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Studies of cooperation have traditionally focused on discrete games such as the well-known

prisoner’s dilemma, in which players choose between two pure strategies: cooperation and

defection. Increasingly, however, cooperation is being studied in continuous games that

feature a continuum of strategies determining the level of cooperative investment. For the

continuous snowdrift game, it has been shown that a gradually evolving monomorphic popu-

lation may undergo evolutionary branching, resulting in the emergence of a defector strategy

that coexists with a cooperator strategy. This phenomenon has been dubbed the ‘tragedy

of the commune’. Here we study the effects of fluctuating group size on the tragedy of the

commune and derive analytical conditions for evolutionary branching. Our results show that

the effects of fluctuating group size on evolutionary dynamics critically depend on the struc-

ture of payoff functions. For games with additively separable benefits and costs, fluctuations

in group size make evolutionary branching less likely, and sufficiently large fluctuations in

group size can always turn an evolutionary branching point into a locally evolutionarily sta-

ble strategy. For games with multiplicatively separable benefits and costs, fluctuations in

group size can either prevent or induce the tragedy of the commune. For games with general

interactions between benefits and costs, we derive a general classification scheme based on

second derivatives of the payoff function, to elucidate when fluctuations in group size help

or hinder cooperation.
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I. INTRODUCTION

Cooperation is ubiquitous in nature, and the cooperative integration of lower-level entities into

higher-level units has been vital for the development of life on earth [32]. While cooperation in the

broad sense only implies joint action, the term is often used more strictly to describe situations in

which cooperators help others at a cost to themselves. These interactions are typically vulnerable to

cheating and exploitation by defectors that benefit without making costly cooperative contributions

of their own. Cheating and exploitation are observed in viruses [46], bacteria [38], yeast [17],

amoebas [6, 7, 42], fish [37], and humans [1].

How cooperation can persist in the presence of cheaters is not obvious. At first glance it often

appears as though the fitness of cheaters exceeds that of cooperators. Indeed, the well-known

tragedy of the commons [21] shows that even when cooperation is beneficial for a group, selection

acting at the individual level often eliminates cooperation altogether. This has attracted significant

scientific interest throughout the last decades, with explanations proposed for the origin and main-

tenance of cooperation falling into three main categories. First, kin selection [18–20] successfully

explains many forms of cooperation among genetically related individuals. Second, selection at the

level of groups [47, 48], through which subpopulations with non-cooperative individuals are at a

reproductive disadvantage, promotes cooperation under certain conditions. Third, direct and indi-

rect reciprocation have been shown to foster cooperation [1, 2, 45]. These alternative mechanisms

are further discussed in Nowak [35].

Most game-theoretical studies of cooperation fall into the third category described above and

revolve around a game known as the prisoner’s dilemma [2]. The classic variant of this game

is played by two players choosing between two pure strategies, cooperation or defection, but the

game can be generalized to an arbitrary number of players [9, 27] and to continuous levels of

cooperative contributions [28, 30]. In the latter case, cooperative investments vary continuously

and are represented by real numbers, denoted here by r1 or r2. The payoff of an r1-strategist

facing an r2-strategist is B(r2)−C(r1), where B and C areq increasing functions that quantify the

benefits and costs of cooperative investments. Since cooperative investments do not directly benefit

the acting individual, defection is the rational choice when the game is played only once. In many

cases, however, it is more reasonable to assume that all players benefit equally from cooperative

investments. For example, the digestive enzymes produced by a cell of the yeast Saccharomyces

cerevisiae can be used by all nearby cells, including the producing cell itself [16]. Likewise, while the

stalk produced by the amoeba Dictyostelium discoideum can be exploited by cheaters, it also vitally
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benefits the cooperators. Further examples of processes resulting in shared benefits are cooperative

hunting, vigilance behavior, group foraging, and parental care [29]. Situations in which individuals

directly benefit from cooperative acts that they perform can be described by the snowdrift game

[43], synonymously known as the hawk-dove game [31] or chicken game [40].

To better understand the evolution of cooperation and defection when all players are benefiting

from cooperative investments, Doebeli et al. [10] studied the snowdrift game with continuous

investments. In this game, the payoff of an r1-strategist facing an r2-strategist is B(r1+r2)−C(r1),

where the functions B and C are chosen so that cooperation is more successful than defection

in groups of defectors, but defection is advantageous in groups of cooperators. Consequently,

cooperation in the snowdrift game always develops to some intermediate degree. However, assuming

small mutations in continuous cooperative investments, Doebeli et al. [10] showed that this gradual

buildup of cooperation was sometimes followed by the emergence of cheaters with little or no

cooperative investments, while the remaining cooperators became even more cooperative. Similar

results have been obtained by Brännström and Dieckmann [3] in the context of the social amoeba

Dictyostelium. When starvation is imminent, one or several strains of this amoeba aggregate to

form fruiting bodies that enable spore dispersal [11, 39]. A strain, however, may forego investing

into the stalk of the fruiting body and instead take a free ride on the investments of other strains.

Brännström and Dieckmann [3] modeled this process with spores as players and with the investment

of strains into the construction of stalks as strategies. In this model, the payoff of an r1-strategist

facing an r2-strategist is multiplicative, B(r1 + r2)C(r1), with B an increasing and C a decreasing

function of cooperative investments. They showed that fluctuation in player numbers resulted in

evolutionary branching and in the subsequent emergence and coexistence of low-investing cheaters

and high-investing cooperators.

The work of Doebeli et al. [10] and Brännström and Dieckmann [3] shows that selection on levels

of cooperative investments need not always be stabilizing. Rather, initially monomorphic popula-

tions evolving in cooperation games may experience disruptive selection, resulting in evolutionary

branching and the emergence of dimorphic evolutionary outcomes in which low-investing and high-

investing individuals coexist. Doebeli et al. [10] investigated this evolutionary phenomenon, which

they dubbed the tragedy of the commune, for games played in two-player groups. However, in

many situations it is more natural to expect that interactions take place in groups of fluctuating

size, for example, as a consequence of abstaining or of local interactions coupled with dispersal

or movement. Since environmental fluctuations have been shown to promote the coexistence of

competing populations [26] and to facilitate evolutionary branching in some models, such as the
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(a) (b)

FIG. 1. Individual-based simulations of a multi-player version of the continuous investment game proposed

by Doebeli et al. [10]. Parameters used here are identical to those used in Fig. 1A of Doebeli et al.

[10]. (a) Game played as a two-player game: evolutionary branching leads to the emergence of cheaters,

a characteristic process Doebeli et al. [10] dubbed the tragedy of the commune. (b) Game played with a

random number of players (with interactions taking place among either 1 or 3 players with equal probability):

although the average number of players is the same as before, evolutionary branching does not occur, and

hence the tragedy of the commune is avoided. Note that although games with 1 player may seem odd, a

natural interpretation of such games often exists for specific examples, e.g. single-clone aggregation in the

case of Dictyostelium.

site-based model studied by Geritz et al. [14], one might expect that fluctuating group size would

render the tragedy of the commune more likely. This, however, need not be the case. Figure 1

shows a multi-player extension of a game considered by Doebeli et al. [10], in which players interact

in randomly formed groups that change between each interaction. When the size of these groups

changes significantly from one interaction to the next, the tragedy of the commune no longer occurs.

The aim of this paper is to explore the evolutionary consequence of fluctuating group size

for cooperation games. We first define a large class of games that includes the snowdrift game

considered by Doebeli et al. [10], the Dictyostelium model conceived by Brännström and Dieckmann

[3], the prisoner’s dilemma, the stag-hunt game, and other public-good (joint-effort) games. For

this class of games, we explore the evolutionary consequences of fluctuating group size for the

establishment of cooperation and the tragedy of the commune.

II. COOPERATION GAMES WITH FLUCTUATING GROUP SIZE

In this section we first explain why fluctuations in the size of groups of interacting players are

generically expected in nature. We then introduce a class of cooperation games with continuous
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FIG. 2. Two examples of processes giving rise to fluctuations in the size of groups of interacting players. (a)

Movement of individuals in conjunction with infrequent local interactions between nearby individuals give

rise to games in which groups are formed through the overlap of interaction zones. (b) Players are distributed

over an area, with interactions occurring among those players that occupy the highlighted patches. A specific

example is the dispersal of spores or seeds over an area containing many disconnected patches of suitable

habitat.

investments that incorporate fluctuating group size. From the demographic dynamics resulting

from games in this class we determine the initial growth rate of a rare mutant strategy. This lays

the foundation for our analysis of the evolutionary dynamics of cooperative investments. Finally,

we describe the potential outcomes of gradual evolution in a monomorphic population with at most

one interior evolutionarily singular strategy.

A. Fluctuating group size

Figure 2 depicts two situations in which variation in group size naturally occurs. First, move-

ment and infrequent interactions among nearby players leads to a class of games in which groups

are formed through the overlap of interaction zones. Although Fig. 2a is most easily interpreted

in terms of binary interactions, the interaction strengths among players in general depend on

factors such as their distance. Second, Fig. 2b shows how games are formed when players are

repeatedly distributed onto patches of different sizes, giving rise to distinct groups of interacting

players. Significant variation in patch size leads to a wide distribution of the number of players in

a group. This situation arises, for example, when spores or seeds are dispersed over an area with

fragmented patches of suitable habitat and subsequently interact within each patch. Our analysis

below encompasses both situations depicted in Fig. 2.
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B. Payoffs in cooperation games

When a group of k players has been formed, we assume that each player contributes an amount

or effort ri towards the group’s total effort r1 + . . . + rk. The contribution ri is the strategy

or trait value of a player and may optionally be constrained to an interval, e.g. 0 ≤ ri ≤ 1.

We assume that the payoff P (ri, rs, k) for a focal individual playing strategy ri in a group of

players with strategies r1, . . . , rk may depend on the focal player’s own contribution ri, on the

focal player’s share of the total effort, rs = (r1 + . . . + rk)/k, and on the number of individuals

k in the group. By choosing P appropriately, we recover all traditionally studied cooperation

games as special cases. For example, the two-player prisoner’s dilemma is obtained by choosing

P (ri, rs, k) = B(krs − ri)−C(ri) with increasing functions B and C, and the k-player public-good

(joint-effort) game by choosing P (ri, rs, k) = mrs − ri with a positive factor m.

We say that benefits and costs are additively or multiplicatively separable if, respectively,

P (ri, rs, k) = B(rs, k) − C(ri, k), or P (ri, rs, k) = B(rs, k)C(ri, k). For a fixed number of play-

ers, additively and multiplicatively separable benefits and costs give rise to equivalent evolutionary

dynamics, as the multiplicatively separable payoff is additively separable on a logarithmic scale.

Importantly, however, the evolutionary dynamics of these games is not equivalent in games with

fluctuating player numbers, as will become clear in Sect. IIC below. The distinction between addi-

tive and multiplicative payoff structures will play an important role in Sect. III when we examine

the effect of fluctuating group size on the tragedy of the commune. When players pay a cost

for making a cooperative contribution and benefit from their group’s total effort, it is natural to

assume that the payoff P decreases with ri and increases with rs,

P1 (ri, rs, k) ≤ 0 and P2 (ri, rs, k) ≥ 0, (1)

where the subscripts in P1 and P2 denote the partial derivatives of P with respect to its first or

second argument, respectively. Since this assumption is not needed for most of the arguments

below, it will be invoked only when analyzing the sign of mixed derivatives of multiplicative payoff

functions.

C. Demographic dynamics in cooperation games

Based on the general specification of payoffs for players participating in cooperation games

provided above, we now introduce the resultant demographic dynamics describing how player

abundances change over time. For this we assume that, in successive generations, players are
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randomly distributed over groups of different size. The probability that an individual joins a

game with k participants is pk = kqk/ 〈k〉, where qk is the fraction of groups with k players and

〈k〉 =
∑∞

k=1
kqk is the average number of players in a group. Individuals then interact within

the group and produce offspring in proportion to the payoff they received. Survival to the next

generation is density-dependent, but independent of trait values. Under these assumptions, the per

capita growth rate of an initially rare mutant strategy m in an environment dominated by players

with resident strategy r is

f(r,m) =
∞
∑

k=1

pk

(

P

(

m,
m+ (k − 1)r

k
, k

)

− P (r, r, k)

)

. (2)

In adaptive dynamics theory, this quantity is known as invasion fitness [33]. Equation (2), the

derivation of which is provided in Appendix B, shows that for the cooperation games considered

here invasion fitness is given by the excess payoff of a single mutant in groups of residents, relative

to the payoff of a resident in groups of residents, averaged according to the probability pk that the

mutant occurs in groups of size k. The determination of this invasion fitness allows us to study

the long-term evolution of trait values under mutation and selection [8, 14, 34] and thus forms the

foundation of our analysis of evolutionary dynamics in Sect. III.

Equation (2) shows that the payoffs players receive in groups of different size are averaged

arithmetically. Hence, if two or more group sizes can occur, nonlinear transformations of the scale

on which payoffs are measured are not possible, since they would distort the weighted average.

Thus, only when the number of players is fixed, does a transformation of payoffs to a logarithmic

scale enable a reduction from multiplicatively separable payoff structures to additively separable

payoff structures.

D. Evolutionary dynamics in cooperation games

When mutational steps are small and rare, resident communities will successively be replaced

by invading mutants with similar strategies and positive invasion fitness. Driven by directional

selection, this process eventually ceases when evolution reaches either a boundary strategy at

which constraints prevent further evolution, or an interior strategy at which selection pressures

vanish. Strategies of the latter type are called evolutionarily singular; in their vicinity, an initially

monomorphic population may experience disruptive selection and thus become dimorphic. Figure 1

illustrates how directional selection leads to a singular strategy at which selection is either disruptive

(left panel) or stabilizing (right panel).
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Assuming a univariate trait and at most one interior singular strategy, there are only six qual-

itatively different configurations of selection pressures, as shown in Figure 3. In Fig. 3a and 3c,

there is no interior singular strategy and gradual adaptation leads to a monomorphic population

of full defectors (tragedy of the commons) or full cooperators, respectively. In Fig. 3d, the inte-

rior singular strategy is not convergence stable (i.e., it is a repellor of monomorphic evolution).

This results in evolutionary bistability, so that the evolutionary outcome depends on the initial

condition [see e.g. 44]. In Fig. 3b, the interior singular strategy is convergence stable (i.e., it is

an attractor of monomorphic evolution), so that gradual adaptation leads to intermediate coop-

erative investments. In Fig. 3c and 3d, selection near the interior singular strategy can be either

stabilizing or disruptive (i.e., the interior singular strategy is either an attractor or a repellor of

dimorphic evolution, respectively). If selection is stabilizing, it results in a locally evolutionarily

stable strategy. If selection is disruptive, the population can become dimorphic (tragedy of the

commune).

III. EVOLUTIONARY CONSEQUENCES OF FLUCTUATING GROUP SIZE

The initial growth rate of a rare mutant player with strategy m in an environment dominated

by players with strategy r, as given in equation (2), allows us to study the long-term consequences

of small mutations and natural selection [8, 14, 34]. In what follows, we first study how fluctuations

in group size affect the location of the singular strategy. We show that when the payoff function

does not have an explicit dependence on group size, the location of the singular strategy is invariant

under fluctuations in group size. For two important classes of such payoff functions, with additively

or multiplicatively separable benefits and costs, we investigate how fluctuations in group size affect

the potential for evolutionary branching and thus for the tragedy of the commune.

A. Consequences for cooperative investments

The selection gradient g(r) = ∂f/∂m|m=r is defined as the derivative of the invasion fitness

f(r,m) with respect to m evaluated at m = r. Accordingly, the function g(r) contains information

about which nearby strategies can invade a monomorphic population of players with cooperative

investment r. When the selection gradient is positive (negative) more (less) cooperative strategies

can invade. An invading strategy generically replaces the resident strategy, so that the population

again becomes monomorphic [13, 15].
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(d)(c)

(b)(a)

stabilizing                   

disruptive                  disruptive                  
or

stabilizing                   

disruptive                  disruptive                  
or

FIG. 3. Classification of selection pressures and outcomes of gradual adaptation in continuous cooperation

games with at most one interior singular strategy. If no interior singular strategy exists (panels a and

c), cooperative investments converge to the lowest possible (panel a) or highest possible (panel c) levels.

If an interior singular strategy exists (panels b and d), it may be convergence stable (panel b) or not

(panel d). Convergence stable strategies (panel b) result in stationary intermediate levels of cooperation if

selection is stabilizing (Fig. 1b), or in evolutionary branching and thus a strategy dimorphism if selection

is disruptive (Fig. 1a). An interior singular strategy that is not convergence stable (panel d) separates

two basins of attraction for high and low cooperative investments, respectively. The levels of cooperative

investment increase along the horizontal axes, and vertical lines indicate the lowest possible and highest

possible cooperative investments. Whether such limits exist is immaterial for the classification. Circles

depict interior singular strategies where directional selection ceases. Filled circles represent convergence

stable singular strategies. The dashed lines beneath panels b and d indicate whether selection is stabilizing

or disruptive.

From equation (2), we derive the following expression for the selection gradient,

g(r) = 〈k〉−1

∞
∑

k=1

kqkgk(r),

where P1 and P2, respectively, again denote the partial derivatives of P with respect to its first

or second argument, 〈k〉 is the average number of players in a group, qk is the probability that a

group with k players is formed, and gk(r) is the selection gradient for a fixed group size k,

gk(r) = P1(r, r, k) +
1

k
P2(r, r, k).

More details on the derivation of the selection pressure are provided in Appendix B.

We now introduce ϕk(r) = kgk(r), so that we can apply Jensen’s inequality, according to which

the average of a convex function evaluated at arbitrary arguments is always larger or equal to that
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function evaluated at the average argument. Thus, if ϕk(r) is convex (accelerating) as a function

of k, then

g(r) = 〈k〉−1

∞
∑

k=1

ϕk(r) ≥ 〈k〉−1 ϕ〈k〉(r) = g〈k〉(r).

We can thus see that fluctuations in group size imply a greater selection gradient. This means

that cooperation will be established more rapidly and reach higher levels when the group size k of

interacting players is variable around 〈k〉, than when games are played in groups with a fixed size of

〈k〉 players. If ϕk(r) is concave (decelerating) as a function of k, the opposite is true: fluctuations

in player numbers then reduce the speed of evolutionary adjustments in cooperative investments.

Since, as we have now seen, fluctuations in group size typically affect the selection pressures on

cooperative investments, such fluctuations can also shift the location of interior singular strategies.

If fluctuations in group size shift singular strategies below the natural limit of zero cooperative

investments, they prevent the evolution of cooperation altogether. Moreover, if fluctuations in

group size shift singular strategies beyond the lowest possible or highest possible cooperative in-

vestments, they can prevent evolutionary bistability (if the singular strategy is not convergence

stable) or evolutionary branching (if the singular strategy is convergence stable, but not locally evo-

lutionarily stable). However, in the following we show that when payoffs depend only on a player’s

own cooperative investment and on its share of the group’s total cooperative investment, selection

gradients are independent of the degree of fluctuations in group size around a given average number

of players.

B. Consequences for the tragedy of the commune

We now study the effects of fluctuating group size for games in which payoffs do not explicitly

depend on group size,

P

(

ri,
r1 + . . .+ rk

k
, k

)

= P

(

ri,
r1 + . . .+ rk

k

)

. (3)

For such games, the selection gradient vanishes for a singular strategy r∗ whenever

〈k〉P ∗
1 = −P ∗

2 , (4)

where P ∗
i = Pi(r

∗, r∗) is the partial derivative of the payoff function P with respect to its ith

argument, evaluated at r = m = r∗. Since the only feature of the distribution qk that appears in

equation (4) is the average number of players, fluctuating group size does not have any effect on

the location of the singular strategies.
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To understand the evolutionary dynamics of a monomorphic populations with a strategy close

to the singular strategy r∗, we need to know whether r∗ is convergence stable (directional selection

drives monomorphic populations toward r∗) and whether it is locally evolutionarily stable (selection

at r∗ is stabilizing). Near a singular strategy that is convergence stable but not locally evolutionarily

stable, a monomorphic population experiences disruptive selection and will eventually become

dimorphic through evolutionary branching. In Appendix B, we show that the singular strategy r∗

is convergence stable if

〈k〉P ∗
11 + (1 + 〈k〉)P ∗

12 + P ∗
22 < 0, (5)

where P ∗
ij is the second partial derivative of the payoff function P with respect to its ith and jth

argument, evaluated at r = m = r∗. The singular strategy is not locally evolutionarily stable if

〈k〉P ∗
11 + 2P ∗

12 +
〈

k−1
〉

P ∗
22 > 0, (6)

where

〈

k−1
〉

=

∞
∑

k=1

qk
k
.

The average inverse group size
〈

k−1
〉

serves as a measure of the strength of fluctuations in group

size. It ranges from a minimum of 1/ 〈k〉 when a group of players always has the same size 〈k〉, to

an asymptotic maximum of 1 as group size becomes more and more variable.

1. Additively separable benefits and costs

We now analyze the special case in which the effects of the two arguments in the payoff function

can be separated additively,

P

(

ri,
r1 + . . .+ rk

k

)

= B

(

r1 + . . .+ rk
k

)

− C(ri). (7)

In cooperative games, B and C can be interpreted as the benefit and cost of a cooperative in-

vestment, respectively. The conditions in inequalities (1) simply imply that both B and C are

increasing functions.

The separability of arguments implies that P ∗
12 = 0 and it follows from inequality (5) that

combinations of P ∗
11 and P ∗

22 for which the singular strategy is convergence stable are situated

below the line

P ∗
22 = −〈k〉P ∗

11,
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(a)

(b)

Fluctuations in group size 

FIG. 4. Evolutionary dynamics near the singular strategy r∗ for gradually varying combinations of P ∗

11

and P ∗

22
(denoting the second partial derivatives of the payoff function evaluated at the singular strategy)

and a fixed number of players (left panels) or a fluctuating number of players (centre and right panels).

The dark green regions indicate the combinations (P ∗

11
, P ∗

22
) for which the singular strategy is convergence

stable, inequality (5), but not locally evolutionarily stable, inequality (6). These are the combinations

for which evolutionary branching eventually occurs. (a) Multiplayer extension of the game considered by

Doebeli and Hauert [9]. The benefits and costs can be separately additively and sufficient fluctuations in

group size prevent evolutionary branching (centre and right panel). The regions and the cross (located at

P ∗

11
= 3.2 and P ∗

22
= −11.2) correspond to Fig. 1b. Parameters: P ∗

12
= 0; 〈k〉 = 2; 〈k−1〉 = 1/2, 3/4, 1 (left

to right). (b) Dictyostelium model considered by Brännström and Dieckmann [3]. The benefits and costs

can be separated multiplicatively and evolutionary branching does not occur without fluctuating group size.

The regions and the cross (located at P ∗

11
= 0 and P ∗

22
= 0.79) correspond to Fig. 4 of Brännström and

Dieckmann [3]. Parameters: P ∗

12
= −0.14; 〈k〉 = 7.5; 〈k−1〉 = 0.13, 0.46, 1 (left to right). While the panels

in (a) and (b) are produced for specific parameter values, the shown qualitative patterns apply to all games

with additively and multiplicatively separable payoff functions, respectively. The parameters used in (b) to

illustrate the Dictyostelium model are not identical with those used by Brännström and Dieckmann [3], but

instead define a formally equivalent game.
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which is unaffected by variation in the number of players. Likewise, it follows from inequality (6)

that the combinations for which the singular strategy is not locally evolutionarily stable are situated

above the line

P ∗
22 = −

〈k〉

〈k−1〉
P ∗
11.

The slope of the latter line ranges from −〈k〉2 to −〈k〉 as fluctuations in group size increase. This

is shown in the three panels of Fig. 4a.

The values P ∗
11 and P ∗

22 depend on the singular strategy r∗. Evolutionarily branching, and

hence the tragedy of the commune, eventually occurs when the singular strategy is convergence

stable, but not locally evolutionarily stable. In Fig. 4a, this corresponds to the wedge-shaped dark

green region. Since this region lies exclusively in the fourth quadrant, where P ∗
11 = −C ′′(r∗) > 0

and P ∗
22 = B′′(r∗) < 0, it follows immediately that the tragedy of the commune can only occur

when both the benefit B and the cost C are concave around the singular point. Furthermore,

we see that for additively separately payoffs fluctuating group size always reduces the parameter

range in which evolutionary branching – and hence the tragedy of the commune – occurs. As the

fluctuations increase, any point in the plane, including the cross in Fig. 4a that corresponds to the

game studied by Doebeli et al. [10] (see also Fig. 1), eventually falls outside the region in which

evolutionary branching occurs. Hence, when payoffs are additively separable, the tragedy of the

commune can always be avoided through sufficient fluctuations in group size.

In summary, we have shown that in games with additively separable benefits and costs, or more

generally in games with P ∗
12 = 0, fluctuations in group size generally reduce the scope for the

tragedy of the commune to occur. Moreover, sufficiently large fluctuations in group size can always

turn an evolutionary branching point into a locally evolutionarily stable strategy.

2. Multiplicatively separable benefits and costs

For games in which benefits and costs are not additively separable, the situation can be consid-

erably different, as illustrated by the Dictyostelium model studied by Brännström and Dieckmann

[3]. In the Dictyostelium model, benefits and costs are multiplicatively separable,

P

(

ri,
r1 + . . .+ rk

k

)

= B

(

r1 + . . .+ rk
k

)

C(ri). (8)

Using an exponentially increasing function for the benefit and a linearly decreasing function for

the cost, Brännström and Dieckmann [3] derived an analytical condition demonstrating that evo-

lutionary branching only occurs with fluctuating group size.
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Fig. 4b shows why fluctuating group size is required for evolutionary branching. The slopes of

the lines are the same as for games with additively separable payoffs, but the line with constant

slope now intercepts the P ∗
22-axis at the point −(1+ 〈k〉)P ∗

12, while the remaining line intercepts at

−2P ∗
12/

〈

k−1
〉

. The effect of fluctuating group size thus depends on the sign of P ∗
12. For multiplica-

tively separable payoffs, P ∗
12 is always negative, P ∗

12 = B′(r∗)C ′(r∗) < 0. Without fluctuations in

group size, the region in which evolutionary branching occurs lies entirely in the fourth quadrant.

As fluctuations increase, the intercept −2P ∗
12/

〈

k−1
〉

decreases from −〈k〉2 P ∗
12 to −〈k〉P ∗

12, which

is below −(1+ 〈k〉)P ∗
12. Thus, Brännström and Dieckmann [3] did not find evolutionary branching

without fluctuations in group size, because they used a linear cost function, which implies P ∗
11 = 0.

For sufficiently small values of P ∗
22, evolutionary branching cannot occur without fluctuating group

size.

The case P ∗
12 > 0 is similar to games with additively separable benefits and costs. In particular,

sufficiently large fluctuations in group size can always turn an evolutionarily branching point into

a locally evolutionarily stable strategy, hence avoiding the tragedy of the commune.

C. General classification of the consequences of fluctuating group size

The preceding analysis shows that the sign of P ∗
12 has a profound impact on the evolution-

ary dynamics. For P ∗
12 ≥ 0, fluctuations in the number of players always reduces the scope for

evolutionary branching, whereas for P ∗
12 < 0, other outcomes are possible.

To understand the effects of fluctuating group size in general cooperation games with payoffs that

are neither additively nor multiplicatively separable, we combine inequalities (5) and (6), resulting

in a condition for the singular strategy to be convergence stable but not locally evolutionarily

stable,

〈k〉P ∗
12 + P ∗

22 < −〈k〉P ∗
11 − P ∗

12 < P ∗
12 +

〈

k−1
〉

P ∗
22. (9)

In this double inequality, only the rightmost term changes with the variability in group size. This

allows us to obtain a necessary condition for evolutionary branching when the number of players

is fixed,

〈k〉P ∗
12 + P ∗

22 < P ∗
12 +

1

〈k〉
P ∗
22. (10)

Writing A = 〈k〉P ∗
12 + P ∗

22 and B = P ∗
12 + 〈k〉−1 P ∗

22 for the left-hand and right-hand side, re-

spectively, we can classify a game according to whether evolutionary branching is possible without
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variation in group size (A < B) or not (A > B). Analogously, we obtain a necessary condition for

evolutionary branching when fluctuations in the number of players are maximal,

〈k〉P ∗
12 + P ∗

22 < P ∗
12 + P ∗

22,

which simplifies to P ∗
12 < 0. Thus, we may further classify a game according to whether evolutionary

branching is possible with maximal fluctuation in group size (P ∗
12 < 0) or not (P ∗

12 < 0).

Fig. 5 provides a graphical representation of these classifications. In each case, the range of

values in which the middle point of inequality (9) must lie for evolutionary branching to occur is

shown as a function of the variability in group size. For P ∗
12 < 0, and thus for games in which

the benefits and costs are multiplicatively separable, the effects of fluctuating group size depend

on whether inequality (10) holds. If it does not hold, fluctuating group size always reduces the

scope for evolutionary branching. If it does hold, fluctuating group size may prevent or induce

evolutionary branching. To distinguish between these two cases, we need to check whether

P ∗
12 +

〈

k−1
〉

P ∗
22 < P ∗

12 + P ∗
22,

which applies if P ∗
22 > 0. In this case, fluctuations in group size hinder evolutionary branching. If

instead P ∗
22 < 0, fluctuations in group size promote evolutionary branching.

For games in which benefits and costs can be separated additively, P ∗
12 = 0, and we infer

from Fig. 5 that fluctuations in the number of players always reduces the scope for evolutionary

branching, in line with the conclusions in Sect.III B 1.

IV. CONCLUSIONS

Fluctuations are an inherent feature of social and natural systems. We have shown that fluctu-

ating group size can have important consequences for the evolution of cooperation, by impacting

both the level and the evolutionary stability of cooperative investments. The former impact can

turn stable intermediate cooperative investments into a tragedy of the commons, by shifting the

predicted cooperative investments below the natural lower limit of no investment. The latter im-

pact can turn stable intermediate cooperative investments into the recently elucidated tragedy of

the commune. Naturally, the consequences of fluctuating group size may also work in the opposite

direction, preventing the tragedy of the commons or the tragedy of the commune.

Our results in Sect. III on how convergence stable cooperative investments are expected to

shift with fluctuations in group size are based on the assumption that a player’s payoff may be
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FIG. 5. The effects of fluctuating group size on the occurrence of evolutionary branching in general coopera-

tion games with payoff functions not explicitly depending on the group size. Qualitatively distinct cases can

be classified according to the values of P ∗

12
, A = 〈k〉P ∗

12
+ P ∗

22
and B = P ∗

12
+ 〈k〉−1P ∗

22
. Each panel shows,

as a function of 〈k−1〉, the range of values in which the middle part of inequality (9), 〈k〉P ∗

11
− P ∗

22
, must

lie for evolutionary branching to occur. The blue (medium gray) and red (dark gray) lines represent the

left-hand and right-hand sides of inequality (9) respectively. When inequality (9) can be fulfilled, these lines

are shown as continuous, otherwise as dotted. The regions in which inequality (9) are fulfilled are depicted

in yellow (light grey). For P ∗

12
≥ 0, fluctuations in group size always reduces the scope for evolutionary

branching. If instead P ∗

12
< 0, the effect of fluctuating group size depends on whether A ≤ B or A > B. In

the latter case, the region in which evolutionary branching occurs increases with variation in the number of

players, whereas in the former case information about P ∗

22
is required to determine the effects of fluctuating

group size.

affected by its own investment, the share it receives of the group’s total investment, and the group’s

size. We have shown that in games with payoff functions that do not explicitly depend on group

size, convergence stable cooperative investments do not shift with fluctuations in group size. For

this class of games, the consequences of fluctuations in group size are thus limited to altering the
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evolutionary stability of cooperative investments. We have also shown that these consequences for

potential evolutionary branching, and hence for the tragedy of the commune, can be understood

in terms of the mixed second partial derivative P ∗
12 of the payoff function. To obtain P ∗

12, the

payoff function P is differentiated with respect to a player’s investment and with respect to the

share it receives of the group’s total investment, with the resultant derivative being evaluated

at the evolutionarily singular strategy at which the directional selection pressures on cooperative

investments cease. Fluctuations in group size make evolutionary branching less likely if P ∗
12 ≥ 0,

and we have shown that sufficient fluctuations in group size can always turn disruptive selection

into stabilizing selection, hence preventing the tragedy of the commune. If P ∗
12 < 0, fluctuations in

group size can either turn disruptive selection into stabilizing selection or vice versa, and further

information is needed to determine which of these alternative consequences occurs. Most theoretical

studies of cooperation are based on games with P ∗
12 = 0 [which is guaranteed when the payoff

function is additively separable; e.g., 10, 31] or on games with P ∗
12 < 0 [which is guaranteed when

the payoff function is multiplicatively separable; e.g., 3–5, 12, 41].

The results obtained in this study demonstrate that fluctuations in group size can significantly

affect cooperation evolution in real-world systems by increasing or decreasing, and by stabilizing or

destabilizing, cooperative investments. Yet, to date only a handful of studies have considered the

role of fluctuating group size for the evolution of cooperation [22–24, 36], so that many interesting

questions as yet remain unexplored. Two extensions of our work here may be of particular relevance.

A first promising direction is to consider the consequences of fluctuating group size on the tragedy

of the commune for cooperation games with payoff functions that explicitly depend on group size,

which includes situations in which a group’s total investment is not divided up equally between

players. A second promising direction is to consider processes according to which players adopt

new strategies that differ from the gradual-adaptation process we have analyzed here.

Studies of cooperation games with continuous strategies have recently started to add greater

realism and new vistas to cooperation research. The future promise of these developments will

be further enhanced by accounting for the fluctuations in group size typically arising in realistic

multiplayer games.
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APPENDIX A: DEMOGRAPHIC DYNAMICS

We consider a population of players in which n distinct cooperation strategies r1, . . . , rn are

represented with densities X1, . . . ,Xn. The demographic dynamics of these densities is assumed

to be given by

Ẋi

Xi

= R(ri,X) − µ(X1 + . . .+Xn),

where Ẋi = dXi/dt, R(ri,X) is the expected number of players with strategy ri emerging from a

game, and the loss rate µ is included to allow for density regulation. We scale time t such that the

rate at which a player participates in a game equals 1. Assuming that a player participates in a

k-player game with probability pk and that the participants of such games are drawn at random

from the population, R(ri,X) is given by

R(ri,X) =

∞
∑

k=1

pk
∑

1+k1+...+kn=k

(k − 1)!

k1! . . . kn!

Xk1
1

. . . Xkn
n

(X1 + . . .+Xk)k−1
P

(

ri,
k1r1 + . . .+ (ki + 1)ri + . . . + knrn

k
, k

)

,

where P is the payoff function defined in Sect. 2.2. The second sum above reflects the fact that

the one focal player with strategy ri participates in a k-player game with k1, . . . , kn other players

that follow strategies r1, . . . , rn. With xi = Xi/(X1 + . . .+Xn) denoting the frequency of strategy

ri in the population, we obtain

ẋi
xi

=
Ẋi

Xi

−
Ẋ1 + . . . + Ẋn

X1 + . . . +Xn

= R(ri, x)− [x1R(r1, x) + . . .+ xnR(rn, x)], (11)

which is a generalization of the classical replicator equation [25].

APPENDIX B: EVOLUTIONARY DYNAMICS

From equation (11) we deduce the initial increase in the frequency of a rare mutant strategy m

in an environment dominated by players with strategy r. Writing x1 = xr, x2 = xm, r1 = r, and
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r2 = m when only these two cooperation strategies are present, we have

R(m,x) =

∞
∑

k=1

pk

k−1
∑

j=0

(

k − 1

j

)

xjrx
k−1−j
m P

(

m,
jm+ (k − j)r

k
, k

)

.

The invasion fitness of the rare mutant morph is then defined as

f(r,m) = lim
xm→0+

ẋm
xm

= R(m, (1, 0)) −R(r, (1, 0)),

which gives

f(r,m) =
∞
∑

k=1

pk

[

P

(

m,
m+ (k − 1)r

k
, k

)

− P (r, r, k)

]

. (12)

We can alternatively express the further calculations in terms of the probability qk that a game

involves k players, which is related to the individual’s probability pk of joining a k-player game by

pk =
kqk

∑∞
k=1

kqk
=

kqk
〈k〉

,

where 〈k〉 is the average group size, 〈k〉 =
∑∞

k=1
kqk.

From the invasion fitness f(r,m) in equation (12), we obtain the selection gradient

g(r) =
∂f(m, r)

∂m

∣

∣

∣

∣

m=r

= 〈k〉−1

∞
∑

k=1

qk [kP1(r, r, k) + P2(r, r, k)] ,

where Pi denotes the first partial derivative of P with respect to its ith argument. Of particular

interest are the singular strategies r∗ at which directional selection ceases, g(r∗) = 0.

A singular strategy r∗ is convergence stable, and nearby monomorphic populations will thus

evolve toward it, if

g′(r∗) = 〈k〉−1

∞
∑

k=1

qk [kP
∗
11(k) + (1 + k)P ∗

12(k) + P ∗
22(k)] < 0. (13)

Here, Pij denotes the second partial derivative of P with respect to its ith and jth arguments,

and the asterisks indicate that these derivatives are evaluated at the singular strategy, P ∗
ij(k) =

Pij(r
∗, r∗, k).

A singular strategy r∗ is not locally evolutionarily stable, and selection will thus be disruptive

in its vicinity, if

∂2f(m, r)

∂m2

∣

∣

∣

∣

m=r=r∗
= 〈k〉−1

∑

k=1

qk
[

kP ∗
11(k) + 2P ∗

12(k) + k−1P ∗
22(k)

]

> 0. (14)
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We can combine inequalities (13) and (14) into a single criterion for the occurrence of an evolu-

tionary branching point,

∞
∑

k=1

qk
[

(1 + k)P ∗
12(k) + k−1P ∗

22(k)
]

< −

∞
∑

k=1

qkP
∗
11(k)

<
∞
∑

k=1

[

2P ∗
12(k) + k−1P ∗

22(k)
]

.

The inequality on the left is the condition for convergence stability (implying evolutionary attrac-

tion toward r∗), while the inequality on the right is the condition for the lack of local evolutionary

stability (implying disruptive selection at r∗).
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