View metadata, citation and similar papers at core.ac.uk brought to you by Ji CORE

provided by International Institute for Applied Systems Analysis (IIASA)

’ ﬁ International Institute for
- Applied Systems Analysis

[1TASA wwwiiasa.ac.at

Oligomorphic Dynamics for
Analyzing the Quantitative Genetics
of Adaptive Speciation

Sasaki, A. and Dieckmann, U.

IIASA Interim Report
July 2011



https://core.ac.uk/display/33901281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sasaki, A. and Dieckmann, U. (2011) Oligomorphic Dynamics for Analyzing the Quantitative Genetics of Adaptive
Speciation. ITASA Interim Report. IR-11-020 Copyright © 2011 by the author(s). http://pure.iiasa.ac.at/9814/

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at


mailto:repository@iiasa.ac.at

g International Institute for Tel: +43 2236 807 342

Applied Systems Analysis Fax: +43 2236 71313

‘, Schlossplatz 1 E-mail: publications@iiasa.ac.at

[1ASA A-2361 Laxenburg, Austria Web: www.iiasa.ac.at
Interim Report IR-11-020

Oligomorphic dynamics for analyzing the quantitative genetics
of adaptive speciation

Akira Sasaki (sasaki_akira@soken.ac.jp)
Ulf Dieckmann (dieckmann@iiasa.ac.at)

Approved by

Detlof Von Winterfeldt
Director

July 2011

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.



Contents

Y 01511 = T S PP P PP PP PUPPRT 1.
1] (oo 18T ox 1o o PSSO 2......
MOdEl DESCIIPLION ...t e e e e e e e e e e e e e e e e eeeeeeeeeeeessenennnes ST
RESOUICE COMPETITION ...eiiiiiiiiiiiiiee ettt e e e e e e e e e s e eeeeees
Character AYNAMICS .......cueeiiiiiie et e e e e e e e s r e e e e e e e e e e e e s nnnebennneeeeeaeeas
RESUILS ...t 6....
OligomMOrPhIC AYNAMICS ...oeeeeiiiiiiiiiee et e e e e e e e e e e e aaanes 6
Moment approximation of oligomorphic dynamiCs ...............euuvviviiiiiiiiiiiiiiiiiiineeeeeeennn 7
Approximation of selectiodifferentials ..............cccoee oo 7
Dynamics of MOrph frEQUENCIES ........cooiiiiiiiiiiiiii e 8
Equilibria of morph freQUENCIES .........covviiiiiiiiiiir s 9
DemographiC Stability .............uuuiiiiiiiiie e 9
Dynamics Of MOIPN MEANS ..o 10
Equilibria of MOrph Means.............uuuiiiiii 11
ConVvergence STabIlity ....... ... 11
Dynamics of MOrph VarianCeS..........cooviiiiiiiiiiiiiiiiiiiir s e e 12
Equilibria of MOrph VarianCes .............eeeiiiiiiiiiiii e 12
Evolutionary Stability .........ooooiiiiii 12
IMOIMENT CIOSUIE ...ttt et e e e e e e e e e et e e e e e e e e e e e s 13
Time to evolutionary branChing ... 14
Effects of mutation on MOrph VariancCes ...............eueveeeiiiiiiiiiiieeeeeeee e, 14
Applications of oligomOorphiC dyNAMICS ..........eeeiiiiiiiiiiiiiiiiiieeee e 15
Special case allowing continuous morph distributions..............ccccvviviiiiiiiiiiiiiiiiis 15
SiNGle-MOrPh AYNAMICS ....uvieiiiiccce e 16
TWO-MOIPN AYNAMICS ..o s e e e e e e e e e e e e e e e e e eeeeeeeeeeeeennnnes 17
Frequency dynamics and limiting Similarity ..., 17

Branching patterns and effects of KUMoSIS...........ccccceeiiii e, 17



Effects of mutation on evolutionary branching ............cccccviiiiiiiiieeeeeeeeen 19

ANAIYHCAI FESUILS ....evitiieeee e e 20

NUMETICAI TESUILS .....coeiiiiieee e e e e e e e e e e e e e e e e e e e e e e e eeeeeeeeesesssnnnnnnns 21
D Yo 01T o] o USSP 22.....
ACKNOWIEAGEMENTS ...t e e e e e e e s bbb e e e e eeeas 24
APPENIX A . e e e e e e e e e e e e et e e e e e e e aaaeaaaaaaarrnnnnnnns 26........
1T = LU= o (=0 PP PPURTT 28......

o U T TP PPPPP R 36...



SASAKI AND DIECKMANN : OLIGOMORPHIC DYNAMICS

Oligomor phic dynamicsfor analyzing the

guantitative genetics of adaptive speciation

Akira Sasaki*®

! Department of Evolutionary Study of Biosgms, The Graduate University for Advanced
Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan

Email: sasaki_akira@soken.ac.jp, Tel: +81-46-858-1537, Fax: +81-46-858-1544

2 Evolution and Ecology Program, International Institute for Applied Systems Analysis,
A-2361 Laxenburg, Austria

® PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Ja-
pan

and

UIf Dieckmanrf

Z Evolution and Ecology Program, International Institute for Applied Systems Analysis,
A-2361 Laxenburg, Austria

Email: dieckmann@iiasa.ac.at

Abstract

Ecological interaction, including competitidor resources, often causes frequency-dependent
disruptive selection, which, when accomparnigdreproductive isolation, may act as driving
forces of adaptive speciation. While adaptive dynamics models have added new perspectives
to our understanding of the ecological dimensiof speciation processes, it remains an open
guestion how best to incorporate and analyze genetic detail in such models. Conventional ap-
proaches, based on quantitative genetics theory, typically assume a unimodal character distri-
bution and examine how its moments change over time. Such approximations inevitably fail
when a character distribution becomes muitilal. Here, we propose new approximation,
oligomorphic dynamics, to the quantitative genetics of populations that include several
morphs and that therefore exhibit multiple peaks in their character distribution. To this end,
we first decompose the character distribution into a sum of unimodal distributions corres-
ponding to individual morphs. Characterizinggse morphs by their frequency (fraction of
individuals belonging to each morph), positiomean character of each morph), and width
(standard deviation of each morph), we thenveethe coupled eco-evolutionary dynamics of
morphs through a double Taylor expansion. 8New that the demographic, convergence, and
evolutionary stability of a population’s charactistribution correspond, respectively, to the
asymptotic stability of frequencies, positiprmad widths under the oligomorphic dynamics
introduced here. As first applications of oligomloic dynamics theory, we analytically derive

the effects (a) of the strength of disruptive selection on waiting times until speciation, (b) of
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mutation on conditions for speciation, and (c) of the fourth moments of competition kernels
on patterns of speciation.

Keywords. adaptive dynamics, quantitative genetics theory, moment dynamics, adaptive
speciation, evolutionarily stable strategy, convergence stability

Classification code: MSC 92 (Biology and other natural sciences) -- 92D10 (Genetics),
92D15 (Problems related to evolution), or 92D40 (Ecology).

1. I ntroduction

Quantitative genetics theory has been successful in analyzing a wide varigbiutibaary
processes, including trait shifts under directiodaruptive, or temporally fluctuating natural
or artificial selection (Lande 1979; Bulmer 9%alconer 1996); mechanisms for maintain-
ing standing genetic variation by mutation-satet balance, fluctuating selection, or hetero-
sis (Kimura and Crow 1964; Bulmer 1972; Lande 1975; Felsenstein 1976; Ellner and Hairs-
ton 1994; Ellner and Sasaki 1996; Kondrashov and Yampolsky 1996; Sasaki and Eliner
1997); as well as escalations of male ornaments and female preferences through runaway se-
lection (Lande 1981; Lande and Kirkpatrick 1988; Iwasa et al. 1991).

A limitation in many applications of quatative genetics theory arises from a focus
on unimodal character distributions, which simpsfithe derivation of equations for the tem-
poral change of population genetics quantitiesjubtify the required moment closures, cha-
racter distributions have been assumed to be of Gaussian shape (e.g., Lande 1979) or to be
narrowly localized around a single mean (e.g., lwasa et al. 1991). Moreover, many applica-
tions of quantitative genetics theory assummeegje variances and covariances to be constant,
to make the analyzed models more tractable. Such approximations must therefore fail once
the distribution of a quantitative character starts becoming bimodal. The latter is expected
under frequency-dependent disruptive selectBrch selection can arise from a great variety
of ecological processes, including symmetricaspecific competition (Metz et al. 1996; Sa-
saki 1997; Doebeli 1996a, 1996b; Dieckmann and Doebeli 1999), asymmetric intraspecific
competition (Kisdi 1999; Doebeli and Dieckmann 2000; Kisdi et al. 2001), interspecific
competition (Law et al. 1997; Kisdi and Ger&@01), resource specialization (Meszéna et al.
1997; Geritz et al. 1998; Day 2000; Kisdi 2001; Schreiber and Tobiason 2003; Egas et al.
2004, 2005), temporally fluctuating selection with storage effect (Ellner and Hairston 1994;
Sasaki and Ellner 1995, 1997; Ellner and Sasaki 1996), ontogenetic niche shifts (Claessen and
Dieckmann 2002), mixotrophy (Troost et al. 2Q0d)enotypic plasticit{Sasaki and Ellner
1995; Sasaki and de Jong 1999; Van Doaad Leimar 2003; Ernande and Dieckmann
2004; Leimar 2005), dispersal evolution (Levin et al. 1984; Cohen and Levin 1991; Ludwig
and Levin 1991; Doebeli and Ruxton 1997; Johst et al. 1999; Parvinen 1999; Mathias et al.
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2001; Parvinen and Egas 2004), mutation evolution (Haraguchi and Sasaki 1996), mutualism
(Doebeli and Dieckmann 2000; Law et al. 2001; Ferdy et al. 2002; Ferriére et al. 2002; Day
and Young 2004), emergent cooperation (Doebeli et al. 2004), predator-prey interactions
(Brown and Pavlovic 1992; Van der Laan and Hogeweg 1995; Doebeli and Dieckmann 2000;
Bowers et al. 2003), cannibalism (Dercole 20@8)olution of virulence (Boots et al. 2004;
Kamo et al. 2007), host-parasite interactigaraguchi and Sasaki 1996, 1997; Boots and
Haraguchi 1999; Sasaki and Godfray 1999; Koella and Doebeli 1999; Regoes et al. 2000;
Gudelj et al. 2004), sex-ratio evolution (Metz et al. 1992; Reuter et al. 2004), evolution of
selfing (Cheptou and Mathias 2001; De Jong @itz 2001), evolution of mating traits

(Van Doorn et al. 2001, 2004), evolution of anisogamy (Matsuda and Abrams 1999; Maire et
al. 2001), evolution of cytoplasmic inheritance (lwanaga and Sasaki 2004), seed-size evolu-
tion (Rees and Westoby 1997; Geritz et H99; Mathias and Kisdi 2002), microbial
cross-feeding (Doebeli 2002), prebiotic evmat(Meszéna and Szathmary 2001), resource
competition among digital organisms (Chow et al. 2004), and evolutionary community as-
sembly (Jansen and Mulder 1999; Bonsall et al. 2004; Loeuille and Loreau 2005). These
processes are important for understanding adaptive speciation and many other processes in-
volving frequency-dependent interactions witlon between species. Analyses of character
distributions with an evolutionarily variable number of modes have therefore relied on nu-
merical investigations or on game theory and adaptive dynamics theory (e.g., Eshel and Motro
1981; Eshel 1983; Ludwig and Levin 1991; Sasaki and Ellner 1995, 1997; Dieckmann and
Law 1996; Sasaki 1997; Dieckmann and Doe®bB9; Sasaki and Godfray 1999; Doebeli

and Dieckmann 2000, 2003). The latter have to assume a minimal degree of population ge-
netic complexity and often do not account pmlymorphic genetic variation around a distri-
bution’s modes.

In this study, we propose a new approximation, oligomorphic dynamics, to describe
the quantitative genetic dynamics of asexuadproducing populations that contain multiple
morphs and therefore exhibit multiple peaks in their character distribution. The main idea of
this approximation is simple and our appro@cbceeds in three steps: we (1) decompose a
population’s character distribution into a sum of single-peaked distributions, each corres-
ponding to one morph; (2) characterize eachpidy its frequency (fraction of individuals
belonging to the morph), position (mean chaacof the morph), and width (standard devia-
tion of the morph); and (3) derive the equatithred govern the dynamics of these quantities.

A central purpose of the oligomorphic approximation is to analyze the transitions
through which an evolving character distribution becomes divided into several morphs and
reaches a multimodal stationary state. Wewaetthe approximate moment dynamics in terms
of the frequencies, mean phenotypes, and variances of the morphs. Assuming that the widths
of morphs are small relative to their distanaes,derive the equations for the first three mo-
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ments through a novel approach of double Tagkpansion. Importantly, the distances be-
tween morphs do not have to be small fer digomorphic approximation to be accurate.

Our theory builds on the dynamics of mean quantitative characters pioneered by
Lande (1976, 1979, 1981, 1982), who showed that changes in a unimodal distribution's mean
character are proportional to tigeadient of mean fitness as a function of mean character.
Further work derived the dynamics of higleemtral moments (such as variance and skew-
ness) and made analyses more mathematically tractable by focusing on smibroeof
characters from a population’sean character (Barton and Turelli 1991). Another important
extension of Lande's work occurred through thclusion of frequency-dependent selection
(lwasa et al. 1991; Abrams et al. 1993; Vincent et al. 1993). If restricted to unimodal charac-
ter distributions, our oligomorphic approxinati reduces to the theory of Taylor and Day
(1997). Our oligomorphic approximation is alselated to character-displacement models
(Roughgarden 1972, 1976; Bulmer 1974; Slatkin 1980; Matessi and Jayakar 1981; Taper and
Case 1985). These earlier models, however, asteitiger a fixed variance for each species
(e.g., Roughgarden 1976), a fixed Gaussian shpach species’ character distribution (e.qg.,
Slatkin 1980), or simple major-locus inheriten(based, e.g., on single-locus two-allele ge-
netics; Bulmer 1974). Reasons why characteridigions are expected to exhibit distinctly
separated peaks were elucidated by May (1973), Sasaki and Ellner (1995), Sasaki (1997),
Gyllenberg and Meszéna (2005), Doebeli et200{7), Pigolotti et al. (2007, 2009), Leimar et
al. (2008), and Fort et al. (2009).

To illustrate the utility of the oligomorphic approximation, we consider evolutionary
processes driven by resource competition (MacArthur 1970; Rosenzweig 1978; Roughgarden
1972). In these models, individuals with similar phenotypes compete more intensely than
phenotypically distant individuals. Two antagoitistelection pressures then need to be con-
sidered: the first results frofmequency-dependent disruptive selection due resource competi-
tion, and the second from frequency-independgabilizing selection towards an optimal
phenotype at which, in the absence of competition, the resource is most abundant. Under these
conditions, disruptive selection may cause dmaracter distribution to split into several
morphs. To derive the moment dynamics for each morph, it is necessary to evaluate the com-
petitive effects between individuals belonging to different morphs. This ysavktandard
moment-closure approach based on Taylor expansions assuming small character deviations
around a common mean fails for processes allowing multimodal character distributions. By
contrast, the oligomorphic dynamics proposed here successfully overcome this limitation by
expanding the phenotypic effect of a competitor around the mean of the morph to which the
competitor belongs, rather than around the nafaime morph to which the focal individual
belongs.



SASAKI AND DIECKMANN : OLIGOMORPHIC DYNAMICS

2. Mode description

We call a character distribution oligomorphic if it comprises a finite number of distinct peaks.
Below, we first derive the dynamics of afigomorphic character distribution and then ap-
proximate these in terms of moment equatidimsoughout, we illustrate our approach by us-
ing a continuous-time model of character-mediated competition.

2.1. Resourcecompetition

We consider a continuum of ecological characterglescribing the peak of an organism's
resource utilization spectrum along a one-disi@mal niche space. The resource abundance at
niche position x is denoted byK(x), and the density of individuals with character is
denoted by N(x). The competition coefficients between individuals with characterand
y are given bya(x- y). Because of the formal role it plays in the integral in eqg. (1), the
function a(d) is called the competition kernel. It is assumed to attain its maximum at
d = 0, implying that competition is strongest between individuals with identical characters,
and to decrease monotonically towards O|d#s increases. We also assume that competition
is symmetric, sothata xt y 9 a y- x )orall x and vy.

The dynamics ofN X )are thus given by Lotka-Volterra competition equations for a
continuum of characters,

AN(x) _

0=l ) ke VNG N, @

K(x) ©

where r denotes the intrinsic growth rate. The carrying capakitk i¢ Yisually assumed
to be unimodal around an optimum= 0, where the resource is most abundant. Without loss
of generality, we assume tha ¢0) dnd K (0O 1 By definition, a§0) = K{0) = 0.
For the sake of brevity, below we leave out the integration limits shown in eq. (1).

We denote the total population density b= O N(x) dx. The dynamics ofN are
obtained by integrating both sides of eq. (1),

M= N Mo 0207 0 ()T (9 o @
dt OkxO 5
where f (x)= N(x)/ N is the relative frequency of charactar.

2.2. Character dynamics

The dynamics of the character distributirix)= N(x)/ N are obtained by applying the
chain rule and using egs. (1) and (2),
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df _ 1 dNKX_ 121 dN(x)_i@EQ(X)
d¢ rNdt N rNEN(x) dt Ndtd

= B0 1 070 WMWY (00 o palbe MM T @

= (W(x)- W) (x),
where time is rescaled as= r(‘)ot N(t 9 dt ¢ to eliminate the dependence on total population
density in the frequency dynamics. Thus, the frequeih€y) of a characterx changes ac-
cording to its fitness

W(x) = 1- ﬁoa(x- Y (y)dy, @)

which depends on the population's character distributignmaking selection frequen-
cy-dependent. The population's mean fitness is denoted@ ByQ) w(x)f (x) dx. For a uni-
form competition kernel,a(d)=1 for all d, the fitnessw(x) is frequency-independent
and stabilizing aroundx= 0, where the carrying capacitik (x) is largest. For sufficiently
narrow competition kernels, the fithess landscape has a valley where the chasadietidn

f is peaked, implying frequency-dependent disruptive selection. The dynamics aré
governed by the interplay between these selective forces.

3. Results

In the following, we introduce oligomorphic dynamics to describe how a population's charac-
ter distribution may split into several modes under the influence of frequency-dependent dis-
ruptive selection, and how these modes and their shapes are expected to change over time. We
then examine the conditions for such splits, which can be seen as describing sympatric specia-
tion and/or character displacement in asexuputagions. Next, we discuss the relationship of

these conditions with three key stability cepts: demographic stability, convergence stabili-

ty, and evolutionary stability. We then investigate the effects of mutation, and of the shape of
competition kernels and resource distributionsth@se conditions, on the possible patterns of
speciation, and on the expected times to speciation.

3.1.  Oligomorphic dynamics

We assume that the character distributiofx) consists of a few morphs=1,2L n ("a
few" in English = "oligo" in Latin). These morphs have relative frequengieswith
a . .p =1, sothat

f(9=4a .,pfi(x. (5)

For the sake of brevity, below we leave out the summation limits shown in eq. (5). Each
morph i can be regarded as a quasispecies, characterized by its character distfipution ()
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with §f,(x)dx= 1. We define the dynamics of the frequencips so that for eachx the
contribution of morphs todf (x)/dt is proportional to their contribution td (x),

dpf (%) _ pf,(x) df (%

6
dt f(x) dt ©

Integrating this equation over all charactetsand using eqg. (3), we obtain
= PO T = P AT () Wak= (- W, ™

where W = ¢ wW(x)f,(x) dx is the mean fitness of morph

To derive the dynamics of the character distributionx ¢f)morph i, we use the
product rule, & pf,(x)= p 4, (X)+ f,(X)5 p, solve for 4f,(x), and then use egs. (3), (6),
and (7),

dfi(x): i®p|f|(x) ( )dp|:
dt p& dt dt @
= f,00W(x)- w)- f,(x)(W - W) (8)
= (W(x)- W)f(x).

3.2, Moment approximation of oligomor phic dynamics

We now derive the approximate dynamics of the first three moments of the character distribu-
tions of morphs, given by their frequencigs, meansX = () xf (x) dx, and variances

= O (x- X)*f (x) dx. For this purpose, we first approximate the selection differentials
wW(X)- W ineqg. (8).

3.2.1. Approximation of selection differentials

We denote byx = x- X the deviation of charactex from the mean charactex of
morph i. If x is sufficiently close tox, i.e., if x is of ordere, where e is a suffi-
ciently small positive constant, we can use a first Taylor expansion, of the interaction coeffi-
cients a k- y) around the morph meang= X, , to approximate the fitness x ( pf cha-

racter x by

w(x) = 1- mé (PiOax- y)f (y)dy
=1- K(x)é lpjo§(x X))+ a€x- X)x; + am(x ;)X +O(e3)§ (X; +x;) dx; (9)
- 1. _i° v 3
=1 Kx )a pa(x- X,)- 2K(X)ajpjam(x XV, + O(€°).

Furthermore, we can use a second Taylor expansion of the fitmegs around the morph
mean X=X,
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w00 = wex) + 120

LT
N 2 %

x=%

X%+ O(e?). (10)

X=X

Multiplying this equation withf, X )and integrating over alk yields

11°w(x)
2 X

W = w(x)+ V, +O(e). (11)

X=X

The selection differential for morpi is obtained, up to second order @ by subtracting
eg. (11) from eq. (10),

o= Tw(x) 1 7°w(x) 2 .

WO W= TR Xt ge (x?- V) + O(€?). (12)

The two partial derivatives are obtained from eq. (9), in leading order, ab
“V%—(XX)H ==& p(E%- XVR)*+a(X - X)vER))+ O(e) (13)

Twx)| _ o oo oo s e o )
o | = a pi@®K - X)V(K)+ 226K - X)VEX) + alk - X )VEX))+ O(), (14)
=%
where v is the inverse of carrying capacity,x €) KL./x (which implies
__ K%x) _ 2K®x)* K ®x)

vEx) = K02 and v&x) = KO KOO? (15)

The approximation provided by egs. (12)-(15) is accurate if two conditions are met: (i)
for all morphsi, the character distribution of that morph is sufficiently narrowly distributed
around its mean, i.e.max \/VI is small (of ordere); and (ii) for all morphsi and j, the
distance d; = X - X; is sufficiently larger than\/\7i and \/V ensuring multimodality.

The first condition is required for the double Taylor expansion in eqgs. (9) and (10), while the
second condition is required, not for the derivation of those equations, but only for a natural
decomposition of the character distribution in €). Combining these two requirements, the

oligomorphic approximation is applicable whenever

mc":.Oﬁ \/\7| < et (16)
min, dij

where et is a sufficiently small positive constant.

3.2.2. Dynamics of morph frequencies

The growth rate of the frequency of morphis obtained from eq. (11), in leading order ®f
as
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W- W= w(X)- & W)+ Oe)
_3 a a%-%)p & a%- x)p @) (17
PR K (%) |
Inserting this into eq. (7) gives the dynamics of the frequepcyof morph i, in leading or-
der of e,

— —ia . ,p - - -
d 37T K(X) K(X)
Since this result has the form of a replicator equatigm = (W - W)p , with
W= é_ W p,, we can interprety, = a(X - X;)/K(X) as the effective interaction coefficient
describing the effect of morplj on the frequency of morp.

dp :}° b ) Tyl Yi)pj?pﬁo(ez). (18)

3.2.3. Equilibria of morph frequencies

Morph meansX = (X,K ,X )" usually change much more slowly than morph frequencies
p= (p,K,p,)" . This is because the ecological dynamics in eq. (18), which have rates of
order £°, are much faster than the evolutionary dynamics in eq. (24) below, which have rates
of order £, as long as the within-morph variance¥s=O(¢*) are sufficiently small. Ac-
cordingly, morph means stay almost constant while morph frequencies approach a qua-
si-equilibrium p(X) with § by py (%)= a WByp(®)p(x) for all i=1K n. These
conditions can be spelled out as

1 o o n_ 9 1 N _ _
Koo & 18- X)p 0= & s alti- X)pORE), (19)
or rewritten in matrix form as
(VA)p(X) = cu with c= p(X)"(VA) p(X), (20)

where A= (A)= (a(X - X;)) is the interaction matrixV = diag(1/K  )K ,1K &, )),
and u= (1,1K ,1f . With K= (K(x),K ,K(X))" =V 'u, we thus obtain the qua-
si-equilibrium frequencies of morphs with mears

A 'K

X) = CA_leﬁ.
"0 & (A7),

(21)
3.2.4. Demographic stability

Eqg. (18) shows that the dynamics of morpéquencies are locally asymptotically stable
around p(X), if the eigenvalues of the Jacobidn= (D;) with elements
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D, = ﬂ p{p (VA p- (VAD)}
= p(X)
_ & (VA 'ug 2 A..B 22
TV U®NA)U A, § (22)
a (A 1)|IK(XI) 2 Aj E

a (A )HK(mgakl(A N K(X) KX)E

all have negative real parts, wheee is the unit vector along théth coordinate. Hence, this
is the condition for the demographic stability of a population comprised of morphs with
means X= (X,K ,X )’ and quasi-equilibrium frequenciep(X)= (p,(X).K ,p,(X))" ac-
cording to eq. (21). If this condition is violated, at least one morph will go extinct before the
population becomes demographically stable.
3.2.5. Dynamics of morph means
The mean charactek = ¢ xf,(x) dx of morph i changes according to
X _ c‘)xmdx: OX{w(x)- W} f,(x) dx
dt dt
= Ox{w(x)- W}f (x)dx,

where x = x- X . Substituting egs. (12)-(15) into thight-hand side of eq. (23) yields, in

leading order ofe,
p,—£+ O(€’)
=% f (24)

oA, a(x-x)pgm(e)

(23)

da _f o 1 ax-X)
dt x  K(x)

=y |- (1 3 alx- X)p, +

)
By noting that w(x) = 1- é_ p]a(x X, )/ K(x), we see that this is equivalent to Wright's
formula

o _, Tk

. , 25
el (25)

X=X

for the change in a character's mean. Thus, the mean of each morph evolves in the direction
towards which its fithess increases, with thie maf this adaptation being proportional to the
morph variance and to the steepness of thedgmgradient. The fitness gradient, given by the
curly brace on the right-hand side of eq. (24), comprises two components. The first term
drives morphs away from each other, while the second term pushes morphs towards the car-
rying capacity's maximum.

10
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3.2.6. Equilibria of morph means

It is clear from eq. (24) that the equilibrium morph means and their stability depend only on
the meansX and frequenciesp,, since the variance¥, affect only the speed of conver-
gence to, or divergence from, those equilibrium morph means. The equilibrium means and
frequencies of morph then satisfy the following equations, in conjunction eq. (21),

ﬂ(x)
K(X )
Defining the  matrix A¢= (AQ= (a¢X - X)) and the diagonal  matrix
U = diagK®¥x )/K % )K K& )/K K )), eq. (26) can be rewritten in matrix form as

A% = UAp. Substituting for p the equilibrium frequenciegp(X) = cA 'K derived in eq.
(21), we obtain A\ 'K = UK = K¢ with K¢= (K ¢X),K ,K X ))". Spelled out, this gives

A ,a%%- X)(A Y, K(%)= KEX) (27)

for i=1K ,n, which determines the equilibrium meas of each morph.

a atx- x)p = Ja%- %)p,. (26)

3.2.7. Convergence stability

To assess the stability of the equilibrium morph meéqsx,,L ,X )’ under the dynamics in
eg. (24), we investigate the corresponding Jacobian. The diagonal elements of this Jacobian
are given by

K®R) o 2y attx- b0 0+ 2%
M= s ; o 2 %) o @ AW, (29
where we used eq. (26). Similarly, the offghaal elements of the Jacobian are given by
5 KEX) . ¢
Jy IV = KX )a“‘(x X;) p;(X)- K(%)? — oz akX - %) p;(X). (29)

It is interesting to compare the condition for the stability of the dynamics of morph
means in eq. (24) with the condition for convergence stability (Eshel and Motro 1981; Eshel
1983). In general, a character value is said to be convergence stable if character values
closer to x can invade when the resident character value of the otherwise monomorphic
morph is slightly displaced fronx. To establish this link, we consider a resident population
consisting of an atomic distribution composedrof monomorphic peaks at character values
X, and with frequencies p;(X) for j=1K ,n, which can be represented as
é P (X)d(x- X;), where d is Dirac’s delta function. The invasion fitness x ((Metz et
al. 1992) of a variant character value in a population in which the resident character value
y of morph i is slightly displaced from its equilibrium valug , while the other morphs
are at their equilibrium valuex; , is then given by

s,(¥)= - ma a(x- %) p;(X)- ma(x y) P (X)- (30)

11
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The condition for the convergence stability of the character vaués

s, TS,
ﬂXz 1'|'y2

< 0. (31)

X=Yy=%

This is equivalent to the conditiod, <  @r the asymptotic stability of the dynamics in eq.
(24) in the special case that only a single morph mgars displaced at a time. A more gen-

eral result for a character distribution's stability against simultaneous perturbation in the posi-
tions of multiple morphs will be presented@lihere (Sasaki and Dieckmann, in preparation).

3.2.8. Dynamics of morph variances

The varianceV, = g x’f . (xX)dx of morph i changes according to

%: 0&2% dx = OXZ{W(X)_ W} f,(x) dx. (32)

If the character distributiorf; of each morphi=1K ,n is symmetric around its
mean X, f, (X +x)="f,(X- %), all odd moments of;, interms of x vanish. Using eqs.
(12)-(15) then yields, in leading order &,

dV = F{Q- v} + 0, (33)
where F = %ﬂzw(x)/‘ﬂxz‘xzx andQi = E [x1= 9% (X dx is the fourth moment of the
character distribution of morpl.

3.2.9. Equilibria of morph variances

Since E [x']- V* = E [(x*- V)7 ® 0, Q-V?® is always positive, so the local
asymptotic stability of the dynamics in eq. (33) is determined by the sign of

_ 1g 1% alx-X)
i__Ea“ﬂx KX |,
- (34
_1lg fa‘ﬁ(X-E) KEx)atx - %)  2Ka%)’ K&x)D A - )'
2%} K(®) KxY  BK®)? KX)YD

Consequently,V, increases ifF, > Oand decreases iF, < .0

3.2.10.Evolutionary stability
When morph frequencies and means are at their equilibrium values, eq. (29) reduces to

1o Ja%x- %) K&x)_ _ _J
F=-2g (20 KR e 0, (35)
291 KR®R)  K(X)
where we used eq. (26). Thus, the equilibriMn= L =V, = 0 of eq. (33) is locally
asymptotically stable if allF, are negative. It is therefoqgossible that all morph means
converge to a stable equilibrium, while one or more of the morph variances are unstable and,

12
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according to eq. (33), diverge to infinity. This happens for marpli F, is positive at the
stable equilibrium of the combined dynamics of morph means and frequencies. If, in contrast,
F is negative, the variance of morph gradually vanishes.

It is interesting to compare the condition for the stability of the dynamics of morph
variances in eq. (33) with the condition foc#b evolutionary stability (Maynard Smith 1982;
Brown and Vincent 1987). In general, a character vatués said to be locally evolutionarily
stable if character values close 0 cannot invade an otherwise monomorphic morph with
resident character valug. To establish this link, we again consider a resident population
consisting of an atomic distribution composedrof monomorphic peaks at character values
X, and with frequenciesp,(X) for j=1K ,n, resulting in the invasion fitness in eq. (30).
The condition for the local evolutionary stability of the character vaiuas

1%s,(x)
x°

<0. (36)
x=y=%
Inserting eq. (30), this yield2F. < 0, so that all morph means are locally evolutionarily sta-
ble if and only if the corresponding morph variances converge to zero. §jnce the
second derivative of fithess at the mean of morphF, > 0 implies a fithess minimum and,
consequently, that selection on this morph is disruptive.

3.2.11.Moment closure

Although the stability of the dynamics of morph variances in eq. (33) does not depend on the
fourth momentsQ of the character distributions, of morphsi, we need to specify these
fourth moments so as to close the hierarchy of moment dynamics that jointly describes
changes in morph frequencies, means, andamnees according to eqgs. (18), (24), and
(33)-(34).

Approximating f, by a Gaussian distribution with mean and varianceV, yields
E [x1=0 and Q = E [x°] =3V,>. Substituting this into eq. (33) gives

av,

i 2RV’ (37)

If, by contrast, the character variations within each morph around its mean obey the
house-of-cards model of mutation (Turelli 1984), thérr E [x*] = c,m, E [x]1=0, and
Q= Efi[>q4] = ¢,m where m is the mutation rate and, and c, are constants determined
by the strength of stadlzing selection aroundx . SubstitutingQ = (c,/c,)V, into eq. (33)
gives, in leading order ok,

dv,
d_tl = (C4 / Cz)FiVi ’ (38)

13
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where we dropped the termFV/?, since it is of orderO(e*) . The local asymptotic stability
of the variance dynamics in eq. (38) again depends only on the sign ahd thus on the
fitness curvature afx .

3.2.12.Timeto evolutionary branching

For the Gaussian closure, eq. (37) determines not only the evolutionary stability of equili-
brium morph means, but also the time a morph's character distribution needs to undergo evo-
lutionary branching. If the fitness landscapex (s) locally disruptive atx , implying

F > 0, the varianceV,(t) = [2F (t.- t)] ' diverges to infinity from an initial valug/, (0)

within a finite time t.,

t, = [2FV,O)] . (39)

Obviously, the assumption of small morph variances, which is necessary for the oligomorphic
dynamics to provide a good approximation, f#$ore a morph varian@pproaches infinity.
The durationt, nevertheless provides a useful appmagion of the time to evolutionary
branching required by a morph that esipeces disruptive selection of strengk (Fig. 1).

For the house-of-cards closure, the transient dynamics to evolutionary branching is
more gradual. The variance diverges exponentially with a rate that is proportional to the
strength of disruptive selectioHence, the characteristic timg to evolutionary branching,

t = [(c,/c,)F]" (40)

is again inversely proportional t&, . Despite this similarity, the exponential mode of diver-
gence described by eq. (38) is in qualitativatrast to the explosive divergence after a long
period of near-stasis that rétsufor the Gaussian closure.

3.2.13.Effects of mutation on morph variances

The variance of quantitative characters subject to stabilizing selection can be maintained by
mutation-selection balance: the character divetbdy gets depleted by purifying selection is
then restored by the generation of variation through mutation (Bulmer 1972; Lande 1975, and
references therein; Barton and Turelli 1991). Denoting the rate of mutation laypd as-
suming that mutational effects on character values are random with varandeorres-
ponding to the constant-variance model ond@m-walk model of quantitative genetics
theory), the dynamics of morph variances in the oligomorphic model is modified as

- R{Q- v} e, 41)

where F again measures the strength of disruptive selection aréunaccording to eq.
(34) in general and to eq. (35) for the case thatXhéave attained a convergence stable
equilibrium.

14
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For F > 0, V, diverges to infinity as in the absence of mutations, butFor , O
equilibrium morph varianced, > 0 are stabilized. For the Gaussian closure, these are given
by

V= : 42
R(pT= (42)
and for the house-of-cards closure by
2
V= _m (43)
(c,/c,)F

4.  Applicationsof oligomor phic dynamics

We now use the oligomorphic approximation derived above to understand in detail the dy-
namics of, and the morph patterns resulting from, evolutionary branching in the re-
source-competition model. The dynamical equegithat we integrate numerically describe

the frequencies, means, and variances of morphs as given by egs. (18), (24), and (33)-(34),
which we assemble here for ease of reference,

o _fs @20 %P @ ak%- x)p}

a3 P KR o)

&) _ i 1o o wvn 4 KEX) o ]

dt—Vi; s X)a ax - X)p; + KX )2a a(x X)pjg, "
v 1 o Ja®x- X) _KX)akx- )

—l=_ = -V [ 17 _ 2 J

a2\ 'g}ali K() K(X)’

TEKR)Y KX)'h

While the numerical analysis of egs. (44) starts with a fixed nunmbef morphs, the sub-
sequent eco-evolutionary dynamics may effectively reduce this number. This may occur be-
cause morph frequencies become negligible or because morph means become indistinguisha-
ble. For example, starting with five morphs when the equilibrium is dimorphic, three morphs
will subsequently be lost in such a manner.

L BKER)* K%ﬁ)o(_ _)ng

4.1. Special case allowing continuous mor ph distributions

In the special case in which the competition keraeland the carrying-capacity functiok

are both Gaussiana(x) = exp¢ 1x* /s®) and K(x)= exp¢ ix* /w?), and the former is
narrower than the latters < w, the character distribution in egs. (44) converges, through in-
cessant evolutionary branching, to a continuum of infinitesimally spaced morphs. According-
ly, the number of morphs that can be packed along the niche charadteunlimited (Ma-
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cArthur 1970; Roughgarden 1972; May 1973, 1974; Slatkin and Lande 1976; Bull 1987).
However, many deviations from this specias&ae.g., by choosing a competition kernel or
carrying-capacity function that are not Gaussiasult in atomic distributions, i.e., in the
coexistence of discrete (that is, finitely spdcmorphs (Sasaki and Ellner 1995; Sasaki 1997;
Gyllenberg and Meszéna 2005; Szab6 and Mes2806; Pigolotti et al. 2007, 2009; Leimar

et al. 2008; Fort et al. 2009).

Integrating eqs. (44) with the house-ofd@aiosure in eq. (38) shows that for both
n= 2 (Figure 2A, B) andn=5 (Figure 2C, D) morph means become displaced from their
initial values and relative to each other, while morph variances increase without limit, indi-
cating that neither two nor five morphs are enough to evolutionarily stabilize the population.
It turns out that this conclusion is independentmfBelow we show how this degeneracy is
overcome fors > w or by varying the kurtoses of the competition kernel or the carry-
ing-capacity function.

4.2.  Single-mor ph dynamics

When there is only one morph in the populatior=(1), its mean and variance change ac-
cording to

%: V in)'
dt KX

. (45)
v_. %’Iram)Jr FARUX) KW)%{Q- v},

dt BK(X)? K(X)
The meanX of a single morph thus always converges to the carrying capacity's maximum at
x=0.
At this convergence stable equilibrium for the mean, the variance dynamics reduce to

C:T\t/z %{KGI(O)- a®o0} {Q- v} . (46)

Thus, the convergence stable equilibriun is also evolutionarily stable, and the morph va-
riance V hence remains finite, if and only if

al0)< K ®0). (47)
We can interpret this condition by concluditiat evolutionary stability requires the width
1/|a¢1(0)| of the competition kernel, as described by its peak curvature, to exceed the corres-
ponding width 1/|K¢I(O)| of the resource distribution. This is equivalentde w, a condi-
tion that was already derived by Roughgarden (1972). If, on the other hand, this condition is
violated, the morph varianc¥ diverges to infinity. This implies thak= 0 is convergence
stable, as the morph mean approackes0, but not evolutionarily stable, as the variance
around x= 0 increases without limit. The character value= 0 is therefore an evolutio-
nary branching point when inequality (47) is violated.
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4.3.  Two-morph dynamics

4.3.1. Frequency dynamicsand limiting similarity

When there are only two morphs in the populatior (2), the frequency of one of them,
p,=p (with p,=1- p), changes according to

a_ oy )
p s(p.- P)P(L- p) (48)
with
s= (Kl+ Kz)(l' a(D)) and p, = Kl_ Kza(D) (49)
K1K2 ) (K1+ Kz)(l' a(D))’

where K, = K(X) is the carrying capacity of morph=1,2 and a(D) with D= X- X,

is the competition coefficient between morparid morph 2, which decreases as the character
displacementD increases. Note that botK, and a(D) are time-dependent, becauge

and X, change with time, at a speed that is slow compared with the speed of the frequency
dynamics in eq. (48). For a given pak and X,, the frequencyp is attracted towards the
equilibrium value p,.

Egs. (48) and (49) imply that if the two morphs are sufficiently separated from each
other (D|? s, wheres is the standard deviation of the competition kerad| then
a(D)= 1 and the two morphs are subject to strbatancing selection with equilibrium fre-
quency p,. If, in contrast, the two morphs are sufficiently close to each oftiefX s ),
then a(D)» 1 and the balancing selection is weak. If the two morphs have the same carry-
ing capacity K, = K,), which occurs when the dimorphism is symmetic= - X,, the
equilibrium frequency p, converges to 1/2. If the rati&, /K, between the carrying ca-
pacity of morph 1 and that of morph 2 is smaller than the competition coefficient,
K,/K,< a(D), morph 1 goes extinct. Analogously, féf,/K,< a(D), morph 2 goes ex-
tinct. These results for the two-morph frequency dynamics are fully in line with conventional
limiting-similarity theory (May 1974).

4.3.2. Branching patterns and effects of kurtosis

An interesting application of oligomorphic dynamics as developed aisawestudy the bi-
furcations that occur when inequality (47)vilblated, so that evolutionary branching can
happen. Below we show that the resultant branching patterns sensitively depend on the kur-
toses of the competition kernel and of the carrying-capacity functiok . We therefore
consider these functions to be symmetric and allen to be either platykurtic or leptokurtic.
Under these conditions, an initially symmetric dimorphism resulting from the evolutionary
branching of a single morph atx=0 remains symmetric: p,(t)= p,(t)=1/2 ,

X ()= - X,(t), and V,(t)=V,(t) for dl t. Moreover, numerical investigations of the
two-morph dynamics, egs. (44) with= 2, demonstrate that for an initially asymmetric di-
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morphism, with X (0)* - X,(0), in which X (0) and X,(0) are both close to 0, the symme-
try between the two morphs is rapidly established long before their means equilibrate.

Defining X=X =- X, and V=V, =V,, substituting these into the mean and va-
riance dynamics in egs. (44), and doubly expamdhe resulting equations in Taylor series
around X=0 and x= x- X= x yields

%: {K®0)- a®0} XV + %{%@(ox G0y & E(0j- AML(Oy K WYYV , (50)

and

‘i'j_\t’z %{K@(O)- a®(0} + 711{7a¢(0)|< 60y & E(0j- 2Oy K mg)yzg@- V2 Y51)
The parameterd= K®%0)- a®{0) measures the net disruptiveness of fitness at
X =0, sothatd= 0 corresponds to the bifurcation point for primary evolutionary branching.
Using the order estimat& = O(\ﬂ) , we obtain in leading order od

X . a oo
E_Vdg_ (X/IX) B? )
dv _dg . ,_sun )
E—Eg' (X/X" Y §Q- V*),
with
- Ja - Jd 53

X = and X = ,
|a%o0)[/1- 29, /3+ g, /6 |a%0)[/1- g, + g, /2

where g, = 3- a®®%0)/a®0y and g, = 3- K®X0)/K §0Y measure the excess kurtoses
of the competition kernel and carrying-capaditgictions, respectively (i.e., the deviations of
the fourth moments ofa and K from their expectations3a®0y and 3K ®0)* in the
Gaussian case). For a net disruptivenesslof K& - &) < (Q)bddh the character dis-
placementD = 2X between the two morphs and the varianteof both morphs converge
to zero, indicating that the population converges to monomorphisxsat . 0

For d> 0, this monomorphism is unstable. Taare then two qualitatively different
behaviors, depending on the kurtoses of the atitign kernel and carrying-capacity function.
If the carrying-capacity function is more platykurtic than the competition kemgeb @, ),
then X increases towardX . As character displacement increases, the morph variances
first increase and then decrease towards zero ehaexceedsX  (Figure 3A-C). Thus, the
population converges to an atomic distribution#=X . If the competition kernel is more pla-
tykurtic than the carrying-capacity functiog,(> g, ), then X~ > X , which implies that the
morph variances keep increasing even after the morph means have reached their equilibrium
(Figure 3D-F). The two morph variances thereforcrease without limit, indicating that the
dimorphism + X" is not evolutionarily stable. In this case, a trimorphism, rather than a di-
morphism, is the successor of the initial monomorphism, as will be illustrated in maile det
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below. Figure 3C and 3F depicts trajectorig§V), as well as the isoclinegx/dt= 0 and
dv/dt= 0, for g, > g, (Figure 3C)andg,> g, (Figure 3F).

Figure 4 shows results of the numerical analysis of the corresponding two-morph and
three-morph dynamics. As a rolwsss check, we consider an initially asymmetric dimor-
phism, and verify that symmetry is nonetted subsequently teblished. The carry-
ing-capacity function is platykurtic, indeed purely quarti¢(x) = exp¢ 4x* /h*), and the
competition kernel is Gaussiam(x) = exp¢ 1x* /s?). For these specific functions, a pair-
wise invasibility analysis of the symmetric dimorphisaX reveals that forh $< 1.16
this dimorphism is evolutionarily stable, while for s#  1.16is destabilized (Figure 5).

4.4. Effectsof mutation on evolutionary branching

We now examine how mutations affect the condition for evolutionary branching. For this, we
consider a Gaussian competition kerreeland a resource distributioK that can be either
Gaussian or platykurtic,

a(x) = expt +x%) and K(x)= expt 1x* mw’- gx*). (54)

The characterx is scaled so that the standard deviation of the competition kernel equals 1,
w measures the standard deviation of the resource distributiong&nd dete@mines the
degree of platykurtosis of the resource distitru According to inequality (47), the thre-
shold for evolutionary branching in the absence of mutation is givewby . In the special,

and highly structurally unstable, case that both competition kernel and resource distribution
are Gaussiang= ) and when the resource distribution is wider than the competition kernel
(w>1), a continuous distribution with varianos®- 1 is stable (MacArthur and Levins
1967; MacArthur 1969, 1970; Roughgarden 1972; May 1973, 1974; Slatkin and Lande 1976;
Bull 1987). If, in contrast, the resource distribution is just slightly platykudie (), tie
dynamic outcome abruptly changes into an evolutionarily stable dimorphism (Sasaki and Ell-
ner 1995; Ellner and Sasaki 1996; Sasaki 1997).

If recurrent mutations generate variance, atomic character distributions cannot remain
atomic; instead, each morph must feature narrow blurs around its peaks. So far, however,
there has been little study of how mutations change the bifurcations associated with evolutio-
nary branching, or the character distributions that from evolutionary branching. It is also in-
teresting to ask how adding mutations affdabis structurally unstable continuous distribu-
tions expected for the combination of Gaussian competition kernels with Gaussian resource
distributions. In this section, we apply oligomorphic dynamics to answer these three questions.
For this purpose, we assume that, owing tdatmns, an offspring's character deviates from
that of its parent with raten and variancem’.
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4.4.1. Analytical results

Analyzing the dynamics of a single morph, we focus on cases in which the net disruptiveness
d=1- w?> 0 is close to the bifurcation poini= 0, and expand, up to sixth order in the
character deviatiorx = x- X, the selection componer(tlV /dt)., of the variance dynamics.

As shown in Appendix A, this gives

VO _ 1. va. 1o ve ]
%%e._zd@ V%)- 2Q- VAV + g(H- VQ), (55)

where V= §xf () dx, Q= )x’f (x)dx, and H = ¢)x°f (x)dx. Combining this with the
mutation component

5
Ere = m (56)
At G

of the variance dynamics, we obtain the total rate of variance chang#/ adt =

(dVv/dt),, + (dV/dt)
To derive from this a rough estimate of the equilibrium morph variance, we can as-

sume that the character distribution is approximately Gaussian, soQtha®/? and

H = 15v2, which gives

mut *

%: avZi- (1+ 129 V3 + . (57)

Setting the right-hand side to 0, we obtain the approximate equilibrium morph vakaras
an implicit function of the bifurcation parameteds or w= (1- d) **» 1+d/2. Figure 6
compares this with the results of numerical analyses.

As shown by the numerical analyses, mutations postpone the bifurcation towards mul-
timodality in the character distribution that results from increasing the strength of disruptive
selection. We examine how far mutations shift this bifurcation point, by assuming small devi-
ations of characters from the mean of an agipnately Gaussian character distribution. For a
morph varianceV , the two leading terms for the second derivativl®  (@)fitness at the
morph meanX = 0 are then given by

w®0)=d- V. (58)
Thus, if d=1- w? exceeds the equilibrium morph varianwe defined by eq. (57), the
fitness landscape is disruptive &= 0. The bifurcation pointd at which this occurs is

therefore obtained by substituting = d into eq. (57), setting its right-hand side to 0, which
yields

- 129+ nm* = 0. (59)

This means that mutations shift the bifurcation point frdm 0 to

|ﬂmﬂ2
d= 3 , (60)
12g
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w= 14 S5 rrmz. (61)
2\ 129

Consequently, for conditions close th= 0 and g= 0, an arbitrary amount of muta-
tion-induced variancer’ prevents evolutionary branching. The special case of Gaussian
competition kernels and resource distributions (which implies a dynamically stable, but
structurally unstable, equilibrium character wlsition of Gaussian shape), then loses its pa-
thological nature (Sasaki and Ellner 1995; Sasaki 1997; Gyllenberg and Meszéna 2005; Pig-
olotti et al. 2007, 2009) and instead results stracturally stable evolutionary outcome fea-
turing a single evolutionarily stable morph.

or equivalently, fromw=1to

4.4.2. Numerical results

Figure 6A shows howw affects the equilibrium character distributidr(x). The distribu-
tion stays unimodal fod< 0 or w< 1, in accordance with the predicted bifurcation points
without mutation. Forg = 0.05 and nmy’ = 3.2x10*, the predicted bifurcation points with
mutation ared= (nm*/12g)"* = 0.08196 or w= 1.03976. This well approximates the
threshold at which the fitness landscape bez® bimodal (dashed line in Figure 6B). The
equilibrium character distribution stays unimodal for even larger values dfFigure 6A),
after the fitness landscape becomes bimodal(Ei§B), with an increasing platykurtosis in
the single morph compensating for the increasing disruptiveness, up to \abolit136
(Figure 6D).

Figure 6B shows the equilibrium morph variande as a function ofw. The va-
riance gradually increases #® bifurcation parametew is raised. The numerical results
(dotted line) are in good agreement with the approximate analytical results (continuous line),
which are derived for smalti= 1- w ?> and obtained as the root of the cubic equation that
results from setting to 0 the right-hand side of eq. (57).

Figure 6D shows the equilibrium morph kurtosis[x*]/(3V?) as a function ofw.

The kurtosis gradually decreases from 1 (for a k@s$ic distribution) as the bifurcation pa-
rameter w is raised. Forw between 1 and 1.136, the equilibrium character distribution re-
mains unimodal, but becomes increasingly platykurtic (Figure 6A). Instead of splitting the
equilibrium character distribution and creating a dimorphism, disruptive selection is compen-
sated by mutation, becoming absorbed in the platykurtosis of an evolutionarily stable morph.
If w is further increased, disruptive selectmrercomes this mutation-induced morph cohe-
sion, so that the equilibrium character distribution starts to become bimodal (Figure 6A).
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5. Discussion

Here we have derived oligomorphic dynamissa new theoretical freework for examining

the joint ecological and evolutionary dynamio§ populations with multiple interacting
morphs. Building on, and integrating, sali@spects from a wide range of preeminent pre-
ceding work (including Lande 1976, 1979, 1981, 1982; Roughgarden 1972, 1976; Bulmer
1974; Slatkin 1980; lwasa et al. 1991; Abrams et al. 1993; Vincent et al. 1993), our approach
helps moving beyond a focus on unimodal character distributions, often taken in models of
guantitative genetics theory, and on negligiblthin-morph variance, often taken in models

of adaptive dynamics theory. Through a double Taylor expansion of interaction coefficients
and fitness landscapes around the means of apphmcexisting in a population, we have de-
rived the approximate dynamics of morph frequencies, means, and variances.

More in particular, we have shown howgomorphic dynamics can help investigate
processes of adaptive diversification drivenflgquency-dependent disruptive selection. For
this purpose, we have (1) shown how to interpret conditions for demographic stability, con-
vergence stability, and evolutionary stability in terms of the moments of oligomorphic dy-
namics, (2) presented alternative moment closures suitable for oligomorphic dynamics, (3)
derived approximations for assessing the wgitime until evolutionary branching, and (4)
analyzed the effects of mutation on equilibrium morph variances. In addition, for a classical
model of resource competition we have (5) elucidated the structural instability of continuous
character distributions, (6) obtained threshadaditions for primary and secondary evolutio-
nary branching, and (7) derived corrections for describing the effects of mutation on evolu-
tionary branching.

There is a great variety of aspects thatcheo be considered when trying to under-
stand processes of adaptive speciation in ways that do justice to the complexity of the corres-
ponding natural systems (e.g., Dieckmann and Doebeli 2005). Models based on
game-theoretical and phenotypic dynamics Hasen used to investigate complexities in the
ecological underpinnings of speciation, wéss models based on population genetics or
guantitative genetics have helped analyze complexities in the genetic underpinnings of speci-
ation (see, e.g., Dieckmann et al. 2004 for reviews). Oligomorphic dynamics contribute to
bridging between these approaches, by extending the multi-morph dynamics of adaptive dy-
namics theory with analyses of the effects of morph variance and of the effects of mutation,
while extending the single-morph dynamics of quantitative genetics thetiryanalyses of
evolutionary branching and of morph interactions.

In the spirit of such bridge building, we have investigated how mutations affect the
bifurcation structure and equilibrium charactestdbution in processes of adaptive speciation.

It turns out that mutations have a large efi@etthe threshold condition for the relative net
disruptiveness of selection (defined as the thffiee between the strength of disruptive selec-
tion and the strength of stabilizing selectiorviditd by the strength of disruptive selection).
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Specifically, eq. (61) shows how mutations shift the threshold for this relative net disruptive-
ness away from the value of 1 that applies in the absence of mutation. Since the resultant dev-
iation is proportional to the cubic root ofethmutation variance, even a small mutation va-
riance can significantly shift the disruptiveness necessary for adaptive speciation.

Earlier theoretical studies have investigateel time required for a population to shift
evolutionarily from one local peak of its fitness landscape to another. These studies had hig-
hlighted three factors determining the pace of such a transition: the fitness difference between
the peaks, the depth of the valley separating them, and the evolving population’s effective size
(Lande 1985, 1986; Newman et al. 1985; see also Whitlock 1995, 1997). While these earlier
studies dealt with shifts between preexistingd fithess peaks, here we have answered the
related but different question as to the timgureed until an initially unimodal character dis-
tribution splits into two distinct morphs under the influence of frequency-dependent disrup-
tive selection. For asexually reproducing species, this characterizes the waiting time until
adaptive speciation. We have found that this waiting time is inversely proportional to the
strength of disruptive selectioas measured by the curvature of the fithess landscape at the
evolutionary branching point. Oligomorphic dynamics can be used to estimate this curvature.

Analyses based on oligomorphic dynamics also shed light on the fundamental struc-
tural instability of continuous distributions species under combinations of Gaussian compe-
tition kernels and Gaussian resource disiions assumed in seminal papers on species
packing (MacArthur and Levins 1967; MacArthur 1969, 1970; Roughgarden 1972; May
1974) and on the evolution of within-family variance in fluctuating environments (Slatkin and
Lande 1976; Bull 1987; Sasaki and Ellner 1988ner and Sasaki 1996; Sasaki 1997). As
proved by Sasaki and Ellner (1995) and Sasaki (1997), even the slightest deviation from the
non-generic assumption of mesokurtic functionstrg's the build-up of a continuum of spe-
cies (sometimes referred to as a “continuB&S”). The condition for primary evolutionary
branching we have derived here from oligomorphic dynamics with mutations, for a Gaussian
competition kernel and a potentially platykurtic resource distribution, explains why evolutio-
nary branching is obstructed in doubly Gaussradels with mutations. In lieu of evolutio-
nary branching, the equilibrium character wlgttion merely broadens and its kurtosis in-
creases, so that its bulk becomes flatter and its tails become thinner. Up to a point, such pla-
tykurtosis absorbs the frequency-dependent disruptive selection and thereby prevents evolu-
tionary branching. A similar effect is likely to occur with regard to the stochastic fluctuations
in morph means that arise from random drift in populations of finite size. Even though we
cannot study such fluctuations using the deteistic framework developed here, our results
suggest that, in the presence of residualugisreness, the distribution of these means over
time will also be platykurtic. Therefore, this effect provides an additional mechanism for the
effective absorption of disrupegwness through platykurtosis.

23



SASAKI AND DIECKMANN : OLIGOMORPHIC DYNAMICS

When a quantitative character is subject to frequency-dependent selection that is
strongest among individuals with similar character values, as happens for resource competi-
tion or for fluctuating selection with a shifting optimum, the character distribution that gener-
ically evolves is discrete, rather than continuous, in the sense that it consists of several dis-
tinctly separated morphs. The previously helgectation of unlimitedly tight (continuous)
packing of species or character valy®&acArthur 1970; May 1973, 1974; Roughgarden
1972; Slatkin and Lande 1976; Bull 1987) is basedtructurally unstable models combining
Gaussian competition with a Gaussian or uniform carrying capacity (Sasaki and Ellner 1995;
Sasaki 1997; Gyllenberg and Meszéna 2005; Szabé and Meszéna 2006; Pigolotti et al. 2007,
2009; Leimar et al. 2008; Fort et al. 2009).eTiobust emergence of distinctly separated
morphs in evolving distributions of quantitagicharacters underscores the importance of oli-
gomorphic dynamics for understanding a wide range of evolutionary phenomena.

For example, conclusions similar to thakawn for species packing apply to models
of character displacement. Slatkin’s seminal character-displacement model (Slatkin 1980)
considered a Gaussian competiti@inel (with standard deviatios,) in conjunction with a
Gaussian carrying-capacity function (with standard deviagQn along a one-dimensional
niche space. His analyses showed that a Gaussian character distribution with variance
sk - sZ will evolve (Slatkin 1979) if disrupt selection dominates stabilizing selection
(sf>s’+s?, wheres? is the environmental variance). However, the structural instability
of the doubly Gaussian model is responsible for the neutral stability of this continuous equili-
brium character distribution in Slatkin’s mod&le suggest that oligomorphic dynamics as
developed here provide a useful theoretical tool for analyzing character displacement, espe-
cially when considering non-reekurtic interaction functions.

Our study leaves room for many important extensions. For example, to apply oligo-
morphic dynamics to more general and realistic models of adaptive speciation, it will be de-
sirable to investigate the feasibility of incorporating more complex ecological aspects, such as
assortative mating, as well as more complex genetic aspects, such as multi-locus inheritance,
recombination, diploidy, and random drift.
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Appendix A

Here we derive the dynamics governing thearece of a unimodal character distributigix),
through a double Taylor expansion up to sixth order in the small deviatox- X = x of

characters from the morph meat= 0,
‘L—\t’= OXE(W(x)- W (x)dx (A1)

In the expression for the fithess x ( We first expand the interaction coefficieatx-(y )
around X,

K(X) KXt
where V = E [x*] and Q= E [x"]. We then expandn(x) around x= 0, assuming that

the competition kernel and the carrying-capacity function are both symmetric around O,
a(x)= a(- x) and K(x)= K(- x), and peaked at 1a(0)= 1 and K(0)= 1,

w(x) = 1- iéa(x- yX (y)dy= 1- iIa(x)+ %a@(x)\/ +iaﬂﬂm@x)Q§+ 0(€°),(A2)

W(X) = %{K ®O)X*- a®O)(x*+V'}

- {aH0)Q+ 6V + x')- GaHOK BOUX"+ x°) (A3)
+ BK®Oyx*- K Wotox‘}+ 0 €®).
Taking on both sides the expectatid) K [wjth respect tof X )yields

W= %{K KOV - 2a%0)}

: 2_14{amo)(zQ+ 6/2) E@EOK O+ Q) (Ad)
+ BK®OYQ- K ®R0Q}+ O €°),

which gives the selection differential
W(X)- W= %{me)- a®o} (- V)
- -{a00)- 6aGOK WO} &GO KWW £~ Q) (A5)
: %{amo)- aQO)K B0}V (- V/ J+ O€°).

Substituting this result into eq. (A1) then yields
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Ocli_\t/: %{KG(O)- a®o} {Q- v}

: %{amO)— 6a (0K B0} < €(0f- K G {H - Qv} (A6)
i %{ammo)- a oK 40} {Q- V3V +0¢°),

where H = E [x°] is the sixth moment of the character distribution.

Without loss of generality, we can scale the charagteso that a®0)= - 1. If the
curvature of carrying capacity at= 0 is only slightly larger thana®%0), we can set
K®&0)= a®0)+ d=- 1+ d, where d is a small positive constant measuring the net disrup-
tiveness of selection. Substituting these second derivatives into eq. (A6) and neglecting high-
er-order terms ind (noting that the equilibrium morph variandé for which disruptive and
stabilizing selection pressures balance is of ord@d , (sp that Q= O(d®) and
H = O(d®)) then yields

d

V- Lafo- va - Lo
e 2ol{Q v} 2{Q v}v

1 1 (A7)
3 6
- ﬂgK {H - QV} + ?493(H + 5QV- ov )+ O(e )!

where g, = 3- a®%0)/a €0)* and g, = 3- K®X0)/K €Oy measure the excess kurtoses
of competition kernel and carrying-capacity ftion, respectively (a positive value of these
measures indicates a platykarfunction and a negative value indicates a leptokurtic func-
tion). For the functions specified in eq. (54), we obtalw 1- w?, g,= 0, and

g« = 24g (1- d)?» 24y, which, when substituted in eq. (A7), recovers eq. (55) in the main
text.
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Figurel. Evolutionary branching as described by the oligomorphic dynamics of two

morphs (continuous curves: morph 1; dashedres: morph 2) for a Gaussian competition
kernel a(x)=exp¢ ix*/s?) with s=1 and a Gaussian resource distribution
K(x)= exp¢ $x° /w?*) with w= 1.054. The net disruptiveness at= 0 thus equals
d= K&0)- a®0)= 0.1> 0, so a monomorphism at= 0 is not evolutionarily stable. Va-
riance dynamics are based on the Gaussian clogre,3V.>. The dynamics of the means
and variances of morphi=1,2 are given by dXx/dt=Vx(d- x°) and

dVv, /dt = V*(d- X*), which are obtained from eq. (52)-(53) for =y, =0. These start
from a symmetric dimorphism withp,(0)= p,(0)= 0.5, X(0)=- X,(0)= 0.01, and
V,(0)=V,(0)= 0.02 . The time to evolutionary branching is approximated by
t.= 1/(av (0))= 500 (double-headed arrow), in good agreement with the actually observed
duration of evolutionary branching.
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Figure 2. Oligomorphic  dynamics for a  Gaussian competition  kernel

a(X)=exp¢ ix*/s?) with s=1 and a Gaussian resource distribution
K(x)= exp¢ +x° /w?*) with w= 1.1. Variance dynamics are based on the house-of-card
closure with c,/c,=2, resulting inQ = ¥,. Snce w> s, a monomorphism ak= 0 is

not evolutionarily stable. (a, b) Dynamics of morph means (a) and morph variances (b) for
two morphs (= 2; continuous curves: morph 1; dashed curves: morph 2) for initial condi-
tions p,(0)= 0.4, p,(0)= 0.6, X(0)=- 0.1, X,(0)=- 0.11, and V,(0)= V,(0)= 0.01 (c,

d) Dynamics of morph means (c) andrptovariances (d) for five morph& € 5; continuous
black curves: morph 1; dashed black curvesrph 2; dot-dashed black curves: morph 3;
continuous gray curves: morph 4; dashedygcurves: morph 5) for initial conditions
p.(0)=1/5 X(0)=- 0.1, X,(0)=%(0)+10°%, X,(0)=- 0.11, X,(0)= X,(0)- 10°,
%(0)= %,(0)- 10", and V,(0)= 10" for i=1K ,5.
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Figure 3. Oligomorphic dynamics of a symmetric dimorphism wigh(t) = p,(t) = 0.5,

X ()= - X,(t), and V,(t) = V,(t) for a Gaussian competition kerna(x)= exp¢ 1x* /s?)

with s =1 and a potentially platykurtic resource distributist(x) = exp¢ 1x* /w”- gx*)

with g = 49, (continuous curves: morph 1; dashed curves: morph 2). The net disruptive-
ness is set tad= K®0)- a®0)=s?- w ?= 0.1> 0 which implies w» 1.054, so a mo-
nomorphism atx= 0 is not evolutionarily stable. Variance dynamics are based on the
Gaussian closureQ = 3V?. (a, b, ¢c) When the resource distribution is more platykurtic than
the competition kernel,g, = 234g,= 0 the isocline x=X = \/d/(1+ 10¢- 9,)

= 0.213, along whichdV,/dt= dV,/dt= 0, is situated to the left side of the isocline
X=X = \/d/(1+ 19, - 49,) = 0.267, along which dx, /dt = dx,/dt= 0 (c). This means

that the dynamics converge to a stable dimorphism with morph mgan& , X,=- X

(a), and vanishing morph varianc®=V, = 0 (b). (d, e, f) When the competition kernel is
more platykurtic than the resource distributiay, = - &48 = , tie trajectory instead
reaches the isoclinex= X = 0.330 before it has the possibility to reach the isocline
x= X = 0.363 (f). This means that the morph variances keep growing (e) even after the
morph means have already become stationaryk=atx  (d), resulting in an unlimited explo-

sion of the two morph variances.
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Figure4. Oligomorphic  dynamics for a  Gaussian competition  kernel

a(x)= exp¢ +x* /s?) with s =1 and a quartic (and thus platykurtic) resource distribution
K(x) = exp¢ 1—12x4 /h*) (top row: morph frequencies; second row: morph means; third row:
morph variances; fourth row: fitness landscapéx) = 1- é ‘pa(x- X)/K(x) atthe end

of the shown time series). Variance dynamics are based on the Gaussian csusy,’.
Oligomorphic analysis reveals that a monomorphisnxatO is never evolutionarily stable,
and that a symmetric dimorphism around= O is evolutionarily stable ifh < 1.16
(Figure 5). (a) Two-morph dynamics fon/s=1 and =0 (n= 2; continuous
curves: morph 1; dashed curves: morph 2). Starting from initial conditm(®)= 0.4,
p,(0)= 0.6, X (0)= 0.001 X,(0)= - 0.01, and V,(0)=V,(0)= 0.01, a convergence stable
and evolutionarily stable protected dimorphism emerges. (b) Two-morph dynamics for
h/s=12 and nm*’= 0 (n= 2; continuous curves: morph 1; dashed curves: morph 2).
Starting from initial conditionsp,(0)= 0.4, p,(0)= 0.6, X(0)=- 0.2, X,(0)= - 0.25,

and V,(0)=V,(0)= 0.01, morph frequencies and morph means approach an evolutionarily
singular symmetric dimorphism, but morph eates expand to infinity. (c) Three-morph
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dynamics forh 6= 1.2and mm’= 0.001 (n= 3; continuous curves: morph 1; dashed
curves: morph 2; dot-dashed curves: morph 3). Starting from initial conditpf® = 0.6,

p,(0)= 0.25, p,(0)=0.15, x(0)=-05, Xx,0)=-04, Xx0=-01, and
V;(0)=V,(0)= V,(0)= 0.01 the population is evolutionarily stabilized by a secondary evolu-
tionary branching between morphs 2 and 3: eventually all morph variances become stationary,
since all morph means are situated at local maxima of the fithess landscape.
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Figureb. Evolutionary invasion analysis of a symmetric dimorphism with

p(t) = p,(t) = 0.5, X (t)= - X,(t), and V,(t) = V,(t) = O for a Gaussian competition kernel
a(x)= exp¢ +x* /s?) with s=1 and a quartic (and thus platykurtic) resource distribu-
tion K(x)= exp¢ &x* /h*). (@) For h=1<1.16, the symmetric dimorphism with

X, (t) = - X,(t) = 1 is convergence stable and (globally) evolutionarily stable (whitensgi
mutant can invade; gray regions: mutant cannot invade). (bhFot.5> 1.16 the symme-

tric dimorphism is convergence stable fg(t) = - X,(t) » 1.2, but is not (neither locally, nor
globally) evolutionarily stable (white regions: mutant can invade; black regions: mutant can-
not invade). (c) Character distributiodgx) resulting from oligomorphic dynamics based on
101 equally spaced character values in the range& x< 3 for different widths h of the
resource distribution. The initial character disition is Gaussian with a mean of 0.1 and a
variance of 0.1. The mutation rate between adjacent character values, which differ by
Dx= 0.06, is m= 2.8x10*, giving rise to the mutation varianaem’ = mE[(DX)*] =110 °.

The panel showd °°(x) (so as to improve visibility dbw densities; white: 0; black: max-
imum value; with linear grayscales in between) together with morph means (filled circles) at
t= 2,000 for 21 values ofh.
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Figure®6. Effects of mutation on evolutionary branching for a Gaussian competition

kernel a(x)= exp¢ 1x* /s?) with s =1 and a potentially platykurtic resource distribution
K(X)= expt 1x* /w’- gx*) with g= 0.05 Without mutation, the threshold condition for
evolutionary branching isv/s = 1. (a) Equilibrium character distributions x ( resulting

from oligomorphic dynamics based on 101 equally spaced character values in the range
- 2< x< 2 for different widths w of the resource distribution. The mutation rate between
adjacent character values, which differ B = 0.04, is m= 0.2, giving rise to the mutation
variancem’ = mE[(DxX)*] = 3.2X0 *. With such mutation, the population remains unimodal

for 1< w/s < 1.136 (continuous horizontal lines). (b) Fitness landscapes f¢r)differ-

ent widths w of the resource distribution. With mutation, fitness landscapes remain unimod-
al for 1< w/s < 1.040 (dotted horizontal line), but become bimodal earlier than the charac-
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ter distribution (continuous horizontal lines) as is increased. (c) Variances of the equili-
brium character distribudn for different widthsw of the resource distribution. The conti-
nuous line represents the numerical results from panel (A), while the dashed line represents
the approximation from eq. (57). (d) Kurtos€¥/ (3v?)= E[(Dx)*]/ (3V?) of the equili-

brium character distribution for different widths of the resource distribution. As/ is
increased above 1Q/(3V®)< 1, so the shape of the elijpiium character distribution
changes from Gaussian to platykurtic.

43



	IRfront.pdf
	Oligo-preprint.pdf

