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Abstract: The paper is devoted to construction of optimal trajectories in the model which
balances growth trends of investments in capital and labor efficiency. The model is constructed
within the framework of classical approaches of the growth theory. It is based on three production
factors: capital, educated labor and useful work. It is assumed that capital and educated labor
are invested endogenously, and useful work is an exogenous flow. The level of GDP is described
by an exponential production function of the Cobb-Douglas type. The utility function of the
growth process is given by an integral consumption index discounted on the infinite horizon.
The optimal control problem is posed to balance investments in capital and labor efficiency.
The problem is solved on the basis of dynamic programming principles. Series of Hamiltonian
systems are examined including analysis of steady states, properties of trajectories and their
growth rates. A novelty of the solution consists in constructing nonlinear stabilizers based on
the feedback principle which lead the system from any current position to an equilibrium steady
state. Growth and decline trends of the model trajectories are studied for all components of the
system and their proportions including: dynamics of GDP, consumption, capital, labor efficiency,
investments in capital and labor efficiency.
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1. INTRODUCTION

The research is focused on analysis and construction of
optimal growth trajectories in the model of searching
right proportions for investments in capital and labor
efficiency. The model is based on classical constructions
of growth theory ((12), (11)). Also it is relied on ideas of a
SEDIM model (10) which describes the role of different
economic factors, including the demographic ones in a
country’s economic development. Another technique in
the background ((2), (5) and (6)) considers capital and
useful work as the key drivers of economic growth and uses
optimal control theory to design past and future growth
trajectories.

Investigated model is similar to the one suggested in (5).
Three production factors, such as capital, educated labor,
and useful work, stimulate growth of production. In the
first statement it is supposed to consider investments in
capital and educated labor (human capital) as endogenous
control factors, and useful work is considered to be an
exogenous flow subject to growth dynamics of the logistic
� The research was supported by the Russian Fund of Basic Research
(Grant 08-01-00587a) by the Russian Fund for Humanities (Grant
08-02-00315a), by the Program for the Sponsorship of Leading
Scientific Schools (Grant NSCH-2640.2008.1), by the Program of the
Presidium of the Russian Academy of Sciences No. 29 ”Mathematical
Theory of Control”.

type. It is assumed that the level of GDP is generated by
an exponential production function of the Cobb-Douglas
type.

Starting from the three-factor Cobb-Douglas production
function and arguing like in (5) and (6) we construct a per
capita production function, in which efficiency of labor,
(see (10), page 4), acts as one of the main production
factors. Following (6), we pose an optimal control problem
to optimize investments in capital and labor efficiency on
the model trajectories maximizing the utility function of
per capita consumption index. To solve the problem we use
methods of the optimal control theory (9). Specifically, we
base the research on the existence results, Pontryagin’s
maximum principle and transversality conditions in opti-
mal control problems with infinite horizon (1).

We investigate properties of the maximized Hamiltonian
function and provide analysis of existence of steady states
in domains of specific control regimes and focus atten-
tion on the domain corresponding to the transient con-
trol regimes of investment. Also we consider linearized
Hamiltonian system in this domain. Special attention is
given to the Jacobi matrix which has two negative and
two positive eigenvalues that is the steady state has the
saddle character. According to the results of the quali-
tative theory of differential equations (4) the trajectory
of the nonlinear Hamiltonian dynamics converges to the
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steady state tangentially to the plane which is generated
by eigenvectors corresponding to negative eigenvalues of
the Jacobi matrix. This analysis provides the important
information about the growth rates of optimal synthetic
trajectories and outlines saturation levels of per capita
variables.

A novelty of the proposed solution based on the idea
of creating of nonlinear stabilizers built on the feedback
principle ((7), (8)) which lead the system from any current
position to a steady state. Constructed nonlinear stabilizer
generates the dynamic system that is closed on the phase
variables and has a property of a local stability.

2. DYNAMIC GROWTH MODEL OF CAPITAL VS
EDUCATION

The model
The model is based on the following assumptions
1. Labor Efficiency.
Labor input L(t) is generated from the total size of the
labor force P (t) and the driving force of generation is
measured by index E(t) of the labor efficiency (10).

L(t) = P (t)E(t). (1)

Following formula (3) in Sanderson (2004), we assume that
parameter E is essentially determined by the educational
level of the population. One can call E the efficiency of
one worker.

2. Production Function.
Let Y (t) be the country’s GDP at time t. We introduce
the production function F in which GDP Y is the output
and production factors like capital K, labor input L, and
useful work U are input parameters, i.e. Y = F (K, L,U).

We assume that function F is homogeneous with the
unitary degree of homogeneity, i.e.
F (αK, αL, αU) = αF (K,L, U), α ≥ 0.

3. Dynamics of Labor Force.
Let us suppose that labor force P (t) is growing propor-
tionally to population growth

Ṗ (t) = ρP (t) (2)

with the given initial condition for labor force P (t0) = P 0.
Here parameter ρ is a growth rate of labor force. In this
version of the model, we assume that rate ρ is constant.

4. Dynamics of Capital.
Following to classical models by Solow we introduce dy-
namics of capital K(t) proportional to capital investment
S(t) = s(t)Y (t) with depreciation effect δK(t)

K̇(t) = S(t) − δK(t) = s(t)Y (t) − δK(t). (3)

The initial condition for capital is given by relation
K(t0) = K0. It is assumed that the investment share s(t)
is a control parameter restricted by constraints
0 ≤ s(t) ≤ as < 1. Here parameter as stands for an upper
bound of capital investment.

5. Dynamics of Educated Labor Force.
Let us introduce dynamics for educated labor force L(t).
We assume that an increment in educated force is propor-
tional to investment R(t) = r(t)Y (t) in human capital

L̇(t) = bR(t) = br(t)Y (t). (4)

Here parameter b (b ≥ 0), stands for the marginal
effectiveness of investment in human capital. The initial
condition for the educated labor force is fixed L(t0) = L0.
The investment share r(t) is a control parameter with the
following restrictions 0 ≤ r(t) ≤ ar < 1. Here parameter
ar denotes an upper bound of investment in human capital.

6. Balance Equations.
The investments S(t), R(t), and consumption C(t) should
not exceed the total value of GDP, i.e.
0 ≤ S(t) + R(t) = (s(t) + r(t))Y (t) ≤ Y (t).
More accurately, we assume that the following balance
relations take place: 0 ≤ s(t) ≤ as < 1,
0 ≤ r(t) ≤ ar < 1 and 0 ≤ s(t) + r(t) ≤ as + ar < 1.

Further, we will use per capita variables normalizing GDP
Y , consumption C, capital K, educated labor force L, and
useful work U , with respect to labor force P :
y = Y

P , c = C
P , k = K

P , l = L
P , u = U

P .

Based on assumption (1) per capita variable l coincides
with labor efficiency E, l = E.

In current model version we assume the level of per capita
useful work is constant u = û, where parameter û is
equal to average value of per capita useful work. Hence,
the production function in per capita variables looks like:
y(t) = f(k(t), l(t)) = F (k(t), l(t), û).

Relying on introduced differential equations for capital K
(3), educated labor force L (4), and labor force P (2),
dynamics of per capita variables and initial conditions can
be written as follows

k̇(t) = s(t)y(t) − (δ + ρ)k(t), k(t0) = k0 =
K0

P 0

l̇(t) = br(t)y(t) − ρl(t), l(t0) = l0 =
L0

P 0

Utility Function
Let us consider the utility function of the model as the
integrated logarithmic consumption index

J =

+∞∫
0

e−λt ln c(t) dt. (5)

Here parameter c(t) stands for per capita consumption.
Since we assume an economic system to be closed, where
the gain Y (t) is spent on consumption C(t), on savings
S(t), and on investments in raising the efficiency of labor
input R(t), we get that the consumption part of the gain
is defined by relation: C(t) = Y (t) − S(t) − R(t).

For per capita variable of consumption c(t) we obtain the
following balance equation

c(t) =
C(t)
P (t)

= (1 − s(t) − r(t))y(t).

Let us make an assumption that the term s(t)r(t) is much
smaller than s(t) and r(t) and, hence, can be neglected. In
this case, we calculate c(t) as follows

c(t) = (1 − r(t))(1 − s(t))f(k(t), l(t)). (6)

Substituting per capita consumption (6) into the utility
functional J (5) we obtain the next its representation
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J =

+∞∫
0

e−λt (ln (1 − s(t)) + ln (1 − r(t))+

+ ln f(k(t), l(t))) dt (7)

Optimal Control Problem
The optimal control problem consists in the maximization
of the utility function (7) over trajectory (k(·), l(·), s(·), r(·))
of the system{

k̇(t) = s(t)f(k(t), l(t)) − (δ + ρ)k(t)
l̇(t) = br(t)f(k(t), l(t)) − ρl(t)

(8)

with control parameters (s(·), r(·)) subject to constraints
0 ≤ s(t) ≤ as, 0 ≤ r(t) ≤ ar, 0 ≤ as + ar < 1, (9)

and phase variables (k(·), l(·)) satisfying initial conditions
k(t0) = k0, l(t0) = l0. (10)

Let us note the problem (7)-(10), can be solved within the
optimal control theory for problems with infinite horizon
((1), (6)).

3. MODEL ANALYSIS

Hamilton function
The Hamiltonian function of the optimal control problem
(7)-(10) is defined by the following relation

H̃(t, k, l; s, r; ψ̃1, ψ̃2) = e−λt (ln (1 − s) + ln (1 − r)+

ln f(k, l)) + ψ̃1 (sf(k, l) − (δ + ρ)k) + ψ̃2 (brf(k, l) − ρl)) .

Here adjoint variables ψ̃1, ψ̃2 stand for ”shadow prices”
(model prices) for capital k, and labor efficiency l, respec-
tively. Let us make the change of the Hamiltonian and
adjoint variables

H = H̃eλt, z1 = kψ̃1e
λt, z2 = lψ̃2e

λt.

In new variables the Hamiltonian has the following form

Ĥ(k, l; s, r; z1, z2) = ln (1 − s)(1 − r)f(k, l) (11)

+
z1

k
(sf(k, l) − (δ + ρ)k) +

z2

l
(brf(k, l) − ρl)) .

Lemma 1. The Hamiltonian Ĥ(k, l; s, r; z1, z2) (11) is a
strictly concave function in control variables s and r.

The proof follows immediately from strict negativity of
second derivatives of the Hamiltonian (11) in variables s
and r.

Solving the problem of maximization of Hamiltonian Ĥ
(11) over control parameters s, and r subject to constraints
(9), one can find the structure of optimal control as

s0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, z1f(k, l) ≤ k;

1 − k

z1f(k, l)
, k ≤ z1f(k, l) ≤ k

1 − as
;

as, z1f(k, l) ≥ k

1 − as
;

,

r0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, z2f(k, l) ≤ l

b
;

1 − l

bz2f(k, l)
,

l

b
≤ z2f(k, l) ≤ l

b(1 − ar)
;

ar, z2f(k, l) ≥ l

b(1 − ar)
.

(12)

It is important to note that the symmetric properties arise
in expressions (11) and (12) for control variables s and r
due to conversion of the model into per capita variables.
This fact helps us to explore the model analytically and
to develop methods for computing optimal trajectories.

The maximized Hamiltonian is the function by variables
k, l, z1, z2 which is defined as maximum of the original
Hamilton function by control parameters.

H(k, l; z1, z2) = max
s,r

Ĥ(k, l; s, r; z1, z2), (13)

s ∈ [0, as], r ∈ [0, ar].

Basing on the Pontryagin maximum principle differential
equations for adjoint variables z1 and z2 look as follows

ż1(t) = λz1(t) − k
∂H

∂k
(k(t), l(t); z1(t), z2(t)) + k̇

z1

k
,

ż2(t) = λz2(t) − l
∂H

∂l
(k(t), l(t); z1(t), z2(t)) + l̇

z2

l
.

Departing from the structure of optimal controls s0, r0

(12) we can write nine domains of definition of the maxi-
mized Hamiltonian H (13).

s0, r0 0 1 − l
bz2f(k, l) ar

0 D11 D12 D13

1 − k
z1f(k, l) D21 D22 D23

as D31 D32 D33

On Fig. 1 sections of domains are depicted in phase
variables k, l under fixed cost variables z1, z2.

k

l

D31

D32

D33

D23

D22

D21

D13

D12

D11

Fig. 1. Structure of domains

Properties of maximized Hamiltonian function (13) will be
considered below.
Lemma 2. The maximized Hamiltonian function (13)
H(k, l; z1, z2) is smoothly pasted out of branches
Hij(k, l; z1, z2), i, j = 1, 3, in variables (k, l; z1, z2) on
borders of domains Dij , i, j = 1, 3.

The result of Lemma 2 is proved by direct calculations of
derivatives of the Hamiltonian on domain borders.
Lemma 3. If the condition (14) is satisfied for all k > 0
and l > 0

(
∂f(k, l)

∂k

)2

+ f(k, l)
∂2f(k, l)

∂k2 < 0 (14)
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(
∂f(k, l)

∂l

)2

+ f(k, l)
∂2f(k, l)

∂l2
< 0,

then the maximized Hamiltonian function H(k, l; z1, z2) is
a strictly concave function in variables (k, l) for all z1 > 0
and z2 > 0.

The proof of Lemma 3 consists in the checking of inequal-
ities
∂2H(k, l, z1, z2)

∂k2 < 0 and ∂2H(k, l, z1, z2)
∂l2

< 0 in all

domains Dij , i, j = 1, 3. Conditions (14) are necessary in
domain D22. In another domains the proposition of Lemma
3 holds without these restrictions (14).

Due to above-listed properties of the Hamilton function
(Lemmas 1 - 3), the Pontryagin maximum principle en-
sures sufficient optimality conditions in the problem (7) -
(10). The proof of this statement can be found in (6).

Further we will consider the domain in which optimal
controls are not constant. This domain is denoted D22.

Qualitative analysis of the Hamiltonian system
In domain D22 values of optimal control are defined in the
transient regime

s0 = 1 − k

z1f(k, l)
, r0 = 1 − l

bz2f(k, l)
. (15)

The maximized Hamiltonian H is defined by relation

H(k, l; z1, z2) = z1
f(k, l)

k
− ln

(
z1

f(k, l)
k

)
+ ln f(k, l) +

bz2
f(k, l)

l
− ln

(
bz2

f(k, l)
l

)
− (δ + ρ)z1 − ρz2 − 2.

Domain D22 is described by inequalities

D22 =
{

(k, l, z1, z2) : k ≤ z1f(k, l) ≤ k

(1 − as)
∧

l

b
≤ z2f(k, l) ≤ l

b(1 − ar)

}
.

In domain D22 the Hamiltonian dynamics is given by
differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k̇ = f(k, l) − (δ + ρ)k − k

z1
= H1,

l̇ = bf(k, l) − ρl − l

z2
= H2,

ż1 =
(

λ − ∂f(k, l)
∂k

+
f(k, l)

k

)
z1 − b

k

l

∂f(k, l)
∂k

z2

+
k

f(k, l)
∂f(k, l)

∂k
− 1 = H3,

ż2 = − l

k

∂f(k, l)
∂l

z1 +
(

λ − b
∂f(k, l)

∂l
+ b

f(k, l)
l

)
z2

+
l

f(k, l)
∂f(k, l)

∂l
− 1 = H4,

(16)

here Hi = Hi(k, l, z1, z2), i = 1, 4.

The question about steady state existence is very im-
portant. In order to analyze the existence and represen-
tation of Hamilton system steady states in the domain
D22 it is convenient to introduce the following notations:
ak = f(k, l) / k and al = b f(k, l) / l.

Here and further in this paper we assume that production
function f is a power function of the Cobb-Douglas type:
f(k, l) = µkαlβ . Here parameter µ, µ > 0, is a given scale
parameter. Elasticity coefficients α, β satisfy conditions

α ≥ 0, β ≥ 0, α + β ≤ 1. (17)

Based on the power production function one can obtain,
the following relations are useful in analysis of steady
states equations for derivatives
∂f(k, l)

∂k
= αak,

∂f(k, l)
∂l

= β
b
al; and ratios bkak = lal.

Let us provide solutions of steady states equations in
domain D22.

In this area two steady states are possible. In both equi-
librium points coordinates of conjugate variables z∗1 and
z∗2 depend on values a∗

k and a∗
l the same way:

z∗1 =
1

a∗
k − (δ + ρ)

, z∗2 =
1

a∗
l − ρ

. (18)

The first steady state has following values of variables ak

and al:

a∗
k =

λ(1 − β)
α − 1

, a∗
l =

λ(α − 1)
(1 − β)

. (19)

The second steady state is defined as follows

a∗
k =

(λ + (1 − β)ρ)(δ + λ + ρ)
α(λ + ρ)

, (20)

a∗
l =

(λ + ρ)(λ + (1 − α)(δ + ρ))
β(δ + λ + ρ)

.

Coordinates of steady states in domain D22 should satisfy
conditions

a∗
k > δ + ρ > 0, a∗

l > ρ > 0, as ≥ δ + ρ

a∗
k

, ar ≥ ρ

a∗
l

. (21)

Coordinates of the first steady state (19) do not satisfy
conditions (21) since coefficients of elasticity α and β meet
restrictions (17). Therefore we will consider the second
steady state (20) below.

The coordinates of phase variables (k∗, l∗) of the steady
state are recalculated according to the following relations

k∗ = (ABβ)γ , l∗ = (AB(1−α))γ , (22)

where A = µ/a∗
k, B = ba∗

k/a∗
l , γ = 1/(1 − α − β).

One can define also values of optimal control at steady
states s∗ = (δ + ρ)/a∗

k ≤ as < 1 and r∗ = ρ/a∗
l ≤ ar < 1.

Coefficients of the Jacobian matrix I at the steady state
(20) are evaluated by formulas

∂H1

∂k
=−(1 − α)a∗

k,
∂H1

∂l
=

βa∗
l

b
,

∂H1

∂z1
= k∗(a∗

k − δ − ρ)2,
∂H1

∂z2
= 0,

∂H2

∂k
= αbak,

∂H2

∂l
= −(1 − β)a∗

l ,

∂H2

∂z1
= 0,

∂H2

∂z2
= l∗(a∗

l − ρ)2,
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∂H3

∂k
=− (1 − α)2a∗

k

k∗(a∗
k − δ − ρ)

− α2a∗
l

k∗(a∗
l − ρ)

,

∂H3

∂l
=

(1 − α)βa∗
k

l∗(a∗
k − δ − ρ)

+
α(1 − β)a∗

l

l∗(a∗
l − ρ)

,

∂H3

∂z1
= λ + (1 − α)a∗

k,
∂H3

∂z2
= −αa∗

l ,

∂H4

∂k
=

(1 − α)βa∗
k

k∗(a∗
k − δ − ρ)

+
α(1 − β)a∗

l

k∗(a∗
l − ρ)

,

∂H4

∂l
=− β2a∗

k

l∗(a∗
k − δ − ρ)

− (1 − β)2a∗
l

l∗(a∗
l − ρ)

,

∂H4

∂z1
=−βa∗

k,
∂H4

∂z2
= λ + (1 − β)a∗

l .

Unfortunately it is not possible to calculate eigenvalues
of the Jacobian matrix I analytically. We do this for the
following range of calibrated model parameters based on
a real macroeconomic data of the US economy from 1900
to 2005. These data were reduced to the values of 1900.
Values of parameters are equal µ = 2.19941, α = 0.3,
β = 0.1, λ = 0.03, δ = 0.2, ρ = 0.013, b = 0.31,
as = 0.3, ar = 0.2. Initial point is (k0, l0) = (1, 1). The
steady state (18), (22) of the Hamiltonian system (16) has
following coordinates: k∗ = 5.75, l∗ = 5.2, z∗1 = 1.758,
z∗2 = 3.822. Values of control variables at the steady
state are given as follows: s∗ = 0.2795, r∗ = 0.0379.
With these parameters, the Jacobian matrix I has two
negative and two positive eigenvalues: λ1 = − 0.094,
λ2 = − 0.268, λ3 = 0.124, λ4 = 0.298.

4. NONLINEAR STABILIZERS

Consider the case when linearized Hamilton system in
domain D22 has two real negative λ1, λ2 and two real
positive λ3, λ4 eigenvalues.

In order to construct a nonlinear stabilizer, do the follow-
ing
1. Build the plane by two eigenvectors h1, h2 correspond-
ing to negative eigenvalues λ1, λ2 and holding the steady
state ⎧⎪⎨

⎪⎩
h31(k − k∗) + h32(l − l∗) +
h33(z1 − z∗1) + h34(z2 − z∗2) = 0,
h41(k − k∗) + h42(l − l∗) +
h43(z1 − z∗1) + h44(z2 − z∗2) = 0.

(23)

Here coefficients hi,j , i, j = 1, 4 are coordinates of eigen-
vectors h1, h2, h3, h4 and (k∗, l∗, z∗1 , z∗2) coordinates of the
steady state.

2. Try to find conjugate variables trough the phase ones
from the equations of the plane (23):

z1(k, l) = z∗1 + γ11(k − k∗) + γ12(l − l∗), (24)

z2(k, l) = z∗2 + γ21(k − k∗) + γ22(l − l∗),

where coefficients γij , (i, j = 1, 2) can be found as follows:

γ11 =
h41h34 − h31h44

h44h33 − h43h34
, γ12 =

h42h34 − h44h32

h44h33 − h43h34
,

γ21 =
h31h43 − h41h33

h44h33 − h43h34
, γ22 =

h43h32 − h42h33

h44h33 − h43h34
.

Specified presentation for adjoint variables exists when the
condition is fulfilled: h33h44 − h34h43 �= 0.
Important property of the functions z1(k, l) and z2(k, l)
can be expressed by equalities:

z1(k∗, l∗) = z∗1 , z2(k∗, l∗) = z∗2 . (25)

3. Substitute conjugate variables (24) to the Hamiltonian
dynamics (16) and obtain the closed system of differential
equations with respect to phase variables k and l⎧⎪⎨

⎪⎩
k̇ = f(k, l) − (δ + ρ)k − k

z1(k, l)
,

l̇ = bf(k, l) − ρl − l

z2(k, l)
.

(26)

Nonlinear stabilizers in dynamics (26) are defined by
relations

ŝ = 1 − k

z1(k, l)f(k, l)
, r̂ = 1 − l

bz2(k, l)f(k, l)
. (27)

Due to the properties (25) of the functions z1(k, l) and
z2(k, l) (24), nonlinear stabilized system (26) has the sta-
tionary point (k∗, l∗) with the same two first coordinates as
the steady state (k∗, l∗, z∗1 , z∗2) of the Hamiltonian system
(16). Moreover, linearized system for this dynamics has
the same negative eigenvalues λ1, λ2. It means that the
stationary point (k∗, l∗) is locally stable.

5. RESULTS OF NUMERICAL EXPERIMENTS

Trajectories of the system (26) generalized by the non-
linear stabilizer (27) are constructed numerically by the
Runge-Kutta method. They can be considered as the
first approximation of optimal trajectories and used for
preliminary assessment of growth trends. They can serve
also as the basis of the algorithm for constructing optimal
trajectories. The lack of initial data for variables z1, z2

impedes the solving of original Hamilton system. That is
why we try to find solution of dynamic system in reverse
time. According to the results of the qualitative theory
of differential equations (4) the trajectory of the nonlin-
ear Hamiltonian dynamics converges to the steady state
(k∗, l∗, z∗1 , z∗2) tangentially to the plane which is generated
by eigenvectors corresponding to negative eigenvalues of
the Jacobi matrix. Approximate values of start position
(kT , lT , zT

1 , zT
2 ) for reverse time system can be taken from

the vicinity of points which are situated on the trajectories
of stabilized Hamilton system. If the computed solution
comes in the original initial point (k0, l0) (10), then one
can assume that the original Hamilton system is solved.

Solutions of the system (26) are depicted on the figures
which demonstrate growth and decline trends of capital
k(t), educated labor l(t), production y(t), consumption
c(t), and investments s(t), r(t).
Figures 2.a and 2.b show growth trends of per capita
values of capital k(t) and labor efficiency l(t). One can see
that both graphs demonstrate growth with the saturation
property.
The model trajectories of capital stock K(t), labour force
L(t) and statistic data in a period since 1900 to 2005 are
depicted on the figure 3.a,b.
Figure 2.d presents decline trends of relative values of

Copyright by IFAC 1114



investment in capital s(t) and labor efficiency r(t) in the
share structure of GDP. One can observe that the share
of investment in capital s(t) rapidly drops down from the
level of 30% to the level of 27.27% of GDP at the steady
state. The share of investment in labor efficiency r(t)
smoothly decreases from the level of 20% to the saturation
level of 3.79% around the steady state.

An important note is that all graphs demonstrate the
convex or concave properties without periods of increasing
return and inflection points. These trends are definitely
explained by concave properties of the Cobb-Douglas
production function. It is worth to mention that the
model ((2), (5), (6)) with the linear-exponential (LINEX)
production function catches both periods of increasing
and decreasing return, as well as inclination points and
saturation levels.
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Fig. 2. a) Trends of capital per capita k(t); b) Trends
of labour efficiency l(t); c) Trends of GDP y(t) and
consumption c(t); d) Investments share in human
capital r(t) and capital s(t).
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