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Abstract—We consider the problem of constructing a robust dynamic approximation of a time-
varying input to a control system from the results of inaccurate observation of the states of the
system. In contrast to the earlier studied cases in which the observation errors are assumed to
be small in the metric sense, the errors in the present case are allowed to take, generally, large
values and are subject to a certain probability distribution. The observation errors occurring
at different instants are supposed to be statistically independent. Under the assumption that
the expected values of the observation errors are small, we construct a dynamical algorithm for
approximating the normal (minimal in the sense of the mean-square norm) input; the algorithm
ensures an arbitrarily high level of the mean-square approximation accuracy with an arbitrarily
high probability.
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INTRODUCTION

In [1], Krasovskii and Subbotin proposed a general method for constructing feedback control
laws that are robust with respect to observation errors; this method is known as a control procedure
with a model (with a guide). Control procedures with a model remove possible instability of the
basic feedbacks, which rely on the use of exact information about the current states of the control
system. In the theory of feedback control, such procedures play the role of regularizing algorithms
understood in the sense of the theory of ill-posed problems [2].

The control procedure with a model is related to the problem of stable tracking of motions, which
is well known in engineering; more precisely, this procedure is implemented by solving a specially
constructed (from the original problem of guaranteeing control) problem of this class. The problems
of stable tracking of motions, just as the control procedures with a model, are traditionally aimed at
removing the instability effect caused by small noises in the observation channel of a deterministic
control system. In recent years, generalized statements in which both the control systems themselves
and the observation noises contain stochastic elements have been addressed [3, 4]. When considering
such statements, one uses the formalism of random processes (see [5, 6]) applied to control systems
regulated by stochastic feedbacks. The methods of investigation of the corresponding random control
processes are related to the studies on stochastic approximation of mixed strategies in the theory
of positional differential games (see [7–10]). The present paper is largely based on these studies.

The purpose of the paper is to extend the scope of application of dynamic regularization meth-
ods to systems with uncertain inputs (see [11–16]). The methods of this class relate the control
procedure with a model to regularizing algorithms in the theory of ill-posed problems and aim
for the robust real-time reconstruction of current values of unobservable inputs of control systems
from the available results of observation of their current states. To date, the methods of dynamic
regularization have been developed under conditions of low deterministic noises in the observation
channel. In the present paper, we allow for random observation noises that may generally take
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large values. Under the assumption that the observation noises occurring at different instants of
time are mutually independent and identically distributed and that the norms of their expectations
are small, we construct an algorithm for the dynamic approximation of a normal (minimal in the
sense of the mean-square norm) input. This algorithm provides an arbitrarily high accuracy of the
mean-square approximation with arbitrarily high probability and represents a modification of the
“deterministic” method of regularized extremal shift proposed in [11]. The modification consists in
the following: on a small time interval preceding the formation of the current value of the sought
approximation, one collects sufficiently rich observation statistics and interprets their mean value
as the value of a deterministic noise; on the basis of this value, a current value of approximation is
generated by the basic deterministic method.

In Section 1, we describe the basic deterministic method. In Section 2, we modify this method
as applied to the case of a stochastic observation noise.

Throughout the paper, the symbols | · | and 〈·, ·〉 stand for the norm and the inner product in
Euclidean space, respectively.

1. DETERMINISTIC SCHEME

Consider a dynamical system described by the following ordinary differential equation and initial
condition in the space R

n:

ẋ(t) = f1(t, x(t)) + f2(t, x(t))v(t), x(t0) = x0. (1.1)

Here the time variable t runs through the bounded interval [t0, ϑ], x(t) ∈ R
n is the state of the

system at instant t, and v(t) ∈ R
r is the value of the input variable (input) of the system at this

instant. The functions f1 and f2, which map [t0, ϑ] × R
n to R

n and to the normed space of r × n
matrices, respectively, are assumed to be continuous. The initial state x0 ∈ R

n is assumed fixed.
We suppose that the values of the input are limited to a given convex compact set V ⊂ R

r. An
admissible input (for system (1.1)) is any Lebesgue measurable function v(·) : [t0, ϑ] �→ V . Assume
that for any admissible input v(·), any interval [t1, t2] ⊂ [t0, ϑ), and any x1 ∈ R

n, the Cauchy
problem

ẋ(t) = f1(t, x(t)) + f2(t, x(t))v(t), x(t1) = x1,

has a unique solution defined on [t1, t2]; this solution is understood in the sense of Carathéodory.
For any admissible input v(·), the corresponding solution to the Cauchy problem (1.1) defined on
[t0, ϑ] is called a motion (of system (1.1)) generated by the admissible input v(·). The motion
generated by some admissible input is called an admissible motion. We assume that the set of all
admissible motions is uniformly bounded.

Since our analysis is restricted to the admissible motions of system (1.1), we can assume without
loss of generality that the functions f1 and f2 are bounded. (If this is not so, we redefine the functions
f1 and f2 outside the set of states that can occur during admissible motions.) Thus, we include the
boundedness of the functions f1 and f2 into the number of initial assumptions.

In [11] and [12], we set and solved the following problem of stable approximation of an unob-
servable input in the real-time mode (the problem of dynamic regularization, or modeling, of an
input). Suppose that at every instant t ∈ [t0, ϑ] the result of measurement of the current state
x(t) of system (1.1) is available to an observer who controls this system; however, the measurement
result is inaccurate, namely, it has the form x(t) + ν(t), where ν(t) is the value of an unknown
measurement error that does not exceed a (small) positive value h: |ν(t)| ≤ h. Below, any function
ν(·) : [t0, ϑ] �→ R

n such that |ν(t)| ≤ h for all t ∈ [t0, ϑ] is called a measurement error with margin
of error h.
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No information about the input generating an observed motion (except the a priori information
that this input is admissible) is available to the observer. The task of the observer is as follows:
using incoming information, provide a real-time approximation to the admissible input that gen-
erates the observed motion. The sought approximations are required to be robust with respect to
observation errors, i.e., sufficiently accurate, for example, in the sense of mean-square deviation,
under a sufficiently small upper bound h for the values of these errors.

This meaningful statement should be refined if the kernel of the matrix f2(t, x(t)) calculated
along the observed motion x(·) becomes nontrivial at certain instants t and therefore the admis-
sible input that generates this motion cannot be uniquely identified in principle. In this case, in
accordance with the standard technique used in the theory of ill-posed problems, the observer is
prescribed to approximate one of such admissible inputs, say, the input with the least mean-square
norm (the so-called normal input). Henceforth, we follow precisely this view of the problem.

Omitting the formal statement (formalism for problems of this type is presented in [12]), we
describe its solution. It will be clear from the construction that the solution matches the above
meaningful statement.

Let us introduce a refining definition. For any admissible motion x(·), an admissible input that
generates this motion and has the least norm in the space L2([t0, ϑ], Rr) is said to be normal for
x(·) and is denoted by v∗(· |x(·)). Since the set V of admissible input values is convex and compact,
a normal admissible input exists for any admissible motion and is unique as an element of the space
L2([t0, ϑ], Rr).

We will construct stable dynamic approximations of normal inputs for observed admissible
motions according to the following algorithm.

Before the motion starts, the observer chooses a time grid, i.e., a finite family (τi)Ni=0 of instants
in the interval [t0, ϑ), where τ0 = t0, τi+1 > τi, i = 0, . . . , N , and τN+1 = ϑ.

At every instant τi, i = 0, 1, . . . , N , the observer uses the measurement result x(τi)+ν(τi) of the
current state x(τi) of the system together with an auxiliary vector y(τi) ∈ R

n produced by this time
instant. This auxiliary vector is used to form a vector u

[v]
i ∈ V that serves as a prediction of the

values v(t) of the sought normal input for t ∈ [τi, τi+1). The resulting piecewise constant function
u[v](·) of the form

u[v](t) = u[v](τi) = u
[v]
i , t ∈ [τi, τi+1), i = 0, 1, . . . , N, (1.2)

provides the sought approximation to the admissible input v∗(· |x(·)) that is normal for the observed
motion x(·). From the practical point of view, it is important that the approximation u[v](·) in this
algorithmic scheme is generated dynamically in real-time mode: the values are assigned to the
function u[v](·) during the observation process and are not recalculated later.

The values y(τi) of the auxiliary variable mentioned above are formed as the states of an auxil-
iary dynamical system, a model, that is described by the following differential equation and initial
condition in R

n:

ẏ(t) = f1

(
t, u

[x]
i

)
+ f2

(
t, u

[x]
i

)
u

[v]
i , t ∈ [τi, τi+1), i = 0, 1, . . . , N, y(t0) = x0; (1.3)

here u
[x]
i ∈ R

n and u
[v]
i ∈ V are the values of control actions on the interval [τi, τi+1). For every

i = 1, . . . , N , the control value u
[x]
i traces the current measurement result, i.e.,

u
[x]
i = x(τi) + ν(τi), i = 1, . . . , N, (1.4)

while the control value u
[v]
i ∈ V is defined as a solution to a linear–quadratic optimization problem

constructed in accordance with the regularized principle of Krasovskii’s extremal shift (see [1, 12]):

u
[v]
i = arg min

{〈
y(τi)−(x(τi)+ν(τi)), f2

(
τi, u

[x]
i

)
u[v]

〉
+α

∣∣u[v]
∣∣2 : u[v] ∈ V

}
, i = 1, . . . , N ; (1.5)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 271 2010



128 A.V. KRYAZHIMSKII, Yu.S. OSIPOV

here α is a positive regularization parameter fixed by the observer. For i = 0, the values u
[x]
0 and u

[v]
0

are chosen from the conditions

u
[x]
0 = u[x](τ0) = x0, u

[v]
0 = u[v](τ0) ∈ V. (1.6)

By analogy with (1.2), below we consider a time realization of the first control variable, i.e., a
function u[x](·) : [t0, ϑ] �→ R

n, of the form

u[x](t) = u[x](τi) = u
[x]
i , t ∈ [τi, τi+1), i = 0, 1, . . . , N. (1.7)

By a model process corresponding to an admissible motion x(·) within the margin of measurement
error h, we mean any triple (u[x](·), u[v](·), y(·)) such that, for some measurement error ν(·) with
margin of error h, the function u[x](·) : [t0, ϑ] �→ R

n is determined from (1.7) and (1.4), u[v](·) is an
admissible input determined from (1.2) and (1.5), and y(·) is a (Carathéodory) solution on [t0, ϑ] to
the Cauchy problem (1.3); the function u[v](·) will be called the output of the model process. The
latter definition stresses that we see the output of the algorithm (the approximation of a normal
input for the observed motion x(·)) as a realization of the control variable (1.2) in model (1.3) under
the feedback control determined by the rule (1.4) of “tracking a measurement result” and by the
rule (1.5) of regularized extremal shift.

Here we present a result on the mean-square dynamic approximation of the normal input;
the approximation is uniform with respect to the classes X of admissible motions whose normal
inputs form compact sets in L2([t0, ϑ], Rr) (see [12]; in [11], the result is formulated for one-element
classes X ). Below, we denote by τ̄ the maximal step of the time grid:

τ̄ = max
{
|τi+1 − τi| : i = 0, . . . , N

}
.

Theorem 1.1. Let X be an arbitrary set of admissible motions of system (1.1) such that the
family of normal inputs for all x(·) ∈ X is a compact set in L2([t0, ϑ], Rr). Then, for any ε1 > 0,
there exists an ε2 > 0 such that if the margin of measurement error h, the maximal step τ̄ of the
time grid, and the regularization parameter α satisfy the inequality

h + α +
h

α
+ τ̄ ≤ ε2, (1.8)

then, for any admissible motion x(·) ∈ X , the mean-square deviation of the output u[v](·) of any
model process corresponding to x(·) within the margin of measurement error h from the admissible
input v∗(· |x(·)) normal for x(·) is not greater than ε1:⎛

⎝ ϑ∫
t0

∣∣u[v](t) − v∗(t|x(·))
∣∣2 dt

⎞
⎠

1/2

≤ ε1. (1.9)

This result lays the base for the analysis carried out in the next section.

2. ROBUST DYNAMIC APPROXIMATION OF THE INPUT
UNDER RANDOM OBSERVATION NOISE

Consider the problem of robust dynamic approximation of a normal input under the assumption
that the values of the measurement errors are of random character and so may in general be large.

Suppose that at every instant t ∈ [t0, ϑ], the result of observing the motion x(t) of the system is
x(t)+ ξ(t), where ξ(t) is a random noise. Thus, we deal with a family (ξ(t))t∈[t0,ϑ] of n-dimensional
random variables, a random observation noise. For every t ∈ [t0, ϑ], the random variable ξ(t) is
assumed to be defined on its natural probability space (Rn,B, p); i.e., this variable has the form
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ξ(t)(ω) = ω, ω ∈ R
n; henceforth, B stands for the σ-algebra of Borel sets in R

n and p is a probability
measure on B. We assume that the random variables ξ(t), t ∈ [t0, ϑ], are pairwise independent,
identically distributed, and have the same finite (small in the norm) mathematical expectation ξ̄
and the same finite variance.

Under these conditions, to solve the problem, we modify the above-described method for con-
trolling the model (1.3). The modification consists in the following: at every point τi of the time
grid (i = 1, . . . , N), we form the values u

[x]
i and u

[v]
i of the control actions of the model by ap-

plying the above-described control law (1.4), (1.5) with an artificially synthesized value ν(τi) of
the measurement error. Namely, for every i = 1, . . . , N , we fix a family (τij)kj=0 of pairwise dis-
tinct instants in the interval [τi−1, τi), observe the states x(τi1), . . . , x(τik) of the system at these
instants, and, having obtained randomly perturbed results x(τi1) + ξi1, . . . , x(τik) + ξik of observa-
tions (ξi1 = ξ(τi1), . . . , ξik = ξ(τik)), set

ν(τi) =
(x(τi1) + ξi1) + . . . + (x(τik) + ξik)

k
− x(τi); (2.1)

here k is a sufficiently large positive integer, called a memory depth. As before, we choose the values
u

[x]
0 and u

[v]
0 from conditions (1.6).

Applying such a control procedure to the model results in a modified model process, which we call
a model process with averaging. More precisely, by a model process with averaging corresponding
to an admissible motion x(·) we mean an arbitrary triple (u[x](·), u[v](·), y(·)) with the following
property: there exist ξ̄1 = (ξ11, . . . , ξ1k), . . . , ξ̄N = (ξN1, . . . , ξNk) ∈ (Rn)k such that, for ν(τi)
determined from (2.1) (i = 1, . . . , N), the function u[x](·) : [t0, ϑ] �→ R

n has the form (1.7), (1.4),
u[v](·) is an admissible input defined by (1.2) and (1.5), and y(·) is a (Carathéodory) solution
on [t0, ϑ] to the Cauchy problem (1.3). The function u[v](·) will be called the output of this model
process with averaging, the sequence (ξ̄i)Ni=1 will be called a sequence of observation errors associated
with this process, and the sequence (ν(τi))Ni=1 will be called a synthetic measurement error associated
with this process.

Remark 2.1. It is easy to see that if the associated synthetic measurement error (ν(τi))Ni=1

satisfies the condition |ν(τi)| ≤ h, i = 1, . . . , N , for a model process with averaging corresponding to
an admissible motion x(·), then such a process is also a model process corresponding to x(·) within
the margin of measurement error h.

Take an arbitrary admissible motion x(·). Note that the values u
[x]
i and u

[v]
i of the control

(i = 1, . . . , N) formed during model processes with averaging corresponding to the admissible
motion x(·) depend on the values ν(τi) (2.1) of synthesized measurement errors and hence on the
values ξij = ξ(τij) of random observation errors (i = 1, . . . , N , j = 1, . . . , k). Therefore, we can
say that the model processes with averaging are generated by the trajectories of a certain random
process that depends on x(·).

Let us define this random process; we will call it a random process with averaging corresponding
to the admissible motion x(·). We define it conveniently as a random process with discrete time,
taking the grid (τi)Ni=0 as a discrete time scale. This random process is determined by the initial
probability (which is independent of x(·)) and transition probabilities that depend on x(·).

We need to introduce some notation. For any i = 0, 1, . . . , N−1 and arbitrary yi ∈ R
n, u

[x]
i ∈ R

n,
and u

[v]
i ∈ V , we denote by yi+1

(
· |yi, u

[x]
i , u

[v]
i

)
a solution on [τi, τi+1] to the Cauchy problem

ẏ(t) = f1

(
t, u

[x]
i

)
+ f2

(
t, u

[x]
i

)
u

[v]
i , y(τi) = yi.

Further, for any i = 1, . . . , N − 1 and any sequence ξ̄i = (ξi1, . . . , ξik) ∈ (Rn)k of observation noise
values at instants τi1, . . . , τik, we denote by u

[x]
i (ξ̄i;x(·)) and u

[v]
i (ξ̄i;x(·)) the vectors u

[x]
i and u

[v]
i ,
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respectively, that are defined by formulas (1.4) and (1.5) in which the value ν(τi) of the measurement
error is defined by the averaging formula (2.1).

Remark 2.2. It is obvious that the functions
(
yi, u

[x]
i , u

[v]
i

)
�→ yi+1

(
τi+1|yi, u

[x]
i , u

[v]
i

)
, ξ̄i �→

u
[x]
i (ξ̄i;x(·)), and ξ̄i �→ u

[v]
i (ξ̄i;x(·)) are continuous for every i = 1, . . . , N − 1.

Now we define the initial probability. Since the values u
[x]
0 and u

[v]
0 of the control on the interval

[τ0, τ1) are fixed (see (1.6)), the state y1 = y(τ1) of the model at instant τ1 is defined uniquely and
does not depend on the observation results; more precisely,

y1 = y1

(
· |x0, u

[x]
0 , u

[v]
0

)
.

Under these conditions, the random values of the noise ξ11 = ξ(τ11), . . . , ξ1k = ξ(τ1k), affecting the
values of the control u

[x]
1 (ξ̄1;x(·)) and u

[v]
1 (ξ̄1;x(·)), where ξ̄i = (ξi1, . . . , ξik) ∈ (Rn)k, define the

possible states y2 = y(τ2) of the model at instant τ2. Therefore, as the initial probability space, we
take the product of k copies of the probability space (Rn,B, p) of the observation noise, or, which is
the same, the probability space ((Rn)k,B(k), pk); here B(k) is the Borel σ-algebra on (Rn)k and pk

is the product of k copies of the probability measure p; the latter product will serve as the initial
probability measure r1:

r1 = pk. (2.2)

Let us define the transition probabilities. Since the states y2 = y(τ2), . . . , yN = y(τN ) ∈ R
n of

the model that are formed during the random process represent n-dimensional random variables,
we assume that the probability measures characterizing the distributions of these random variables
are defined on the σ-algebra B of Borel subsets in R

n. Thus, we have a Borel measurable space
(Rn,B) of states of the model.

The formation of the random state yi+1 = y(τi+1) of the model at instant τi+1, i = 1, . . . , N −1,
depends on the model state yi = y(τi) realized at instant τi and on the sequence ξ̄i = (ξi1, . . . , ξik) =
(ξ(τi1), . . . , ξ(τik)) ∈ (Rn)k of observation errors realized at instants τi1, . . . , τik ∈ [τi−1, τi), which
determine the control actions u

[x]
i (ξ̄i;x(·)) and u

[v]
i (ξ̄i;x(·)). Therefore, we will regard the pair

(yi, ξ̄i), where yi ∈ R
n and ξ̄i = (ξi1, . . . , ξik) ∈ (Rn)k, as a full state of the random process at

instant τi, i = 1, . . . , N . Thus, we define a measurable space (E,A) of full states as the product of
the measurable spaces (Rn,B) and ((Rn)k,B(k)) (which is obviously identified with the Borel space
on (Rn)k+1):

(E,A) = (Rn,B) × ((Rn)k,B(k)). (2.3)

With an arbitrary sequence ξ̄1 = (ξ11, . . . , ξ1k) ∈ (Rn)k of values of observation errors at instants
τ11, . . . , τ1k ∈ [τ0, τ1), we associate a probability r2(·|ξ̄1;x(·)) describing a transition of the model
from instant τ1 to instant τ2. The probability r2(· |ξ̄1;x(·)) characterizes the distribution of full
states (y2, ξ̄2) ∈ E that can appear at instant τ2 provided that the sequence ξ̄1 = (ξ11, . . . , ξ1k) of
values of observation errors is realized at instants τ11, . . . , τ1k. The state y2 = y(τ2) of the model is
uniquely defined by the formula

y2 = y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)
,

and the next sequence ξ̄2 = (ξ21, . . . , ξ2k) of values of observation errors realized at instants
τ21, . . . , τ2k ∈ [τ1, τ2) is random and independent of ξ̄1. Therefore, r2(· |ξ̄1;x(·)) should be defined as
the product of the probability measure concentrated at the point y2 and the probability pk, which
defines the distribution of the random sequence ξ̄2.

Let us formalize the above reasoning. For any y ∈ R
n, denote by δ(· |y) the probability mea-

sure on B concentrated at the point y, i.e., δ({y}|y) = 1. For any ξ̄1 ∈ (Rn)k, we define the
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probability measure r2(· |ξ̄1;x(·)) on the σ-algebra A as the product of the probability measures
δ
(
· |y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
))

and pk:

r2(· |ξ̄1;x(·)) = δ
(
· |y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
))

× pk. (2.4)

Thus, we have defined a function r2(· | · ;x(·)) : (D, ξ̄1) �→ r2(D|ξ̄1;x(·)) : A × R
n �→ [0, 1].

Similarly (this time omitting meaningful explanations), for every i = 2, . . . , N − 1 and for any
(yi, ξ̄i) ∈ E, we define the probability measure

ri+1(· |yi, ξ̄i;x(·)) = δ
(
· |yi+1

(
· |y1, u

[x]
i (ξ̄i;x(·)), u[v]

i (ξ̄i;x(·))
))

× pk (2.5)

on the σ-algebra A. Thus we define the functions ri+1(· | · ;x(·)) : (D, (yi, ξ̄i)) �→ ri+1(D|yi, ξ̄i;x(·)) :
A × E �→ [0, 1], i = 2, . . . , N − 1.

Lemma 2.1. For an arbitrary admissible motion x(·), the function r2(· | · ;x(·)) is a transition
probability for the measurable spaces ((Rn)k,B(k)) and (E,A), and the function ri+1(· | · ;x(·)), i =
2, . . . , N − 1, is a transition probability for the measurable spaces (E,A) and (E,A).

Proof. Let x(·) be an arbitrary admissible motion. Let us show that the function r2(· | · ;x(·))
is a transition probability for the measurable spaces ((Rn)k,B(k)) and (E,A). According to the
definition of the transition probability (see, for example, [5, Sect. III.2]), to this end we should
prove that the function ξ̄1 �→ r2(D|ξ̄1;x(·)) is Borel measurable for arbitrary D ∈ A. Let us prove
this. Let D ∈ A, a be an arbitrary number, and

X =
{
ξ̄1 ∈ (Rn)k : r2(D|ξ̄1;x(·)) < a

}
.

We have to show that X ∈ B. Since the σ-algebra A is generated by the product B×B(k) (see (2.3)),
we may assume without loss of generality that D = D1×D2 ∈ B×B(k). For an arbitrary ξ̄1 ∈ (Rn)k,
according to (2.4), we have

r2(D|ξ̄1;x(·)) = δ
(
D1|y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
))

× pk(D2);

hence,

r2(D|ξ̄1;x(·)) =

⎧⎨
⎩

pk(D2) for y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)
∈ D1,

0 for y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)

/∈ D1.

Therefore, X = ∅ if a ≤ p(D2), and

X =
{
ξ̄1 ∈ (Rn)k : y2

(
· |y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)
∈ D1

}
if a > p(D2). In the first case, the inclusion X ∈ B is obvious; in the second case, it holds because
the mapping ξ̄1 �→ y2

(
τ2|y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)

is continuous and, hence, Borel measurable
(see Remark 2.2). Similarly one establishes that the function ri+1(· | · ;x(·)) is a transition probability
for the measurable spaces (E,A) and (E,A) for any i = 2, . . . , N − 1. The proof is complete.

We define a measurable space (E ,A) of trajectories of random processes with averaging as the
product of the measurable space ((Rn)k,B(k)), which carries the initial sequence of observation
errors, and N − 1 copies of the measurable space (E,A) of full states:

(E ,A) = ((Rn)k,B(k)) ×
N∏
2

(E,A). (2.6)
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For an arbitrary admissible motion x(·), the initial probability r1 and the transition probabilities
ri+1(· | · ;x(·)), i = 1, . . . , N − 1, define in a standard way a probability measure r(· ;x(·)) that
describes the distribution of the trajectories q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) of the random process
with averaging corresponding to x(·). Namely, r(· ;x(·)) is defined on the σ-algebra A of the space
of trajectories and is characterized by the equality

r(D;x(·)) =
∫
D1

r1(dξ̄1;x(·))
∫

D2

r2(d(y2, ξ̄2)|ξ̄1;x(·))

×
∫
D3

r3(d(y3, ξ̄3)|y2, ξ̄2;x(·)) . . .

∫
DN

rN (d(yN , ξ̄N )|yN−1, ξ̄N−1;x(·)) (2.7)

with D = D1 × D2 × . . . × DN ∈ A, which holds for any D1,D2, . . . ,DN ∈ B(k) × A × . . . × A
(see [5, Sect. V.1, Corollary 2]). For every D ∈ A, the number r(D;x(·)) is the probability that
the trajectory q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) of the random process with averaging corresponding
to x(·) is contained in the set D.

We say that a trajectory q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) ∈ E is associated with a model process
(u[x](·), u[v](·), y(·)) with averaging corresponding to an admissible motion x(·) if

yi = y(τi), u
[x]
i (ξ̄i;x(·)) = u[x](τi), u

[v]
i (ξ̄i;x(·)) = u[v](τi), i = 1, . . . , N,

and (ξ̄i)Ni=1 is a sequence of observation errors associated with (u[x](·), u[v](·), y(·)). We say that a
trajectory q ∈ E is associated with an admissible motion x(·) if it is associated with some model
process with averaging corresponding to x(·).

We are interested in the probability that the output u[v](·) of a model process (u[x](·), u[v](·), y(·))
with averaging corresponding to an admissible motion x(·) of some class provides a mean-square
approximation of the admissible normal input v∗(· |x(·)) for x(·) with a given accuracy ε1, i.e., that
estimate (1.9) holds.

We define this probability as follows. Let Φ(ε1;x(·)) (with ε1 an arbitrary positive number) be
the set of all model processes (u[x](·), u[v](·), y(·)) with averaging corresponding to an admissible
motion x(·) for which inequality (1.9) holds, and let Φ∗(ε1;x(·)) be the set of all trajectories q =
(ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N ))∈ E each of which is associated with some (u[x](·), u[v](·), y(·))∈Φ(ε1;x(·)).
We will regard r(Φ∗(ε1;x(·));x(·)) as the probability that the model process (u[x](·), u[v](·), y(·)) with
averaging corresponding to x(·) belongs to the set Φ(ε1;x(·)) (satisfies inequality (1.9)). We will
also denote this quantity by r(Φ(ε1;x(·));x(·)).

Remark 2.3. Since the functions
(
yi, u

[x]
i , u

[v]
i

)
�→ yi+1

(
τi+1|yi, u

[x]
i , u

[v]
i

)
, ξ̄i �→ u

[x]
i (ξ̄i;x(·)),

and ξ̄i �→ u
[v]
i (ξ̄i;x(·)) are continuous (see Remark 2.2) and the outputs u[v](·) of model processes

with averaging are piecewise constant (see (1.2)), it follows that the set Φ∗(ε1;x(·)) belongs to the
σ-algebra A; hence, the value r(Φ∗(ε1;x(·));x(·)) is well defined.

The following lemma states that the trajectories of a random process corresponding to an ad-
missible motion x(·) are associated with x(·) with probability one. In other words, this random
process, which is formally defined by means of the initial probability r1 and the transition probabil-
ities ri+1(· | · ;x(·)), i = 1, . . . , N −1, certainly does not generate trajectories that cannot be realized
by model process with averaging corresponding to x(·).

Lemma 2.2. Let x(·) be an admissible motion and T (x(·)) be the set of all trajectories q ∈ E
associated with x(·). Then T (x(·)) ∈ A and r(T (x(·));x(·)) = 1.

Proof. It is obvious that T (x(·)) =
⋂N−1

i=1 Ti, where

Ti =
{
q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) : yi+1 = yi+1

(
τi+1|yi, u

[x]
i (ξ̄i;x(·)), u[v]

i (ξ̄i;x(·))
)}

.
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Therefore, to prove the inclusion T (x(·)) ∈ A, it suffices to show that Ti ∈ A for i = 1, . . . , N − 1.
We apply induction. Let i = 1. Clearly,

T1 = X1 ×
N−1∏

2

E, (2.8)

where
X1 =

{
(ξ̄1, (y2, ξ̄2)) ∈ (Rn)k × E : y2 = y2

(
τ2|y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)}

. (2.9)

Since the mapping ξ̄1 �→ y2

(
τ2|y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)

is continuous (see Remark 2.2), its
graph is a closed (Borel) set in (Rn)k ×R

n. Hence, X1 is a Borel subset in (Rn)k × (Rn × (Rn)k) =
(Rn)k ×E (see (2.3)). This, combined with (2.8) and the definition of the measurable space (E ,A)
(see (2.6)), implies that T1 ∈ A. The induction basis is established. The inductive step is performed
in a similar way.

We have shown that T (x(·)) ∈ A. Let us prove that r(T (x(·));x(·)) = 1. Suppose the contrary:
r(T (x(·));x(·)) < 1. Then

r(E \ T (x(·));x(·)) = r

(
N−1⋃
i=1

Di

)
> 0;

here Di = E \ Ti; note that Di ∈ A since Ti ∈ A, i = 1, . . . , N − 1. Therefore, we conclude that
r(D1;x(·)) + . . . + r(DN−1;x(·)) > 0. Thus, r(Di;x(·)) > 0 for some i ∈ {1, . . . , N − 1}. Fix the
minimal index i with this property. Consider the case of i = 1. So,

r(D1;x(·)) > 0. (2.10)

By (2.8), we have

D1 = [((Rn)k × E) \ X1] ×
N−1∏

2

E,

where X1 is defined by (2.9). Let g1(·) be the characteristic function of the set ((Rn)k ×E) \X1 in
(Rn)k × E. It is clear that

g1(ξ̄1, (y2, ξ̄2)) =

⎧⎨
⎩

1 for y2 �= y2

(
τ2|y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)
,

0 for y2 = y2

(
τ2|y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)
,

(ξ̄1, (y2, ξ̄2)) ∈ (Rn)k × E.

(2.11)

According to the definition of the measurable space (E ,A) (see (2.6)) and the probability measure
r(· ;x(·)) (see (2.7)), for the set D1 we have

r(D1;x(·)) =
∫

(Rn)k

r1(dξ̄1;x(·))
∫
E

g1(ξ̄1, (y2, ξ̄2))r2(d(y2, ξ̄2)|ξ̄1;x(·)).

Taking into account the form of the probability measure r2(· |ξ̄1;x(·)) (see (2.4)) and (2.11), we find
that the inner integral is∫

(Rn)k

g1

(
ξ̄1,

(
y2

(
τ2|y1, u

[x]
1 (ξ̄1;x(·)), u[v]

1 (ξ̄1;x(·))
)
, ξ̄2

))
pk(dξ2) = 0

for every ξ̄1 ∈ (Rn)k. Hence, r(D1;x(·)) = 0. The contradiction with (2.10) completes the proof for
the case of i = 1. The case of i > 1 is similar. The lemma is proved.
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Let us estimate the probability r(Φ(ε1;x(·));x(·)) from below.
By the law of large numbers, for any positive µ and ε, there exists a k∗(µ, ε) > 0 such that the

probability that the mean value of the identically distributed pairwise independent random variables
ξi1 = ξ(τi1), . . . , ξik = ξ(τik) deviates from their common mathematical expectation ξ̄ by at most µ
is not less than 1 − ε for all k ≥ k∗(µ, ε):

pk

{
ξ̄i = (ξi1, . . . , ξik) ∈ (Rn)k :

∣∣∣∣ξi1 + . . . + ξi1

k
− ξ̄

∣∣∣∣ ≤ µ

}
≥ 1 − ε, i = 1, . . . , N. (2.12)

We fix this number k∗(µ, ε) for any positive µ and ε.
By assumption, the functions f1 and f2 are bounded. Introduce a constant K > 0 such that

|f1(t, x) + f2(t, x)v| ≤ K, t ∈ [t0, ϑ], x ∈ R
n, v ∈ V. (2.13)

The following stochastic analog of Theorem 1.1 is the main result of the present study on the
stable dynamic approximation of a normal input.

Theorem 2.1. Suppose that
(i) X is an arbitrary set of admissible motions of system (1.1) such that the family of normal

inputs for all x(·) ∈ X is a compact set in L2([t0, ϑ], Rr);
(ii) ε1 is an arbitrary positive number and ε2 > 0 is chosen, depending on X and ε1, in the same

way as in Theorem 1.1;
(iii) the margin of measurement error h, the maximal step τ̄ of the time grid, and the regulariza-

tion parameter α satisfy the inequality

h + α +
h

α
+ τ̄ ≤ ε2; (2.14)

(iv) the memory depth k, the maximal step τ̄ of the time grid, and the mathematical expectation ξ̄
of observation errors satisfy the inequalities

k ≥ k∗(µ, ε), (2.15)

Kτ̄ + µ + |ξ̄| ≤ h (2.16)

for some ε, µ > 0.
Then, for any admissible motion x(·) ∈ X , the probability that the mean-square deviation of the

output of the model process with averaging corresponding to x(·) from the admissible input normal
for x(·) is at most ε1 is not less than 1 − Nε:

r(Φ(ε1;x(·));x(·)) ≥ 1 − Nε. (2.17)

Before proving the theorem, we comment on its substance.
Theorem 2.1 suggests an algorithm that provides, with a given probability β arbitrarily close to

one, a dynamic approximation of the normal input of any admissible motion x(·) ∈ X with prescribed
accuracy ε1 in the mean-square norm, where X is an arbitrary class satisfying condition (i) of the
theorem.

At the first step of the algorithm, given an accuracy ε1, one chooses ε2 as indicated in con-
dition (ii). Then one chooses sufficiently small values of the margin of measurement error h, the
maximal step τ̄ of the time grid (τi)Ni=1, and the regularization parameter α so as to satisfy (2.14);
note that the ratio h/α is also sufficiently small.

At the second step, according to (2.16), one evaluates an upper bound for the norm |ξ̄| of the
mathematical expectation of random observation errors. Here one can also vary an auxiliary small
positive parameter µ and modify the time grid (τi)Ni=1 by decreasing its maximal step τ̄ in order to
satisfy (2.16). Note that the choice of the constraint on |ξ̄| is not under the control of the observer
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and, strictly speaking, cannot be a part of the algorithm. There is no need for such a constraint
(which is only included for the sake of generality) if the observation errors are unbiased, i.e., if ξ̄ = 0.

At the third step, having fixed µ and the time grid (τi)Ni=1, we take ε > 0 so small that

1 − Nε ≥ β.

At the fourth step, using the values of µ and ε, we choose the memory depth k involved in the
averagings (see (2.1)) from condition (2.15).

This completes the adjustment of the procedure of dynamic approximation of a normal input.
The procedure itself is implemented by the model process with averaging corresponding to an
admissible motion x(·), which is generated in an arbitrary way within the set X . The output of this
model process provides a mean-square approximation to the normal input for the motion x(·) with
probability at least β.

Proof of of Theorem 2.1. Let x(·) be an arbitrary admissible motion. Introduce the sets

Di =

{
q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) ∈ E : ξ̄i = (ξi1, . . . , ξik),

∣∣∣∣∣
∑k

j=1 ξij

k
− ξ̄

∣∣∣∣∣ ≤ µ

}
,

i = 1, . . . , N.

(2.18)

It follows from the definition of the probability measure r(· ;x(·)) (2.7) that

r(Di;x(·)) =
∫

(Rn)k

r1(dξ̄1;x(·))
∫
E

r2(d(y2, ξ̄2)|ξ̄1;x(·)) . . .

∫
E

ri−1(d(yi−1, ξ̄i−1)|yi−2, ξ̄i−2;x(·))

×
∫

Rn×Bi

ri(d(yi, ξ̄i)|yi−1, ξ̄i−1;x(·)) (2.19)

for every i ∈ {1, . . . , N}, where

Bi =

{
ξ̄i = (ξi1, . . . , ξik) :

∣∣∣∣∣
∑k

j=1 ξij

k
− ξ̄

∣∣∣∣∣ ≤ µ

}
.

It follows from (2.15) that
pk(Bi) ≥ 1 − ε. (2.20)

Since each integration with respect to the first variable in (2.19) is over the whole space R
n, it follows

from the form of the transition probabilities rj(· ;x(·)), j = 1, . . . , N − 1, (2.4), (2.5) that (2.19)
reduces to

r(Di;x(·)) =
∫

(Rn)k

pk(dξ̄1)
∫

(Rn)k

pk(dξ̄2) . . .

∫
Bi

pk(dξ̄i) = pk(Bi).

Hence, in view of (2.20), we have

r(Di;x(·)) ≥ 1 − ε, i = 1, . . . , N. (2.21)

Set

D0
j =

j⋂
i=1

Di, j = 1, . . . , N. (2.22)

Let us show that
r
(
D0

j ;x(·)
)
≥ 1 − jε (2.23)
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for every j = 1, . . . , N . We apply induction. For j = 1, (2.23) is valid by virtue of (2.21).
Suppose that (2.23) is valid for some index j ∈ {1, . . . , N − 1}. Using (2.23) and the estimate
r(E \ Dj+1;x(·)) ≤ ε, which follows from (2.21), we obtain

r
(
D0

j+1;x(·)
)

= r
(
D0

j ∩ Dj+1;x(·)
)

= r
(
D0

j ;x(·)
)
− r

(
D0

j ∩ (E \ Dj+1);x(·)
)

≥ r
(
D0

j ;x(·)
)
− r(E \ Dj+1;x(·)) ≥ 1 − jε − ε.

Let T (x(·)) be the set of all trajectories q ∈ E associated with x(·). By Lemma 2.2, we have
r(T (x(·));x(·)) = 1. Therefore,

r
(
D0

N ∩ T (x(·));x(·)
)

= r(D0;x(·));

hence, in view of (2.23), for j = N we have

r
(
D0

N ∩ T (x(·));x(·)
)
≥ 1 − Nε. (2.24)

Recall that the probability r(Φ(ε1;x(·));x(·)) (see (2.17)) is equal to r(Φ∗(ε1;x(·));x(·)) by defi-
nition, where Φ∗(ε1;x(·)) is the set of all trajectories q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) ∈ E each of which
is associated with some (u[x](·), u[v](·), y(·)) ∈ Φ(ε1;x(·)). Therefore, taking into account (2.24), we
conclude that to complete the proof, i.e., to prove estimate (2.17), it suffices to show that

D0
N ∩ T (x(·)) ⊂ Φ∗(ε1;x(·)). (2.25)

Let us show this. Take an arbitrary trajectory

q = (ξ̄1, (y2, ξ̄2), . . . , (yN , ξ̄N )) ∈ D0
N ∩ T (x(·)). (2.26)

Since this trajectory is associated with x(·) (q ∈ T (x(·))), it is associated with some model process
(u[x](·), u[v](·), y(·)) with averaging corresponding to x(·); in particular, the sequence (ν(τi))Ni=1

defined as

ν(τi) =

∑k
j=1(x(τij) + ξij)

k
− x(τi), i = 1, . . . , N

(see (2.1)), is associated with (u[x](·), u[v](·), y(·)). Since τij ∈ [τi−1, τi), i = 1, . . . , N , j = 1, . . . , k,
by (2.13) we have

|x(τij) − x(τi)| ≤ K(τi − τi−1) ≤ Kτ̄, i = 1, . . . , N, j = 1, . . . , k.

Therefore, for every i = 1, . . . , N ,

|ν(τi)| ≤ Kτ̄ +

∣∣∣∣∣
∑k

j=1 ξij

k

∣∣∣∣∣. (2.27)

Since q ∈ D0
N , it follows (see (2.22)) that q ∈ Di for every i = 1, . . . , N . Hence, by the definition of

the sets Di, for every i = 1, . . . , N we have∣∣∣∣∣
∑k

j=1 ξij

k
− ξ̄

∣∣∣∣∣ ≤ µ.

From this estimate and (2.27) we find that

|ν(τi)| ≤ Kτ̄ + µ + |ξ̄| ≤ h

for every i = 1, . . . , N ; the latter inequality is valid by assumption (iv) (see (2.16)). Hence, using
Remark 2.1, we conclude that the model process (u[x](·), u[v](·), y(·)) with averaging corresponding
to the admissible motion x(·) is a model process corresponding to this admissible motion within the
margin of measurement error h.
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Recall that the margin of measurement error h, the maximal step τ̄ of the time grid, and
the regularization parameter α satisfy inequality (2.14), in which ε2 is chosen in the same way
as in Theorem 1.1 (see assumptions (ii) and (iii) of the present theorem). Therefore, applying
Theorem 1.1, we conclude that⎛

⎝ ϑ∫
t0

∣∣u[v](t) − v∗(t|x(·))
∣∣2 dt

⎞
⎠

1/2

≤ ε1.

Hence, (u[x](·), u[v](·), y(·)) ∈ Φ(ε1;x(·)). Since the trajectory q (2.26) is associated with the model
process (u[x](·), u[v](·), y(·)), we have q ∈ Φ∗(ε1;x(·)). Due to the arbitrariness of the choice of the
trajectory q within the set D0

N ∩T (x(·)), the embedding (2.25) is proved. The proof of the theorem
is complete.
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