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ABSTRACT 25 

 26 

Four Atlantic salmon Salmo salar L. stocks in the Baltic Sea, varying in their 27 

breeding history, were studied for changes in life-history traits over years 1972–1995. 28 

Length-at-age of recaptured fish had increased throughout the study period, partly due 29 

to increased temperature and increased length-at-release, but also due to remaining 30 

cohort effects that could represent unaccounted environmental or genetic change. 31 

Simultaneously, maturation probabilities controlled for water temperature and length-32 

at-release had increased in all stocks, but most notably in the broodstock-based River 33 

Oulujoki salmon, which also had the highest lengths-at-age. The least change was 34 

observed in the River Tornionjoki salmon that was subject only to supportive 35 

stockings originating from wild parents. These results suggest a long-term divergence 36 

between semi-natural and broodstock based salmon stocks. Increased length-at-age 37 

could not be statistically linked to advanced maturation, and it remains an open 38 

question to which extent the generally increased probabilities to mature at early age 39 

reflected underlying genetic changes.  40 

 41 

Key words: anadromous; fishing-induced evolution; hatchery; life-history; maturation 42 

reaction norm; selection  43 
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INTRODUCTION 44 

 45 

While the exploitation rates of most Atlantic salmon Salmo salar L. stocks have 46 

recently decreased to ecologically sustainable levels it is still prudent to study if 47 

management practises impose selective pressures on life-history traits, thereby 48 

potentially affecting the long-term sustainability of the fishery (Allendorf et al., 2008; 49 

Hard et al., 2008). At population level, age and size at maturation and size-at-age 50 

commonly show temporal variation in both Atlantic and Pacific salmons due to 51 

environmental and fishing-induced demographic changes (Ricker, 1981; Quinn et al., 52 

2006). Life-history traits of salmon have also been found to be highly heritable 53 

(Gjerde, 1984; 1986) and therefore potentially affected by selective fishing (Ricker, 54 

1981; Hard et al., 2008). Furthermore, many salmon populations, especially in the 55 

Baltic Sea, are supported by hatchery reared smolts, and potential adaptations to 56 

captivity can influence genetics of wild populations (Frankham, 2008; Hutchings & 57 

Fraser, 2008).  58 

 59 

Selection from fishing and hatchery breeding may operate in opposite directions: 60 

while fishery usually targets large salmon and might thereby select against fast 61 

growth, hatchery rearing and size-dependent survival of released fish may favour 62 

increased growth rates (Gjedrem, 1979). Hatchery rearing also affects age-at-63 

maturation, migration patterns, morphology, survival and several physiological traits 64 

(Kallio-Nyberg & Koljonen, 1997; Fleming et al., 2002; Handeland et al., 2003; 65 

Jokikokko et al., 2004; Kostow, 2004; Saloniemi et al., 2004; Hutchings & Fraser, 66 

2008). However, fishery may also target grilse (1 sea-winter (SW) salmon) due to 67 

their high abundance, and the effect of hatchery rearing depends on the origin of fish 68 
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used in the production of the new generation. Therefore, the expected effects are case-69 

specific and require studies how the selection regimes arising from fishing and 70 

hatchery practises affect the trait distributions in hatchery-supported fish stocks 71 

(Hutchings & Fraser, 2008).  72 

 73 

The abundance of Atlantic salmon in the Baltic Sea decreased by the end of the 20’s 74 

century not only due to damming of natal rivers but also due to heavy fishing pressure 75 

during the feeding migration (Eriksson & Eriksson, 1993; Jutila et al., 2003a). In 76 

order to maintain commercial offshore salmon fishery, about 5 million hatchery-77 

reared smolts are annually released into the Baltic Sea. Baltic salmon parr spend two 78 

to four years in the river before smoltification (Jutila & Pruuki, 1988), and the number 79 

of winters spend in the sea prior to spawning migration most commonly varies 80 

between one and three years. In 1995–2000, the average proportion of 1 sea-winter 81 

(SW), 2SW, 3SW, 4SW and repeat spawners accounted for respectively 12, 52, 30, 82 

0.4 and 6% of the River Tornionjoki catch samples (Romakkaniemi et al., 2003).  83 

 84 

Water temperature during the feeding migration in the sea has a major role in shaping 85 

the realised growth rate (e.g. Friedland et al., 2000). Fast growth usually translates 86 

into earlier maturation in salmon (Hutchings & Jones; 1998), due to both the genetic 87 

correlation between growth and maturation and the facilitating effect of the fast 88 

phenotypic growth (Gjerde, 1984). Due to the strong impact of environmental factors 89 

on both growth and maturation of salmon, these effects need to be disentangled from 90 

possible genetic factors when assessing potentially evolutionary changes within or 91 

genetic differences between stocks. The concept of probabilistic maturation reaction 92 

norm (PMRN) offers a statistical aid that can help to disentangle genetic effects from 93 
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environmentally driven phenotypic variation in maturation schedules (Heino et al., 94 

2002; Heino & Dieckmann, 2008). A PMRN describes a population-level probability 95 

of an average individual reaching maturity as a function of age and predominantly 96 

environmentally driven variables, such as length-at-age. Other environmental 97 

measures can readily be incorporated (Heino et al., 2002; Grift et al., 2007, Heino & 98 

Dieckmann, 2008), and the ability of PMRNs to reflect a genetic property depends on 99 

the degree to which the included variables can capture important sources of plasticity 100 

(reviewed by Dieckmann & Heino, 2007).  101 

 102 

This study compares variation in two central life history traits, 1) growth rate in a 103 

hatchery (as length-at-release) and during the feeding migration (as length-at-age) and 104 

2) maturation patterns (PMRNs) over time among four Atlantic salmon stocks, Rivers 105 

Iijoki, Oulujoki, Tornionjoki and Simojoki. In total, these four stocks usually produce 106 

about 40 % of the salmon catch in the Gulf of Bothnia, and the River Tornionjoki is 107 

the most productive salmon river in the whole Baltic Sea area (ICES, 2008). These 108 

stocks represent two contrasting breeding regimes. The first two stocks (‘hatchery 109 

group’) are maintained entirely by continuous broodstock breeding, which has been 110 

continuing for Oulujoki salmon since 1955 and Iijoki salmon since 1965; naturally 111 

reproducing salmon populations of Rivers Oulujoki and Iijoki were lost when the 112 

rivers were dammed for the production of hydroelectricity. The current River 113 

Oulujoki stock is a mixture of several Baltic salmon stocks, including the original 114 

River Oulujoki salmon (Säisä et al., 2003). The other two stocks (‘semi-natural 115 

group’) are maintained predominantly by natural reproduction, although hatchery-116 

reared smolts and juveniles originating from wild-caught parents have been released 117 

supportively (Romakkaniemi et al., 2003; Jutila et al., 2003a). Estimated proportion 118 
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of stocked smolts of all smolts has varied from 0% to over 90% in the Tornionjoki 119 

and Simojoki salmon (Romakkaniemi et al., 2003), but among returning adults the 120 

proportion of reared fish has been lower due to their lower survival (Jokikokko et al., 121 

2006; Jokikokko & Jutila, 2009). Stocked salmon accounted 8–35% of River 122 

Tornionjoki salmon returners in 1984-2000 (Romakkaniemi et al., 2003). 123 

 124 

MATERIALS AND METHODS 125 

 126 

DATA 127 

 128 

Several millions of 2- or 3-year-old smolts and parr, raised under standard hatchery 129 

conditions, have been released into the estuaries of the study rivers since 1960’s  130 

(Romakkaniemi et al., 2003). Prior to the release, all fish were tagged with Carlin-131 

tags, and the total length of each fish was recorded (length-at-release from here on). 132 

Tag-recovery data collected from the multinational commercial salmon fishery since 133 

year 1972 were obtained from the Finnish Game and Fisheries Research Institute.  134 

It is known that large and old salmon may migrate to the rivers before they are 135 

effectively sampled by the fishery. Because the opening date of fishery has been 136 

variably regulated since 1996 (Romakkaniemi et al., 2003) only fish recaptured prior 137 

to 1996 were included in the analyses. Recaptures consisted of fish belonging to four 138 

river stocks, Rivers Oulujoki (N=3271), Iijoki (N=2632), Simojoki (N=1146), and 139 

Tornionjoki (N=487) (Fig. 1). Recaptures of the River Simojoki salmon included a 140 

number of wild fish (N=615, 53.7% of the River Simojoki fish) tagged as smolts 141 

during their migration to the sea. 142 

 143 
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All the study stocks are susceptible to mixed-stock fishery in the feeding areas of the 144 

Baltic Sea (ICES, 2008). The legal minimum landing size of salmon is 60 cm except 145 

in the Bothnian Bay where it was decreased to 50 cm in 1993. Tags from undersized 146 

fish are also returned. However, to avoid the confounding effect of the area-specific 147 

minimum landing size, all fish below 60 cm were excluded from the data. Further, for 148 

length-based PMRN analysis, all fish whose corrected length (see below) was below 149 

60 cm were omitted. An equal retention rate of the tags between the stocks, years and 150 

age groups was assumed, as well as equal return rate of tags between the different 151 

fishery segments (offshore vs. coastal, between gear types). Most of the tags were 152 

returned from grilse, slightly fewer from 2SW (SW, sea-winter) fish and relatively 153 

few from 3SW fish (Table 1, see also Romakkaniemi et al., 2003). Most of the tag 154 

recoveries came from immature fish, mirroring the high fishing pressure in the 155 

feeding areas.  156 

 157 

ASSIGNMENT OF MATURITY 158 

 159 

Maturity status of captured salmon was not directly observed and had to be inferred 160 

from the location of recapture, the type of fishing gear and the time of recapture. This 161 

was possible due to the different spatial distribution of mature and immature 162 

individuals at the time of spawning migration. Smolts migrate from the Bothnian Bay 163 

southwards, towards the Main Basin (subdivision (SD) 25–29, Fig. 1) for feeding, and 164 

most of the immature salmon feed in open sea areas, predominantly in the Main Basin 165 

(Kallio-Nyberg & Ikonen, 1992; Kallio-Nyberg et al., 1999; Jutila et al. 2003b). 166 

Spawning migration to the Gulf of Bothnia begins in May and ends in August (Ikonen 167 

& Kallio-Nyberg, 1993). The multi-sea-winter salmon return to rivers in May or June 168 
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(Ikonen & Kallio-Nyberg, 1993; Jokikokko et al., 2004), but male grilse return later in 169 

July or in August (Jokikokko et al., 2004). The main route of the returning salmon is 170 

near the Finnish coast of the Gulf of Bothnia (Kallio-Nyberg & Ikonen, 1992). 171 

Migrating salmon are captured mainly with traps and gillnets or by active means in 172 

rivers, whereas the open sea fishery targeting feeding fish has used offshore gears, 173 

predominantly drift-nets (banned in 2008) and baited lines (ICES, 2008). Based on 174 

this information, salmon recaptured during the spawning migration season, from May 175 

to October, with coastal or river gears (trap nets, coastal gillnets, hook and line) north 176 

from the Åland Sea (within ICES SDs 29–30) were most likely on their spawning 177 

migration and therefore classified as sexually mature fish. The salmon caught from 178 

May to December in SDs 21–28 or 32 and salmon caught with offshore gears (baited 179 

lines, drift nets) in SDs 29–30 most likely continued feeding and were therefore 180 

classified as immature. All fish caught in SD31 and surrounding rivers were classified 181 

mature independently of the month and gear or capture (May-December).  182 

 183 

CORRECTION OF LENGTH-AT-AGE  184 

 185 

Salmon staying in the feeding area grow throughout the season whereas the salmon 186 

that undertake spawning migration cease to feed and stop growing. This results in a 187 

size difference between the immature and mature fish at the same age, potentially 188 

confounding size-based analyses. To address this problem, the size observations were 189 

standardised as if all salmon were captured the same date (July 31st), accounting for a 190 

period of no growth among mature salmon. It was assumed that it would take 30 days 191 

for a maturing salmon to reach the river mouth from the feeding area (time from the 192 

Åland Sea to the Bothnian Bay, Ikonen & Kallio-Nyberg, 1993), and therefore the 193 
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recapture date of maturing salmon was reduced by 30 days prior to the standardisation 194 

of length. A large proportion of spawning grilse are under 60 cm in size and therefore 195 

not representatively sampled by the fishery. The within-season correction of length 196 

was based on the 2SW fish because they were assumed to be sampled most 197 

representatively for length. The observed length of 2SW salmon caught in the feeding 198 

area was modelled as a function of capture date (from 1st of January, 0-1 a) by linear 199 

regression (length = 677.5 mm + 140.4 mm yr-1 × capture date; N = 1197, P < 0.001, 200 

R2 = 0.08; logarithmic transformation of length did not improve the fit). Both grilse 201 

and 3SW fish were assumed to grow in equal linear proportions with the 2SW fish. 202 

Therefore, standardised length (L) for all fish was calculated using a linear equation: L 203 

= observed length / ((capture date corrected for maturity) × 0.182 yr-1 + 0.879), where 204 

the coefficients are obtained by dividing the original coefficients with the mean length 205 

of the immature 2SW fish, 770.8 mm. 206 

 207 

ESTIMATION OF THE PROBABILISTIC MATURATION REACTION NORMS 208 

 209 

All salmon were assumed to spawn only once. This is justified because older than 210 

3SW fish were excluded, and because available data suggest that the proportion of 211 

returning salmon that have spawned previously is low; in River Simojoki about 0.5% 212 

of returning salmon had spawned previously (Jokikokko & Jutila, 2005). Assuming 213 

semelparity facilitated the direct estimation of PMRNs with logistic regression (Heino 214 

et al., 2002; Heino & Dieckmann, 2008). Usually the PMRNs are estimated using age 215 

and some predominantly environmentally controlled variable such as size as 216 

explanatory variables (Heino & Dieckmann, 2008). Since the maturation process in 217 

salmon may start even a year before the spawning, the length at the time of recapture 218 
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may not be representative of the conditions that affected maturation but already 219 

affected by the maturation process itself. Therefore, PMRNs were estimated with and 220 

without information of the length at the time of capture. 221 

 222 

The presence of spatial segregation between mature and immature fish makes them 223 

differentially susceptible to fishing. The relative probability of tag recovery is also 224 

proportional to fishing effort and gear-specific catchability that was assumed constant 225 

between the gear types. Since for the estimation of PMRNs the age- and size specific 226 

proportions of mature and immature fish need to be representative (Heino et al., 227 

2002), the abundance indices of fish in the feeding and spawning migration area were 228 

used as weighting factors in the regressions and in all other GLM analyses. The 229 

abundance indices were derived from catch and effort data, and showed notable 230 

temporal variation (Fig. 2). Unfortunately, no data with correct temporal resolution 231 

(May–October) were available, and annual catch data of total landings in tonnes 232 

(ICES SDs 22–29 as immature, SDs 30–31 as mature; ICES, 2008: table 2.1.3) had to 233 

be used together with half-annual effort data (July–December, in gear hours) grouped 234 

into coastal (~mature fish) and offshore fisheries (~immature fish) (ICES, 2008). The 235 

catch statistics were available from 1972 onwards but the effort data only from 1987 236 

onwards. Therefore, mean effort for 1987–1990 was used for the years 1972–1986. 237 

The final abundance indices used as weights were formed by dividing the area-238 

specific abundance estimates (total catches in tonnes / effort in gear hours) with the 239 

number of samples in the tag recovery data (Fig. 2). For the statistical analysis, the 240 

weights were normalised so that their mean was 1. 241 

 242 
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Logistic regression models describing the probability of being mature (o) were 243 

compared based on AIC values and proportion of correctly classified individuals, and 244 

the two following models were chosen as the most parsimonious: 245 

 246 

Logit[o(a,s,l,c,r)] ~ α0+α1-2 a+α3-5 r+α6 c+α7 l+α8 s+α9 t+α10-12 r×c     (1) 247 

Logit[o(a,s,c,r)] ~ α0+α1-2 a+α3-5 r +α6 c+α7 s +α8 t +α9-11 r×c ,   (2) 248 

 249 

where the α are the estimated coefficients, l is the standardized length-at-age, s is 250 

length-at-release (smolt length), c is cohort, r is river, a is age (treated as a factor), 251 

and t is sea water temperature measured near the Tvärminne Zoological Station one 252 

year before the capture (mean between April and August, measured by the Finnish 253 

Institute of Marine Research, Fig. 1, 2). Any temporal shifts were assumed to be 254 

linear, and the cohort effect was entered as a continuous variable.  255 

 256 

LENGTH-AT-RELEASE AND LENGTH-AT-AGE 257 

 258 

Changes in length-at-release were analysed using ANCOVA, where cohort was 259 

entered as a covariate and smolt age (years of rearing before release) and river as 260 

factors. A model with cohort as a factor and without interaction terms was used to 261 

output the estimated marginal cohort-wise means of length-at-release. To examine if 262 

the standardised length-at-age of salmon varied between the stocks, an analysis of 263 

covariance was applied separately for each sea age class (SW). Cohort, length-at-264 

release and mean sea water temperature (see above) were entered as covariates. 265 

Factors included river and the interactions of cohort with river and maturity status. 266 

The model structure was chosen based on biological information about the 267 
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relationships and significance of parameters in more complex candidate models. An 268 

additional model with cohort as a factor, and without interactions terms, was used to 269 

output cohort-wise marginal mean estimates of length-at-age.  270 

 271 

Due to missing values for some cohort × river and cohort × maturity interactions, 272 

Type IV estimation of sums of squares was used in all ANCOVA analyses. Pairwise 273 

Bonferroni post hoc tests were used to analyse the pairwise differences between the 274 

rivers. All the analyses were weighted by the abundance indices (see above). The 275 

statistical analyses were performed in SPSS 16.0.1 for Windows (SPSS Inc. USA) 276 

and R (R Development Core Team 2008). 277 

 278 

RESULTS 279 

AGE-AT-MATURATION 280 

 281 

Proportion of mature individuals at age in raw data was used as the first proxy of 282 

maturation, although the proportions are influenced by changes in fishing pressure 283 

between the feeding and migration areas. Average proportion of salmon maturing as 284 

grilse was higher in the hatchery group (River Iijoki and River Oulujoki salmon) than 285 

in the supportively stocked wild salmon group (River Simojoki and River Tornionjoki 286 

salmon) across the time series, and correspondingly larger proportion of older fish 287 

were mature in the latter group (Table 1, Fig. 3). There were relatively many 288 

immature 3SW salmon in the hatchery group (Table 1), which indicates spawning 289 

even later in life or a potential reproductive failure. On the other hand, considerable 290 

proportions of mature grilse were not included in the Fig. 3 as they were excluded 291 

from the data due to the 60 cm size limit.  292 
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 293 

LENGTH-AT-RELEASE 294 

Length-at-release of stocked salmon had increased over time in all rivers (Fig. 4), 295 

indicating improved conditions in hatcheries but potentially also improved intrinsic 296 

growth rate. There were consistent differences between the rivers, but also divergent 297 

trends over time as indicated by the statistically significant river x cohort interaction 298 

term (Table II). The least change occurred in River Simojoki salmon (12.7 % 299 

increase) and the largest change in the River Iijoki salmon (62.1 % increase). All the 300 

rivers except for rivers Tornionjoki and Iijoki differed statistically significantly from 301 

each other (Bonferroni pairwise post hoc tests, P< 0.001). Estimated as marginal 302 

means (cohort = 1982), the River Oulujoki smolts were the largest (219 mm), river 303 

Iijoki (211 mm) and river Tornionjoki (210 mm) of intermediate size, and River 304 

Simojoki smolts the smallest (204 mm); the large proportion of clearly smaller wild 305 

smolts in the River Simojoki contributed to the small average size in that river. Size-306 

at-release increased as a function of smolt age (estimated as marginal means, cohort = 307 

1982), being 151 mm after one year, 180 mm after two years, 214 mm after three 308 

years and 299 mm after four years. Length-at-release, corrected for the time in 309 

hatchery, did not increase more in populations produced by long-term broodstock 310 

breeding programmes (rivers Oulujoki and Iijoki) than in supported naturally 311 

reproducing populations (rivers Tornionjoki and Simojoki) (ANCOVA, parameter 312 

estimates for the slope: Oulujoki, 1.6 mm yr-1; Iijoki, 3.2 mm yr-1; Simojoki, 0.8 mm 313 

yr-1; Tornionjoki, 2.8 mm yr-1) (Fig. 4).   314 

 315 

LENGTH-AT-AGE 316 

 317 
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Most of the variation in the standardised length-at-age was explained by length-at-318 

release (correlation between length-at-release and length-at-age, Pearson’s r = 0.111, 319 

N = 2981; P < 0.001 for grilse; r = 0.104, N = 2281, P < 0.001 for 2SW fish; r = 320 

0.053, N = 383, P > 0.05 for 3SW fish), water temperature, and cohort in interaction 321 

with river and maturity status (Table III). The significant positive main effect of 322 

cohort (for the reference river Tornionjoki) indicated a residual increasing trend in the 323 

length-at-age of 1SW fish, not explained by changes in water temperature, maturation 324 

schedules or in length-at-release. However, when length-at-release and water 325 

temperature were controlled, the estimated temporal trends in the length-at-age of 326 

mature grilse were negative for all stocks except for River Tornionjoki salmon (Fig. 327 

5). 328 

 329 

The length-at-age of 2SW fish increased significantly less in rivers Iijoki and 330 

Simojoki than in the River Tornionjoki or Oulujoki salmon (Fig. 5b) (parameter 331 

estimates for the slope of temporal change in mature fish: Oulujoki, 6.6 mm yr-1; 332 

Iijoki, 1.9 mm yr-1; Simojoki, 3.0 mm yr-1; Tornionjoki, 4.8 mm yr-1). The length-at-333 

age of 3SW fish showed less change than the length at younger ages in relative terms 334 

but was still increasing over time in all stocks (Fig. 5c) (parameter estimates for the 335 

slope of temporal change: Oulujoki, 14.0 mm yr-1; Iijoki, 9.7 mm yr-1; Simojoki, 1.8 336 

mm yr-1; Tornionjoki, 0.9 mm yr-1). According to Bonferroni comparisons, mature 337 

fish of all stocks were significantly smaller than immature fish after one and two sea-338 

winters, P < 0.001), but significantly larger after three sea winters (919 mm vs. 803 339 

mm, P < 0.001).  340 

 341 

PROBABILISTIC MATURATION REACTION NORMS 342 
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 343 

The most complex logistic regression model capturing all biologically relevant 344 

relationships (Eq. 1) predicted 74.7% of salmon to a correct maturity class without 345 

weighting, and 72.0% with weighting (after the correction for the abundance of 346 

mature and immature fish). Increasing age had the expected positive effect on 347 

maturation probability (Table IV). Water temperature a year before capture also had a 348 

positive effect on maturation probability, but the positive effect of length-at-release 349 

was only marginally significant and the effect of length-at-capture was negative 350 

(Table IV). The main effect of cohort effect was positive indicating an increased 351 

maturation probability in the reference river Oulujoki (Table IV). Negative river × 352 

cohort interaction terms indicated that the temporal changes were less prominent in all 353 

the other rivers, the River Tornionjoki stock showing the least change (Tables IV, V). 354 

There were also consistent differences between the rivers throughout the study period 355 

(Tables IV, V). Interactions of length-at-capture and length-at-release with cohort 356 

were non-significant and were omitted from the final model. 357 

 358 

Without the effect of length (data missing for some years), more fish could be 359 

included in the analysis. However, the results remained qualitatively the same (Table 360 

IV), and the predicted increases of maturation probabilities according to the weighted 361 

model varied between -12% and 187% (Table V). Without weighting, the simple 362 

PMRN model (Eq. 2) predicted 76.7% of salmon to correct maturity class while the 363 

respective precision for the weighted model was 68.6%. Contrary to the expectation, 364 

the length-at-release did not have a significant effect on the probability to mature 365 

(Table IV). Interaction of length-at-release with cohort was non-significant and was 366 

omitted from the final model. 367 
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DISCUSSION 368 

 369 

River Oulujoki salmon, with the longest history of hatchery breeding (Säisä et al., 370 

2003), had the largest grilse size, and the seminatural stocks of rivers Simojoki and 371 

Tornionjoki the smallest length-at-age in general. Length-at-age had increased in all 372 

the observed salmon stocks, including the River Tornionjoki that supports the largest 373 

wild Baltic salmon population, in contrast to the observations of decreasing length-at-374 

age in Pacific salmon (Ricker, 1981). Maturation probabilities had increased over time 375 

at all ages in all stocks, but significantly more at early ages and in stocks relying 376 

exclusively on broodstock breeding programmes. River Oulujoki salmon had started 377 

to mature significantly earlier than the salmon from the seminatural stocks or River 378 

Iijoki hatchery stock, while the River Tornionjoki salmon showed the least change. 379 

These results agree with the prediction that hatchery-rearing may increase growth rate 380 

and the likelihood of early maturity (Gjedrem, 1979; Petersson et al., 1993; Fleming 381 

et al., 1994; Kallio-Nyberg & Koljonen, 1997; McGinnity et al., 1997).  382 

 383 

What could explain the increased growth rates over time? Likely, environmental 384 

factors and improved aquaculture methods had contributed to the overall phenotypic 385 

increase in the growth rate of all stocks. However, common conditions cannot explain 386 

divergent trends between the stock types. Fishing can impose selective pressures only 387 

on stocks with natural or supported reproduction (here, River Simojoki and River 388 

Tornionjoki) but all the study stocks are exposed to selection within hatcheries. Fast 389 

growth rate is selected for in a hatchery environment even without intentional 390 

selection, because the survival and fecundity of fish in hatcheries is dependent on 391 

food intake rates, and there is no or little mortality cost for high foraging and feeding 392 
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rates. In addition, survival of released smolts is positively size-dependent (Saloniemi 393 

et al., 2004; Kallio-Nyberg et al., 2006; 2007) which may lead to the 394 

overrepresentation of fast growing salmon genotypes among individuals that return to 395 

spawn or become new broodstock (here, River Simojoki and River Tornionjoki). 396 

Therefore, both selection within hatcheries and natural mortality of released smolts in 397 

the sea favour fast growth. These mechanisms might explain some of the observed 398 

increases in the length-at-age of salmon. However, the current results do not clearly 399 

distinguish the intensities of selection within and outside hatcheries since the length-400 

at-age of 2SW salmon increased most in the River Tornionjoki (the largest wild Baltic 401 

salmon stock) and River Oulujoki (hatchery stock). On the other hand, the size of 402 

3SW salmon increased significantly more in the hatchery stocks than in the supported 403 

wild stocks suggesting that the within hatchery selection might, however, be stronger 404 

than the selection arising from the size-dependent survival of released smolts.  405 

 406 

Fishing may also be an important selective agent acting to an opposite direction than 407 

the positively size-dependent survival of smolts. The drift-net fishery in the Baltic 408 

Main Basin has been size- and age-selective, so that fast-growing and late-maturing 409 

fish have been selected against. Further, highly abundant male grilse spawning before 410 

reaching the minimum legal length of 60 cm (since 1993, 50 cm in the Bothnian Bay) 411 

reproduce before recruiting to the offshore fisheries (McKinnell & Lundqvist, 1998). 412 

Therefore, early maturity despite the small body size at the time of spawning may be 413 

favoured by protecting grilse from fishing. It is worth noting that early maturity would 414 

be selected for by favouring fast growth if the genetic correlation between growth rate 415 

and age at maturation was, as often observed, negative (Gjerde, 1984; Gjedrem, 416 

2000). This would suggest that both size-selective fishing and hatchery selection (due 417 
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to the genetic correlation) might favour fast growth (at least until maturation as grilse) 418 

and early maturation. Instead of increasing, the size of mature grilse had decreased 419 

especially in the broodstock-based stocks. This does not contradict the prediction for 420 

faster growth (until maturation), but might simply indicate an energetic cost of early 421 

reproduction. Further, this may indicate that the unintentional selection within 422 

hatcheries is stronger than the selection imposed by fishing.  423 

 424 

Although growth and maturation are linked at both the genetic and phenotypic level, 425 

the analyses of probabilistic maturation reaction norms in this study failed to account 426 

for increased growth rates. This occurred since young mature fish were smaller than 427 

immature fish, although the theory and existing data would predict the opposite 428 

(Gjerde, 1984; Hutchings & Jones, 1998). There are several reasons to expect why the 429 

mature fish in reality might have not been smaller than their immature conspecifics. 430 

First, variation in growth rate of salmon is high (Larsson, 1984), and catch date within 431 

a year explained only about 8 % of the size of recaptured salmon. This made it 432 

difficult to control for the longer time immature fish had for growth in comparison to 433 

maturing fish that had ceased feeding. It is also unknown when the growth of 434 

maturing salmon in the Baltic Sea starts to differ from the growth of immature fish. 435 

The whole spring time growth might already be affected by sex hormones and the 436 

energy reserved for migration and gamete production. This would imply that the 437 

salmon that initiated maturation in previous year were larger than the salmon that 438 

remained immature but became smaller than the immature feeding salmon prior to the 439 

time of sampling, as has been observed for mature parr (McKinnell & Lundqvist, 440 

1998 and references therein). Since all fish below highest minimum size limit (60 cm) 441 

were excluded, the size limit per se cannot explain the observed differences, although 442 
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it efficiently excluded all small immature salmon but also large proportions of small 443 

mature males (Christensen & Larsson, 1979). Indeed, as all salmon less than 60 cm in 444 

length were excluded from the analysis, it might be that the marked increases of 445 

maturation probabilities at young age were still underestimates. Moreover, this 446 

exclusion makes the estimates for the size of grilse unreliable. 447 

 448 

Water temperature measured in one point location within the salmon distribution area 449 

had a positive effect on maturation probability but could not fully explain the 450 

observed changes. Moreover, it would be difficult to track the ambient temperature 451 

each individual fish have actually experienced. Increased length-at-release had the 452 

expected positive effect on maturation, but surprisingly it appeared non-significant 453 

when the effect of length-at-capture was not included in the model. Future studies 454 

could examine the potential for a genetic change by estimating experimentally the 455 

maturation reaction norm of salmon: as a function of size-at-release and growth rate 456 

after smoltification, and then simulating the phenotypic changes expected through the 457 

time series given the observed environmental variables and the experimentally 458 

estimated PMRN. 459 

 460 

Estimation of maturity status was based on capture data and spatial segregation 461 

between juvenile and mature parts of the population, which is potentially problematic. 462 

For example, increased growth rates during the feeding migration are known to 463 

decrease the length of feeding migration in stocked salmon (Kallio-Nyberg et al., 464 

1999; Jutila et al., 2003b). However, all salmon, except for some River Simojoki 465 

smolts, originated from stockings and non-genetic effects of hatchery-rearing cannot 466 

explain the differences between the river types in this study. The lack of information 467 
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on the sex of the sampled salmon prevented the estimation of sex-dependent effects, 468 

which is a clear disadvantage when male and female life-histories are known to differ 469 

(Christensen & Larsson, 1979). The catchability of salmon also differs greatly 470 

between the open sea feeding areas and spawning migration routes. In this study, the 471 

effects of varying catchability was minimised by excluding salmon caught year 1996 472 

onwards, since prior to this year the fishery used somewhat invariable methods (Jutila 473 

et al., 2003a). There are also error sources related to the tag retention rates between 474 

different fishery segments (Michielsens et al., 2006). Due to potential violations of 475 

numerous assumptions in this study, the PMRN estimates of the current study should 476 

be interpreted with caution, and only the differences between stocks are relatively 477 

immune to these problems given comparable feeding migration routes between the 478 

stocks. However, given the high heritability of growth and maturation in salmon 479 

(Powell et al., 2008), these results support the earlier findings of Kallio-Nyberg & 480 

Koljonen (1997) and Säisä et al. (2003) reporting life-history divergence between 481 

salmon from wild and reared parents and directly observed temporal genetic changes 482 

in the study stocks. The current results are also in line with the direct genetic evidence 483 

demonstrating consistent differences between the stocks studied (Koljonen et al., 484 

1999).  485 

 486 

Many salmon populations have become endangered due to multiple anthropogenic 487 

factors (Parrish et al., 1998). One reason for the declines may be domestication 488 

selection (Fleming & Einum, 1997; Fleming et al., 2000; Kallio-Nyberg et al., 2007). 489 

The survival of stocked smolts has not decreased only in the Baltic Sea (Michielsens 490 

et al., 2006; Koljonen, 2006), but also in the whole North Atlantic during the 1980s 491 

and 1990s (Jonsson et al., 2003). Captive breeding might result in an evolutionary 492 
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divergence of the reared stock and the wild stock (Petersson et al., 1993; Fleming et 493 

al., 2000), and reduce genetic diversity within the stock (Koljonen et al., 2002; Säisä 494 

et al., 2003). Consequently, interbreeding of domesticated salmon with wild 495 

specimens threatens local adaptations of wild populations (Fraser et al., 2008). 496 

Domestication effects in gene transcription profiles have been found to be rapid in 497 

farmed Atlantic salmon (Roberge et al., 2006). Further, genes controlling for genome 498 

transcription seem to be inherited in non-additive manner leading to surprisingly large 499 

differences in individuals originating from interbreeding of farmed and wild salmon 500 

(Roberge et al., 2008). Therefore, if even the major life-history traits may change over 501 

time, as suggested by the present study, it is possible that the decreased survival of 502 

released fish is related to the deterioration of the gene pool of the captively bred 503 

salmon. 504 

 505 

CONCLUSIONS 506 

 507 

Taken together, consistent differences between the stocks were found, and increased 508 

growth rate in hatchery and early maturation were linked with a long breeding history 509 

of the stock, although the hatchery-based River Iijoki salmon more resembled wild 510 

stocks than the River Oulujoki stock. Whether there were evolutionary changes in the 511 

maturation schedules or growth rate of the wild supported stocks remains open, but 512 

the study provides reasonable evidence to suggest that the captive bred salmon have 513 

genetically diverged from the wild stocks in their life-history traits, thus supporting 514 

the earlier results (Kallio-Nyberg & Koljonen, 1997). Understanding of relative 515 

importance of fishing selection and hatchery selection is an important applied and 516 
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fundamental research question, and further comparative studies on life-history traits 517 

between wild and released salmon are warranted.  518 
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Table I. Proportions of mature salmon at age after 1-3 sea winters (SW) in the sea 715 

across the cohorts 1969–1992 in respect to the origin of the fish (number of all mature 716 

fish divided by the number of all fish at age). Wild stocks refer to rivers Simojoki and 717 

Tornionjoki and hatchery stocks are those from rives Oulujoki and Iijoki. Numbers of 718 

fish in each group are indicated by N. Note that all <60 cm salmon are excluded, and 719 

the proportions of salmon maturing as grilse are underestimates due to this exclusion. 720 

Group 1SW 2SW 3SW N 

Wild 9% 48% 69% 1611 

Hatchery 13% 39% 55% 5902 

N 4184 2811 518 7513 

 721 
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Table II. Variables affecting the variation in length-at-release (in mm) in released 722 

Baltic salmon for cohorts 1967–1992 according to ANCOVA, where cohort was 723 

entered as a continuous variable. Effect size (2) describes the total variance that is 724 

attributed to an effect. 725 

Source of variation d.f. Sig. Effect size

Intercept 1 <0.001 0.13

River 3 <0.001 0.05

Years in hatchery 3 <0.001 0.12

Cohort 1 <0.001 0.13

River × cohort 3 <0.001 0.06

Corrected model 10 <0.001 0.35

Error 7525  

Total 7536    
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Table III. Factors affecting the length (in mm) of recaptured Baltic salmon for 726 

cohorts 1969–1992 according to ANCOVA, where cohort, length-at-release (mm) and 727 

the mean temperature (°C) between April and August measured in Tvärminne a year 728 

before recapture are entered as continuous variables. a) for grilse, b) for 2SW fish, c) 729 

for 3SW fish. *value for immature fish in relation to mature fish. 730 
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a)     

Source of variation d.f. Sig. Effect size Param. 

Intercept 1 <0.001 0.01 -630 

River 3 <0.001 0.00  

Maturity 1 <0.001 0.03 -5841* 

Length-at-release 1 <0.001 0.01 0.22 

Temperature 1 <0.001 0.02 17.1 

Cohort 1 <0.001 0.01 0.54 

River × cohort 3 <0.001 0.00  

Maturity × cohort 1 <0.001 0.03 2.99* 

Corrected model 11 <0.001 0.41  

Error 2969   

Total 1981      

b)     

Source of variation d.f. Sig. Effect size Param. 

     

Intercept 1 <0.001 0.032 -8963 

River 3 0.000 0.013  

Maturity 1 0.000 0.027 10187* 

Length-at-release  1 0.000 0.009 0.37 

Temperature 1 0.004 0.004 13.0 

Cohort 1 0.005 0.004 4.81 

River × cohort 3 0.000 0.013  

Maturity × cohort 1 0.000 0.027 -5.13* 

Corrected model 11 0.000 0.249  

Error 2269   

Total 2281      

c)     

Source of variation d.f. Sig. Effect size Param. 

Intercept 1 0.169 0.005 -977 

River 3 <0.001 0.066  

Maturity 1 0.001 0.030 16013* 

Length-at-release 1 0.432 0.002 -0.21 

Temperature 1 0.143 0.006 18.2 

Cohort 1 0.098 0.007 0.89 

River × cohort 3 <0.001 0.066  

Maturity × cohort 1 0.001 0.030 -8.14* 

Corrected model 11 <0.001 0.409  

Error 371   

Total 383      
 731 
 732 
 733 
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Table IV. Comparison between logistic regression models explaining the probability 734 

of salmon becoming mature, i.e. a probabilistic maturation reaction norm (PMRN). 735 

The most complex model a) was build based on biological knowledge on expected 736 

relationships, the model b) was simplified due to missing length values. Length and 737 

smolt length are measured in millimetres, and temperature in degrees of Celsius. 738 

a) Variable, the weighted most complex model Estimate S.E. Sig. 
Intercept -218 27.0 <0.001 
age 2 2.10 0.11 <0.001 
age 3  3.73 0.23 <0.001 
River Iijoki vs. River Oulujoki 107 36 0.003 
River Simojoki vs. River Oulujoki 122 34 <0.001 
River Torniojoki vs. River Oulujoki 164 68 0.016 
Cohort   0.11 0.01 <0.001 
Length-at-capture -0.005 0.000 <0.001 
Length-at-release 0.003 0.002 0.057 
Temperature a year before capture 0.46 0.10 <0.001 
River Iijoki x cohort vs. River Oulujoki x cohort -0.05 0.02 0.003 
River Simojoki x cohort vs. River Oulujoki x cohort -0.06 0.02 <0.001 
River Tornionjoki x cohort vs. R. Oulujoki x cohort -0.08 0.03 0.015 
    
b) Variable, the weighted simple model Estimate S.E. Sig. 
Intercept -118 20.5 <0.001 
age 2 1.50 0.08 <0.001 
age 3  1.99 0.14 <0.001 
River Iijoki 20.9 29.6 0.480 
River Simojoki 32.9 27.9 0.237 
River Torniojoki 130 60.4 0.032 
Cohort   0.06 0.01 <0.001 
Length-at-release 0.001 0.001 0.513 
Temperature a year before capture 0.30 0.08 <0.001 
River Iijoki x cohort vs. River Oulujoki x cohort -0.01 0.01 0.484 
River Simojoki x cohort vs. River Oulujoki x cohort -0.02 0.01 0.239 
River Tornionjoki x cohort vs. R. Oulujoki x cohort -0.07 0.03 0.032 

 739 

 740 

 741 

 742 

 743 

 744 
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Table V. Probabilities of salmon from cohorts 1967 and 1992 maturing at a given age 745 

(sea winters) at fixed length-at-release 190 mm, at fixed length of 676, 783 and 924 746 

mm for ages 1-3, respectively, and at fixed temperature 6.76 °C (mean values over the 747 

study period) assuming a linear temporal change and PMRN model of Table IVa or 748 

IVb (complex vs. simple PMRN model).  749 

River Age Full weighted model Simple weighted model 

    P-1967 P-1992 % P-1967 P-1992 % 

Simojoki 1 0.17 0.40 139 0.20 0.41 107 

Tornionjoki 1 0.24 0.38 60 0.39 0.34 -12 

Iijoki 1 0.16 0.44 169 0.20 0.44 125 

Oulujoki 1 0.09 0.62 554 0.15 0.42 187 

Simojoki 2 0.55 0.80 46 0.52 0.75 44 

Tornionjoki 2 0.65 0.79 20 0.74 0.70 -5 

Iijoki 2 0.55 0.83 52 0.53 0.78 49 

Oulujoki 2 0.39 0.91 133 0.43 0.76 76 

Simojoki 3 0.76 0.91 20 0.64 0.83 30 

Tornionjoki 3 0.83 0.91 9 0.82 0.79 -4 

Iijoki 3 0.76 0.93 22 0.64 0.85 33 

Oulujoki 3 0.62 0.96 54 0.56 0.84 51 
 750 

 751 

 752 

 753 

 754 
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 756 

 757 

 758 

 759 

 760 

 761 
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Vainikka et al. Fig. 1. 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 



 

 38

0

0.5

1

1.5

2

2.5

3

3.5

4

1972 1975 1978 1981 1984 1987 1990 1993

Catch year

A
bu

nd
an

ce
-i

nd
ex

0

1

2

3

4

5

6

7

8

9

10

M
ea

n 
te

m
pe

ra
tu

re
 (

°C
)

 787 

        Vainikka et al. Fig. 2. 788 



 

 39

 789 

 790 

Vainikka et al. Fig. 3. 791 
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        Vainikka et al. Fig. 4. 794 
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 809 

Vainikka et al. Fig. 5. 810 
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Figure captions 811 

 812 

Fig. 1. Map of the study populations. Atlantic salmon Salmo salar caught in ICES 813 

subdivisions (SDs) 29 and 30 (i.e., ‘migration area’, indicated by dark grey) with a 814 

coastal gear and salmon from SD 31 were assumed to be sexually mature. All SD 21-815 

28 (major feeding areas indicated by light grey) salmon and salmon from SDs 29-30 816 

caught with a pelagic gear were assumed to be immature.  817 

 818 

Fig. 2. Abundance indices of Atlantic salmon Salmo salar (continuous line for mature 819 

and dotted line for immature) used to weight the logistic regressions for PMRNs and 820 

the mean temperature (long dotted line) between April and August measured in 821 

Tvärminne (SD 29, Fig. 1).  822 

 823 

Fig. 3. Temporal changes in relative frequencies of mature Atlantic salmon Salmo 824 

salar (grey: grilse, white: 2SW and shaded: 3SW) from a) hatchery stocks of Rivers 825 

Oulujoki and Iijoki and b) supported wild stocks of Rivers Simojoki and Tornionjoki. 826 

Missing data for some individual cohort & age groups is replaced by mean over the 827 

whole time period (cohorts 1969 (3SW), 1971-1973, 1974 (3SW), 1991 (3SW) and 828 

1992 (2-3SW) for Rivers Oulujoki and Iijoki, and cohorts 1991 (3SW) and 1992 (2-829 

3SW) salmon from Rivers Tornionjoki and Simojoki). 830 

 831 

Fig. 4.  Temporal variation in the length-at-release (smolt length) of Atlantic salmon 832 

Salmo salar according to ANCOVA (cohort-wise marginal means with error bars 833 

representing standard error of the mean), and the estimated river-specific trends at 834 
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constant hatchery age (two years). Dotted black: River Iijoki; dotted grey: River 835 

Oulujoki; continuous grey: River Tornionjoki; solid black: River Simojoki. 836 

 837 

Fig. 5. Temporal variation (marginal means derived from ANCOVAs) in the length-838 

at-age of the Atlantic salmon Salmo salar a) grilse, b) 2SW fish, and c) 3SW fish. The 839 

trend lines (dotted black, River Iijoki; dotted grey, River Oulujoki; continuous black, 840 

River Simojoki; continuous grey, River Tornionjoki) show estimated (according to 841 

ANCOVAs) temporal trends for mature individuals at constant size-at-release (195 842 

mm) and temperature (7.8 °C).  843 
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