparation). 

3.2.8. Dynamics of morph variances 

The variance 2 ( )i i iV x dxx f= ò  of morph i  changes according to 

 { }2 2 ( ) ( ) .i i
i i i i

dV d
dx w x w x dx

dt dt

f
x x f= = -ò ò  (32) 

If the character distribution if  of each morph 1, ,i n= K  is symmetric around its 

mean ix , ( ) ( )i i i i i ix xf x f x+ = - , all odd moments of if  in terms of ix  vanish. Using eqs. 

(12)-(15) then yields, in leading order of e , 

 { }2 5( ),i
i i i

dV
F Q V O

dt
e= - +  (33) 

where 2 21
2 ( ) /

i
i x x

F w x x
=

= ¶ ¶  and 4 4[ ] ( )
ii i i iQ E x dxf x x f= = ò  is the fourth moment of the 

character distribution of morph i . 

3.2.9. Equilibria of morph variances 

Since 4 2[ ]
i i iE Vf x -  = 2 2[( ) ]

i i iE Vf x -  ³  0, 2
i iQ V-  is always positive, so the local 

asymptotic stability of the dynamics in eq. (33) is determined by the sign of 

 

2

2

2

2 3 2

( )1

2 ( )

( ) ( ) ( ) 2 ( ) ( )1
2 ( ) .

2 ( ) ( ) ( ) ( )

i

j
i jj

x x

i j i i j i i
i j jj

i i i i

a x x
F p

x K x

a x x K x a x x K x K x
a x x p

K x K x K x K x

=

-¶
= -

¶

ì üæ ö¢¢ ¢ ¢ï ï- - ¢ ¢¢ ÷ï ïç ÷= - - + - -çí ý÷ç ÷ï ç ïè øï ïî þ

å

å
 (34) 

Consequently, iV  increases if 0iF >  and decreases if 0iF < . 

3.2.10. Evolutionary stability 

When morph frequencies and means are at their equilibrium values, eq. (29) reduces to 

 
2

( ) ( )1
( ) ( ),

2 ( ) ( )
i j i

i i j jj
i i

a x x K x
F a x x p x

K x K x

ì ü¢¢ -ï ï¢¢ï ï= - - -í ýï ïï ïî þ
å  (35) 

where we used eq. (26). Thus, the equilibrium 1V  = L  = nV  = 0 of eq. (33) is locally 

asymptotically stable if all iF  are negative. It is therefore possible that all morph means 

converge to a stable equilibrium, while one or more of the morph variances are unstable and, 
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according to eq. (33), diverge to infinity. This happens for morph i , if iF  is positive at the 

stable equilibrium of the combined dynamics of morph means and frequencies. If, in contrast, 

iF  is negative, the variance of morph i  gradually vanishes. 

It is interesting to compare the condition for the stability of the dynamics of morph 

variances in eq. (33) with the condition for local evolutionary stability (Maynard Smith 1982; 

Brown and Vincent 1987). In general, a character value x  is said to be locally evolutionarily 

stable if character values close to x  cannot invade an otherwise monomorphic morph with 

resident character value x . To establish this link, we again consider a resident population 

consisting of an atomic distribution composed of n  monomorphic peaks at character values 

jx  and with frequencies ( )jp x  for 1, ,j n= K , resulting in the invasion fitness in eq. (30). 

The condition for the local evolutionary stability of the character value ix  is 

 
2

2

( )
0.

i

y

x y x

s x

x
= =

¶
<

¶
 (36) 

Inserting eq. (30), this yields 2 0iF < , so that all morph means are locally evolutionarily sta-

ble if and only if the corresponding morph variances converge to zero. Since iF  is the 

second derivative of fitness at the mean of morph i , 0iF >  implies a fitness minimum and, 

consequently, that selection on this morph is disruptive. 

3.2.11. Moment closure 

Although the stability of the dynamics of morph variances in eq. (33) does not depend on the 

fourth moments iQ  of the character distributions if  of morphs i , we need to specify these 

fourth moments so as to close the hierarchy of moment dynamics that jointly describes 

changes in morph frequencies, means, and variances according to eqs. (18), (24), and 

(33)-(34). 

Approximating if  by a Gaussian distribution with mean ix  and variance iV  yields 
3[ ] 0

i iEf x =  and 4 2[ ] 3
ii i iQ E Vf x= = . Substituting this into eq. (33) gives 

 22 .i
i i

dV
FV

dt
=  (37) 

If, by contrast, the character variations within each morph around its mean obey the 

house-of-cards model of mutation (Turelli 1984), then 2
2[ ]

ii iV E cf x m= = , 3[ ] 0
i iEf x = , and 

4
4[ ]

ii iQ E cf x m= =  where m is the mutation rate and 2c  and 2c  are constants determined 

by the strength of stabilizing selection around ix . Substituting 4 2( / )i iQ c c V=  into eq. (33) 

gives, in leading order of e , 

 4 2( / ) ,i
i i

dV
c c FV

dt
=  (38) 
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where we dropped the term 2
i iFV- , since it is of order 4( )O e . The local asymptotic stability 

of the variance dynamics in eq. (38) again depends only on the sign of iF , and thus on the 

fitness curvature at ix . 

3.2.12. Time to evolutionary branching 

For the Gaussian closure, eq. (37) determines not only the evolutionary stability of equili-

brium morph means, but also the time a morph's character distribution needs to undergo evo-

lutionary branching. If the fitness landscape ( )w x  is locally disruptive at ix , implying 

0iF > , the variance 1
c( ) [2 ( )]i iV t F t t -= -  diverges to infinity from an initial value (0)iV  

within a finite time ct , 

 1
c [2 (0)] .i it FV -=  (39) 

Obviously, the assumption of small morph variances, which is necessary for the oligomorphic 

dynamics to provide a good approximation, fails before a morph variance approaches infinity. 

The duration ct  nevertheless provides a useful approximation of the time to evolutionary 

branching required by a morph that experiences disruptive selection of strength iF  (Fig. 1). 

For the house-of-cards closure, the transient dynamics to evolutionary branching is 

more gradual. The variance diverges exponentially with a rate that is proportional to the 

strength of disruptive selection. Hence, the characteristic time ct  to evolutionary branching, 

 1
c 4 2[( / ) ]it c c F -=  (40) 

is again inversely proportional to iF . Despite this similarity, the exponential mode of diver-

gence described by eq. (38) is in qualitative contrast to the explosive divergence after a long 

period of near-stasis that results for the Gaussian closure. 

3.2.13. Effects of mutation on morph variances 

The variance of quantitative characters subject to stabilizing selection can be maintained by 

mutation-selection balance: the character diversity that gets depleted by purifying selection is 

then restored by the generation of variation through mutation (Bulmer 1972; Lande 1975, and 

references therein; Barton and Turelli 1991). Denoting the rate of mutation by m and as-

suming that mutational effects on character values are random with variance 2m  (corres-

ponding to the constant-variance model or random-walk model of quantitative genetics 

theory), the dynamics of morph variances in the oligomorphic model is modified as 

 { }2 2,i
i i i

dV
F Q V m

dt
m= - +  (41) 

where iF  again measures the strength of disruptive selection around ix  according to eq. 

(34) in general and to eq. (35) for the case that the ix  have attained a convergence stable 

equilibrium. 
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For 0iF > , iV  diverges to infinity as in the absence of mutations, but for 0iF < , 

equilibrium morph variances 0iV >  are stabilized. For the Gaussian closure, these are given 

by 

 
2

,
2i

i

m
V

F

m
=  (42) 

and for the house-of-cards closure by 

 
2

4 2

.
( / )i

i

m
V

c c F

m
=  (43) 

4. Applications of oligomorphic dynamics 

We now use the oligomorphic approximation derived above to understand in detail the dy-

namics of, and the morph patterns resulting from, evolutionary branching in the re-

source-competition model. The dynamical equations that we integrate numerically describe 

the frequencies, means, and variances of morphs as given by eqs. (18), (24), and (33)-(34), 

which we assemble here for ease of reference, 

 

{ }

2

2
2

( ) ( )
,

( ) ( )

( )1
( ) ( ) ,

( ) ( )

( ) ( ) ( )1
2

2 ( ) ( )

2

k j j i j jj ji
k ik

k i

i i
i i j j i j jj j

i i

i j i i ji
i i j

i i

a x x p a x x pdp
p p

dt K x K x

dx K x
V a x x p a x x p

dt K x K x

a x x K x a x xdV
Q V

dt K x K x

K

ì üï ï- -ï ïï ï= -í ýï ïï ïï ïî þ
ì ü¢ï ïï ï¢= - - + -í ýï ïï ïî þ

ì ¢¢ ¢ ¢- -ïï= - - -íïïî

¢
+

å å
å

å å

å
2

3 2

( ) ( )
( ) .

( ) ( )
i i

i j j
i i

x K x
a x x p

K x K x

üæ ö ï¢¢ ÷ ïç ÷- -ç ý÷ç ÷ç ïè ø ïþ

 (44) 

While the numerical analysis of eqs. (44) starts with a fixed number n  of morphs, the sub-

sequent eco-evolutionary dynamics may effectively reduce this number. This may occur be-

cause morph frequencies become negligible or because morph means become indistinguisha-

ble. For example, starting with five morphs when the equilibrium is dimorphic, three morphs 

will subsequently be lost in such a manner. 

4.1. Special case allowing continuous morph distributions 

In the special case in which the competition kernel a  and the carrying-capacity function K  

are both Gaussian, 2 21
2( ) exp( / )a x x s= -  and 2 21

2( ) exp( / )K x x w= - , and the former is 

narrower than the latter, s w< , the character distribution in eqs. (44) converges, through in-

cessant evolutionary branching, to a continuum of infinitesimally spaced morphs. According-

ly, the number of morphs that can be packed along the niche character x  is unlimited (Ma-
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cArthur 1970; Roughgarden 1972; May 1973, 1974; Slatkin and Lande 1976; Bull 1987). 

However, many deviations from this special case, e.g., by choosing a competition kernel or 

carrying-capacity function that are not Gaussian, result in atomic distributions, i.e., in the 

coexistence of discrete (that is, finitely spaced) morphs (Sasaki and Ellner 1995; Sasaki 1997; 

Gyllenberg and Meszéna 2005; Szabó and Meszéna 2006; Pigolotti et al. 2007, 2009; Leimar 

et al. 2008; Fort et al. 2009). 

Integrating eqs. (44) with the house-of-card closure in eq. (38) shows that for both 

2n =  (Figure 2A, B) and 5n =  (Figure 2C, D) morph means become displaced from their 

initial values and relative to each other, while morph variances increase without limit, indi-

cating that neither two nor five morphs are enough to evolutionarily stabilize the population. 

It turns out that this conclusion is independent of n . Below we show how this degeneracy is 

overcome for s w>  or by varying the kurtoses of the competition kernel or the carry-

ing-capacity function. 

4.2. Single-morph dynamics 

When there is only one morph in the population (1n = ), its mean and variance change ac-

cording to 

 

{ }22

( )
,

( )

1 2 ( ) ( )
(0) .

2 ( ) ( )

dx K x
V

dt K x

dV K x K x
a Q V

dt K x K x

¢
=

ì üæ öï ï¢ ¢¢ï ï÷ç¢¢= - + - ÷ -í ýç ÷ç ÷çï ïè øï ïî þ

 (45) 

The mean x  of a single morph thus always converges to the carrying capacity's maximum at 

0x = . 

At this convergence stable equilibrium for the mean, the variance dynamics reduce to 

 { } { }21
(0) (0) .

2

dV
K a Q V

dt
¢¢ ¢¢= - -  (46) 

Thus, the convergence stable equilibrium x  is also evolutionarily stable, and the morph va-

riance V  hence remains finite, if and only if 

 (0) (0).a K¢¢ ¢¢<  (47) 

We can interpret this condition by concluding that evolutionary stability requires the width 

1/ (0)a¢¢  of the competition kernel, as described by its peak curvature, to exceed the corres-

ponding width 1/ (0)K ¢¢  of the resource distribution. This is equivalent to s w> , a condi-

tion that was already derived by Roughgarden (1972). If, on the other hand, this condition is 

violated, the morph variance V  diverges to infinity. This implies that 0x =  is convergence 

stable, as the morph mean approaches 0x = , but not evolutionarily stable, as the variance 

around 0x =  increases without limit. The character value 0x =  is therefore an evolutio-

nary branching point when inequality (47) is violated. 
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4.3. Two-morph dynamics 

4.3.1. Frequency dynamics and limiting similarity 

When there are only two morphs in the population (2n = ), the frequency of one of them, 

1p p=  (with 2 1p p= - ), changes according to 

 c( ) (1 )
dp

s p p p p
dt

= - -  (48) 

with 

 1 2

1 2

( )(1 ( ))K K a
s

K K

+ - D
=  and 1 2

c
1 2

( )
,

( )(1 ( ))

K K a
p

K K a

- D
=

+ - D
 (49) 

where ( )i iK K x=  is the carrying capacity of morph 1,2i =  and ( )a D  with 1 2x xD = -  

is the competition coefficient between morph 1 and morph 2, which decreases as the character 

displacement D  increases. Note that both iK  and ( )a D  are time-dependent, because 1x  

and 2x  change with time, at a speed that is slow compared with the speed of the frequency 

dynamics in eq. (48). For a given pair 1x  and 2x , the frequency p  is attracted towards the 

equilibrium value cp . 

Eqs. (48) and (49) imply that if the two morphs are sufficiently separated from each 

other ( s| D | ? , where s  is the standard deviation of the competition kernel a ), then 

( ) 1a D =  and the two morphs are subject to strong balancing selection with equilibrium fre-

quency cp . If, in contrast, the two morphs are sufficiently close to each other ( s| D | = ), 

then ( ) 1a D »  and the balancing selection is weak. If the two morphs have the same carry-

ing capacity ( 1 2K K= ), which occurs when the dimorphism is symmetric, 1 2x x= - , the 

equilibrium frequency cp  converges to 1/2. If the ratio 1 2/K K  between the carrying ca-

pacity of morph 1 and that of morph 2 is smaller than the competition coefficient, 

1 2/ ( )K K a< D , morph 1 goes extinct. Analogously, for 2 1/ ( )K K a< D , morph 2 goes ex-

tinct. These results for the two-morph frequency dynamics are fully in line with conventional 

limiting-similarity theory (May 1974). 

4.3.2. Branching patterns and effects of kurtosis 

An interesting application of oligomorphic dynamics as developed above is to study the bi-

furcations that occur when inequality (47) is violated, so that evolutionary branching can 

happen. Below we show that the resultant branching patterns sensitively depend on the kur-

toses of the competition kernel a  and of the carrying-capacity function K . We therefore 

consider these functions to be symmetric and allow them to be either platykurtic or leptokurtic. 

Under these conditions, an initially symmetric dimorphism resulting from the evolutionary 

branching of a single morph at 0x =  remains symmetric: 1 2( ) ( ) 1/ 2p t p t= = , 

1 2( ) ( )x t x t= - , and 1 2( ) ( )V t V t=  for all t . Moreover, numerical investigations of the 

two-morph dynamics, eqs. (44) with 2n = , demonstrate that for an initially asymmetric di-
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morphism, with 1 2(0) (0)x x¹ - , in which 1(0)x  and 2(0)x  are both close to 0, the symme-

try between the two morphs is rapidly established long before their means equilibrate. 

Defining 1 2x x x= = -  and 1 2V V V= = , substituting these into the mean and va-

riance dynamics in eqs. (44), and doubly expanding the resulting equations in Taylor series 

around 0x =  and x x xx = - =  yields 

 { } { }2 31
(0) (0) 9 (0) (0) 6 (0) 4 (0) (0) ,

6

dx
K a xV a K K a K x V

dt
¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢¢¢ ¢¢¢¢= - + - - +  (50) 

and 

 { } { } 22 21 1
(0) (0) 7 (0) (0) 6 (0) 2 (0) (0) ( ).

2 4
K a a K K a K

dV
Q V

dt
x

é ù
¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢¢¢ ¢¢¢¢ê ú- + - - +

ê úë
= -

û
(51) 

The parameter (0) (0)K ad ¢¢ ¢¢= -  measures the net disruptiveness of fitness at 

0x  , so that 0d =  corresponds to the bifurcation point for primary evolutionary branching. 

Using the order estimate ( )x O d= , we obtain in leading order of d  

  

* 2

** 2 2

1 ( / ) ,

1 ( / ) ( ),
2

dx
V x x x

dt
dV

x x Q V
dt

d

d

é ù= -ê úë û

é ù= - -ê úë û

 (52) 

with 

 *

(0) 1 2 / 3 / 6a K

x
a

d

g g
=

¢¢ - +
 and ** ,

(0) 1 / 2a K

x
a

d

g g
=

¢¢ - +
 (53) 

where 23 (0) / (0)a a ag ¢¢¢¢ ¢¢= -  and 23 (0) / (0)K K Kg ¢¢¢¢ ¢¢= -  measure the excess kurtoses 

of the competition kernel and carrying-capacity functions, respectively (i.e., the deviations of 

the fourth moments of a  and K  from their expectations 23 (0)a¢¢  and 23 (0)K¢¢  in the 

Gaussian case). For a net disruptiveness of (0) (0) 0K ad ¢¢ ¢¢= - < , both the character dis-

placement 2xD =  between the two morphs and the variance V  of both morphs converge 

to zero, indicating that the population converges to monomorphism at 0x = . 

For 0d > , this monomorphism is unstable. There are then two qualitatively different 

behaviors, depending on the kurtoses of the competition kernel and carrying-capacity function. 

If the carrying-capacity function is more platykurtic than the competition kernel (K ag g> ), 

then x  increases towards *x . As character displacement increases, the morph variances 

first increase and then decrease towards zero once x  exceeds **x  (Figure 3A-C). Thus, the 

population converges to an atomic distribution at *x± . If the competition kernel is more pla-

tykurtic than the carrying-capacity function (a Kg g> ), then ** *x x> , which implies that the 

morph variances keep increasing even after the morph means have reached their equilibrium 

(Figure 3D-F). The two morph variances therefore increase without limit, indicating that the 

dimorphism *x±  is not evolutionarily stable. In this case, a trimorphism, rather than a di-

morphism, is the successor of the initial monomorphism, as will be illustrated in more detail 
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below. Figure 3C and 3F depicts trajectories ( , )x V , as well as the isoclines / 0dx dt =  and 

/ 0dV dt = , for K ag g>  (Figure 3C) and a Kg g>  (Figure 3F). 

Figure 4 shows results of the numerical analysis of the corresponding two-morph and 

three-morph dynamics. As a robustness check, we consider an initially asymmetric dimor-

phism, and verify that symmetry is nonetheless subsequently established. The carry-

ing-capacity function is platykurtic, indeed purely quartic, 4 41
12( ) exp( / )K x x h= - , and the 

competition kernel is Gaussian, 2 21
2( ) exp( / )a x x s= - . For these specific functions, a pair-

wise invasibility analysis of the symmetric dimorphism *x±  reveals that for / 1.16h s <  

this dimorphism is evolutionarily stable, while for / 1.16h s >  it is destabilized (Figure 5). 

4.4. Effects of mutation on evolutionary branching 

We now examine how mutations affect the condition for evolutionary branching. For this, we 

consider a Gaussian competition kernel a  and a resource distribution K  that can be either 

Gaussian or platykurtic, 

 21
2( ) exp( )a x x= -  and 2 2 41

2( ) exp( / ).K x x xw g= - -  (54) 

The character x  is scaled so that the standard deviation of the competition kernel equals 1, 

w  measures the standard deviation of the resource distribution, and 0g ³  determines the 

degree of platykurtosis of the resource distribution. According to inequality (47), the thre-

shold for evolutionary branching in the absence of mutation is given by 1w = . In the special, 

and highly structurally unstable, case that both competition kernel and resource distribution 

are Gaussian ( 0g = ), and when the resource distribution is wider than the competition kernel 

( 1w > ), a continuous distribution with variance 2 1w -  is stable (MacArthur and Levins 

1967; MacArthur 1969, 1970; Roughgarden 1972; May 1973, 1974; Slatkin and Lande 1976; 

Bull 1987). If, in contrast, the resource distribution is just slightly platykurtic ( 0g > ), the 

dynamic outcome abruptly changes into an evolutionarily stable dimorphism (Sasaki and Ell-

ner 1995; Ellner and Sasaki 1996; Sasaki 1997). 

If recurrent mutations generate variance, atomic character distributions cannot remain 

atomic; instead, each morph must feature narrow blurs around its peaks. So far, however, 

there has been little study of how mutations change the bifurcations associated with evolutio-

nary branching, or the character distributions that from evolutionary branching. It is also in-

teresting to ask how adding mutations affects the structurally unstable continuous distribu-

tions expected for the combination of Gaussian competition kernels with Gaussian resource 

distributions. In this section, we apply oligomorphic dynamics to answer these three questions. 

For this purpose, we assume that, owing to mutations, an offspring's character deviates from 

that of its parent with rate m and variance 2m . 
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4.4.1. Analytical results 

Analyzing the dynamics of a single morph, we focus on cases in which the net disruptiveness 
21 0d w-= - >  is close to the bifurcation point 0d = , and expand, up to sixth order in the 

character deviation x xx = - , the selection component sel( / )dV dt  of the variance dynamics. 

As shown in Appendix A, this gives 

 2 2

sel

1 1
( ) ( ) ( ),

2 2

dV
Q V Q V V H VQ

dt
d g

æ ö÷ç = - - - + -÷ç ÷çè ø
 (55) 

where 2 ( )V x dxx f= ò , 4 ( )Q x dxx f= ò , and 6 ( )H x dxx f= ò . Combining this with the 

mutation component 

 2

mut

dV
m

dt
m

æ ö÷ç =÷ç ÷çè ø
 (56) 

of the variance dynamics, we obtain the total rate of variance change as /dV dt  = 

sel( / )dV dt  + mut( / )dV dt . 

To derive from this a rough estimate of the equilibrium morph variance, we can as-

sume that the character distribution is approximately Gaussian, so that 23Q V=  and 
315H V= , which gives 

 2 3 2(1 12 ) .
dV

V V m
dt

d g m= - + +  (57) 

Setting the right-hand side to 0, we obtain the approximate equilibrium morph variance V  as 

an implicit function of the bifurcation parameters d  or 1/2(1 ) 1 / 2w d d-= - » + . Figure 6 

compares this with the results of numerical analyses. 

As shown by the numerical analyses, mutations postpone the bifurcation towards mul-

timodality in the character distribution that results from increasing the strength of disruptive 

selection. We examine how far mutations shift this bifurcation point, by assuming small devi-

ations of characters from the mean of an approximately Gaussian character distribution. For a 

morph variance V , the two leading terms for the second derivative (0)w¢¢  of fitness at the 

morph mean 0x =  are then given by 

 (0) .w Vd¢¢ = -  (58) 

Thus, if 21d w-= -  exceeds the equilibrium morph variance V  defined by eq. (57), the 

fitness landscape is disruptive at 0x = . The bifurcation point d  at which this occurs is 

therefore obtained by substituting V d=  into eq. (57), setting its right-hand side to 0, which 

yields 

 3 212 0.mgd m- + =  (59) 

This means that mutations shift the bifurcation point from 0d =  to 

 
2

3 ,
12

mm
d

g
=  (60) 
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or equivalently, from 1w =  to 

 
2

3
1

1 .
2 12

mm
w

g
= +  (61) 

Consequently, for conditions close to 0d =  and 0g = , an arbitrary amount of muta-

tion-induced variance 2mm  prevents evolutionary branching. The special case of Gaussian 

competition kernels and resource distributions (which implies a dynamically stable, but 

structurally unstable, equilibrium character distribution of Gaussian shape), then loses its pa-

thological nature (Sasaki and Ellner 1995; Sasaki 1997; Gyllenberg and Meszéna 2005; Pig-

olotti et al. 2007, 2009) and instead results in a structurally stable evolutionary outcome fea-

turing a single evolutionarily stable morph. 

4.4.2. Numerical results 

Figure 6A shows how w  affects the equilibrium character distribution ( )xf . The distribu-

tion stays unimodal for 0d <  or 1w < , in accordance with the predicted bifurcation points 

without mutation. For 0.05g =  and 2 43.2 10mm -= × , the predicted bifurcation points with 

mutation are 2 1/3( /12 ) 0 08196md m g= = .  or 1 03976w = . . This well approximates the 

threshold at which the fitness landscape becomes bimodal (dashed line in Figure 6B). The 

equilibrium character distribution stays unimodal for even larger values of w  (Figure 6A), 

after the fitness landscape becomes bimodal (Figure 6B), with an increasing platykurtosis in 

the single morph compensating for the increasing disruptiveness, up to about 1.136w =  

(Figure 6D). 

Figure 6B shows the equilibrium morph variance V  as a function of w . The va-

riance gradually increases as the bifurcation parameter w  is raised. The numerical results 

(dotted line) are in good agreement with the approximate analytical results (continuous line), 

which are derived for small 21d w-= -  and obtained as the root of the cubic equation that 

results from setting to 0 the right-hand side of eq. (57). 

Figure 6D shows the equilibrium morph kurtosis 4 2[ ] /(3 )E x Vf  as a function of w . 

The kurtosis gradually decreases from 1 (for a mesokurtic distribution) as the bifurcation pa-

rameter w  is raised. For w  between 1 and 1.136, the equilibrium character distribution re-

mains unimodal, but becomes increasingly platykurtic (Figure 6A). Instead of splitting the 

equilibrium character distribution and creating a dimorphism, disruptive selection is compen-

sated by mutation, becoming absorbed in the platykurtosis of an evolutionarily stable morph. 

If w  is further increased, disruptive selection overcomes this mutation-induced morph cohe-

sion, so that the equilibrium character distribution starts to become bimodal (Figure 6A). 
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5. Discussion 

Here we have derived oligomorphic dynamics as a new theoretical framework for examining 

the joint ecological and evolutionary dynamics of populations with multiple interacting 

morphs. Building on, and integrating, salient aspects from a wide range of preeminent pre-

ceding work (including Lande 1976, 1979, 1981, 1982; Roughgarden 1972, 1976; Bulmer 

1974; Slatkin 1980; Iwasa et al. 1991; Abrams et al. 1993; Vincent et al. 1993), our approach 

helps moving beyond a focus on unimodal character distributions, often taken in models of 

quantitative genetics theory, and on negligible within-morph variance, often taken in models 

of adaptive dynamics theory. Through a double Taylor expansion of interaction coefficients 

and fitness landscapes around the means of all morphs existing in a population, we have de-

rived the approximate dynamics of morph frequencies, means, and variances. 

More in particular, we have shown how oligomorphic dynamics can help investigate 

processes of adaptive diversification driven by frequency-dependent disruptive selection. For 

this purpose, we have (1) shown how to interpret conditions for demographic stability, con-

vergence stability, and evolutionary stability in terms of the moments of oligomorphic dy-

namics, (2) presented alternative moment closures suitable for oligomorphic dynamics, (3) 

derived approximations for assessing the waiting time until evolutionary branching, and (4) 

analyzed the effects of mutation on equilibrium morph variances. In addition, for a classical 

model of resource competition we have (5) elucidated the structural instability of continuous 

character distributions, (6) obtained threshold conditions for primary and secondary evolutio-

nary branching, and (7) derived corrections for describing the effects of mutation on evolu-

tionary branching. 

There is a great variety of aspects that need to be considered when trying to under-

stand processes of adaptive speciation in ways that do justice to the complexity of the corres-

ponding natural systems (e.g., Dieckmann and Doebeli 2005). Models based on 

game-theoretical and phenotypic dynamics have been used to investigate complexities in the 

ecological underpinnings of speciation, whereas models based on population genetics or 

quantitative genetics have helped analyze complexities in the genetic underpinnings of speci-

ation (see, e.g., Dieckmann et al. 2004 for reviews). Oligomorphic dynamics contribute to 

bridging between these approaches, by extending the multi-morph dynamics of adaptive dy-

namics theory with analyses of the effects of morph variance and of the effects of mutation, 

while extending the single-morph dynamics of quantitative genetics theory with analyses of 

evolutionary branching and of morph interactions. 

In the spirit of such bridge building, we have investigated how mutations affect the 

bifurcation structure and equilibrium character distribution in processes of adaptive speciation. 

It turns out that mutations have a large effect on the threshold condition for the relative net 

disruptiveness of selection (defined as the difference between the strength of disruptive selec-

tion and the strength of stabilizing selection, divided by the strength of disruptive selection). 
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Specifically, eq. (61) shows how mutations shift the threshold for this relative net disruptive-

ness away from the value of 1 that applies in the absence of mutation. Since the resultant dev-

iation is proportional to the cubic root of the mutation variance, even a small mutation va-

riance can significantly shift the disruptiveness necessary for adaptive speciation. 

Earlier theoretical studies have investigated the time required for a population to shift 

evolutionarily from one local peak of its fitness landscape to another. These studies had hig-

hlighted three factors determining the pace of such a transition: the fitness difference between 

the peaks, the depth of the valley separating them, and the evolving population’s effective size 

(Lande 1985, 1986; Newman et al. 1985; see also Whitlock 1995, 1997). While these earlier 

studies dealt with shifts between preexisting fixed fitness peaks, here we have answered the 

related but different question as to the time required until an initially unimodal character dis-

tribution splits into two distinct morphs under the influence of frequency-dependent disrup-

tive selection. For asexually reproducing species, this characterizes the waiting time until 

adaptive speciation. We have found that this waiting time is inversely proportional to the 

strength of disruptive selection, as measured by the curvature of the fitness landscape at the 

evolutionary branching point. Oligomorphic dynamics can be used to estimate this curvature. 

Analyses based on oligomorphic dynamics also shed light on the fundamental struc-

tural instability of continuous distributions of species under combinations of Gaussian compe-

tition kernels and Gaussian resource distributions assumed in seminal papers on species 

packing (MacArthur and Levins 1967; MacArthur 1969, 1970; Roughgarden 1972; May 

1974) and on the evolution of within-family variance in fluctuating environments (Slatkin and 

Lande 1976; Bull 1987; Sasaki and Ellner 1995; Ellner and Sasaki 1996; Sasaki 1997). As 

proved by Sasaki and Ellner (1995) and Sasaki (1997), even the slightest deviation from the 

non-generic assumption of mesokurtic functions destroys the build-up of a continuum of spe-

cies (sometimes referred to as a “continuous ESS”). The condition for primary evolutionary 

branching we have derived here from oligomorphic dynamics with mutations, for a Gaussian 

competition kernel and a potentially platykurtic resource distribution, explains why evolutio-

nary branching is obstructed in doubly Gaussian models with mutations. In lieu of evolutio-

nary branching, the equilibrium character distribution merely broadens and its kurtosis in-

creases, so that its bulk becomes flatter and its tails become thinner. Up to a point, such pla-

tykurtosis absorbs the frequency-dependent disruptive selection and thereby prevents evolu-

tionary branching. A similar effect is likely to occur with regard to the stochastic fluctuations 

in morph means that arise from random drift in populations of finite size. Even though we 

cannot study such fluctuations using the deterministic framework developed here, our results 

suggest that, in the presence of residual disruptiveness, the distribution of these means over 

time will also be platykurtic. Therefore, this effect provides an additional mechanism for the 

effective absorption of disruptiveness through platykurtosis. 
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When a quantitative character is subject to frequency-dependent selection that is 

strongest among individuals with similar character values, as happens for resource competi-

tion or for fluctuating selection with a shifting optimum, the character distribution that gener-

ically evolves is discrete, rather than continuous, in the sense that it consists of several dis-

tinctly separated morphs. The previously held expectation of unlimitedly tight (continuous) 

packing of species or character values (MacArthur 1970; May 1973, 1974; Roughgarden 

1972; Slatkin and Lande 1976; Bull 1987) is based on structurally unstable models combining 

Gaussian competition with a Gaussian or uniform carrying capacity (Sasaki and Ellner 1995; 

Sasaki 1997; Gyllenberg and Meszéna 2005; Szabó and Meszéna 2006; Pigolotti et al. 2007, 

2009; Leimar et al. 2008; Fort et al. 2009). The robust emergence of distinctly separated 

morphs in evolving distributions of quantitative characters underscores the importance of oli-

gomorphic dynamics for understanding a wide range of evolutionary phenomena. 

For example, conclusions similar to those drawn for species packing apply to models 

of character displacement. Slatkin’s seminal character-displacement model (Slatkin 1980) 

considered a Gaussian competition kernel (with standard deviation as ) in conjunction with a 

Gaussian carrying-capacity function (with standard deviation Ks ) along a one-dimensional 

niche space. His analyses showed that a Gaussian character distribution with variance 
2 2
K as s-  will evolve (Slatkin 1979) if disruptive selection dominates stabilizing selection 

( 2 2 2
eK as s s> + , where 2

es  is the environmental variance). However, the structural instability 

of the doubly Gaussian model is responsible for the neutral stability of this continuous equili-

brium character distribution in Slatkin’s model. We suggest that oligomorphic dynamics as 

developed here provide a useful theoretical tool for analyzing character displacement, espe-

cially when considering non-mesokurtic interaction functions. 

Our study leaves room for many important extensions. For example, to apply oligo-

morphic dynamics to more general and realistic models of adaptive speciation, it will be de-

sirable to investigate the feasibility of incorporating more complex ecological aspects, such as 

assortative mating, as well as more complex genetic aspects, such as multi-locus inheritance, 

recombination, diploidy, and random drift. 
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Appendix A 

Here we derive the dynamics governing the variance of a unimodal character distribution( )xf , 

through a double Taylor expansion up to sixth order in the small deviation x x xx = - =  of 

characters from the morph mean 0x = , 

 2( ( ) ) ( ) .
dV

w x w x dx
dt

x f= -ò  (A1) 

In the expression for the fitness ( )w x , we first expand the interaction coefficient ( )a x y-  

around x , 

 61 1 1 1
( ) 1 ( ) ( ) 1 ( ) ( ) ( ) ( ),

( ) ( ) 2 24
w x a x y y dy a x a x V a x Q O

K x K x
f e

ì üï ïï ï¢¢ ¢¢¢¢= - - = - + + +í ýï ïï ïî þ
ò (A2) 

where 2[ ]V Ef x=  and 4[ ]Q Ef x= . We then expand ( )w x  around 0x = , assuming that 

the competition kernel and the carrying-capacity function are both symmetric around 0, 

( ) ( )a x a x= -  and ( ) ( )K x K x= - , and peaked at 1, (0) 1a =  and (0) 1K = , 

 

{ }

{

}

2 2

2 4 2 4

2 4 4 6

1
( ) (0) (0)( )

2
1

(0)( 6 ) 6 (0) (0)( )
24

6 (0) (0) ( ).

w x K a V

a Q V a K V

K K O

x x

x x x x

x x e

¢¢ ¢¢= - +

¢¢¢¢ ¢¢ ¢¢- + + - +

¢¢ ¢¢¢¢+ - +

 (A3) 

Taking on both sides the expectation [ ]Ef K  with respect to ( )xf  yields 

 

{ }

{

}

2 2

2 6

1
(0) 2 (0)

2
1

(0)(2 6 ) 6 (0) (0)( )
24

6 (0) (0) ( ),

w K V a V

a Q V a K V Q

K Q K Q O e

¢¢ ¢¢= -
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 (A4) 

which gives the selection differential 

 

{ }

{ }

{ }

2

2 4

2 6

1
( ) (0) (0) ( )
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1
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24
1
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4

w x w K a V
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x e
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 (A5) 

Substituting this result into eq. (A1) then yields 
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¢¢¢¢ ¢¢ ¢¢ ¢¢ ¢¢¢¢- - + - -

¢¢¢¢ ¢¢ ¢¢- - - +

 (A6) 

where 6[ ]H Ef x=  is the sixth moment of the character distribution. 

Without loss of generality, we can scale the character x  so that (0) 1a¢¢ = - . If the 

curvature of carrying capacity at 0x =  is only slightly larger than (0)a¢¢ , we can set 

(0) (0) 1K a d d¢¢ ¢¢= + = - + , where d  is a small positive constant measuring the net disrup-

tiveness of selection. Substituting these second derivatives into eq. (A6) and neglecting high-

er-order terms in d  (noting that the equilibrium morph variance V  for which disruptive and 

stabilizing selection pressures balance is of order ( )O d , so that 2( )Q O d=  and 
3( )H O d= ) then yields 

 
{ } { }

{ }

2 2

3 6

1 1

2 2
1 1

( 5 6 ) ( ),
24 24K a

dV
Q V Q V V

dt

H QV H QV V O

d

g g e

= - - -

- - + + - +

 (A7) 

where 23 (0) / (0)a a ag ¢¢¢¢ ¢¢= -  and 23 (0) / (0)K K Kg ¢¢¢¢ ¢¢= -  measure the excess kurtoses 

of competition kernel and carrying-capacity function, respectively (a positive value of these 

measures indicates a platykurtic function and a negative value indicates a leptokurtic func-

tion). For the functions specified in eq. (54), we obtain 21d w-= - , 0ag = , and 
224 (1 ) 24Kg g d g-= - » , which, when substituted in eq. (A7), recovers eq. (55) in the main 

text. 
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Figure 1. Evolutionary branching as described by the oligomorphic dynamics of two 

morphs (continuous curves: morph 1; dashed curves: morph 2) for a Gaussian competition 

kernel 2 21
2( ) exp( / )a x x s= -  with 1s =  and a Gaussian resource distribution 

2 21
2( ) exp( / )K x x w= -  with 1.054w = . The net disruptiveness at 0x =  thus equals 

(0) (0) 0.1 0K ad ¢¢ ¢¢= - = > , so a monomorphism at 0x =  is not evolutionarily stable. Va-

riance dynamics are based on the Gaussian closure, 23i iQ V= . The dynamics of the means 

and variances of morph 1,2i =  are given by 2/ ( )i i i idx dt V x xd= -  and 
2 2/ ( )i i idV dt V xd= - , which are obtained from eq. (52)-(53) for 0a K   . These start 

from a symmetric dimorphism with 1 2(0) (0) 0.5p p= = , 1 2(0) (0) 0.01x x= - = , and 

1 2(0) (0) 0.02V V= = . The time to evolutionary branching is approximated by 

c 1/ ( (0)) 500t Vd= =  (double-headed arrow), in good agreement with the actually observed 

duration of evolutionary branching. 
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Figure 2. Oligomorphic dynamics for a Gaussian competition kernel 
2 21

2( ) exp( / )a x x s= -  with 1s =  and a Gaussian resource distribution 
2 21

2( ) exp( / )K x x w= -  with 1.1w = . Variance dynamics are based on the house-of-card 

closure with 4 2/ 2c c  , resulting in 2i iQ V= . Since w s> , a monomorphism at 0x =  is 

not evolutionarily stable. (a, b) Dynamics of morph means (a) and morph variances (b) for 

two morphs ( 2n = ; continuous curves: morph 1; dashed curves: morph 2) for initial condi-

tions 1(0) 0.4p = , 2(0) 0.6p = , 1(0) 0.1x = - , 2(0) 0.11x = - , and 1 2(0) (0) 0.01V V= = . (c, 

d) Dynamics of morph means (c) and morph variances (d) for five morphs ( 5n = ; continuous 

black curves: morph 1; dashed black curves: morph 2; dot-dashed black curves: morph 3; 

continuous gray curves: morph 4; dashed gray curves: morph 5) for initial conditions 

(0) 1/ 5,ip =  1(0) 0.1,x = -  8
2 1(0) (0) 10 ,x x -= +  3(0) 0.11,x = -  5

4 3(0) (0) 10 ,x x -= -  
13

5 4(0) (0) 10 ,x x -= -  and 4(0) 10iV -=  for 1, ,5i = K . 
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Figure 3. Oligomorphic dynamics of a symmetric dimorphism with 1 2( ) ( ) 0.5p t p t= = , 

1 2( ) ( )x t x t= - , and 1 2( ) ( )V t V t=  for a Gaussian competition kernel 2 21
2( ) exp( / )a x x s= -  

with 1s =  and a potentially platykurtic resource distribution 2 2 41
2( ) exp( / )K x x xw g= - -  

with 1
24 Kg g=  (continuous curves: morph 1; dashed curves: morph 2). The net disruptive-

ness is set to 2 2(0) (0) 0.1 0K ad s w- -¢¢ ¢¢= - = - = > , which implies 1.054w » , so a mo-

nomorphism at 0x =  is not evolutionarily stable. Variance dynamics are based on the 

Gaussian closure, 23i iQ V= . (a, b, c) When the resource distribution is more platykurtic than 

the competition kernel, 2.4 0K ag g= > = , the isocline **x x=  1
2/(1 )K ad g g= + -  

0.213= , along which 1 2/ / 0dV dt dV dt= = , is situated to the left side of the isocline 
*x x=  1 2

6 3/(1 )K ad g g= + -  0.267= , along which 1 2/ / 0dx dt dx dt= =  (c). This means 

that the dynamics converge to a stable dimorphism with morph means *1x x= , *
2x x= -  

(a), and vanishing morph variances 1 2 0V V= =  (b). (d, e, f) When the competition kernel is 

more platykurtic than the resource distribution, 0.48 0K ag g= - < = , the trajectory instead 

reaches the isocline * 0.330x x= =  before it has the possibility to reach the isocline 
** 0.363x x= =  (f). This means that the morph variances keep growing (e) even after the 

morph means have already become stationary, at *x x=  (d), resulting in an unlimited explo-

sion of the two morph variances. 
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Figure 4. Oligomorphic dynamics for a Gaussian competition kernel 
2 21

2( ) exp( / )a x x s= -  with 1s =  and a quartic (and thus platykurtic) resource distribution 
4 41

12( ) exp( / )K x x h= -  (top row: morph frequencies; second row: morph means; third row: 

morph variances; fourth row: fitness landscape ( ) 1 ( ) / ( )i ii
w x p a x x K x= - -å  at the end 

of the shown time series). Variance dynamics are based on the Gaussian closure, 23i iQ V= . 

Oligomorphic analysis reveals that a monomorphism at 0x =  is never evolutionarily stable, 

and that a symmetric dimorphism around 0x =  is evolutionarily stable if / 1.16h s <  

(Figure 5). (a) Two-morph dynamics for / 1h s =  and 2 0mm =  ( 2n = ; continuous 

curves: morph 1; dashed curves: morph 2). Starting from initial conditions 1(0) 0.4p = , 

2(0) 0.6p = , 1(0) 0.001x = , 2(0) 0.01x = - , and 1 2(0) (0) 0.01V V= = , a convergence stable 

and evolutionarily stable protected dimorphism emerges. (b) Two-morph dynamics for 

/ 1.2h s =  and 2 0mm =  ( 2n = ; continuous curves: morph 1; dashed curves: morph 2). 

Starting from initial conditions 1(0) 0.4p = , 2(0) 0.6p = , 1(0) 0.2x = - , 2(0) 0.25x = - , 

and 1 2(0) (0) 0.01V V= = , morph frequencies and morph means approach an evolutionarily 

singular symmetric dimorphism, but morph variances expand to infinity. (c) Three-morph 
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dynamics for / 1.2h s =  and 2 0.001mm =  ( 3n = ; continuous curves: morph 1; dashed 

curves: morph 2; dot-dashed curves: morph 3). Starting from initial conditions 1(0) 0.6p = , 

2(0) 0.25p = , 3(0) 0.15p = , 1(0) 0.5x = - , 2(0) 0.4x = - , 3(0) 0.1x = - , and 

1 2 3(0) (0) (0) 0.01V V V= = = , the population is evolutionarily stabilized by a secondary evolu-

tionary branching between morphs 2 and 3: eventually all morph variances become stationary, 

since all morph means are situated at local maxima of the fitness landscape. 
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Figure 5. Evolutionary invasion analysis of a symmetric dimorphism with 

1 2( ) ( ) 0.5p t p t= = , 1 2( ) ( )x t x t= - , and 1 2( ) ( ) 0V t V t= =  for a Gaussian competition kernel 
2 21

2( ) exp( / )a x x s= -  with 1s =  and a quartic (and thus platykurtic) resource distribu-

tion 4 41
12( ) exp( / )K x x h= - . (a) For 1 1.16h = < , the symmetric dimorphism with 

1 2( ) ( ) 1x t x t= - =  is convergence stable and (globally) evolutionarily stable (white regions: 

mutant can invade; gray regions: mutant cannot invade). (b) For 1.5 1.16h = > , the symme-

tric dimorphism is convergence stable for 1 2( ) ( ) 1.2x t x t= - » , but is not (neither locally, nor 

globally) evolutionarily stable (white regions: mutant can invade; black regions: mutant can-

not invade). (c) Character distributions ( )xf  resulting from oligomorphic dynamics based on 

101 equally spaced character values in the range 3 3x- < <  for different widths h  of the 

resource distribution. The initial character distribution is Gaussian with a mean of 0.1 and a 

variance of 0.1. The mutation rate between adjacent character values, which differ by 

0.06xD = , is 42.8 10m -= × , giving rise to the mutation variance 2 2 6[( ) ] 1 10m E xm m -= D = × . 

The panel shows 0.5( )xf  (so as to improve visibility of low densities; white: 0; black: max-

imum value; with linear grayscales in between) together with morph means (filled circles) at 

2,000t =  for 21 values of h . 
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Figure 6. Effects of mutation on evolutionary branching for a Gaussian competition 

kernel 2 21
2( ) exp( / )a x x s= -  with 1s =  and a potentially platykurtic resource distribution 

2 2 41
2( ) exp( / )K x x xw g= - -  with 0.05g = . Without mutation, the threshold condition for 

evolutionary branching is / 1w s = . (a) Equilibrium character distributions ( )xf  resulting 

from oligomorphic dynamics based on 101 equally spaced character values in the range 

2 2x- < <  for different widths w  of the resource distribution. The mutation rate between 

adjacent character values, which differ by 0.04xD = , is 0.2m= , giving rise to the mutation 

variance 2 2 4[( ) ] 3.2 10m E xm m -= D = × . With such mutation, the population remains unimodal 

for 1 / 1.136w s< <  (continuous horizontal lines). (b) Fitness landscapes ( )w x  for differ-

ent widths w  of the resource distribution. With mutation, fitness landscapes remain unimod-

al for 1 / 1.040w s< <  (dotted horizontal line), but become bimodal earlier than the charac-
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ter distribution (continuous horizontal lines) as w  is increased. (c) Variances of the equili-

brium character distribution for different widths w  of the resource distribution. The conti-

nuous line represents the numerical results from panel (A), while the dashed line represents 

the approximation from eq. (57). (d) Kurtoses 2 4 2/ (3 ) [( ) ] (3 )Q V E x V= D /  of the equili-

brium character distribution for different widths w  of the resource distribution. As w  is 

increased above 1, 2/ (3 ) 1Q V < , so the shape of the equilibrium character distribution 

changes from Gaussian to platykurtic. 
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