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When will least developed countries be most vulnerable to climate
change, given the influence of projected socio-economic develop-
ment? The question is important, not least because current levels of
international assistance to support adaptation lag more than an
order of magnitude below what analysts estimate to be needed,
and scaling up support could take many years. In this paper, we
examine this question using an empirically derivedmodel of human
losses to climate-related extreme events, as an indicator of vulner-
ability and the need for adaptation assistance. We develop a set of
50-year scenarios for these losses in one country, Mozambique,
using high-resolution climate projections, and then extend the
results to a sample of 23 least-developed countries. Our approach
takes into account both potential changes in countries’ exposure to
climatic extreme events, and socio-economic development trends
that influence countries’ own adaptive capacities. Our results sug-
gest that the effects of socio-economic development trends may
begin to offset rising climate exposure in the second quarter of
the century, and that it is in the period between now and then that
vulnerability will rise most quickly. This implies an urgency to the
need for international assistance to finance adaptation.

vulnerability | adaptive capacity | development | natural disasters | natural
hazards

Several international organizations, including the World Bank,
the Organization for International Cooperation and Devel-

opment, and the secretariat of the United Nations Framework
Convention on Climate Change (UNFCCC), have assessed the
costs of adapting to climate change in developing countries.
Drawing from a wide range of sectoral and national case studies,
their estimates ranging from $9 billion to more than $100 billion
annually (1–3). The UNFCCC secretariat, for example, estimated
annual adaptation expenditures by 2030 across six areas: agri-
culture, fisheries, and forestry ($14 billion); water resources ($11
billion); human health ($4–5 billion); ecosystems ($12–22 billion);
coastal zones ($11 billion); and infrastructure ($8–130 billion).
Yet, although many industrialized countries have committed to
provide financial assistance to least developed countries (LDCs)
for these costs, current bilateral and multilateral adaptation sup-
port appears to be several orders of magnitude below assessed
needs, and none of the various proposed mechanisms to scale up
international financial assistance for adaptation appears likely to
cover this gap within the coming years (4). Whether the slow pace
of adaptation funding presents a major problem depends, in part,
on how urgently such support is needed: Is the need immediate, or
will it ramp up gradually over time?
The need for adaptation assistance is predicated by a country’s

vulnerability to climate change. Vulnerability, however, depends
not only on exposure to climatic stressors, but also on a country’s

sensitivity to those stressors, which in turn is determined by a
complex set of social, economic, and institutional factors col-
lectively described as determining its adaptive capacity (5, 6). As
the UNFCCC secretariat suggested in its needs assessment, “one
of the key limitations in estimating the costs of adaptation is the
uncertainty about adaptive capacity. Adaptive capacity is essen-
tially the ability to adapt to stresses such as climate change. It
does not predict what adaptations will happen, but gives an
indication of differing capacities of societies to adapt on their
own to climate change or other stresses” (1, p. 97).
Human losses to extreme weather events can serve as a reliable

indicator for this vulnerability, and with it the need for financial
assistance, for two reasons. First, measures to reduce vulnerability
to extreme weather events account for a particularly large share of
estimated adaptation financial needs (1). Second, in the context of
efforts to achieve a wide range of development goals, it is only
within the last few years that development assistance funds have
been used to helpmitigate losses from extremeweather events (7),
and so analysis based on these types of losses may generate a more
accurate measure of autonomous adaptive capacity than that
based on other climate change impacts.
Several recent empirical studies suggest that socio-economic

indicators can be used to estimate adaptive capacity quantita-
tively (8–10). Two studies have taken the approach of estimating
future patterns of one particular climate impact, rates of malaria
transmission, consistent with scenarios of climate change and
human development; both of these have projected that the
effects of increased wealth and literacy will become more
important than those of climate change by the second half of the
century, leading to declining numbers of malaria cases (11, 12).
No study, however, has looked at vulnerability more generally, or
at losses from extreme weather events as an indicator of vul-
nerability, and how this will be affected by socio-economic
development on the one hand and climate change on the other.
This is the approach that we take here.
First, we estimate a statistical model of losses to climate-related

extreme events, as a function of climate exposure and a set of
socio-economic indicators, by conducting a cross-sectional analy-
sis of national level disaster data. Next, we construct scenarios for
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eachof these variables through 2060, combining themaccording to
the statistical model to estimate expected losses over that same
period. Arguably the best possible estimate of changes in climate
exposure requires the use of high-resolution climate scenarios that
one can compare with historical data for both climate and
extreme-event occurrence. For this reason we focus on a single
country—Mozambique—which represents an LDC with high cli-
mate exposure (13), and for which we had the necessary local data
to engage in statistical downscaling. We then conduct a coarser
analysis to generalize the qualitative results from theMozambique
case study to a wider sample of LDCs. Our results suggest that
vulnerability, and likely with it the need for international financial
assistance for adaptation, will rise faster in the next two decades
than it will in the three decades thereafter.

Results
The first stage of our analysis was to estimate statistical models
of losses from climate-related disasters, based on a set of climatic
and socio-economic variables that will likely change over time,
which appear in Table 1. The dependent variables are logged
values of the number of people per million of national pop-
ulation killed or affected, respectively, by droughts, floods, or
storms over the period 1990–2007. The variable number of dis-
asters is the logged value of numbers reported by each country
over the same period, and accounts for climate exposure; esti-
mated coefficient values greater than 1 in both models indicate
that average losses per disaster are higher in more disaster-prone
countries. We expected that larger countries are likely to expe-
rience disasters over a smaller proportion of their territory or
population, and also benefit from potential economies of scale in
their disaster management infrastructure, both resulting in lower
average per capita losses; the negative coefficient estimates for
the variable national population in both models are consistent
with this expectation. The variable HDI represents the Human
Development Index, a United Nations (UN) indicator comprised
of per capita income, average education and literacy rates, and
average life expectancy at birth. Recent studies of disaster losses
—not limited to climate-related events—have shown that coun-
tries with medium HDI values experience the highest average
losses, whereas countries with high HDI values experience the
lowest (14, 15). We therefore included the logged HDI values in
quadratic form. Negative coefficient estimates for both HDI and
HDI2 in both models are thus consistent with these expectations,
given that logged HDI values are always negative, and the square
of the logged values are in turn positive. Finally, we considered

several additional socio-economic variables not directly captured
by HDI, and found only two that improved model fit. For the
model of the number of people killed, the positive coefficient
estimate for female fertility indicates that countries with higher
birth rates experience greater average numbers of deaths. We do
not take this to mean that there is a direct connection between
fertility and natural hazard deaths, but rather that higher birth
rates are associated with lower female empowerment, and lower
female empowerment is associated with higher disaster vulner-
ability, as has been shown previously (16, 17). For the model of
the number of people affected, the negative coefficient estimate
for the proportion urban population is consistent with urban
residents being less likely to require postdisaster assistance than
rural residents, also observed previously (18, 19). Both models
yield an R2 statistic slightly greater than 0.5, indicating that
variance in the independent variables explains just over half of
the variance in the numbers killed and affected. This is consistent
with results from past analyses based on similar data and
methods (8–10).
Of particular importance to rapidly developing countries is the

observed nonlinear relationship between HDI and disaster los-
ses. Fig. 1 illustrates the magnitude of this effect in both models,
compared with the background variance, and taking into account
the effects of the other variables. The estimated regression curve
in Fig. 1A suggests that the risk of being affected by a climate
disaster is highest in countries with HDI values of ∼0.5, whereas
the curve in Fig. 1B suggests that the highest risk level is for
countries with HDI values somewhat higher, ∼0.6. This suggests
that for countries with HDI values of less than 0.5, the transition
to higher levels of development could potentially, in the absence
of targeted intervention, exacerbate vulnerability.

Table 1. Ordinary least-squares regression results

Independent variables Killed Affected

Number of disasters 1.36* (0.15) 1.88* (0.19)
National population −0.56* (0.09) −0.79* (0.11)
HDI −5.97* (1.95) −13.55* (2.16)
HDI2 −6.26* (1.52) −9.82* (1.86)
Female fertility 1.45* (0.43)
Proportion urban population −0.41 (0.37)
Constant −3.86* (0.49) 5.33* (1.71)
Number of observations 150 154
R2 0.52 0.55

The dependent variable in the Killed model is the logged value of the
number of people reported by CRED as killed by the three types of disasters
considered (droughts, floods, and storms) divided by population. The
dependent variable in the Affected model is the same for the number of
people reported affected, but not killed, by the same disasters. All independ-
ent variables are logged values. Because HDI occupies the range of 0–1, all
logged HDI values were negative, whereas the squares of these values were
positive. *Values significant (two-tailed student’s t test) at the 99% confi-
dence level. Values in parentheses are SEs.

Fig. 1. Relationship between risk and HDI for (A) the number of people
affected, i.e., needing emergency or recovery assistance, by a flood, drought,
or cyclone, per million of population, and (B) the number of people killed.
Each dot represents a country in the CRED database during the period 1990–
2007, with its position on the vertical scale being the logarithm of the annual
value per million population, after subtracting the predicted influence of
other risk factors. Regression line in each figure shows predicted values
including the influence of HDI.
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The second stage in the analysis was to assemble scenarios for
each of the variables appearing in Table 1, concentrating on
Mozambique. Beginning with the socio-economic variables, we
conformed as closely as possible to the storylines of the Inter-
governmental Panel on Climate Change Special Report on Emis-
sions Scenarios (SRES)A2 andB1 scenarios (20). TheA2 storyline
describes high population and economic growth but low global-
ization, whereas the B1 storyline describes greater globalization
tied to improvements in environmental quality and sustainability,
as well as lower population growth. The most important socio-
economic variable in our model is HDI. Fig. 2 shows the scenarios
of HDI values for Mozambique, comparing them with past HDI
values for neighboring countries in southern Africa. All three fac-
tors of HDI—life expectancy, education, and income—drive the
B1 scenario higher than the A2 scenario, and by 2030 the B1 sce-
nario crosses into the region of decreasing risk levels seen in Fig. 1.
The climatic driver in Table 1 is the frequency of droughts,

floods, and storms. For each hazard, we estimated a range of
linear change to 2060 through a modeling analysis based on data
derived from downscaled general circulation models (GCM),
and a separate linear change based on the extrapolation of
observed natural disaster rates from 1970–2007. Based on the
GCM-derived data, we estimated the change in frequency from
the baseline period of 1960–2000 to the period 2046–2065 to
range from a 5% decrease to a 15% increase in the case of
droughts, to range from a 10% decrease to a 25% increase in the
case of floods, and to range from no change to a 25% increase in
the case of storms. Based on a linear extrapolation of observed
natural disaster frequency, we estimated an increase in the
combined total of disasters from the 25 observed in the period
2000–2007 to 57 in the period 2050–2060.
Combining the two statistical models shown in Table 1 with

the socio-economic and climate scenarios yielded estimates of
the expected number of people killed and affected by climate-
related disasters in Mozambique. Because the lower end of the
range of GCM disaster estimates corresponded to almost no
change in frequency, this value roughly captures the effects of
socio-economic development alone. To consider the effects of
climate change alone, we also computed estimates assuming no
development in population or socio-economic indicators. Fig. 3A
shows the full set of alternative scenarios for the expected
number of people affected by climate disasters, whereas Fig. 3B

shows the expected numbers killed. As the results are decadal
averages centered on 10-year time steps, the base year from
which all scenarios diverge is 2000.
In Fig. 3, A and B, the most noticeable gap lies between the

scenarios based on GCM projections and those derived from the
extrapolation of observed disaster frequency. Across both cli-
mate exposure scenarios, however, there is a similar temporal
pattern to losses for both expected numbers affected and killed.
Losses rise fastest under both the A2 and B1 scenarios until
2030, after which point they decelerate, and indeed in the B1
scenario begin to fall. In the no-development scenario, by con-
trast, they continue to accelerate upward.
We then examined whether it is possible to generalize this

qualitative pattern to other LDCs. We did not have access to
sufficient data to downscale and to apply GCMs in the manner
that we had done for Mozambique, and so we limited our climate
projections to the linear extrapolation of observed disasters from
1970 to 2007. Fig. 4 shows the results for Mozambique, and for
the average values of a sample of 23 LDCs, normalized to the
values observed in each country over the period 2000–2007. As in
the case of Mozambique, the full sample shows the qualitative

Fig. 2. Projected Human Development Index (HDI) levels for Mozambique
consistent with the IPCC A2 and B1 scenario storylines, compared with his-
torical data for neighboring countries. The B1 scenario translates into higher
values for each of the three component parts of HDI (life expectancy at birth,
education and literacy, and per capita gross domestic product) compared
with the A2 scenario.

Fig. 3. Mozambique risk scenarios to 2060. (A) Expected numbers of people
affected, i.e., needing emergency or recovery assistance, by floods, droughts,
and cyclones in Mozambique. (B) Expected number of people killed.
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pattern of losses under both the A2 and B1 scenarios rising
fastest until 2030, and then rising less fast, or falling, thereafter.

Discussion
The results suggest that vulnerabilitymay rise faster in the next two
decades than in the three decades thereafter. Importantly, the
overall need for adaptation measures will continue to rise, as the
no-development scenarios shown in Figs. 3 and 4 indicate. How-
ever, assuming that their development paths fall somewhere close
to the range bounded by the A2 and B1 scenarios, by the second
quarter of the century LDCs will likely engage in a greater share of
this adaptation autonomously, thereby reducing both their losses,
and their need for financial assistance. This is especially the case if
socio-economic conditions change in a manner close to that
described in the B1 scenario.
There are some important limitations to our methods, which

deserve attention. First, we used a cross-sectional regression

model to make forward-looking estimates. This approach is not
without precedent—Ricardian estimates of climate change
impacts on agriculture have done the same (21), for example—
and yet the practice ignores important complexities associated
with systemic change (22). This worry is especially strong where
there is not a well-accepted causal explanation for cross-sectional
patterns that would also explain time series effects. The non-
monotonic relationship between HDI and disaster losses—which
appears to be a key driver of our results—is one for which a well-
accepted causal explanation is indeed lacking (14, 15). Second,
all of our climate exposure scenarios rely on an assumption of a
linear increase in disaster frequencies over the next 50 years.
Although we believe this to be a reasonable assumption for this
time period, there may be important feedbacks in the climate
system that could lead to rapidly increasing impacts not
accounted for in current projections (23). Third, the uncertain-
ties are large and difficult to estimate. It is likely that considering
the magnitude of disasters, rather than just their frequency,
would allow the statistical models to explain a greater share of
the variance in risk levels, and yet limitations in global disaster
data and uncertainties inherent in multiple GCM projections of
the future made this impossible. Other uncertainties stem from
using just one statistical downscaling methodology and ignoring
of the effects of increased adaptation assistance on the pace of
economic development. All of these limitations are more serious
with respect to longer-term effects, and leave as most robust the
conclusion that vulnerability is now rising quickly.
Lookingbeyond2060and the crossingof temperature thresholds

such as 2 °C, it may well be that steadily rising climate impacts—
such as sea level rise or the effects of cumulative changes on eco-
systems—create problems that go well beyond the ability of any
country, rich or poor, to adapt (24). Until that point, a primary
argument for ramping up assistance slowly—namely, that adapta-
tion needs can only increase as climate change continues—is
incomplete, because it ignores the role that socio-economic
development and the concurrent changes in adaptive capacity will
have to play. Although there are important caveats to our results,
they provide afirst estimateofhowvulnerabilitywill unfoldover the
next 50 years, if one assumes, as do all of the SRES scenarios, that
incomes will continue to rise. They suggest that the urgency of
efforts to reduce vulnerability, including the provision of interna-
tional financial assistance, is high.

Materials and Methods
To estimate the two statistical models of vulnerability, we relied on an online
database of national level disaster losses from droughts, floods, and storms
maintainedbytheCentrefor theResearchontheEpidemiologyofDisasters (CRED)
withsupportfromtheOfficeofUnitedStatesForeignDisasterAssistance.TheCRED
database provides national level estimates of economic losses, loss of life, and the
numbersof persons affected (needingassistanceduringor after adisaster, butnot
killed) foreverydisaster recordedsince1970.Givenconcernsover thequalityof the
CRED data for losses before 1990 and for economic losses over all periods (10), we
restricted our analysis to the number of people killed and affected since 1990. The
CRED data also supplied uswith the number of natural disasters occurring in each
country. For theremaining independentvariables,wereliedonanonlinedatabase
maintained by the United Nations Development Program. We then used multi-
variateregressionanalysison loggeddatatoestimatemodelsofdisaster losses that
make use of independent variables for which theory offers a causal explanation,
and for which scenario estimates are available or easily constructed. We describe
the data and methods more completely in S1 of SI Text.

To construct scenarios of national population and the socio-economic
variables, we relied on several sources. For national population and the urban
share of that population, we relied on an updated version of the SRES
demographic and economic growth estimates developed by the International
Institute for Applied Systems Analysis (IIASA) and made available online (25).
To generate female fertility scenarios, we relied on projections made by the
United Nations Population Division and available online, using the high
estimate for the A2 scenario and the low estimate for the B1 scenario, and
extrapolating both to 2060. For HDI, we relied on life expectancy projections
to 2050 made by the United Nations Population Division, again extrapolat-

Fig. 4. Comparison of Mozambique results with averages from a sample of
23 least developed countries (LCDs). All scenarios assume a linear con-
tinuation of disaster frequencies observed over the period 1970–2008.
Sample of 23 LCDs comprises Bangladesh, Burkina Faso, Cape Verde Islands,
Central African Republic, Comoros Islands, Djibouti, Ethiopia, Gambia, Haiti,
Laos, Lesotho, Madagascar, Malawi, Mali, Mauritania, Mozambique, Nepal,
Niger, Senegal, Solomon Islands, Tanzania, Vanatu, and Zambia.
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ing them to 2060. We combined these with IIASA A2 and B1 scenarios for
gross domestic product, adjusted according to anticipated purchasing power
parity based on established theory (26). For the educational and literacy
component of HDI, we made original projections to 2060 based on estab-
lished forecasting methods (27, 28). We provide a more complete description
of the separate scenarios for each variable in S2 of SI Text.

Toconstructscenariosofthefrequencyofdisasters,wedevelopedarangeof
projections based on a downscaled analysis of GCMs, previous GCM-based
analysis in the literature, and an extrapolation of observed trends. In general,
GCMs indicate thatMozambiquewill begrowingwarmer, leading to increased
soil dryness but inmost regions also a high likelihoodof increased rainfall (29).
To examine the relative influence of the countervailing factors on both
droughts and floods, we used a suite of seven GCMs, forced with the SRES A2
emissions scenarios and local station data, to estimate past and future stat-
istically downscaled (30) changes in rainfall and potential evapotranspiration.
Wedidnot conduct a separate analysis basedonGCMs forcedwith the SRESB1
scenario, as the differences observed by 2060 appear slight. To estimate
changingdrought frequency,we calculate from thesedata the frequencywith
which a simple index of soil moisture (rainfall – potential evapotranspiration)
falls below thresholds associated with drought conditions, over both the
baseline (1960–2000) and future (2046–2065) periods. To estimate future
flood risks, we forced a statistical flood frequency model (31) with the same
seven sets ofdata, and thenusedaweightedaverageof the changed risk levels
by river basin. To estimate the change in frequency of tropical cyclones,we did
not engage in original modeling, but rather drew from a number of studies
based on empirical observation and GCM experiments. Analyses using the
HadCM3 (32) and ECHAM5 (33)models individually, and using an ensemble of
models (34), have suggested that the southwest Indian Ocean is likely to
experience an increase in the intensity of tropical cyclones, with changes in
frequency relatively uncertain. Data limitations prevented us from estimating
frequencies within the period considered, and so we assumed a linear trend
between 2000 and 2060 for our projections.

Many consider the ability of GCMs to capture the change in frequency in
extreme events to be highly problematic (35), and this led us to generate a
second climate exposure scenario based on the observed frequency of natural
hazards over the period 1970–2008. For the Mozambique estimates, we sup-
plementedCREDdatawith additional records from theMozambiqueNational
Institute forDisasterManagement. The trendweestimated represents amuch

greater increase in the frequency of disasters than the GCM-based analysis
suggests, and for two reasons may be an upwardly biased estimate. First,
disasters were likely to have been under-reported in the early years of the
sample. Second, changing land-use patternsmay have led to an increase in the
number of climate hazards that caused sufficient damages so as to be counted
as disasters. For the latter reason, some part of this trend may reflect not cli-
mate change, but rather the very changes in socio-economic development
already included elsewhere in the model. With these caveats in mind, the
trend does represent an exploratory climate impact scenario that is more
severe than the GCManalysis produced, yet not inconsistent with recent data.
We provide more detail on our methods used, as well as spatially dis-
aggregated results, for all climate scenarios in S3 of SI Text.

Forthemulticountrycomparison,weexaminedallcountriesonthelistofleast
developed countriesmaintainedby theUnitedNationsDevelopment Program.
Werestrictedthesampletothosethatdidnotexperienceamajorwarduringthe
period 1970–2007, and for which complete data were available on natural
disasters during that period from the CRED database, and scenarios or projec-
tions available for all variables from the IIASA and United Nations databases.
This restricted our sample to 23 countries. For each country, we projected the
risks forbeingkilledoraffectedby the three typesofnaturaldisasters, andthen
normalized these to the model estimates for the ten-year period centered on
2000. We describe the methods used in more detail, and provide scenario
estimates for each country in the S4 of SI Text.
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