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Foreword 

This report describes the research the author advanced during her participation in the 2010 
Young Scientists Summer Program (YSSP) with the Integrated Modeling Environment 
Project. The aim of this research is to build up a framework supporting robust decision-
making for protecting public goods against uncertain threats generated by agents and 
chances.  

Under increasing interdependencies of globalization processes the protection of public 
goods is becoming a critical topic, especially against uncertain threats generated by agents. 
Examples include both direct threats such as terrorist attacks, recent BP oil spill, and 
financial crisis, and indirect threats associated with natural disasters such as improper land 
use planning and cascading risk management at a disaster prone area. This work builds up 
a framework for such a broad class of decision problems with inherent uncertainties and 
strategic responses. 

The framework combines the “leader-follower” game concept with approaches of stochastic 
optimization and multicriteria analysis. It incorporates both mathematical models and 
computational algorithms for public goods protection against uncertain and endogenous 
threats, which makes it ready for realistic applications. In particular, two case studies are 
presented, including defending urban areas against uncertain intentional attacks and 
regulating electricity networks with consideration of possible outages. 

The research conducted during the three-month YSSP period will  be continued by 
advancing the  theoretical framework and  its practical applications.  
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Abstract 

This paper analyses a framework for designing robust decisions against uncertain threats to 
public goods generated by multiple agents. The agents can be intentional attackers such as 
terrorists, agents accumulating values in flood or earthquake prone locations, or agents 
generating extreme events such as electricity outage and recent BP oil spill, etc.  

Instead of using a leader-follower game theoretic framework, this paper proposes a decision 
theoretic model based on two-stage stochastic optimization (STO) models for advising 
optimal resource allocations (or regulations) in situations characterized by uncertain 
perceptions of agent behaviors. In particular, the stochastic mini-max model and multi-
criteria STO model are presented to solve for two different types of protection decisions for 
public goods security. Furthermore, the use of conditional value at risk (or expected 
shortfalls) is advanced in the context of quantile optimization for dealing with potential 
extreme events.  

Proposed framework can deal with both direct and indirect judgments on the decision 
maker’s perception about uncertain agent behaviors, either directly by probability density 
estimation, or indirectly by probabilistic inversion. The quantified distributions are treated as 
input to the stochastic optimization models in order to address inherent uncertainties. Robust 
decisions can then be obtained against all possible threats, especially with extreme 
consequences. 

This paper also introduces and compares three different computational algorithms which can 
be used to solve arising two-stage STO problems, including bilateral descent method, linear 
programming approximation and stochastic quasi-gradient method. A numerical example of 
high dimensionality is presented for illustration of their performance under large number of 
scenarios typically required for dealing with low probability extreme events. Case studies 
include defensive resource allocations among cities and security of electricity networks. 
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Allocation of Resources for Protecting Public Goods 
against Uncertain Threats Generated by Agents  

Chen Wang (cwang37@wisc.edu) 1

1. Introduction 

 

Decision making for security of public goods should be robust against uncertain threats, 
especially extreme events generated intentional or unintentional by agents. The standard 
deterministic analysis usually takes only one single scenario as given, without considering the 
vast variety of potential scenarios with often non-normal distributions (e.g., heavily tailed or 
multi-modal) or seemingly irrelevant outliers which may ruin the mean value analysis. Such 
uncertainties of decision makers arise from their lack of knowledge not only about exogenous 
factors generated by chances (such as natural disasters), but also about agent behaviors. 
However, in the context of security analysis, the impact of outliers (“extreme events”) is 
especially significant. Therefore, explicitly quantifying such uncertainties and applying stochastic 
optimization methods as decision support tools are two important tasks when modeling public 
good protection. 

Examples of extreme events generated by agents include intentional threats such as terrorism. 
Potential attackers choose from areas (urban areas, military bases, sites on a foreign land, and 
etc.) and specific places (subways, shopping centers, food supply chains, and etc.) to launch an 
attack or simultaneous attacks. Choices of targets and means (e.g., improvised explosive 
device, IEDs) are based on their desirability and accessibility to destinations and resources, on 
which decision makers can only have partial intelligence. Other examples include social, 
energy, and financial threats caused by inappropriate agent behaviors. For example, recent BP 
oil spill2

Regulations of public goods security have been widely discussed in the context of principal 
agent models (Laffont and Martimor, 2002), in which a principal regulates all agents to achieve 
a good overall performance of a system, while agents tend to maximize their individual payoffs. 
Principal agent (PA) models have feature of the two-stage Stackelberg game, or leader-follower 
game, where the principal moves first to formulate regulations (or distribute resources) and then 
all agents make full observation and choose their optimal strategies. It is assumed that the PA 
has full information about agents and uses their response functions designing his decisions. 

 has shown its long time ignorance of reliability against such an event with low 
probability but extreme consequences and the lack of regulations imposing costs on violation of 
preparedness measures. Some natural disasters may seem less evident to relate to agent 
actions. However, for example, the catastrophic flood of hurricane Katrina is a combination of 
natural chances and a failure of levees due to lack of maintenance. The huge amount of losses 
could also have been avoided if there were regulations against building values close to the 
levees (Ermoliev and von Winterfeldt, 2010). Another example of improper land use planning is 
that farmers (agents) in a volcanic prone area tend to move towards the epicenter of eruption for 
more fertile lands.  

                                                
1 Integrated Modeling Environment Project, IIASA, Laxenburg, Austria  
  Department of Industrial and Systems Engineering, University of Wisconsin-Madison, USA  
2
 BP oil spill in 2010 is a massive oil spill in the Gulf of Mexico that is the largest offshore spill in U.S. 

history. BP is a global energy company headquartered in London, United Kingdom. 
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Some models allow the agents to have private information, which can be useful in modeling 
uncertain threats to public goods. However, it is still assumed that the PA is able to evaluate 
exact expectation functions of agents and there are strong commitments of agents for using 
these functions and resulting response functions. These unrealistic assumptions may result in 
unstable misleading solutions. They also create serious computational difficulties. Since the 
principal and agents usually have different objective functions, even if both objectives are well-
defined convex (or concave) functions, the leader-follower structure will generally lose such 
properties, and solving resulting optimization problem becomes very complicated task. 
Therefore, instead of the game theoretic framework, this paper follows general approach 
proposed in Ermoliev and von Winterfeldt (2010) to decision-theoretic modeling based on 
stochastic optimization (STO) to solve for robust decisions against uncertain threats to public 
goods. In particular, models of followers and the leader are formulated as STO models with 
explicit introduction of uncertainties based on the leader’s perception of followers behavioral 
scenarios.  

This paper first develops the stochastic minimax model to a problem of defensive resource 
allocations against intentional attacks. Considering that the agents (intentional attackers) may 
have private information about their target preferences, the principal (defender) attempts to 
minimize the expected value of maximal random payoffs to the agent by using PA perception of 
agents scenarios. This stochastic worst case analysis (stochastic minimax), in fact, corresponds 
to a decision-oriented extreme events model for regulating public goods security against 
perceived extreme scenarios of agents. The stochastic minimax model well preserves convexity 
(or concavity) of the objective functions, which is powerful in developing both analytical and 
computational results.  

In general, dealing with multi-agent problems under uncertainty may lead to rather different 
multi-criteria STO models (Arthan, 1994). In particular, if the principal and agents share 
common interests, one can construct the total objective as expected value of the weighted sum 
of individual objectives. This paper applies the multi-criteria STO model to electricity networks, 
where the System Operator (SO) determines dispatch of electricity in the electricity network 
while firms determine generation quantities at each generation facility to gain profits, 
considering that there are possible outage of power plants and breakdown of transmission lines. 

Uncertainties about agent behaviors can be quantified by probability distributions (either by 
density functions or simulated scenarios) of those uncertain parameters in agent utility 
functions. However, extreme events generated by agents are generally lack real repetitive 
observations, so such distributions usually cannot be obtained through standard statistical 
analysis. In particular, when direct estimations are not available, I can use probabilistic inversion 
(Kraan and Bedford, 2005; Du et al., 2006) to infer the underlying expert perception about the 
parameters of interest. For example, in the problem of protecting cities against intentional 
attacks, if I have expert opinions on attacker rankings of potential targeted cities, I can 
probabilistically invert their subjective distributions (as simulated scenarios) on the relative 
importance of city attributes (e.g., expected loss from terrorist attacks, population, national icon, 
difficulty of launching an attack, and etc), and even the characteristics of un-quantified 
attributes.  

Furthermore, minimizing expected losses (or maximizing expected payoffs) may not be 
adequate to capture the problems involving extreme events, since mean values are generally 
not robust to “outliers” (Koenker and Bassett, 1978). For example, when minimizing losses, one 
may need to focus on the extreme losses beyond a certain critical value. Ermoliev and von 
Winterfeldt (2010) propose to use the multicriteria version of conditional value at risk (CVaR) or 
expected shortfall (Uriasev and Rockafellar, 2000; Artzner, 1997; 1999) as the optimization 



 

3 

 

objective to deal with human-related extreme events. The CVaR is defined as the conditional 
expected loss beyond a certain quantile (value at risk, or VaR). Ermoliev and von Winterfeldt 
(2010) represent an integrated STO model to simultaneously solve for the quantiles and the 
optimal CVaR. In this report I present a case study on the discussion of mean value objectives 
versus conditional value at risk objectives. 

The structure of this paper is as follows. Section 2 introduces the STO models that can be used 
for protecting public goods against uncertain threats generated by agents. The two-stage 
stochastic minimax model and the two-stage multi-criteria stochastic optimization (STO) model 
are introduced and two examples of application are presented. Furthermore, this section 
discusses use of the CVaR as an optimization objective and its relation to quantile optimization. 
Section 3 explores ways of quantifying decision makers’ uncertain perception about agent 
behaviors. In particular, the technique of probabilistic inversion is applied to elicit indirect expert 
perceptions about uncertain parameters in the agent utilities. Section 4 discusses in detail an 
application of defensive resource allocations against intentional attacks. A case study of 
protecting 47 US urban areas is presented. Section 5 focuses on another application dealing 
with security of electricity networks. Optimal dispatch decision for the system operator (SO) is 
discussed for a case study of Belgian high voltage network.  Section 6 describes and compares 
several specific algorithms developed to solve the arising STO problem, including bilateral 
descent method, linear programming (LP) approximation and stochastic quasi-gradient (SQG) 
method (Ermoliev, 1983; 2009). Section 7 concludes this paper. 

 

2. Stochastic Optimization (STO) Models 
 

In this section I present two different STO models which can be applied to problems of 
protecting public goods against uncertain threats generated by agents, including the stochastic 
minimax model and the multi-criteria STO model. Both models belong to the class of two-stage 
STO problems. In particular, in both models, the agents are assumed to make strategic 
decisions in response to the principal actions, and the principal (decision maker) is assumed to 
have incomplete information about agent behaviors.  

The stochastic minimax problem is used in the cases where the principal and agents have 
opposite objectives. A typical setting is that the principal wants to minimize the perceived 
payoffs to the agents. A problem of defensive resource allocations against intentional attackers 
is demonstrated as an application of the stochastic minimax model. The stochastic multi-criteria 
model is applicable to the cases where the principal and agents share some common interests, 
so that they optimize the objective to the same direction. An application of security of electricity 
network is presented. Moreover, both models can deal with problems of heterogeneous agents 
or problems where the principal puts different weights on different agents. 

At the end of this section, I will discuss the concept of CVaR, which can be appropriate as an 
optimization objective for a STO problem when modeling threats of extreme events. Based on 
that, I will introduce quantile optimization. 

2.1. Two-Stage Stochastic Optimization (STO) Problems 

The two-stage stochastic optimization model (also called the recourse model) can be used for 
decisions in the face of both adaptive and uncertain agent behaviors. A general two-stage 
stochastic optimization mode is formulated as 
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)),,(,(min ωωxyxEf
Xx∈                                                             (Error! Bookmark not defined.

s.t. 

1) 

0)),,(,( ≤ωωxyxf i , li ,...,1= ,                                                  (2) 

where ),( ωxy  minimizes (or maximizes) ),,( ωyxf  with respect to y  for given x , ω and 
constraints (2). 

  

An anticipative decision Xx∈ must be made at stage 1 before the observation of uncertain 
factor ω  is available. At stage 2, for a given Xx∈ and an observed realization of ω , the 
adaptive decision y  is made according to some response function ),( ωxy . Note that ),( ωxy  

can be an implicit function. The main problem is to find first stage variable Xx∈  so as to 
minimize the expected value of the function )),,(,( ωωxyxf . The first stage variable x  
corresponds to the principal decision and the second stage variable y  to the agent responses. 
Then the two-stage STO model provides a general framework for the principal-agent models 
with uncertainty.  

Suppose that the probability measure of ω  is independent of the decision variables x , that is 

)()),,(,()),,(,( ωωωωω dPxyxfxyxEf ∫= ,                                         (3) 

then the two-stage stochastic optimization problem can be approximately solved by the sample 
average approximation (SAA) of (1) as given by 

∑=∈
N

s

ss

Xx
xyxf

N 1

)),,(,(
1

min ωω                                                   (4) 

where N is the total number of scenarios Ns ,...,1= .  

In this paper, I will mainly focus on cases where the objective function )),,(,( ωωxyxf  is 
convex in x  for all feasible ω . Three computational algorithms are proposed to solve such 
problems, including bilateral descent method, linear approximation (LP) approximation and SQG 
method. Details of the three algorithms are presented in Section 6. 

2.2. Stochastic Minimax Model 

Assume ∑= =
n

i
ii yxgyxf

1
),,(),,( ωω  and for the simplicity of notation, constraints (2) are absent. 

If the response function for agents )),(),...,,((),( 1 ωωω xyxyxy n=  in (1) maximizes the 

individual payoffs for each agent, i.e., 

),,(maxarg),( ωω yxgxy i
y

i
i

= , ni ,...,1= ,                                                      (5) 

where n  is the total number of agents, then I specify (1) as the stochastic minimax model 

∑=∈
n

i
i

yXx
yxgE

1

),,(maxmin ω .                                                       (6) 
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The adaptive agents are to maximize their individual payoffs given the principal’s decision, while 
the principal’s aim is to minimize the summation of their payoffs. In addition, this model is also 
equivalent to a worst case analysis where the principal attempts to minimize the expected loss 
from the stochastic worst case. Furthermore, this model also considers the externality between 
multiple agents, if the agent utility functions ),,( ωyxg i  are not separable.  

Suppose that each individual agent utility function ),,( ωyxg i  are convex in the 1st stage 

variable x , the stochastic mini-max model well preserves such convexity, since the summation 
of convex functions is convex, and the maximum of convex functions is convex. Moreover, the 
expectation of a stochastic convex function is also convex. Therefore, the entire optimization 
problem (6) and its sample average approximation (7) are both convex problems, and the local 
optimum corresponds to the global optimum 

∑ ∑= =∈
N

s

n

i

s
i

yXx
yxg

N 1 1

),,(max
1

min ω                                               (7) 

For a realized scenario Ns ,...,1= , the first derivative of ∑=
n

i

s
i

y
yxg

1

),,(max ω  is given by 

),(
),,(

1 ωω
xyy

yxg
xdx

df n

i

s
i =∑∂

∂= =                             (8) 

for all components of vector X; this property is useful for developing computational algorithms. 

2.3. Defensive Resource Allocations against Intentional Attacks 

Suppose the defender is faced with potential attacks on a collection of targets (e.g., cities, 
critical infrastructures, public transportation systems, and etc.). The defender’s objective is to 
minimize the consequences from attacker choices. A Stackelberg game is usually used to 
model this situation when there is no uncertainty about the attacker preferences. A Stackelberg 
game is that the defender moves first to decide on an allocation of her defensive resources 
among a heterogeneous collection of potential targets. The attacker then observes the 
defensive allocation, chooses whether to attack, and if making an attack, chooses an attack 
target. However, in reality, the attacker may have private information about his preferences 
(usually represented by uncertain parameters), which is not fully known to the defender. In the 
face of such uncertainty, the defender cannot predict the attacker’s best response for sure; 
therefore, the STO model (especially the stochastic minimax model) is needed and the defender 
is assumed to minimize the expected total consequences.  

For simplicity, suppose the defender is faced with one attacker, whose decision is to choose a 
target i  among n  targets with the highest payoff to attack. The defender objective is to 
minimize  

 ),(maxmin ωxgE i
iXx∈                                                          (9) 

where Xx∈  is the defensive resource allocation decision among targets and X  is a simplex 

},...,1,0,|{
1

nixBxRxX i

n

i
i

n =≥=∈= ∑=                                       (10) 
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Following the model in (Bier et al., 2007; Wang and Bier, 2010), the attacker utility function on 
each target )()(),( ωω iii uxpxg =  is a product of target vulnerability (success probability) 

ii x
i exp λ−=)(                                                            (11) 

and the attack consequence  

im

m

j
ijji wAwu εω +=∑−=

1

1

)(                                                  (12) 

Note ),...,,,...,( 11 nmww εεω =  is a random vector representing all uncertain parameters in the 

attacker utility function. I assume that the success probability of an attack on target i  is an 
exponential function of the defender’s investment in that target, where iλ  is the cost 

effectiveness of defensive investment on target i . For example, at the cost effectiveness level of 
0.02, if the investment is measured in millions of dollars, then every million dollars of defensive 
investment will reduce the success probability of an attack by about 2%.

 
I also assume that 

consequences are valued by the attacker according to a multi-attribute utility function with m  
attributes (of which 1−m  are assumed to be observable by the defender). I assume that the 
attacker’s utility is linear in each of the various attacker attributes.  

     ijA = attacker utility of target i on the j th attribute, where ijA  takes values in [0,1], with 1 

representing the best possible value and 0 the worst. 

     iε = utility of the unobserved (by the defender) m th attribute of target i .
 

     ),...,( 1 mww = attacker weights on the m attributes, where 1
1

=∑=
m

j
jw  and mjw j ,...,1,0 =≥ . 

The defender uncertainty about attacker preferences lies in the random feature of attribute 
weights ),...,( 1 mww  and unobserved attributes ),...,( 1 nεε . How to quantify uncertainties about 

these parameters by probability distributions will be discussed in Section 3. A case study of 
allocating defensive resources among the major US urban areas against intentional attacks will 
be illustrated in Section 4. 

2.4. Two-stage Multi-criteria Stochastic Optimization Model 

In some problems, the principal and agents share some common interests. When the principal’s 
main objective is to maximize the social welfare, she also cares about the agent individual 
profits. At the same time, agents attempt to maximize their individual payoffs without hurting the 
social welfare. An example is family welfare. The householder is to maximize the family welfare, 
which is an aggregation of individual welfare for each family member. When the individual family 
members make decisions, they also care about the total family welfare (Chiappori, 1992). 

This class of problems can be modeled in a way of multi-criteria stochastic optimization (STO). 
The principal is to maximize 

}),,(),,({maxmax
1

0 ∑=∈ + n

i
ii

yXx
yxgyxgE ωυω                                        (13) 
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Where ),,(0 ωyxg  is the function of social welfare that the principal mainly cares about, 

),,( ωyxg i  is the agent individual utility function, and iυ  are importance weights the principal 

puts on different agents. In the example of family welfare, if the householder pays more 
attention on the utility of elderly family members, she can put higher value on iυ for them. Again, 

this model also considers the externality between agents, if the agent utility functions 
),,( ωyxgi  are not separable. 

The model (12) is also a special case of the general two-stage stochastic optimization (STO) 
model (1). Furthermore, if convexity in ),( yx  is assumed for each of the utility 

functions ),,( ωyxg i , ni ,...,0= , the total objective is also convex. 

2.5. Security of Electricity Networks 

The California energy crisis in 2001 and the collapse of ENRON raise serious concerns about 
regulations of an electricity network. Leader-follower models have been used to support policy 
decisions on design and regulation of electricity markets (Ermoliev and von Winterfeldt, 2010). 
Following the way of modeling by Yao et al. (2008), I consider a system where the independent 
system operator (ISO) is eligible to control the transmission system and generation firms 
determine their generation quantities of electricity at each power plant. 

An electricity network can be represented by a set of n nodes and a set of L  transmission lines. 
The independent system operator (ISO) determines dispatch (import/export) of electricity at 
each node. In other words, if the ISO decides on a negative dispatch (export) at a given node of 
power plant, apart from satisfying its own demand at this node, the power plant needs to 
produce extra amount of electricity in order to export to other nodes. According to the Kirchhoff’s 
current law that the sum of all current entering a node is equal to the sum of all currents leaving 
this node, the ISO’s decision variables the dispatch quantities niri ,...,1, =  at each node must 

satisfy the balance equation (Yao et al., 2008) 

0
1

=∑=
n

i
ir                                                               (14) 

Moreover, the transfer amount should not exceed the thermal limits of each transmission line 
Ll ,...,1=  

l

n

i
ilil KrDK ≤≤− ∑=1

, Ll ,...,1=                                             (15) 

where liD  is the power transfer distribution factor (PTDF) which is an exogenous feature of the 

electricity network specifying the proportion of flow from a generation node i  onto a 
transmission line l .  

Given the ISO’s decision on dispatch of electricity ir  at each node ni ,...,1= , the electricity 

producer determines its generation quantity iq  at each node to optimize their profits by 

maximizing the profit function 

)()( iiiiii qCqrqP −+                                                    (16) 



 

8 

 

subject to the capacity limit of each power plant 

ii qq ≤≤0                                                              (17) 

at each node ni ,...,1= , where )(qPi , )(qCi  are the inverse demand function (wiliness to pay) 

and generation cost function; iq is the upper bound for generation capacity at node i . 

In addition, in order to meet the requirement of ISO dispatch, the generation quantity at each 
node should also satisfy 

nirq ii ,...,1,0 =≥+                                                        (18) 

The ISO’s main goal is to maximize the social welfare 

duuP
n

i

qr

i

ii

)(
1 0

∑ ∫=

+
                                                           (19) 

Taking into the ISO uncertainties about the parameters ω  in the functions and constraints (14 -
19), the ISO’s objective is to determine dispatch of electricity for each node in order to maximize 
the expected total welfare as the combination of social welfare and individual profits of electricity 
producers (Ermoliev and von Winterfeldt, 2010). 

)}],(),(),({max[max
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s.t. 0
1

=∑=
n

i
ir  

nirq ii ,...,1,0 =≥+  

LlKrDK l

n

i
ilil ,...,1),()(

1

=≤≤− ∑= ωω  

Random parameters ω  in the objectives and constraints represent the ISO uncertainties. For 
example, consider possible outage at a given node i , I can set the cost function to be 

iii qcqC ωω += )(),(                                                       (21) 

where )(qci is the original generation cost function, and iω is a random variable. When iω takes 

value 0, it means there is no outage at this node. When iω takes value infinity, it means the 

generation cost at node i is infinity, which is equivalent to an outage. Another example is 
breakdown of transmission lines. Consider the thermal limit of each transmission 
line. lll KK =)(ω  represents no breakdown, while 0)( =llK ω  represents breakdown of 

transmission line l . More discussions on the quantification of uncertainties are presented in 
Section 3. 

A case study of Belgian high voltage electricity network is shown in Section 5.  
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2.6. Quantile Optimization 

Besides the expected value of the stochastic losses, it is also useful to consider the tail 
distribution of the stochastic losses, especially when dealing with extreme events of high 
consequence and low probability. Ermoliev and von Winterfeldt (2010) propose to use the 
conditional value at risk or expected shortfalls as the optimization objective of general STO 
models to deal with human-related extreme events. The conditional value at risk is defined as 
the conditional expected loss beyond a certain quantile. Consider a random variable θ , the 
conditional value at risk for quantile qz  is given by 

]|[ qzE ≥θθ                                                             (22) 

It can be shown that both the value of (22) and the corresponding quantile qz  can be obtained 

simultaneously by the quantile optimization model 

}]0,[max{)1(min zEzq
z

−+− θ                                            (23) 

where )1,0(∈q  is the quantile level. In addition, the conditional expected value below a certain 
quantile can be obtained by another quantile optimization model 

}]0,[min{max]|[ zEqzzE
z

q −+=≤ θθθ                                     (24) 

If I extend the random variable θ  to be the random objective function )),,(,( ωωxyxf  in the 
general two-stage stochastic optimization (STO) problem (1), then by minimizing  

}]0,)),,(,([max{)1(min
,

zxyxfEzq
zx

−+− ωω                                 (25) 

I can simultaneously get *x  and *z  such that *x is the optimal decision which solves the 
minimal conditional value at risk 

*])),,(,(|)),,(,([min zxyxfxyxfE
x

≥ωωωω                                (26) 

and *z  is inherently the quantile at level q  such that 

qzxyxfob =≤ *})),*,(*,({Pr ωω                                       (27) 

Note that the model (24) also falls into the general case of two-stage STO  

}]0,)),,(,(max{)1[(min
,

zxyxfzqE
zx

−+− ωω                               (28) 

and if )),,(,( ωωxyxf  is a convex function, the problem (28) is also convex. Therefore, all the 
computational algorithms this paper will discuss in Section 6 are also applicable to the quantile 
optimization model (23). I can easily incorporate the quantile optimization model to the 
stochastic minimax model and the two-stage multi-criteria STO model to extend the application 
of human-related extreme events. 

A setting of chance (safety) constraint (Miller and Wagner, 1965) can also be applied and the 
original constraints in the two-stage STO model (2) become 

lixyxfob ii ,...,1,}0)),,(,({Pr =≤> εωω                                    (29) 
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where iε  are small positive numbers (safety levels). Furthermore, the reliability-based design 

optimization is another way to model uncertain constraints. Detailed discussions can be found in 
(Bordley and Pollock, 2009), (Ermoliev and Winterfeldt, 2010). 

 

3. Quantification of Uncertainty 
The inherent and deep uncertainty about agent behaviors is critical to models of protecting 
public goods. The equilibrium obtained in a deterministic model is usually unstable to even a 
subtle change in the agent parameters. The STO models are developed to solve for robust 
decisions against such uncertainties. Therefore, quantifying uncertainty becomes an important 
task to provide input for the STO models. In this section I present two ways of quantifying 
uncertainty, from both direct and indirect expert judgments on the agent behaviors. 

Uncertainties about agent behaviors can be quantified by probability distributions of uncertain 
parameters in agent utility functions. I can present the decision maker knowledge directly, if 
probability densities or simulated scenarios on the parameters of interest are available. 
Moreover, if additional data related to those parameters are observed, I can apply Bayesian 
analysis to update the prior distributions to posterior distributions. For example, in the 
application of electricity network, the decision maker can assign a prior probability of outage at a 
given power plant, according to his expertise and historical data. He can also change this 
probability upon availability of new observations related to electricity outages. 

However, in some cases direct judgments are not available. Instead the decision maker has 
expert judgment on some “observable space” that has a relation to the parameters of interest. 
Probabilistic inversion (PI) is a powerful tool to elicit indirect expert judgments which can infer 
probability distributions over the parameter space from probability distributions over the 
observable space. For example, in the application of defensive resource allocations against 
intentional attacks, if available are only expert opinions about attacker ranking of cities, I can 
use PI to elicit probability distributions for the relative importance of all the city attributes. 
Furthermore, it can even infer the characteristics of some unobserved attributes that lead to the 
expert ranking judgments but the decision maker is not aware of. 

3.1. Probability Distributions of Agent Parameters 

When direct judgments on the uncertain parameters ω as in (1) are available, the uncertainties 
can be quantified directly through probability distributions (either density functions or simulated 
scenarios). In the problem of the defensive resource allocations, I can construct subjective 
probability distributions to model the decision maker uncertainty about attribute weights and 
unobserved attributes ),...,,,...,( 11 nmww εεω =  in (12). Appropriate choices of prior distributions 

may include the Dirichlet distribution3 ),...,( 1 mww for attribute weights and independent uniform 

distribution for unobserved attributes ),...,( 1 nεε . In the problem of electricity network, in order to 

deal with uncertainties of possible outages, I can assign probabilities on different scenarios of 
the generation cost function (21). For example, when I assign probabilities on possible values of 

iω as 0=iω with probability 0>ip and +∞=iω with probability ip−1 , then the random cost 

function (21) becomes 

                                                
3
 See Appendix A 
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3.2. Bayesian Analysis 

Upon availability of new data, I can update the prior probability distributions about agent 
parameters to posterior distributions by the Bayes’ theorem. Let D  represent newly observed 
data, then the posterior distribution for the uncertain parameters ω  

)|()()|( ωωω DPPDP =                                                     (31) 

where )|( DP ω  is the posterior distribution after observation of data D , )(ωP  is the prior 

distribution before observation of data D , and )|( ωDP is the likelihood that data D  should 
happen given the parameters ω . Using (31), I can easily obtain the posterior distribution by 
simulation, resulting in a set of simulated scenarios representing the uncertainty about ω combining prior judgment )(ωP  and observation of data D . Note that simulated scenarios 
can be used as direct input to the two-stage STO problem (1). 

3.3.  Probabilistic Inversion 

I consider the case when direct judgments on the uncertain agent parameters Θ∈ω  are not 
available, however, I have judgments on some other observables Y  which is supposed to have 
a presumed relation with ω . Note that both observables Y and parameters ω  are random 

vectors, and ||||: YRRG →ω  is a presumably fixed mapping. If  

}|{)( CYYG ∈∈ω                                                       (32) 

where C is a subset of random vectors on ||YR , then ω  is called a probabilistic inverse of G at 
C (Kraan and Bedford, 2005). ω  is sometimes termed the input to model G  which are 
parameters of interest to the decision maker but not observable, and Y the output which is the 
observable. I usually start with a uniform measure over the parameter space Θ (all feasible 
scenarios of ω ), and drive it by probabilistic inversion to match the available distribution of 
observable Y . The problem is always feasible if the response of parameter space Θ is broader 
than the observable space C . When the problem is feasible it may have multiple solutions and I 
will seek for a preferred solution which elicits as much but no more than all the available 
information. If the problem is infeasible I seek a random vector ω  for which )(ωG  is “as close 

as possible” to C . More details will be discussed in the following session. 

3.4. Probabilistic Inversion of Ranking Judgments 

Probabilistic inversion is applicable for arbitrary indirect judgments as long as there exist some 
relations between the parametersω and the observables Y . I will consider the process of 
probabilistic inversion by the example of defensive resource allocation problem. Recall that the 
attacker utility function on each target is given by 

im

m

j
ijji wAwu εω +=∑−=

1

1

)( ,                                                
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where the uncertain parameters of interest are ),...,,,...,( 11 nmww εεω = . However, I do not have 

direct judgments on those parameters. What I have are expert ranking judgments on the top 
R out of n targets. The ranking judgment is presented as a double stochastic probability matrix 

[ ] nRripP ×=                                                          (33) 

where rip represents the proportion of experts who rank target i  at the r -th place, 1
1

=∑=
R

r
rip , 

1
1

=∑=
n

k
rip , and nkRrpri ,...,1;,...,1,0 ==≥ . There are a number of algorithms that can be used 

for probabilistic inversion such as Iterative Proportional Fitting (Fienberg, 1970), PARUM (Du et 
al., 2006) and PREJUDICE (Kraan and Bedford, 2005). In this report, I will mainly follow the way 
of PREJUDICE (Kraan and Bedford, 2005). First, a set of “background” scenarios are generated 

uniformly on the parameter space ),...,,,...,( 11
s

n
ss

m
ss ww εεω = . For each of the 

scenario Ns ,...,1= , an ranking indicator matrix sJ  is calculated. nR
sJ ×  is a binary matrix with 

the same dimension as nRP × , where 1=ri
sJ  if target i  is ordered at the r th place according to 

the utility function s
i

s
m

m

j
ij

s
j

s
i wAwu εω +=∑−=

1

1

)( in (12); 0=ri
sJ  if otherwise. Note that 

1
1

=∑=
n

i

ri
sJ , while ∑=

R

r

ri
sJ

1

 can be one or zero. The task of probabilistic inversion is to find a 

measure },...,1,0,1|{
1
∑= =≥=∈ N

s
ss

N NsqqRq  on the “background” samples Nss ,...,1, =ω  so 

that 

∑== N

s

s
s JqT

1

                                                             (34) 

is as “close” to the ranking judgment probability matrix P . In particular, I want to minimize the 
Kullback-Leibler distance between T  and P  

∑∑= =

R

r

n

i ri

ri
rk

q P

T
T

s 1 1

lnmin                                                        (35) 

subject to (34). If riT = 0 or riP = 0, then substitute 
ri

ri

P

T
ln with ε

ε
+
+

ri

ri

P

T
ln  for a small positive 

number ε . Since (35) is a convex function, all three computational algorithms presented in 
Section 6 can be used to solve (35). The computational algorithm based on bilateral iterative 
algorithm is presented in the Appendix B1. 

If the minimal distance at optimality for (35) is not zero, then the probabilistic inversion problem 
(34) is infeasible, and the optimal measure q  makes the response matrix T  the “closest” to the 

expert ranking judgment probability matrix P . On the contrary, if the minimal distance at 
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optimality for (35) is zero, then the probabilistic inversion problem (34) is feasible4

q

, and it may 
probably have multiple solutions. Among all feasible solutions, it is preferred to have the minimal 

Kullback-Leibler distance between the measure  and the uniform measure 
N

1
 

∑=
N

s
ss

q
Nqq

s 1

)ln(min                                                      (36) 

s.t. ∑== N

s

s
s JqP

1

.                                                      (37) 

An intuitive explanation is that if two scenarios map to the same response, then there should be 
no difference between the probability measures for them. 

 

4. Defending US Urban Areas against Intentional Attacks 

4.1. Problem Setting 

I now apply the model developed in Section 2.3 to the sample data of 47 US urban areas. I 
consider four attributes of attractiveness, including expected property losses from terrorism 
according to Willis et al. (2005), fatalities, populations and population densities Willis et al. 
(2005). Note that the values are scaled into [0, 1] (See Appendix C1). Following Wang and Bier 
(2010), I assume that the defender knows the values of those attributes, but is uncertain about 
how much weight the attacker puts on each one. Moreover, the defender may have ignorance 
about some unobserved attributes that can be important to the attacker. 

In the base case, I assume that the random attribute weights follow the Dirichlet distribution (see 
Appendix A) with equal expected values (0.2 for each of the attributes, including the unobserved 
attribute). Changing the value of a single spread parameter in the Dirichlet distribution (see 
Appendix A), while holding the expected values of the weights constant, enables us to vary the 
extent of the defender’s uncertainty. Furthermore, I allow the existence of unobserved attributes 
to the attacker, and assume that the unobserved attributes are identically and independently 
uniform distributions between 0 to 1 for all cities. 

4.2. Optimal Defensive Resource Allocations 

For the spread parameter in the Dirichlet distribution set at a relatively high  uncertainty level 
10 =α , the optimal allocations as a function of the cost effectiveness are presented in Figure 1. 

                                                
4
 There is another way to show whether the probabilistic inversion problem is feasible or not based on linear 

programming (LP). The algorithm is presented in the Appendix B2. 
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Figure 1 Optimal Defensive Allocations for the Case of Dirichlet Weights 

 

At lower levels of cost effectiveness, the optimal allocation is more spread among all cities than 
in the case of higher level of cost effectiveness, i.e., more resources will be distributed to small 
cities. It is due to the fact with higher level of cost effectiveness, less money is adequate to 
protect the big targets well and more money can be spared to protect the relatively small 
targets.  

4.3. Elicitation of Expert Judgments 

As stated in Section 3.3, the method of probabilistic inversion can be used to construct a 
reasonable prior distribution to represent the decision maker’s (PA) uncertainty about attacker 
preferences among various attributes, including explicit treatment of unobserved attributes that 
may be important to the attackers, but are not known by the decision maker. Due to the 
challenges of expert elicitation including the reluctance of experts to provide quantitative 
estimates, one way is to elicit only rank orders. In particular, the experts are asked to rank the 
top 20 in terms of attractiveness out of the total 47 urban areas.  From the expert rankings, the 
attacker weights on various attributes and information about the unobserved attributes (e.g., 
high values on Los Angeles may imply an importance on entertainment industry) are inferred, 
using probabilistic inversion. 

In this case study, I make up data for three groups of 50 experts. Presumably, 
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Group 1: All think that A1 (property) is more important than all other attributes. Furthermore, 
there should be no important un-quantified attributes. 

Group 2: All think that A4 (population density) is more important, and there should be an un-
quantified attribute related to entertainment industry. 

Group 3: This group is a combination of Group 1 and Group 2, presenting disagreement in 
judgments. 

The joint distributions (simulated scenarios) of attribute weights and unobserved attributes are 
elicited by the probabilistic inversion. For illustration, only marginal probability distributions 
(histograms) for the attribute weights are presented: 

 

Group 1 Judgments 

 

 

Group 2 Judgments 

 

Group 3 Judgments 

 
Figure 2 Elicitation of Expert Judgments on Attribute Weights 

 

The results obtained by probabilistic inversion match the presumed assumptions of the make-up 
data. For Group 1 judgments, the probabilistic inversion weight for the attribute property loss is 
likely to be high (higher than the uniform mean 0.2). For Group 2 judgments, the probabilistic 
inversion weight for the attribute population density is highly likely to be around 0.5. For Group 3 
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judgments, the probabilistic inversion weights may have multi-modal distributions (see 
especially the weight for population density) and higher variance due to disagreement between 
experts. 

4.4. Minimizing Conditional Value at Risk 

This section presents the optimal allocations by minimized CVaR for different quantiles. Figure 3 
shows the results using Group 1 expert judgments as input for uncertainties in the quantile 
optimization model.  

In this case the decision maker cares about the extreme values of losses (say, losses greater 
than 75% quantile), and the corresponding optimal defensive allocations are off the mean value 
results (corresponding to the CVaR for 0% quantile). In particular, if caring about tail losses, the 
defender should spend more on the least valuable target among those with positive investment 
(Houston in this particular problem setting), because such a city is the most likely to be attacked 
(and therefore the main source of losses) at optimality for the mean value optimization. When 
dealing with decisions involving extreme events, it is important to further consider the 
conditional value at risk besides the expected loss as the optimization objectives. 

 

 
Figure 3 Minimized CVaR for Different Quantiles for Group 1 Expert Judgments 
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5. Dispatch of Belgian High Voltage Electricity Network 

5.1. Problem Setting 

Based on the model developed in Section 2.5, this section uses a case study on the Belgian 
electricity network to illustrate the analysis (Yao et al., 2008). Figure 4 copies the Belgian high 
voltage electricity network from Yao et al. (2008). All nodes are numbered from 1 through 53. 
Among them 19 nodes are power plants whose generation capacity is positive; other nodes are 
transmission nodes. A System Operator (SO) determines how to dispatch electricity at each 
node of the electricity network to gain maximal social welfare; electricity firms determine 
generation quantities at each node of power plant to maximize their individual profits. Uncertain 
shocks may happen from outage of power plants or breakdown of transmission lines. The 
related parameters in the demand inverse function )(qPi , cost generation function )(qCi , 

generation capacity iq  and thermal limit lK  (copied from Yao et al., 2008) are listed in 

Appendix C2.  

 

 
Figure 4 Belgian High Voltage Electricity Network 

 

5.2. Dispatch of Electricity against Outages 

In this section I consider only uncertainties about possible power plant outages. Table 1 shows 
the outage probability of four major power plants.       
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Table 1 Outage Probability of Generation Nodes 

Node Outage Probability 

10 0.03 

14 0.03 

24 0.04 

41 0.04 

 

Taking into account the uncertain outages, then I consider the impact of price caps on the 
optimal ISO decisions in the electricity network as in (Yao et al., 2008). In the first case there is 
no price cap, and in the second case a price cap of 400 is imposed at all nodes. Figure 5 shows 
the optimal ISO decisions on electricity dispatch with and without price caps. Note that the 
negative dispatch means besides satisfying its own demand, a generation node needs to 
produce extra amount of electricity to transmit to other nodes. On the other hand, the positive 
dispatch at a node means that electricity is transmitted into this node to satisfy its demand. 

 

 
Figure 5 Optimal Dispatch of Electricity against Uncertain Outages 

 

With a price cap, the ISO decision is less powerful in the sense that it can determines on less 
electricity quantities to transmit over the network. Some power plants which are determined less 
negative dispatch than in the case without price cap, which means they have to produce less 
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extra electricity for other nodes. It is because price cap leads to higher demand at each node. 
The generation nodes need to satisfy their own demand first, and leaves less flexibility for the 
ISO to decide on 

5.3. Dispatch of Electricity against Breakdown of Transmission Lines 

Breakdown of transmission lines needs to be formulated as random parameters in the 
constraints. For example, consider the thermal limit of each transmission line. lll KK =)(ω  

represents no breakdown, while 0)( =llK ω represents breakdown of transmission line l . 

Unfortunately, computational algorithms for the chance constraints fall out of the class of two-
stage STO models and beyond the scope of this paper.  

Other uncertain shocks on transmission lines include their “blocking” by big electricity firms. For 
example, Hogan (1997) discusses a type of “market power” which dominates the stream of 
electricity on transmission lines. In such cases, externality between agents should be 
considered in the two-stage STO models.  

6. Computational Algorithms 
In this section, I explore three algorithms that can be useful in designing effective computational 
methods for solving the two-stage STO problems, including bilateral descent method (Ermolieva 
et al., (2010), linear programming (LP) approximation and stochastic quasi-gradient (SQG) 
method. The first two methods are based on sample average approximation (SAA) of the 
objective function, each calculation involving the entire set of scenarios. However, the SQG 
method is an “adaptive Monte Carlo optimization method” (Ermoliev, 2009). When calculating 
the searching direction, the SQG method just picks one or two scenarios (depending on which 
format of SQG is used) at a time, which saves computing time and reduces complexity. 

Consider a simple version of the two-stage STO problem. The decision maker is to minimize 
function (1) where X is a simplex defined by (9). Note that this class of problems includes the 
stochastic minimax, the multi-criteria STO and the quantile optimization. For simplicity, I 
introduce some assumptions on )),,(,( ωωxyxf , so that the optimized objective is well-defined, 
and has the property that enables all three algorithms to find a global optimum. 

Assumption 1 )),,(,( ωωxyxf  is a convex function in Xx∈  for all feasible ω . 

Under assumption 1, both the optimization objective function (1) and the sample average 
approximation (SAA) function (3) are convex. Therefore, local minima obtained by these 
computational algorithms are also global. 

Assumption 2 )),,(,( ωωxyxf  is a separable function in x  and y , i.e.,  

∑= =
n

i
iiii xyxfxyxf

1
)),,(,()),,(,( ωωωω                                         (38) 

This assumption is essential for the bilateral descent method and LP approximation. 

Assumption 3 )),,(,( ωωxyxf  is continuously differentiable in Xx∈ . 

This assumption is very important for the bilateral descent method. Table 2 summarizes the 
three different algorithms in terms of assumptions and convergence speeds.  
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Table 2 Comparison of Three STO Algorithms 

Bilateral Descent LP Approximation Stochastic Quasi-Gradient  

Require A1, A2, and 
A3  

Require A1 and A2  Require A1  

Converges to SAA 
optimal solution; 
Fast convergence to 
optimal neighborhood  
dependent on N; 
No limit on the number 
of scenarios 

Converges to SAA 
solution; 
Slow convergence to 
optimal neighborhood  
dependent on N; 
Constrained by the 
number of scenarios 

Asymptotically converges to real solution; 
Fast convergence to optimal neighborhood; 
No limit on the number of scenarios; 
Applicable to functions with no closed form 
(e.g., implicit functions) 

 

In the following section I introduce the three algorithms in detail, and present a numerical 
example for the case study of US defensive resource allocation. Note that the SQG methods 
are applicable even for discontinuous functions (Ermoliev 2009). 

6.1. Bilateral Descent Method 

Consider the optimization problem (3), i.e., the minimization of function (3), i.e.,  

∑= =
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s

ssN xyxf
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1

)),,(,(
1

)( ωω .                                                   

Suppose that the assumptions 1, 2 and 3 are all satisfied.  It follows from the convex analysis 
that the Lagrange function can be written as 
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where nii ,...,1,0 =≥µ . The KKT conditions are given by 

ni
xyy

yxf
xN

N

s
is

iii

s
iii

i

,...,1,
),(

),,(
1

1

==−=∂
∂∑= αµωω                    (40) 

nix ii ,...,1,0 ==µ                                                       (41) 

                  0
1

=−∑= Bx
n

i
i                                                          (42) 

nii ,...,1,0 =≥µ                                                        (43) 

The bilateral descent method works as the following: 

1. Start from a feasible solution 0x  such that 0
1

0 =−∑= Bx
n

i
i  and nixi ,...,1,00 =≥ . 
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2. At a feasible tx , identify the index set +tI  of targets where 0>t
ix . Find  
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3. Let ∆  be a positive number. Find t∆  minimizing w.r.t. 0≥∆ , 0≥ix , 0≥kx  function 
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defines new approximate solution 1+tx .                      (45) 

 

4. Stop when according to the KKT conditions (39)-(43),  
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ωω are equal for all +∈ tIi . 

 

The convergence of this procedure can be proven by the convergence of cyclic coordinate 
descent method (Zangwill, 1969), if assumptions A1, A2 and A3 are satisfied. In practice, the 
bilateral descent method converges very fast to the optimum. A numerical example will be 
presented in Section 6.4. Increase of the number of scenarios will not dramatically change the 

complexity, since it only affects the time of function )(xF N  evaluation. 

If the function is not continuously differentiable, then in (37) sub-gradients instead of gradients 
should be used in calculating the searching direction. Usually the set of sub-gradients are given 
implicitly, therefore the choice of appropriate sub-gradients is a difficult task; an appropriate 
choice is also very important for the performance of the algorithm.  

6.2. Linear Programming (LP) Approximation 

Consider the problem (3):  
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Suppose that the assumptions A1 and A2 are satisfied. The function )),,(,( ssxyxf ωω is 

separable so that ∑== n
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then their piece-wise linear approximations are given by 
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for some linear functions 
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The original SAA problem (3) can be written as a linear programming problem in the extended 
space 
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This method reduces the nonlinear optimization to the linear programming (LP) problems. The 
assumption of smoothness is not necessary for this reformulation and the global optimum can 
be obtained through proper LP procedure. Note that the optimal solutions of problems involving 
inherent and deep uncertainties are not very sensitive to the quality of linear approximation. 

However, the number of scenarios is a very critical constraint of the LP reformulation since it 
increases the number of both variables and constraints, and will affect complexity of the linear 
program dramatically. A numerical example is presented in Section 6.4. 

6.3. Stochastic Quasi-Gradient (SQG) Method 

The stochastic quasi-gradient (SQG) method is a type of adaptive Monte Carlo optimization 
method (Ermoliev, 2009). Instead of using all scenarios at every step, the stochastic quasi-
gradient (SQG) method picks just one or two scenarios to calculate the searching direction. For 
simplicity, here I also assume convexity (A1) so that the local optimum obtained by SQG is also 
the global optimum. 

If the sub-gradient of )),,(,( ssxyxf ωω is easy to get, then at each step t  of the SQG algorithm 
updates the current solution can be defined by: 

)}),,(,({1 tttt
t

t
X

t xyxfxx ωωρ ∂+Π=+  ,                                       (49) 

where XΠ is the projection onto the feasible region X , and tρ is an adaptive step size which 

changes according to an oscillation measure of the objective values.  

If the sub-gradient of )),,(,( ssxyxf ωω is hard to get (e.g., implicit functions, black box 
functions), I can approximate the stochastic quasi-gradient by: 

t

t

tttttt
t

t
t yxfyxf ηγ

ωωηγξ ),,(),,( 21 −+=                                    (50) 

where tη is a random unit vector,  and tγ is a small positive number which can be adapted as 

the algorithm proceeds. Then at each step of the SQG algorithm the update of the current 
solution is given by: 

}{1 t
t

t
X

t xx ξρ+Π=+                                                      (51) 

Besides (3), the stochastic quasi-gradient (SQG) method can also deal with situations where the 
probability measure depends on the decision variables, that is 

),()),,(,()),,(,( ωωωωω xdPxyxfxyxEf ∫=                              (52) 
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The convergence of the stochastic quasi-gradient (SQG) method is shown in (Ermoliev, 1983; 
Ermoliev and Wets, 1988). There is no limit on the number of scenarios, because at each step 
only one or two scenarios are used to calculate the sub-gradient or stochastic quasi-gradient. 
Compared to the bilateral descent method, the use of sub-gradient here is less strict. At every 
step, I do not have to choose the “best” sub-gradient in terms of the function value reduction, 
because of its stochastic characteristics.  

One problem of this algorithm is that it usually converges asymptotically very fast to the optimal 
neighborhood, but takes longer time to converge to the optimal solution. In fact, slow asymptotic 
convergence with respect to the sample size N  is a common feature for any other general STO 
methods. Steering the procedure by adaptively changing the step size tρ  will help the 

convergence. However, the steering is problem-specific, depending on the shape of the 
objective function and the structure of the probability measure. 

A numerical example is presented in Section 6.4. 

6.4. A Numerical Example 

Three computational methods are implemented to solve the defensive resource allocation 
problem for 47 US urban areas. (All computational algorithms are presented in Appendix B.) For 
a selected case where the cost effectiveness is fixed at the level of 0.02, the performances of 
three methods for a case of 100,000 scenarios (common random numbers are used for 
comparison) are compared in Table 3.  

 

Table 3 Numerical Comparison of Three STO Algorithms 

 

 

The bilateral descent method and stochastic quasi-gradient (SQG) are fast, while the LP 
approximation method takes much more time. It is because for the LP Approximation method 
the number of variables and constraints grows dramatically along with increasing number of 
scenarios.. For example, for this particular problem of 100,000 scenarios, the LP approximation 
problem has 18,800,002 rows, 100,048 columns and 37,700,048 non-zeroes. After the complex 
presolver it still has 100,047 rows, 18,800,001 columns, and 37,600,047 non-zeros. 

Furthermore, the three developed methods get very close optimal solutions. See Figure 6 for 
the resulting optimal resource allocations as a function of cost effectiveness obtained by three 
computational methods for a case of 10,000 scenarios (when computing time is bearable for all 
three methods). The non-smoothness for SQG algorithm is because that the SQG method 
converges to the asymptotically optimal neighborhood according to the original random process, 
rather than the optimal value for the SAA problem (used in the bilateral descent method and LP 
approximation). 
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Figure 6 Optimal Solutions Obtained by Three STO Algorithms 

 

 

 

Bilateral Descent Method LP Approximation Method 

Stochastic Quasi-Gradient Method 
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7. Conclusion 
This paper documents a powerful framework for designing robust decisions against uncertain 
threats to public goods generated by multiple agents. Two case studies from very different 
application areas show that this framework can be applied to a quite broad class of problems 
with decisions against uncertain and adaptive agent responses.   

This framework can deal with both direct and indirect judgments on the decision maker’s 
perception about uncertain agent behaviors, either directly by probability density estimation, or 
indirectly by probabilistic inversion. The quantified distributions are treated as input to the 
stochastic optimization (STO) models. Robust decisions can then be obtained against all 
possible consequences, especially extreme consequences. 

The available computational methods are explored and implemented successfully, showing that 
the framework is ready for a wide range of actual applications.  
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Appendix A: Dirichlet Distribution 
 

The probability density function of the Dirichlet distribution is given by 

g(x1, …, xm) ~ Dirichlet (α1, …, αm) = ∏∏ =
−

=
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Γ m
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j
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jx . In this case, 

the means and variances of the attribute weights xj are given by E[xj] =
0α

α j
and Var[xj] 
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, respectively.  

 

 

Appendix B: Computational Algorithms 

B1 Probabilistic Inversion: Convex Optimization 

The optimization objective is to minimize 
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The computational algorithm is as follows. 

1. Start with a feasible Xq ∈0  

2. Given the current Xq t ∈ , 

}|{1
tqq

t
X

t Fqq =
+ ∇−Π= ρ  

where XΠ is the projection onto the simplex X , which can be realized according to 
(Michelot, 1986), and the gradient 
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3. Stop when the objective converges. 

 

B2 Probabilistic Inversion: Linear Programming (LP) 

The linear programming designed to check feasibility of the probabilistic inversion problem is 
given by 
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B3 Bilateral Descent Method for Case Study I 

The optimization objective is to minimize 
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The KKT conditions are 
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The computational algorithm is as follows. 

1. Start with feasible 0x such that 00 ≥ix and Bx
i

i =∑ 0 .  

2. Given the current tx , calculate 
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B4 Linear Programming (LP) Approximation for Case Study I 

Approximate ikiik
k

x
ii bxaexg ii +== − max~)( λ , then the linear programming (LP) approximation 

problem is given by 
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B5 Stochastic Quasi-Gradient (SQG) Method for Case Study I 

The optimization objective is given by 

)()(max)(min s
iii
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n =≥=∈= ∑= . The stochastic quasi-gradient method is as 

follows. 

1. Start with a feasible Xx ∈0 . 

2. Given the current Xx t ∈ , sample a new scenario tω , calculate { }txx
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where XΠ is the projection onto the simplex. The sub-gradient  



=∂

0

)()(
)(

t
iii

i

t uxg
dx

d
xF

ω
   

..

)()(maxarg

wo

uxgi t
iii ω=

 

3. Stop when )()(max
1

1

s
i

t
ii

t

s
i

uxg
t

ω∑= converges. 

 

B6 Stochastic Quasi-Gradient (SQG) Method for CVaR 

The optimization objective is to minimize 

{ }[ ]0,),(max)1(min
,

zxfzqE
zXx

−+−∈ ω  

The computational algorithm is given by 

1. Start with a feasible Xx ∈0 and 0z . 

2. Given the current Xx t ∈ and tz , sample a new scenario tω  { }tt
t

X
t xx ξρ−Π=+1  
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Appendix C: Data for Case Studies 

C1 Attribute Values for US Urban Areas 

No. Urban Area 

Property 

Loss Fatality Population 

Population 

Density 

1 Albany-Schenectady-Troy 0.0392 0.0002 0.1966 0.1845 

2 Atlanta   0.2055 0.2442 0.6423 0.3959 

3 Baltimore   0.2134 0.1131 0.4718 0.5201 

4 Baton Rouge 0.0198 0.0000 0.1399 0.2480 

5 Boston, MA-NH 0.8347 0.9093 0.5733 0.7174 

6 Buffalo-Niagara Falls 0.0952 0.0582 0.2536 0.4289 

7 

Charlotte-Gastonia-Rock Hill, NC-

SC   0.1042 0.0198 0.3126 0.2832 

8 Chicago  1.0000 1.0000 0.8736 0.7064 

9 Cincinnati, OH-KY-IN   0.0861 0.0198 0.3374 0.3091 

10 Cleveland-Lorain-Elyria 0.2592 0.0952 0.4303 0.4642 

11 Columbus, OH   0.0676 0.0100 0.3196 0.3075 

12 Dallas   0.1894 0.2592 0.5851 0.3474 

13 Denver 0.2212 0.1975 0.4098 0.3434 

14 Detroit 0.3430 0.3161 0.6706 0.5747 

15 Fresno   0.0198 0.0001 0.2060 0.0819 

16 Houston   0.6671 0.8347 0.6481 0.4111 

17 Indianapolis   0.0676 0.0198 0.3309 0.2897 

18 Jersey City   0.3560 0.3297 0.1412 0.9999 

19 Kansas City, MO-KS   0.1042 0.0100 0.3585 0.2187 

20 Las Vegas, NV-AZ   0.3363 0.1813 0.3235 0.0296 

21 Los Angeles-Long Beacha   0.9666 0.9666 0.9074 0.8276 

22 Louisville, KY-IN   0.0582 0.0001 0.2262 0.3101 

23 Memphis, TN-AR-MS   0.0488 0.0001 0.2472 0.2469 

24 Miami, FL   0.2366 0.0952 0.4307 0.5804 
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25 Milwaukee-Waukesha, WI   0.1042 0.0198 0.3128 0.5374 

26 Minneapolis-St. Paul, MN-WIb   0.2366 0.0769 0.5239 0.3075 

27 New Haven-Meriden, CT   0.1042 0.0040 0.1268 0.6116 

28 New Orleans   0.0769 0.0198 0.2843 0.2558 

29 New York, NY   1.0000 1.0000 0.9026 0.9978 

30 Newark, NJ   0.5181 0.5507 0.3985 0.6197 

31 Oakland, CA   0.3297 0.1813 0.4502 0.7081 

32 Orange County, CAc   0.3093 0.3297 0.5091 0.9331 

33 Orlando   0.0582 0.0198 0.3371 0.2976 

34 Philadelphia, PA-NJ   0.8775 0.8347 0.7206 0.6293 

35 Phoenix-Mesa   0.1730 0.0198 0.5565 0.1540 

36 Pittsburgh   0.0952 0.0198 0.4455 0.3178 

37 Portland-Vancouver, OR-WA   0.1813 0.0198 0.3809 0.2485 

38 Richmond-Petersburg   0.0392 0.0002 0.2205 0.2239 

39 Sacramento   0.0676 0.0198 0.3344 0.2586 

40 St. Louis, MO-IL   0.1894 0.1131 0.4784 0.2631 

41 San Antonio   0.0392 0.0100 0.3284 0.3018 

42 San Diego   0.2442 0.1813 0.5051 0.3950 

43 San Francisco   0.9967 0.9918 0.3513 0.7216 

44 San Jose   0.1563 0.0769 0.3434 0.6239 

45 Seattle-Bellevue-Everett   0.4883 0.5507 0.4532 0.3360 

46 Tampa-St. Petersburg-Clearwater   0.0861 0.1813 0.4506 0.5051 

47 Washington, DC-MD-VA-WV   0.9727 0.9970 0.7079 0.4328 

 

C2 Parameters for Belgian High Voltage Electricity Network 

Node 

Demand 

Slope 

Marginal 

Cost Capacity Node 

Demand 

Slope 

Marginal 

Cost Capacity 

1 1   0 28 1   0 

2 0.82   0 29 0.93   0 

3 1.13   0 30 0.85   0 

4 1   0 31 1 180 712 

5 0.93   0 32 1 580 95 

6 0.85   0 33 0.88 20 496 

7 1 450 70 34 0.5   0 

8 1   0 35 1 250 1053 

9 0.88 180 460 36 0.73   0 

10 0.9 180 121 37 1 100 1399 

11 1 200 124 38 0.85   0 
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12 0.73   0 39 1   0 

13 1   0 40 1.15 100 1378 

14 0.85 130 1164 41 1 210 522 

15 1   0 42 0.79 180 385 

16 1.3   0 43 0.68   0 

17 1   0 44 1.03 200 538 

18 0.79   0 45 1   0 

19 0.68   0 46 1   0 

20 1.05   0 47 1 100 32 

21 1   0 48 0.73 220 258 

22 1.1 190 602 49 1.2   0 

23 1   0 50 1.5   0 

24 0.75 100 2985 51 1   0 

25 1   0 52 1   0 

26 0.8   0 53 1 200 879 

27 1.13   0 

     This table is copied from Yao et al. (2008). 
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