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Foreword

Practically all important decisions involve analysis of several (or even many), typically
conflicting, criteria. Analysis of trade-offs between criteria is difficult because such trade-
offs for most problems are practically impossible to be defined a-priori even by analysts
experienced in Multi-Criteria Analysis (MCA). Therefore the trade-offs emerge during an
interactive MCA which actually supports a learning process about the trade-offs. Hence,
effective MCA methods are important for actual support of decision-making processes,
especially those related to policy-making.

IIASA has been developing novel methods for MCA since mid 1970s, and success-
fully applying them to many practical problems in various areas of applications. How-
ever, there are new practical problems for which the existing MCA methods (developed
not only at IIASA but also by many researchers all over the world) are not satisfactory.
In particular, discrete decision problems with a large number of criteria and alternatives
(the latter making pairwise comparisons by the users impracticable) demand new meth-
ods. For example, MCA analysis of future energy technologies involves over 60 criteria
and over 20 discrete alternatives; a careful requirement analysis of this application has
proven that none of the existing MCA methods is suitable for an effective analysis of
the corresponding problem. Moreover, this analysis has been done by a large number of
stakeholders with diverse backgrounds and preferences; most of them have no analyti-
cal skills, therefore the specification of preferences needed to be simple but still provide
effective and intuitive analysis of the Pareto set.

The paper provides an overview of the methodological background of the MCA, in-
cluding stages of the analysis, two types of the substantive models, and basic concepts
used in the MCA. Then two main approaches to the MCA are discussed, namely methods
using pairwise comparison and those using a scalarizing function. Next, the basic proper-
ties of the second class of methods are discussed in more detail. The last part of the paper
deals with analysis of suitability of the established methods for the MCA of future energy
technologies, and outlines several key methodological issues.
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Abstract

This report begins with an overview of multicriteria analysis methods, and the basic prin-
ciples of developing mathematical models for such analysis. An overview of various
representation of user preferences is then presented, including methods based on pairwise
comparisons of criteria and those based on scalarizing functions. This is followed by a
summary of structures of criteria and alternatives. Next, basic properties of multi-criteria
analysis are discussed, followed by a more detailed presentation of the similarities of and
differences between the main methods based on scalarizing functions. This report con-
cludes that existing methods do not best meet the needs of the NEEDS project, presents
the reasons, and proposes a new methodology for development. Depending upon the de-
velopment and testing of this new methodology, an existing method will also be chosen
as a backup for comparative or alternate use.
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Multicriteria Methodology for the NEEDS project

Janusz Granat* ** (J.Granat@itl.waw.pl)
Marek Makowski*** (marek@iiasa.ac.at)

1 Introduction

The objective of this paper is to provide an updated description of methodology of mul-
ticriteria analysis of discrete alternatives pertinent to a class of problems represented by
analysis of future energy technologies. Such problems are characterized by a large num-
ber of criteria (about 60) organized in hierarchical structure, and a large number of alter-
natives (about 20 for each of the four countries for which the analysis has been done).
The requirements for analysis of this class of problems are discussed in detail in [48], and
it is assumed that a reader of this paper is familiar with these requirements.

In any rational analysis of a complex problem the choice of a method is of critical im-
portance because it predetermines to a large extent the scope (and in most cases the cor-
rectness) of analysis. Each analysis method is based on specific assumptions and supports
only a certain type of analysis. A selected method must fit to the problem characteristics
and the desired scope/features of analysis. Therefore it is critically important to specify
the requirement analysis (composed of the specification of the problem to be analyzed,
and a desired scope of analysis) before considering analysis methods and tools pertinent
to the problem.

We use in this paper the widely used term MCDA (Multicriteria Decision Analy-
sis) because it covers a well developed field of OR (Operational Research) that provides
methods and tools applicable to our problem. However, we need to stress that our problem
(described in detail in [48]) substantially differs from typical MCDA problems in which
a decision-maker (conventionally calleda user) analyzes a decision problem through a
process of interactive modifications of his/her preferences upon the analysis of solutions
obtained for previously defined preferences. It is commonly known that in the initial stage
of problem analysis a user typically specifies preferences/goals that are far from being at-
tainable; thus the essence of most MCDA methods is to help users to revise preferences
in order to make them consistent with attainable/feasible solutions. This in turn implies
that MCDA is actually a learning process about the analyzed problem during which a
user modifies her/his original preferences (defined for a solution which is typically far
from being feasible) towards preferences (trade-offs between values of criteria) for afea-
sible solution. The latter can be interpreted as defining attainable goals (a composition
of attainable values for all criteria) that have trade-offs between criteria reflecting, in the

* National Institute of Telecommunications, Warsaw, Poland.
** Warsaw University of Technology, Warsaw, Poland.

*** Integrated Modeling Environment Project, IIASA.
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best possible way, the preferences of the user. It is commonly known among researchers
involved in non-trivial applications that defining such goals indeed requires an interac-
tive learning procedure during which the user substantially changes his/her preferences.
Therefore it is not practicable to attempt identification of preferences without an iterative
process during which preferences can be modified upon analysis of solutions correspond-
ing to previously specified preferences.

Generally, in order to effectively use MCDA for the analysis of efficient solutions cor-
responding best to various trade-offs between conflicting objectives specified by users, it
is necessary to select a method (out of dozens of MCDA methods) and the corresponding
software tool that best fit to the characteristics of:
• The substantive problem represented by the underlying mathematical model. The most

common approach for problems with many (for discrete alternatives) or infinite (for
continuous problems) solutions is to use an achievement scalarizing function for spec-
ification of a parametric optimization problem of the underlying model; the solution
of such an optimization problem is Pareto-efficient, and corresponds to the preferences
represented by the scalarizing function. Different MCDA methods use different scalar-
izing functions, parameters of which are defined by the preferences of the MCDA users.
An alternative is to generate from the model a set of discrete alternatives, and apply
MCDA to analyzing trade-offs between the generated alternatives.
• The users of MCDA. In particular, such a selection needs to be based on the ways

in which users with different backgrounds and preferential structures can specify their
preferences, which need to be translated in a transparent way into trade-offs between
objectives. Transparency and an appropriate representation of trade-offs are critically
important for comparative analysis of various efficient solutions (each corresponding to
a different structure of preferences) by stakeholders.

This paper summarizes the basic features of MCDA, and focuses on features of these
MCDA methods that are relevant for the analysis problem described in [48]. This forms
a basis for justifying the approach proposed in Section 7.

The requirement analysis [48] clearly shows that we have to deal with a problem that
is far more challenging than a typical MCDA problem for which a user analyzes a problem
with respect to her/his preferences. Our problem is composed of two stages of analysis:
• diversified stakeholders specify individual preferences, and
• analysts analyze the problem taking into account these preferences (expected to differ

substantially amongst groups of stakeholders) in order to identify the characteristics of
solutions (either technologies or scenarios) that can help in rational decision-making.

Thus, in fact, one needs two compatible MCDA methods:
• to support each stakeholder in a multicriteria analysis of the original problem, which

result in finding a solution corresponding best to his/her preferences; the other outcome
of this analysis is a representation of a set of consistent preferences of various stake-
holders;
• to support analysts in a consistent exploitation of the elicited preferences for a compre-

hensive analysis of the original problem.
The remaining part of this paper is organized as follows: We start with an overview

of multicriteria analysis methods and basic principles of development of mathematical
models for such an analysis; these topics are covered by Sections 2 and 3, respectively.
Section 4 provides a more detailed discussion of various representations of user pref-
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erences pertinent to analysis sets of discrete alternatives, including methods based on
pairwise comparison, and those based on scalarizing functions. Next, Section 5 summa-
rizes structures of criteria, and of alternatives. Basic properties of multicriteria analysis
together with a more detailed presentation of the similarities and differences of the main
methods based on scalarizing functions are discussed in Section 6. Finally, multicriteria
methodology for the NEEDS project is proposed and justified in Section 7.

2 Overview of MCDA

2.1 Context

Policy makers and almost all industrial companies, research, educational and other or-
ganizations are faced with problems of finding the best compromise between conflicting
goals, such as: costs versus performance and reliability of products and technologies
and the time to bring them to the market; life-time costs versus environmental impacts;
economic growth versus inter-generation fairness of a pension system; or spatial and tem-
poral allocation of costs of climate change mitigation versus ex-ante and/or ex-post risk
management. Making rational decisions for any complex problem requires various analy-
ses of trade-offs between the conflicting goals (objectives, outcomes) used for measuring
the results of applying various decisions in a wide range of application domains. A typ-
ical decision problem has a large (or even an infinite) number of solutions, and users
are interested in analyzing trade-offs between those that correspond to their preferences,
which is often called the preferential structure of the user. Such preferences are typically
expressed in terms of criteria, e.g., desired criteria values (or their ranges), trade-offs
between improving/worsening criteria values. A preferential structure typically induces
partial ordering of solutions (characterized by values of criteria) obtained for different
combinations of values of decisions.

Mathematical models can potentially provide better solutions for such problems, if
an appropriate modeling technology is applied. The classical OR (Operational Research)
approach is to define a single goal function (performance criterion) and look for a solu-
tion that optimizes its value. The purpose of multicriteria problem analysis is to support
users in exploring solutions that correspond best to his/her preferences. In other words,
multicriteria methods fit to the situations in which users are not able to define a single
goal function.

Complex problems do not have unique and easy-to-find solutions. However, as a result
of decision-making processes a unique solution/decision must be determined. Therefore
rational decision-making requires a diligent analysis of the decision problem which is
aimed at finding a decision that is the best (in the sense of typically conflicting objec-
tives of decision-makers). The role of mathematical modeling is to support the decision-
making process (which for complex problems involves not only decision-makers, but also
stakeholders, analysts, experts and advisors) by providing information about solutions
which correspond best to the preferences of decision-makers and also stakeholders, if
stakeholders are involved in the decision-making process.
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2.2 Stages of multicriteria problem analysis

2.2.1 Purpose of the analysis

The purpose of analysis is to provide decision-makers (and optionally stakeholders) with
a manageable number of solutions/alternatives for more detailed consideration. The set
of solutions should be representative for the decision problem, in particular for the pref-
erences of stakeholders. One should be aware that meeting the requirement ofrepresen-
tativeis difficult because non-trivial problems are characterized by:
• Preferences (i.e., trade-offs between criteria) that are substantially different not only

amongst stakeholders but also for a single user/stakeholder who explores different types
of solutions (e.g., trade-offs between costs and quality are clearly different for ”cheap”
and ”expensive” solutions).
• Mathematical properties of the underlying problem, which typically has many substan-

tially different solutions corresponding to preferences that are rather similar.
Thus a good analysis should involve a careful consideration of a consistency between:

• the mathematical properties of the model representing the problem,
• the selected method(s) of model-based problem analysis, and
• the composition of a set of solutions and their characteristics to be provided to the

participants of the decision-making process (decision-makers, stakeholders, analysts,
experts, advisors).

Consistency between the purpose of analysis and the proposed multicriteria method-
ology for the NEEDS project is discussed in Section 7.

2.2.2 Elements and stages of model-based problem analysis

Due to the space consideration we do not provide here any comprehensive description of
model-based problem-solving methodology and the corresponding modeling process.2

We give here an overview of the MCDA approaches focusing on the substantive model
representation and preference specification by the stakeholders.

We concentrate on the following elements of MCDA which are important for selection
and implementation of MCDA for the NEEDS project:
• Requirement analysis (including specification of the problem), presented in detail

in [48].
• Development of a substantive model of the decision situation, see Section 3.
• Representation of user/stakeholder preferences, see Section 4.
• Diverse structures of criteria and alternatives, see Section 5.
• Properties of multicriteria analysis methods pertinent to our problem, see Section 6.
• Analysis of the problem, see Section 7.

3 Substantive models

Although this report deals with the problem of discrete alternatives we briefly outline two
types of substantive models of decision situation because several methods of multicriteria
analysis originally developed for the first type are also pertinent to the second type:

2Readers interested in this topic may want to consult e.g., [44, 51, 87].
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• Algebraic models.
• Discrete sets of alternatives (objects).

3.1 Algebraic models

Because of the unquestionable success of modeling in problem solving, various modeling
paradigms have been intensively developed over the last few decades. As a result, dif-
ferent types of models (characterized by types of variables and relations between them)
were developed (e.g., static, dynamic, continuous, discrete, deterministic, stochastic, set-
membership, fuzzy, soft constraints) with a view to best representing different problems
by a selected type of model. Moreover, different methods of model analysis (e.g., simula-
tion, optimization, soft simulation, multicriteria model analysis) have been developed as
the best-possible support for various types of model analyses for different purposes and/or
users. Finally, because of the growing complexity of various computational tasks, solvers
have become more and more specialized, even for what was originally the same type of
mathematical programming problem. Each modeling paradigm embodies a great deal of
accumulated knowledge, expertise, methodology, and modeling tools specialized to solve
various problems peculiar to each modeling paradigm.

y=F(x,z)
z

x

y
substantive model

Figure 1: A substantive model of the decision situation

A mathematical model describes the modeled problem by means of variables that are
abstract representations of those elements of the problem which need to be considered in
order to evaluate the consequences of implementing a decision (usually represented by a
vector composed of many variables). More precisely, such a model is typically developed
using the following concepts:
• Decisions (inputs)x , which are controlled by the user;
• External decisions (inputs)z , which are not controlled by the user;
• Outcomes (outputs)y , used for measuring the consequences of the implementation of

inputs;
• Auxiliary variables introduced for various reasons (e.g., to simplify model specification,

or to allow for easier computational tasks); and
• Relations between decisionsx and z , and outcomesy illustrated in Figure 1; such

relations are typically presented in the form:

y = F(x , z ), (1)

whereF(·) is a vector of functions.
The basic function of model-based problem-solving support is to help the user find

values for his/her decision variablesx which results in a solution of the problem that best
fits his/her preferences. To achieve this one needs to:
• Develop and maintain a model that adequately represents relations (1);
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• Organize a process of the model analysis in which the user can specify and modify
his/her preferences upon combining their own experience and intuition with learning
about the problem from the analyses of various solutions.

Model development is a rather complex process. Discussion of the related issues is
beyond the scope of this paper; interested readers may consult e.g., [44, 51, 87].

3.2 The discrete set of alternatives (objects) for selection

Each object is described by a set of numerical or non-numerical attributes.

criteria c1 c2 . . . cn
alternatives

o1 v1,1 v1,2 . . . v1,n
o2 v2,1 v2,2 . . . v2,n
. . . . . . . . . . . . . . .
om vm,1 vm,2 . . . vm,n

In the process of problem analysis the user can select some of the attributes as criteria
and the other as informative or selection attributes. The informative attribute is an attribute
that is in use only to display additional information about an object. The selection attribute
is an attribute that can be set for selection of the subsets of objects.

The table can be prepared in the following way:

• An expert (or group of experts) specify alternatives and decide about the attributes
based on his/her knowledge of various types of supplementary information.

Analyst

...

Table
Documents

Internet

Figure 2: The definition of a table by an expert

• An expert (or group of experts) generates the alternatives and decides on the at-
tributes. However, the values of attributes are calculated by software tools. The
primary data for calculation of attributes are stored in the database.

• There is a simulation model of the decision situation. However, for various reasons
(e.g., because of a long calculation time), the model cannot be used directly in the
process of final selection. In such cases the simulation model is applied off-line for
the generation of the set of objects and calculation of attributes.
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Program
TableDatabase

Figure 3: Software tools for table generation

model

TableData
processing

Simulation
or optimization

Figure 4: Alternatives generated by simulation

One should note that the discrete alternative choice problem can be represented as an
algebraic model. This is particularly needed if values of criteria for (possibly many) al-
ternatives must be computed from parameterized complex relations, see e.g., [50], and/or
for problems with a large number of alternatives.

4 Representations of user preferences

Substantive models represent in various mathematical forms the objective part of the prob-
lem, i.e., the relations between decisions and their outcomes measured by criteria. Devel-
opment of a substantive model does not involve direct representation of user preferences
but a model specification and instantiation need to provide outcome variables which are
used as criteria, which in turn are used for specification of user preferences. There exist
several approaches to preference representation, they are applicable to different classes of
problems (e.g., discrete or continuous) and different information provided by users (e.g.,
pairwise comparisons of alternatives, using: (1) only dominance relation, (2) relative im-
portance of criteria, (3) aspiration and reservation values for criteria). Before presenting
below the approaches pertinent to our problem, we summarize basic concepts used in
multicriteria analysis.

4.1 Basic concepts

There are several variants for defining basic concepts of multiple criteria analysis. We
recall here one of the simplest set of definitions. A reader interested in more detailed and
rigid definitions may consult e.g. [65, 70, 83, 89]. The following definitions will be used
in the subsequent discussions.

In order to simplify the presentation we assume that we considern criteria having real
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values denoted byq ∈ Rn, where vectorq is defined by:

q = {q1, q2, . . . , qn}, qi ∈ R, i = 1, 2, . . . , n (2)

Further, we assume that all criteria are minimized. This is not a restrictive assumption
because also qualitative criteria, and criteria that are maximized can be handled (after
simple, commonly known transformations) within the discussed framework.

For numerical representations of criteria values various measurement scales can be
used: nominal, ordinal, cardinal (interval, ratio). A nominal scale only labels the alterna-
tives, i.e. no information is provided on the relations between the alternatives; an ordinal
scale provides information about order of the alternatives, but there is no information
about the interval (difference) between elements of the scale. A cardinal scale (called
also metric scale) attaches a number (measure) to each alternative; such measurement not
only implies an order of the alternatives but also quantifies the differences between them.
One distinguishes two kinds of cardinal scales: interval and ratio scale. On an interval
scale a zero point is defined arbitrarily while on a ratio scale there exists a non-arbitrary
zero point.

4.1.1 Concepts related to Pareto efficiency

Weakly Pareto-optimal solution: A solution x̂ ∈ X0 (whereX0 is a set of consid-
ered/feasible solutions) is called a weakly Pareto-optimal solution, if there exists no
other feasible solution that has better values of all criteria. Weakly Pareto-optimal
solutions are usually easier to be computed. Therefore a proper method (see the
explanation of eq. (17) on page 17) should be implemented to avoid computing and
reporting a weakly Pareto-optimal solution as an efficient solution. This is a purely
technical problem and weakly Pareto-optimal solutions have no practical meaning
for a user of a properly implemented multicriteria analysis.

Pareto-optimal solution: A solutionx̂ ∈ X0 is called a Pareto-optimal solution, if there
is no other feasible solution for which one can improve the value of any criterion
without worsening the value of at least one other criterion. A Pareto-optimal so-
lution is also called anefficientsolution (some authors call it also non-dominated
solution) and it can be defined (for a minimized criterionqi) as:

¬∃x ∈ X0 6= x̂ : {qi(x) ≤ qi(x̂) ∀i ∈ [1, ..., n] and

∃k ∈ [1, ..., n] : qk(x) < qk(x̂) } (3)

Most practical in applications are properly Pareto-optimal solutions with a prior
bound on trade-off coefficients (see [81] for more details). Further on, a properly
Pareto-optimal solution will be simply called Pareto solution.

Pareto-optimal point: Pareto-optimal point is composed of values of all criteria for a
corresponding Pareto-optimal solution.

Pareto set: Pareto-optimal set (sometimes called also Pareto frontier) is composed of all
Pareto-optimal points.
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Utopia point: Utopia pointqU is composed of best values out of the set of all Pareto-
solution for each criterion. A utopia point (often called also an ideal point) can be
easily computed as a result ofn single criterion optimization with each criterion at
a time serving as an objective function.

Nadir point: Nadir pointqN is composed of worst values out of the set of all Pareto-
solution for each criterion. Finding a nadir point is typically difficult for problems
that are either mixed-integer or continuous, and have more than two criteria, see
e.g., [28].

Aspiration point: Aspiration point (sometimes called a reference point) is composed of
the desired values specified by a user for each criterion. In other words, the values
that a user would like to achieve for each objective. The aspiration point will be
defined in this paper bȳq ∈ Rn.

Reservation point: Reservation point is composed of the still acceptable3 values for the
corresponding criteria. The reservation point will be defined in this paper byq ∈
Rn.

Thus, the pairs of aspiration and reservation levels define, for a corresponding criterion,
a range of values between the desired and still acceptable levels. Utopia and nadir (or a
good approximation of a nadir) provide valuable information about ranges of values (for
all efficient solutions) of each criterion. Therefore those points outline for each criterion
a range for reasonable values of aspiration and reservation levels.

Figure 5: An illustration of basic concepts used in MCDA.

The above definitions are illustrated, for a problem with two minimized criteria (q1
andq2), in Figure 5. The Pareto set is contained in the segments of the piece-wise linear
function between pointsA andB. Weakly Pareto points are located in the segmentsAC
andBD, and non-properly optimal Pareto points are in the segmentBE. Note, that the

3In other words, the user would like to avoid solutions with values worse than the reservation levels.
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slope of segmentBE corresponds to the trade-off coefficients and is usually very small.4

If the bound on the trade-off coefficients will be increased, then the set of properly Pareto-
optimal solutions will be reduced to the two segments between pointsA andF. The utopia
and nadir points are marked byU andN, respectively.

4.1.2 Scalarizing function

Achievements Scalarizing Functions (ASF) are used by methods which assume that it is
possible to associate with each solution a real number, thus to measure performance of
the solution. Many of the discussed approaches do not use, in the corresponding original
formulation, the achievement function concept introduced by Wierzbicki, see e.g., [78,
82, 87]. However, it is easy to formulate such functions for each approach in order to
provide a consistent comparison.

Achievement scalarizing functions are sometimes called value functions (or utility
functions, or scalarizing functions) and can be written is a compact form:

ASF = V (q(x )) (4)

whereq is vector of criteria values corresponding to a solutionx (for a discrete set of
alternativesx can often be replaced by identifier of an alternative), andV is a function.

A more detailed discussion of approaches based on ASF is presented in Section 4.4.

4.1.3 Preference modeling

The preference model is a model that for each pair of alternatives (decisions)a b (a 6= b)
assign one, two or three basic situations:
• strict preferencea overb,
• week preferencea overb,
• indifference betweena andb,
• incomparability betweena andb,

Respectively, we can define relations, the set of ordered pairs (a,b) such that
• relation of strict preferencea overb: a ≻ b,
• relation of week preferencea overb: a � b,
• relation of indifference betweena andb: a ∼ b,
• relation of incomparability betweena andb: a?b.

A preference structure[57] is a collection of binary relations defined on the setA and
such that:
• for each paira, b ∈ A; at least one relation is satisfied, or
• for each paira, b ∈ A; if one relation is satisfied, another one cannot be satisfied.

In other terms a preference structure defines a partition of the setA × A. In general
it is recommended to have two other hypotheses with this definition (also denoted as
fundamental relational system of preferences):
• Each preference relation in a preference structure is uniquely characterized by its prop-

erties (symmetry, transitivity, etc..)
• For each preference structure, there exists a unique relation from which the different

relations composing the preference structure can be deduced. Any preference structure

4More detailed explanation of eq. (17) can be found in [41].
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on the setA can thus be characterized by a unique binary relation R in the sense that
the collection of the binary relations are be defined through the combinations of the
epistemic states of this characteristic relation

We will not go into the details of various preference structures (details can be found
e.g., in [57]). We will focus on the most important issues.

The preference structure can be defined by the properties of binary relations of the
relation set. The most traditional preference model assumes that comparing two different
elements of the setA we can distinguish only two situations: preference of one element
to the other (relation≻), indifference of one element to the other (relation∼). Therefore,
we can definepreference structure:

〈≻,∼〉

as a pair of relations≻,∼ onA such that≻ is asymmetric≻ and∼ is reflexive, symmetric.
By adding additional properties to the binary relations we can define various more specific
structures calledorders: total, week, semi-order, interval order.

The classical preference structure do not consider incomparability between alterna-
tives. In this case the partial preference structure is introduced:

〈≻,�,∼, ?〉

By definition of specific properties of binary relation we can introduce structures called
partial and quasi order. This structure is used by outranking methods.

From the point of view of practical applications we have to have numerical represen-
tation of preference structures of the presented preference structures. Below wepresent
some of the numerical representations of preference structures.

If a value functionV (a) is defined for each alternativea then alternativea is preferred
to b (a ≻ b) if value functionV (a) > V (b), anda andb are indifferent (a ∼ b) if and only
if V (a) = V (b). Value functionV (·)must fulfill the following conditions:
• preferences are complete (i.e. for any pair of alternatives eithera ≻ b or b ≻ a, or
a ∼ b)
• preferences and indifferences are transitive (for any three alternativesa, b, c if a ≻ b and
b ≻ c thena ≻ c and for indifference ifa ∼ b andb ∼ c thena ∼ c).

4.2 Methods using pairwise comparison

For completeness we briefly outline here methods using pairwise comparisons. Such
methods are practicable only for problems having a small (less than 10) number of al-
ternatives and of criteria. Therefore these methods are not applicable to our problem.
However, understanding of these methods may be helpful for comprehension of the other
multicriteria methods.

4.2.1 AHP (Analytical Hierarchy Process)

AHP is an multicriteria decision analysis method developed by Saaty [63]. AHP can be
considered as a method of elicitation of a value function.5

The AHP method is composed of the following steps:

5Although some of authors distinguish AHP and value functions as different methods [73].
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w11,w12,w13 w21,w22,w23

Figure 6: Hierarchy structure of AHP.

1. Definition of hierarchy of criteria: the user selectsn criteria and organize them into
hierarchical structure illustrated in Figure 6.

2. Pairwise comparison: For each criterion and each pair of alternatives (denoted here
asai andaj) the user is requested to judge them by specifying a ratiowi/wj of the
corresponding weightswi andwj. The estimate of this ratio is defined as:

aij = wi/wj (5)

Thus to determine the complete set of relative prioritiesn(n − 1)/2 pairwise compar-
isons are needed for each ofn criteria. The resulting comparison matrix A has the
form:

A =











1 a12 . . . a1n
1/a12 1 . . . a2n

...
...

...
...

1/a1n 1/a2n . . . 1











(6)

3. Calculation of the relative priority vectorsw: The standard AHP method finds the set
of valuesw1, . . . , wn, such that the elements of matrix A is approximated as closely as
possible by the corresponding ratioswi/wj. It can be proved that valuesw1, . . . , wn can
be found in the following way:

A w = λmax w (7)

wereλmax is the maximal eigenvalue of matrixA, w = (w1, . . . , wn) is an eigenvector
of matrixA, and

∑

iwi = 1.
4. In the next step, the information about the importance of the criteria should be provided.

For criteria the pairwise comparison is also applied. However, because the criteria have
hierarchical structure the priority vector should be modified according to information
provided on the upper level.

5. Synthesis: In this process the final vector of priorities is calculatedwa1, wa2, . . . , wan

wai =
∑

j∈J

wj ∗ wi,j (8)

whereJ is the set of criteria indices, andi stands for the index of alternatives.
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4.2.2 Outranking

The outranking approach accepts incomparabilities of alternatives, and does not impose
transitivity properties. Therefore, the corresponding models of preferences cannot be
expressed by a function. Vincke [75] points out the following situations where the out-
ranking relation can be justified: at least criterion is not quantitative, units of different
criteria are heterogeneous and finding a common scale is very difficult, compensation be-
tween gains on some criteria and losses on other criteria are not clear, preference or veto
thresholds have to be take into account.

Let a andb be alternatives, andq(·) be a real valued criterion function defined in the
following way [76]:

{

qj(a) > qj(b) ⇐⇒ a is preferred to b
qj(a) = qj(b) ⇐⇒ a is indifferent to b

(9)

• Electre I

Concordance index:

c(a, b) =
1

P

∑

j:qj(a)≥qj(b)

wj, where P =
n
∑

j=1

wj

Discorcondance index:

d(a, b) =

{

0 if qj(a) ≥ qj(b) ∀j
1
δ
maxj[qj(b)− qj(a)] otherwise

where

δ = max
c,d,j
[qj(c)− qj(d)]

If there are qualitative criteria the disconcordance set for each criterionDj is a set
of ordered pairs(xj, yj) such that ifqj(a) = xj andqj(b) = yj then outrankingb by
a is refused.

a outranksb (aSb) if:

{

c(a, b) ≥ ĉ

d(a, b) ≤ d̂

or

{

c(a, b) ≥ ĉ
(qj(a), qj(b)) /∈ Dj ∀j

where:

ĉ - concordance threshold
d̂ - disconcordance threshold.
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• Electre II - multicriteria rank of alternatives (actions)

a strongly outranksb (aSF b, strong outranking relation) if:






c(a, b) ≥ ĉ1
∑

j:qj(a)>qj(b)
wj >

∑

j:qj(a)<qj(b)pj
wj

(qj(a), qj(b)) /∈ Dj ∀j

• Electre III - multicriteria rank of alternatives (actions).
This method uses a pseudo-criterion (q,h,p) - a triplet of real valued functions rep-
resenting preferences






q(a) > q(b) + p(q(b)) iff a is strictly preferred to b
q(b) + p(q(b)) ≥ q(a) > q(b) + h(g(b)) iff a is weakly preferred to b
a is indifferent to b iff there is no preference between them

where functions

h() - is a indifference thresholds
p() - is a preference thresholds

The underlying preference structure is called a pseudo order.

Concordance index:

c(a, b) =
1

P

n
∑

j=1

wjcj(a, b) where P =
n
∑

j=1

wj

where

cj(a, b)







1 if qj(a) + hj(qj(a)) ≥ qj(b)
0 if qj(a) + pj(qj(a)) ≥ qj(b)
linear between the two

The discordance index is defined by

Dj(a, b)







0 if qj(b) ≤ hj(gj(a)) + qj(gj(a))
1 if qj(b) ≥ qj(a) + vj(gj(a))
linear between the two

wherevj(qj(a)) is a veto threshold. this is a function ofqj(a) for each criterion
such that any credibility for the outranking ofb by a is refused if

qj(b) ≥ qj(a) + vj(qj(a))

We finish this short overview of the outranking methods with a brief summary of the
Promethee method. This method uses (as the Electre method) as the starting point the
decision matrix of evaluations of alternatives against the given set of criteria. The next
step in the Promethee method is the definition of a preference function for each criterion.
Thus rather than the specification of indifference and preference thresholds (as used in
the Electre III) theintensitiesof preferences for pairs of alternatives have to be defined as
a function of the differences between the corresponding criteria values.
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4.2.3 Dominance relation

A simple but very useful basic concept in multicriteria analysis is a partial order of the
Pareto type in the criteria space defined by the following dominance relations:

qa ≻ q b ⇐⇒ q b ∈ (qa +D \ {0}) (10)

qa � q b ⇐⇒ q b ∈ (qa +D) (11)

whereD is positive cone in the criteria space. The dominance relations can be used
for defining Pareto solutions, e.g.,q b is Pareto optimal (or weakly Pareto optimal), if
there exists noqa that dominatesq b in the sense of the relation (10) (or relation (11),
respectively).

More detailed discussion of dominance relations can be found in [87].

4.3 Ranking

Ranking deals with a given setA = {a1, a2, . . . , am} ofm alternatives, each characterized
by n criteriac1, c2, . . . cn. Ranking, see e.g., [6] provides order the alternatives from the
best to the worst. This means that the complete and transitive relation should be built
on A. However, this is not always possible, and often it is a difficult task. Therefore,
some techniques assumes that some of the alternatives are incomparable. In simple cases
an aggregation function is definedV (c1(ai), c2(ai), . . . , cn(ai)) and based on values of
this function alternatives are rank-ordered.

4.4 Methods using scalarizing function

Achievement Scalarizing (value) Functions (ASF) map theRn (n-dimensional space of
criteria values) intoR1, which induces a complete order of solutions.6 Moreover, a differ-
ence between ASF values of two solutions may be interpreted as a similarity (in the sense
of a quality of solution) measure. Therefore, solutions which can only be partially ordered
(e.g., by the dominance relation, see Section 4.2.3) in the n-dimensional criteria space can
be ordered by using an ASF, and the best solution is guaranteed to be a Pareto-efficient
solution.

Parameters of a selected ASF are used to represent preferences of the user. There-
fore a selection of the type of ASF implicitly determines the way in which the user can
specify his/her preferences. The two most widely used ASFs are discussed in detail in
Sections 4.4.1, and 4.4.2, respectively.

The key problem here is a selection of a particular Pareto-optimal solution out of typ-
ically large set of such solutions. This selection is implicitly determined by a conversion
of a multi-objective problem into a parametric single-objective problem. In the reference
point approach the concept of Achievement Scalarizing Function (ASF) has been intro-
duced by Wierzbicki [78].

6More exactly two (or more) solutions may have an equal value of an ASF. In such caseswe consider
them equally good/bad.
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4.4.1 Weighted Sum (WS) approach

The oldest, and still one of most popular multicriteria analysis method uses (for linear
models) ASF in the form:

n
∑

i=1

wivi(qi) (12)

wheren denotes number of criteria,qi value of i-th criterion,wi weighting coefficient,
andvi a linear transformation.7

Typically the following conditions are set:
• for weighting coefficients:

n
∑

i=1

wi = β, wi ≥ 0, i = 1, 2, . . . , n (13)

whereβ is usually equal to either 1 or 100.
• for linear transformation:

0 ≤ vi(qi) ≤ γ i = 1, 2, . . . , n (14)

whereγ is usually equal to either 1 or 100.
Actually β andγ can be set to any positive number, thus their choice is a matter of a
convenience, or a desired interpretation (e.g., as fractions or percentages).

Weights have a clear interpretation in terms of a utility functionU(q) which trans-
forms the multicriteria problem (defined inℜn) into ℜ1. Namely, if we denote a ratio of
partial derivatives (in respect to two criteria) of the utility function by:

λi =
∂U

∂qi
/
∂U

∂q1
(15)

then the weighting coefficients are equal to normalizedλi, i.e.

wi =
λi
∑n
i λi

(16)

Thus weights have a clear interpretation. Namely, they are equal to the corresponding
components of the utility function gradient, and thus to the change of the corresponding
criterion value, if the function changes its value along its gradient.

Clearly, optimization of a utility function follows its gradient. Therefore, weights have
also another obvious interpretation: namely, by accepting a certain ratio of two weights
the user implicitly accepts that the proportion of changes of the corresponding criteria
values are also equal to this ratio. This is equivalent to a full compensation of a change
of one criterion by the corresponding change of the other criterion in the proportion de-
termined by the ratio of the two criteria weights. Such a ratio is often referred to as a
trade-off coefficient between the corresponding criteria.

Weights are typically defined in one of two ways:
• Values specified by the user, usually through a user-friendly interface, which provides

on-line normalization of weights, and displays the resulting weights as percentages (of
the sum of weights assumed to be equal to 1).

7Some of the WS methods do not use any transformations of criteria values.
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• Indirect specification by a user who defines a relative importance of the correspond-
ing criterion, typically on scale with seven degrees.8 An integer number, sayri ∈
{1, 2, ..., 7}, is associated withi-th importance level, and the weightswi are defined

wi =
ri
∑

ri

This approach is based on the psychological aspect of human ability, namely that hu-
mans easier express preferences on a nominal than on a cardinal scale.

From a mathematical point of view weights can also be interpreted as a transformation
of measurement units of the corresponding criteria.

Application of the ASF in the form of (12) implies that the user assumes constant
(over the whole range of criteria values) trade-offs between criteria. Therefore, the main
problem with using the original idea of weights is due to the fact that utility functions are
typically highly nonlinear, and thus computed weights are valid only locally.

The linear transformationsvi(qi) have been introduced to simplify the process of de-
termining weightswi, especially for criteria having multimodal value distributions.9 How-
ever, introduction of linear transformation does not really solve the problem with handling
criteria having a large range of values. Although weights are formally easier to be deter-
mined (because for the transformed criteria the weights are applied to quantities having
the same range of values) by a transformation one loses information about actual units of
the criteria, and thus the original interpretation of weights.

Summing-up: the ASF in the form of (12) transforms the original problem (defined
in ℜn in actual units corresponding to the criteria) into a problem inℜ1 with optional
transformation of the criteria values into a relative scale.

Application of the WS approach to analysis of Pareto sets is discussed in Section 6.2.1.
A more detailed discussion about the definition and interpretation of weights is available
e.g., in [70].

4.4.2 Reference Point (RFP) methods

The selection of a particular Pareto-optimal point is determined by the definition of the
ASF defined differently for various reference point (RFP) methods. We introduce the
RFP method using one of the simplest approaches, i.e., the aspiration-led analysis which
is built on the concept of aspiration point. This approach uses ASF in the form:

s(q, q̄, w) = min
1≤i≤n

{wi(qi − q̄i)}+ ǫ
n
∑

i=1

wi(qi − q̄i) (17)

whereq(x) ∈ Rn is a vector of criteria,x ∈ X0 are variables defined by the core model,
X0 is set of feasible solutions implicitly defined by the core model,q̄ ∈ Rn is an aspiration

8The number of those degrees (seven) results from a series of surveys performed by psychologists, see
e.g., [52] which revealed that this may be an average limit of accuracy of human judgment in a single
dimensional space.

9Roughly speaking, multimodal distributions are characterized by values split into several disjoint sub-
sets separated by empty subsets covering large ranges of values. Consider e.g., two subsets of values: first
composed of positive values smaller than 100, and the second composed of values larger than 100000. Typ-
ical statistical characteristics of sets of values may not be adequate. For example, the value of average is
often far away from the closest value of a member of the set.
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point, wi > 0 are scaling coefficients (see the comment below) andǫ is a given small
positive number. Maximization of (17) forx ∈ X0 generates a properly efficient solution
with the trade-off coefficients (as recomputed in terms ofui defined below) smaller than
(1 + 1/ǫ). For a non-attainablēq, the resulting Pareto-optimal solution is the nearest –
in the sense of a Chebyshev weighted norm – to the specified aspiration levelq̄. If q̄
is attainable, then the Pareto-optimal solution is uniformly better. Setting a value ofǫ
is itself a trade-off between getting an overly restricted set of properly Pareto-optimal
solutions or an overly wide set that is practically equivalent to weakly Pareto-optimal
optimal solutions. Assuming theǫ parameter to be of a technical nature, the selection of
efficient solutions is controlled by the two vector parameters:q̄ andw.

There is a common agreement that the aspiration point is a very good controlling
parameter for examining a Pareto-optimal set. Much less attention is given to the problem
of defining the scaling coefficientsw. Note that the coefficientsw should not be confused
with the weights used by some methods for conversion of a multi-criteria problem into
a single-criterion problem with a weighted sum of original criteria. In the function (17),
coefficientsw play a different role than in a weighted sum of criteria.

In order to provide users with more intuitive way of specification of the ASF a concept
of Component Achievement Function (CAF) was introduced, see [21]. CAF are an ex-
tension of the concept of membership functions of the fuzzy sets, and thus have a similar
intuitive interpretation. The ASF for the corresponding implementations is defined by:

S(q, q̄, q) = min
1≤i≤n

ui(qi, q̄i, qi) + ǫ
n
∑

i=1

ui(qi, q̄i, qi) (18)

whereq̄, q are vectors (composed ofq̄i, qi, respectively) of aspiration and reservation lev-
els respectively, andui(qi, q̄i, qi) are the corresponding Component Achievement Func-
tions, which can be simply interpreted as nonlinear monotone transformations ofqi taking
into account the information represented byq̄i andq

i
. Maximization of the function (18)

over the set of feasible solutionsX0 defined by the corresponding core model provides a
properly Pareto-optimal solution with the properties discussed above for the function (17).

1

U A A 1

P 1
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R N

S

q i

u i

Figure 7: Component achievement scalarizing function.
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Various graphical user interfaces can be used for specification of aspiration and reser-
vation levels, as well as interpretation of solutions. Thus CAF provide an easy and natural
way for specification the desired values of each criterion by a corresponding aspiration
level, and to scale trade-offs between criteria by corresponding pairs of aspiration and
reservation values.10 Typically, initial aspiration values are far from being attainable, and
the user has to modify her/his preferences, which are expressed by pairs of aspiration and
reservation levels, in order to achieve solutions that are not too far away from the realistic
goals.

A graphical presentation of CAF not only supports users in specification of prefer-
ences, but also helps them in interpreting the solutions. This analysis is done by projec-
tions of multidimensional criteria space into two dimensional spaces composed for each
criterion of its values and the degree of satisfaction of meeting preferences expressed by
aspiration and reservation levels.

Two examples of CAFs are illustrated in Fig. 7. The first CAF is defined by four
points, with values of the criterion,U, A1, R, and N, corresponding to the values of
utopia, aspiration, reservation, and nadir, respectively. The second CAF is defined by
a modification of the first CAF, where the previously defined aspiration level A1 was
moved to the point A and two more points – P1 and P2 – were interactively defined. Note
that the utopia and nadir points are computed automatically, therefore the user has to
specify only two values (aspiration and reservation), and may optionally specify his/her
preferences for values between the aspiration and reservation levels.

Values of CAF have a very easy and intuitive interpretation in terms of the degree of
satisfaction from the corresponding value of the criterion. Values of 1 and 0 indicate that
the value of the criterion exactly meets the aspiration and reservation values, respectively.
Values of CAF between 0 and 1 can be interpreted as the degree ofgoodnessof the
criterion value, i.e., to what extent this value is close to the aspiration level and faraway
from the reservation level. These interpretations correspond to the interpretation of the
membership function of the Fuzzy Sets, which is discussed in [22].

By using an interactive tool for specification of the CAF illustrated in Fig. 7 (and
analysis of the corresponding solutions) such as MCMA [22] a user can analyze various
parts of a Pareto set that best correspond to various preferences for trade-offs between
criteria. These preferences are typically different for various stages of analysis, and are
often modified substantially during the learning process, when aspiration and reservation
levels for criteria values are confronted with the attainable solutions, which correspond
best to the aspiration and reservation levels. In such an interactive learning process, a user
gradually comes to recognize attainable goals that correspond best to his/her trade-offs.

Application of the RFP approach to analysis of Pareto sets is discussed in Sec-
tion 6.2.2. More detailed description of the approach is available in [22].

4.5 Comments

We have outlined above the most representative methods for multicriteria problem anal-
ysis. Now we comment on the applicability of each of these methods to the multicriteria
analysis problem of the NEEDS project defined in [48]. Comments are rather short for

10Note that this approach to scaling does not require any scaling of criteria values; therefore the user
provides his/her preferences for aspiration/reservation levels expressed in original units of the criteria value.
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the methods that are clearly not suitable for the NEEDS project, and are more detailed
for the two methods that can be either adapted or combined for supporting multicriteria
analysis of the problem specified in [48].

AHP:
• Advantages: The main reasons for popularity of AHP method are its simplicity,

flexibility, intuitive and its ability to handle quantitative and qualitative criteria in
the same framework [38].
• Disadvantages: In this method the concept of relative importance is applied,

which means that the user should provide estimateswi/wj, wherewi is an value
of criterioni andwj is an value for criterionj. The procedure for determination
the criteria weights in AHP independently of the units of single criterion variables
is a main disadvantage of the method [3]. Another major disadvantage is the so-
called rank-reversal.11 Finally, the requirement of pairwise comparisons makes
AHP not impracticable for problems with more than several alternatives. Thus
AHP is not applicable to the problem described in [48].

Outranking methods:
• Advantages: The method is widely used and have strong theoretical background.
• Disadvantages: The pairwise comparison have to be done at the first stage of anal-

ysis which limits the application of the method to problems with small number of
alternatives. A major methodological problem is the rank reversal, see e.g., [77]
for a discussion of this problem in the ELECTRE II and ELECTRE III methods.
Moreover, the method is considered to be difficult to understand, especially by
users without mathematical background.

Multi-attribute Value Measurement Theory:
• Advantages: After a value function is defined, the alternatives are automatically

rank ordered.
• Disadvantages: The difficulties in defining the value function which is based on

a rather reach inter-criteria information to be provided by the user. There are also
methodological issues related to a proper specification of a value function. For
example, the US Nuclear regulatory commission examined [27] application of
additive value functions; ten of thirteen applications of additive value functions
violated theoretical requirements such as avoiding use of ordinal scales for single
attribute value functions. Eight of thirteen violated the requirement for preference
independence of attributes, and none acknowledged existence of any requirements
for validity.

Weighted sum approach:
• Advantages:

– It is one of the most popular method for analyzing multicriteria problems, and
thus it is also widely applied to various energy problems, especially for energy
planning problems.

– Most users consider specification of preferences in terms of weights to be sim-
ple, intuitive, and robust.

11The situation in which after removing from the analysis an alternative the ranking of the remaining
alternatives changes.
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– It can be applied for problems with large number of alternatives as well as for a
hierarchy of criteria.

– The method is not computationally intensive thus is suitable for interactive anal-
ysis.

– Scalarizing (weighted sum) function can be used for ranking the alternatives.
• Disadvantages: The approach uses a linear aggregation function, which implies

a number of consequences not recognized by the users who are not familiar with
the background of the method:
– It implies a full compensation between all criteria with trade-off rates constant

for the full range of criteria values; e.g., the trade-off between cost and quality is
the same for most expensive (and also high quality) alternatives as for cheapest
(and lowest quality) solutions.

– The method assumes full independence of criteria (dependent criteria are (par-
tially) double-counted).

– For dependent criteria the method may be contra-intuitive, i.e., increasing a
criterion weight does not necessarily improve its value, see e.g., [55].

– The method will not find Pareto-efficient alternatives that do not belong to the
convex hull of the Pareto-set.

– Weights are difficult to specify for problems with many criteria.
– Removing alternatives having extreme values of criteria are likely to result in

rank reversal.
– Ranking based on values of the scalarizing function is likely to be sensitive for

some ranges of weights, and insensitive for other ranges of weights. Moreover,
very alternatives with very different compositions of criteria values may have
similar values of the scalarizing function, thus will be evaluated/rank as similar.

– Most approaches perform transformation of criteria values (say to the
range [0, 100]). Thus the users have to specify preferences for criteria val-
ues on relative scales. This is especially difficult for criteria having multimodal
distributions of values.

– Qualitative criteria have to be mapped into a quantitative scale.

Reference point method:
• Advantages:

– The basic way for preference specification is to specify reservation and aspira-
tion criterion value, i.e., values that the user wants to avoid and achieve, respec-
tively. Thus the interpretation of the preference is the easiest possible.

– The reservation/aspiration values imply trade-offs between criteria for the cri-
teria ranges between the corresponding reservation/aspiration value. Thus the
interpretation is the same as the interpretation of weights, but the trade-offs are
different for values outside these ranges.

– Specification of preferences in terms of values of the criteria; no scaling of cri-
teria values is desired thus the method is immune to the rank reversal problem.

– The component scalarizing functions (defined for each criterion) have interpre-
tation similar to the membership function of fuzzy sets.

– The scalarizing function assures that the selected Pareto-solution is the best in
respect to the criterion which has worst (in terms of its reservation/aspiration)
value.
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– The method can be applied for problems with large number of alternatives.
– It properly handles dependent criteria, and criteria with multimodal value dis-

tributions.
– The method is not computationally intensive thus is suitable for interactive anal-

ysis.
– Scalarizing function can be used for ranking the alternatives.
• Disadvantages:

– The method is less popular than other methods for multicriteria analysis of al-
ternatives.

– Preferences are specified for each criterion separately; this supports an easy and
precise definition of preferences but less experienced users may have problems
with correct interpretation of such preferences in terms of trade-offs between
criteria.

– Specification of preferences requires more information than required for the
weighted criteria approach.

– Modification of preferences aimed at examining certain regions of Pareto-sets
might be difficult for problems with many criteria.

– The known implementations do not deal with hierarchical criteria structures.
– Qualitative criteria have to be mapped into a quantitative scale.
– Most known implementations have been done for continuous or mixed-integer

problems. Although such implementations can be adapted for analysis of alter-
natives, a new interface and additional data processing should be developed for
an efficient analysis of discrete problems with a large number criteria.

5 Structures of criteria and alternatives

5.1 Hierarchical structure of criteria

The term hierarchy has different meanings. We can distinguish, see e.g., [35]:

• Order hierarchy: In this case hierarchy is equivalent to an ordering induced by the
values of a variable defined on a set of elements. Order hierarchy does not refer to
relationships and interactions among objects that comprise the hierarchy.

• Inclusion hierarchy: Recursive organization of objects. In this case an object can
be treated as a container that contains other objects.

• Control hierarchy: In this context, hierarchy refers to a control system in which
every entity has an assigned rank. Entities with a specified rank are entitled to give
orders to entities with lower rank. It should be noted that entities that comprise a
control hierarchy do not form an inclusion hierarchy.

• Level hierarchy: In this hierarchy entities exist on different levels. Entities at a
given level may, through their interactions, construct and maintain entities at higher
levels, and higher level entities may be composed of lower level entities. In this case
we haveupward causation. Through upward causations, level hierarchies may form
inclusion hierarchies. Level hierarchies can be also characterized bydownward
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causation: incorporation into a higher level entity can change the properties and
interaction modalities of lower level entities.

The hierarchy can be defined in the following way [63]:
LetH be a finite partially ordered set with the largest element b.H is a hierarchy if it

satisfies the following conditions:

1. There is a partition ofH into setsLk, k = 1, . . . , h, whereL1 = {b}.

2. x ∈ Lk impliesx− ⊂ Lk+1 k = 1, . . . , h− 1.

3. x ∈ Lk impliesx+ ⊂ Lk−1 k = 1, . . . , h.

where setsx− andx+ are defined using the notion of covering12 as follows:

x− = {y|x covers y} (19)

x+ = {y|y coversx} (20)

In the context of multicriteria decision analysis we can consider the hierarchy of cri-
teria (level hierarchy and order hierarchy) and the hierarchy of alternatives (order hierar-
chy).

The hierarchy of criteria can be considered in the following ways:

• Hierarchy of the criteria comes from the structuring of the problem and it is used
only for a better understanding of the problem, but in a mathematical model of pref-
erences only the lower level of hierarchy is used. French [17] provides an example
of this approach.

• Each level of the hierarchy contributes to a preferential model. The upper level of
hierarchies influence the lower one.

• Each level of the hierarchy contributes to a preferential model. The lower level of
hierarchies influence the upper one.

• Dynamic hierarchy. In this new approach one considers two hierarchies. The first
one which has been built during the structuring of the decision problem. The second
one is building dynamically during the problem analysis. The first hierarchy is used
only for communicating the decision problem to the people. The second one is
used actively in the analysis process. The analyst or decision maker selects the
two tree as the most important criteria, that may belong to the different branches of
the first hierarchy, and focuses his analysis on this most important criteria. In the
next steps he/she extends the number of criteria which are analyzed. It is assumed
that in the next steps the less important criteria are selected. If in the process of
analysis he/she recognizes that a selected criterion should be more important, the
next iteration of analysis can be done. What is important here is that the importance
of the criteria is based on the subjective evaluation of the user and do not must be
expressed quantitatively.

12x coversy if there is noz such thatx ≤ z andz ≤ y.
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In modeling of decision problems it is useful to build the hierarchy of the criteria.
However, it significantly complicates the process of building the mathematical model of
preferences. Nevertheless, it is definitely important from the point of view of having a
better insight into the problem being analyzed. The basic question is how to incorporate
the hierarchy into the model of preferences.

There are methods that build a preference function in a structured way. The alter-
natives can be characterized by a set of attributes or criteria. The criteria to evaluate
alternatives have various scales. The appropriate transformation of criteria values into
preferences is one of the most important issues that form the foundation for further anal-
ysis. It is necessary to consider units. Assigning the values of the criteria to alternatives
can be compared to the process of measurement which associates a numerical value with
the object. It can be represented by a functionf : A → C, also called scale. Some of
the common scales are numerical, ordinal, cardinal (ratio, interval). If it is a numerical
scale having the lowest value does not always mean that it is the worst alternative e.g., the
optimal temperature of the body is around 36.7, therefore we often need a transformation
of real measurement into a preference scalevi(ci).

Assuming that we have a well defined set of criteria, then the value function should
be built. In building such a function the decision-maker, the stakeholder or the analyst
should provide inter-criteria preference information.

The value function should have the following properties:

(c1(Ak), . . . , cn(Ak)) � (c1(Al)), . . . , cn(Al)) (21)

⇔ (22)

v(v1(c1(Ak)), . . . , vn(cn(Ak))) ≥ v(v1(c1(Al)), . . . , vn(cn(Al))) (23)

There are various approaches to building functionv(·). One of them is an additive
value function:

c(Ak) � c(Al)⇔
n
∑

i=1

vi(ci(Ak) ≥
n
∑

i=1

vi(ci(Al)) (24)

The above function is defined under the following conditions:13

• weak ordering is defined;
• alternativesA1, . . . , Am are mutually preferentially independent;
• the weaker solvability (known also as restricted solvability) condition is accepted;
• Archimedian condition (every strictly bounded sequence is finite) holds;
• all criteria are essential, i.e., each has some effect on preference.

The most popular is linear value function:

v(c) =
n
∑

i=1

wi ∗ vi(ci) (25)

For a hierarchy of criteria the value function should still have the property (28). How-
ever, it should depend on some parameters specified on the levels of the hierarchy. More-
over we can have upward and downward causation.

13See [17] for details.



J. Granat, M. Makowski - 25 - Multicriteria methodology for NEEDS . . .

v(c(A)) = v(v11(c11)), . . . , vih(cih))) for , i ∈ NCh, h ∈ HL (26)

One of the methods that deal with the hierarchy of criteria is Multi-attribute Value Tree
Analysis. In this approach the attributes are organized as a value tree [58, 59, 60, 64, 66],
also called an objectives hierarchy or criteria hierarchy.

In this case the value function:

v(Ak) =
M
∑

i=1

∑

i∈LI

wivi(ci(Ak)) (27)

0,32

0,2 0,8 0,1 0,10,8

0,6 0,4

0,12 0,48 0,04 0,04

Figure 8: Hierarchical weighting

In the hierarchical weighting approach the analyst specifies weights for each hierar-
chical level separately, and then multiplies down to get the corresponding lower level
weights, see Figure 8.

0,1

0,2 0,10,1 0,10,5

0,3 0,7

0,2 0,1 0,5 0,1

Figure 9: Non-hierarchical weighting

In the non-hierarchical weighting approach the analyst specifies simultaneously
weights only for the lowest level. The weight of criteria at the upper level is by defi-
nition equal to the sum of the attribute weights on the lower level, see Figure 9.

We should also mention that the function decomposition method develops a hierarchi-
cal structure from class-labeled data [5]. There are also approaches to treat incomplete
information within the framework of hierarchical structures, see e.g., [2, 36].
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Let us show the main difficulties on the following, very simple, example. We have
three levels of hierarchy; the main goalG, the two subgoalsSG1 andSG2 , four criteria
on the lower levelc1, c2, c3, c4 and three alternatives to evaluateA1, A2, A3. Let us assume
that on the lower level we have the values of criteria shown in Table 1:

c1 c2 c3 c4
A1 7 Euro 200 m2 good 5km
A2 5 Euro 1000 m2 very good 10km
A3 1 Euro 500 m2 bad 1km

Table 1: The values of the criteria.

A3

G

G1 G2

c1 c2 c3 c4

5 Euro

1 Euro 500 m2 bad

7 Euro 200 m2 A1good

1000 m2 10 km 

5 km

1 km

very
good A2

Figure 10: The structure of the problem.

Let us denote the set of all alternatives in the example above asA = {A1, A2, A3}
and� the decision maker’s weak preference. Thenv(·) is an ordinal value function
representing these preferences ifv(·) is a real value function onA such that

v(Ai) ≥ v(Aj)⇔ Ai � Aj (28)

It should be stressed that ordinal value functionv(·) encodes only the preference in-
formation; addition, subtraction, multiplication and division is meaningless. So, thev(·)
does not encode the strength of the preference. If the functionvm(·) reflects the strength
of preferences e.g. encoding that the decision maker prefers moreA1 toA2 thenA2 toA3
and more generalv(·) should have the properties thatv(Ai)− v(Aj) ≥ v(Ak)− v(Al). if
the functionv(·) is defined as followsv(A1) = 3, v(A2) = 1, v(A3) = 2 then we can say
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thatA2 ≺ A3 ≺ A1. However, the identification of functionv(·) is very challenging task
and in many practical problems it is impossible to do it properly.

Assume that:

v1(c1) = c1, v2(c2) = c2, v3(c3) ∈ {1, 2, 3}, v4(c4) = c4. (29)

The aggregation function forc1 andc2 is defined by:

vG1(v1, v2) (30)

and forc3 andc4 by:
vG2(v3, v4). (31)

Then we need to definevG(vG1, vG2). The main problems with such a definition are:
•What is an interpretation of the valuesvG1 andvG2?
• Are the valuesvG1 andvG2 comparable?
• How is the trade-off betweenvG1 andvG2 interpreted?

Of course, one can use the weights as suggested in the Value Tree Analysis but the
difficulties in specification and interpretation of the weights will remain.

5.2 Preference information about alternatives

Consider a set of alternativesA = {Am,m ∈ M} and a preference relationR(P) between
the alternatives:

Ai R(P) Aj i ∈M, j ∈M (32)

The preference relationR(P) induces a complete or partial order of all alternatives.
Relationships between alternatives and the induced order might be represented by graphs.
We can distinguish the following cases:

The order of alternatives by the value difference function:This is the result of ag-
gregation of preferences that are the most preferred by the decision makers. There
is information about the order of alternatives as well as about the distance between
alternatives corresponding to the specified preferences, see Figure 11a. Although it
is the most preferred result in many decision situations it is difficult to build such a
value difference function.

The order of alternatives by the value function: The value function may by used for
ordering the alternatives. However, it should be stressed that such a function cannot
be used for providing information about the strength of the preferences, and it is
typically very difficult to identify it, see Figure 11b.

Partially ordered sets: If the analyst cannot build any value function the partial orders
might be applied. There is a method for multicriteria ranking built on the theory
of partially ordered sets (called posets) [34]. In this method the alternatives can
be only partially ranked because any two alternatives are only comparable if one
of them has better values than all the other criteria; otherwise the alternatives are
not comparable. The relationships between alternatives can be presented by the
so-called Hasse-diagrams illustrated in Figure 12. In this case we can distinguish
the hierarchy level and, with respect to preferences, if the alternative is in the upper
hierarchy it is better than alternatives in the lower level of hierarchies.
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Figure 11: Order of alternatives with (left graph) and without (right graph) a measure of
distance between alternatives.
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Figure 12: Hasse diagram.
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Figure 13: Outranking relation represented by a graph
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Pairwise preference information: An example of this approach is an outranking rela-
tion. In [74] the outranking relation is represented by a graph of the type illustrated
in Figure 13. It can be observed that there is no order hierarchy. We cannot conclude
which alternative is the best or which is the worst.

Each of the orderings described above depends on preference information. It is neces-
sary to analyze the stability of the solution if the decision maker slightly changes his/her
preferences. The computerized method must be equipped with a tool for sensitivity anal-
ysis of the solutions.
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6 Multicriteria analysis

6.1 Why multicriteria analysis is needed

Traditional OR approaches are based on the assumption that the best solution of a deci-
sion problem is the one that maximizes a selected criterion. However, this assumption
is true only for a specific class of well structured problems. More than 50 years ago Si-
mon [69] demonstrated that such an assumption is wrong for most actual decision-making
problems. Recent studies, see e.g., [68] confirm Simon’s results.

A treatment of a decision-making problem as a single criterion optimization seems to
be very attractive because it offers a unique solution based on solid mathematical foun-
dations; especially, if one considers that an abundant choice (even among discrete alter-
natives) typically creates problems, such as dissatisfaction or regret, see [67]. In reality,
however, almost all actual decision problems have a large (or infinite) number of solu-
tions typically evaluated with the help of conflicting criteria. Pareto-optimal solutions are
not comparable in a mathematical programming sense, i.e., one can not formally decide
which is better than the other. Thus, a choice of a solution depends on the preferences
of the user that implicitly defines the properties of the corresponding solution. Thus, in
order to find a Pareto-efficient solution that corresponds best to a user’s preferences one
needs to support the user in the analysis of trade-offs between criteria.

The (traditional) OR routine of representing a decision problem as a mathematical
programming problem in the form:

x̂ = argmin
x∈X0

P(q(x )), (33)

which provides optimal solution̂x .14 The optimality is defined in the sense of prefer-
ences defined for vector of criteriaq values of which are defined (either implicitly by a
model or explicitly by a set of alternatives) for eachx ∈ X0 (whereX0 denotes a set of
feasible/considered solutions).

However, this approach does not work in practice because there is no unique repre-
sentation of preferencesP(·) that can be specified in a robust way. Thus, optimization in
supporting decision-making for solving complex problems has quite a different role from
its function in some engineering applications (especially real-time control problems) or
in very early implementations of OR for solving well-structured military or production
planning problems.

This point has already been clearly made e.g., by Ackoff [1], and by Chapman [8],
who characterized the traditional way of using OR methods for solving problems as being
composed of the following five stages: describe the problem; formulate a model of the
problem; solve the model; test the solution; and implement the solution. The shortcom-
ings of such an approach are discussed in many other publications, see e.g., [51] and [87]
for more details, and have been the main driving force for developing methods of model
analysis that better serve the needs of decision makers.

14By x̂ we denote a solution of the corresponding problem. For problems of discrete alternative choice
x̂ denotes a selected alternative, andq(x̂ ) denotes a vector of criteria values corresponding tox̂ .
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6.2 Basic properties of multicriteria analysis

The purpose of multicriteria analysis is to examine various areas of the Pareto-set that
correspond to various preferencesP(·) Since Pareto-optimal solutions are not comparable
in a mathematical programming sense, each of them can therefore be consideredthe best,
and the choice depends on the preference of the user.
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Figure 14: Trade-offs between criteria.

To illustrate this point let us consider a Pareto set shown in Figure 14 for two mini-
mized criteria:
• q1, costs of emission reduction, and
• q2, a measure of a concentration of pollution,

Pareto-solutions are located on the thick line between the points marked byD and
E. Clearly,15 there are no solutions between the Pareto set and the Utopia pointU, and
any solution between the Pareto set and the Nadir pointN is not efficient.16 The solution
denoted byD has the lowest (with the Pareto-set of solutions) concentration of pollution
and is most expensive, and the solution denoted byE is the cheapest one but has the
highest concentration of pollution. Solutions along the Pareto-set have different trade-
offs between criteria.

A trade-off here is understood as the ratio of change of criteria values. For the illus-
trative case it can be interpreted e.g., asHow many Euros one needs to pay for decreasing
the concentration of pollution by one unit.Such a ratio is clearly related to the slope of
the corresponding segment of the Pareto set. For our example the higher the ratio, the

15By the definition of the Pareto set, see Section 4.1.1.
16Because there exist solutions which have better values of one criterion (with at least the same value of

the second criterion).
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flatter the corresponding segment, e.g., for solutions denoted byM, D, M decreasing the
pollution concentration is much more expensive than for solutionsC, K, L ; the cheapest
improvements can be obtained for solutions located on the segment that starts at pointE.

One should be aware that while the illustrative example presented in Figure 14 is easy
to analyze, actual cases are not, because real problems typically require analysis of several
criteria often having wide ranges of values, or multimodal distributions of values. A clear
illustration of Pareto sets is possible for only two criteria, and the comprehension of trade-
offs between more than two criteria over the whole Pareto set is practically impossible.
Therefore, one needs to exploit the analytical properties of mathematical representations
of preferences in order to support users interactively examining those areas of the Pareto
set that have trade-offs corresponding to the user preferences. In our example such ar-
eas can be identified by either ranges of cost, or ranges of pollution levels, or tradeoffs
between cost and pollution concentration.

The essence of multicriteria analysis is to support the user in specifying his/her pref-
erences (which are expressed in terms corresponding to the criteria); to analyze the corre-
sponding Pareto solution; and to redefine the preferences until the corresponding solution
will be consideredthe bestby the user. It must be stressed thatthe bestsolutions are not
only very different for different users, but often the same user changes her/his preferences
when analyzing the same problem after a few hours/days.

Thus the most important feature of any multicriteria analysis method should be to
respect the user’s sovereignty, i.e., to provide the user with full control of the analysis
process (e.g., by making sure that no solution is excluded from the analysis). It should
also support users in the specification of preferences in a way that is transparent and un-
derstandable for the user, who is typically unfamiliar with the mathematical representation
of his/her preferences in the underlying optimization problem solution, presented as the
Pareto-solution that corresponds to the specified preferences.

In the multicriteria analysis process each specification of preferences defines an in-
stance of the multicriteria problem which is converted into an auxiliary parametric single-
objective problem, the solution of which provides a Pareto-optimal point with the prop-
erties which correspond best to the specified preferences. Different methods apply dif-
ferent conversions, but all commonly known methods can be interpreted in terms of the
Achievement Scalarizing Function (ASF),17 see [41] for details. We provide below short
interpretations of the ASF corresponding to the weighted sum and the reference point
methods, outlined in Sections 4.4.1, and 4.4.2, respectively.

6.2.1 Exploring Pareto sets using the weighted sum method

Let us consider two examples of Pareto sets illustrated in Figure 15, with the same mean-
ing of criteria as above, i.e.
• q1, costs of emission reduction, and
• q2, a measure of a concentration of pollution,
and the corresponding weightsw1 andw2. The ASF is defined by

ASF = w1q1 + w2q2 (34)

17The concept of ASF was introduced by Wierzbicki see, e.g., [78, 87].
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Figure 15: Pareto sets analyzed by the weighted sum method.

For the analysis of two-criteria examples it is enough to consider the trade-off ratio be-
tween pollution concentration and costs:

α = w1/w2. (35)

Minimization of the ASF defined as:

ASF = αq1 + q2 (36)

will result in one of three solutions (denoted byA, B, C, respectively) depending on the
trade-off (represented by value ofα) between the two criteria. Typically, whenq1 attains
its best value (which corresponds to a minimum cost solution and the corresponding high
value of q2, the solution denoted by pointA) the value ofα will be rather high, indi-
cating a much lower weight attached to the environmental criterion than that of the cost
criterion, which implies an unwillingness to accept costs for the reduction of pollution.
Such preferences imply a largeα (which is equivalent to a steep slope of the correspond-
ing segment of the Pareto set) for the example presented in Figure 15. Actually, for any
value ofα larger thanα1, the resulting solution will be in pointA. Conversely, for a best
available purification technology theq2 will attain a minimum, which also corresponds to
the highest costs. In such a situationα will take a rather low value which corresponds
to a much higher weight attached to the environmental criterion and the selected solution
will be at pointC.

One should note that the weighted sum approach provides (for linear problems) only
Pareto-optimal solutions corresponding to verticesA, B, andC. For any weighting co-
efficients, vectorα with a slope flatter than the slope of the vectorα1, a solution will
be in the vertexA. For a weighting coefficient vector that is parallel toα1, there is no
unique solution,18 and a very small increase of the slope ofα will cause the solution to

18Therefore the corresponding problem will be degenerated and any solution from the edgeAB is op-
timal. Hence, the reported solution will differ, depending not only on the applied solver but also on the
parameters used for a solver, including the possibly defined starting point for optimization.
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jump to the vertexB. A further increase in the slope ofα will not cause any changes
in the Pareto solution until the slope becomes greater thanα2 (which will cause another
jump to the vertexC). This explains the experience known to everyone who has tried to
use weights to analyze multiple-criteria LP models, namely that, often, a relatively large
change of weights does not cause any changes to the solution, but for some combinations
of weights, a small modification creates in the same model a substantially (in practice the
distances between vertices are often large) different solution.

Third, a weighted aggregation of criteria does not allow us to find all Pareto solutions.
For a discrete model, a surface spanning the Pareto set (that is composed of points) is
usually non-convex. Therefore, for the example depicted in Figure 15 only some efficient
solutions, namely,A, D, G will be found while possibly many other efficient solutions
(e.g.,B, C, E, F) will never be found.

6.2.2 Exploring Pareto sets using the reference point method

Reference point methods (RFP) are based on the concept of the reference (aspiration)
point, which is composed of the desired values of all criteria. Typically such a point is
infeasible, thus one looks for a Pareto solution that is closest to this point. Obviously,
for the Utopia point (composed of best values of all criteria, and marked by the letter U
in Fig. 14), any of the Pareto-optimal points between points E and D can be obtained for
various definitions of the distance between the aspiration point U and the Pareto set. Thus,
for a unique selection of a Pareto solution one needs to define either another point (which
together with an aspiration point defines a direction) or an ASF that provides a unique
selection of solutions.

We illustrate the RFP method by outlining the Aspiration-Reservation Based Decision
Support (ARBDS) method, which requires a specification of two points, called aspiration
and reservation, composed of the most desired and the worst acceptable values of crite-
ria, respectively. A well implemented ARBDS does not impose any restrictions on the
feasibility of the aspiration nor of the reservation values. E.g., in Fig. 14 there are three
pairs of aspiration and reservation points, denoted by{A, R}, {A1, R1}, and{A2, R2},
respectively. The corresponding Pareto-solutions are marked by K, P, and C, respectively.
A selection of a pair like{A, R} (i.e., an unattainable aspiration and a feasible reserva-
tion level) is typical for users who have learned the properties of the problem and have
a good feeling about the attainable ranges of criteria values. Selection of an unattainable
reservation level (e.g.,{A1, R1}) is typical for early stages of the model analysis, when
unrealistic reservation levels are specified. However, specifications of attainable aspira-
tion levels (e.g., A2) are not as rare as one would expect; especially, if some criteria are
interdependent.

One should note that a direction in the criteria space implies trade-offs between the
corresponding criteria. Thus a specification of either:
• aspiration and reservation values, or
• an aspiration value and a direction, or
• a reservation value and a direction
implies trade-offs between criteria, which has exactly the same interpretation as weights
in the weighted sum (WS) methods.

Actual implementations of the RFP method, see, e.g., the MultiCriteria Model Anal-
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ysis (MCMA) [22], exploit ASF defined as:

ASF = min
1≤i≤n

ui(qi, q̄i, qi) + ǫ
n
∑

i=1

ui(qi, q̄i, qi) (37)

whereui(·) denotesi-th Component Achievement Function (CAF),qi, q̄i, qi, are the value,
aspiration and reservation levels ofi-th criterion, respectively;n is the number of crite-
ria, andǫ is a small positive number,̄q, q are vectors (composed of̄qi, qi, respectively)
of aspiration and reservation levels, respectively, andui(qi, q̄i, qi) are the corresponding
Component Achievement Functions (CAFs). A CAFui(·) can be simply interpreted as
a nonlinear monotone transformation of thei-th criterion valueqi, which reflects the de-
gree of satisfaction of the user.

ASF defined as (37) provides a very good way of expressing preferences for users
comfortable with considering the problem in terms of satisfaction levels for each criterion
separately. Such ASFs may be difficult to interpret in terms of trade-offs between criteria,
especially for inexperienced users. However, one can adapt the RFP method to the discrete
alternative choice by either:
• Providing additional (to the above discussed interpretation of the ASF) information,

e.g., about trade-offs between criteria corresponding to the ASF, or about trade-offs
leading to neighboring solutions.
• Using ASF defined by a reservation (or by an aspiration) point and a direction, the latter

implicitly defined by explicit specification of trade-offs between criteria.

6.3 Similarities and differences between the weighted sum and the
reference point methods

The two most widely used ASFs are discussed in detail in Sections 4.4.1, and 4.4.2,
respectively. The difference between these two methods is due to the form of the corre-
sponding ASFs. The ASF of the weighted sum (WS) method implies that the trade-offs
are valid everywhere while the ASF of the reference point (RFP) methods apply trade-offs
along the line defined by the aspiration (or reservation) point and the direction correspond-
ing to the trade-offs. Here we summarize the basic similarities and differences between
these two methods:
• Both methods are widely used, and are also easy to use for inexperienced users.
• The computational complexity of both methods is practically the same.
• The WS (Weighted Sum) is probably the most established multicriteria method while

the RFP (Reference Point) method was introduced about 20 years ago and is still less
popular than the WS approach.
• The WS method defines ASF as a weighted sum of criteria, which implies a full com-

pensation between criteria with substitution rates that are constant for the full range of
criteria values.
• The RFP method defines ASF as a nonlinear operator on Components Achievement

Functions (CAF) defined for each criterion by a specification of aspiration and reser-
vation levels (see Section 4.1.1); this implies that always the worst (in the sense of
aspiration/reservation values) criterion is improved first.
• The WS uses ASF parameters (weights) specified for the whole ranges of criteria values,

which imply constant trade-offs between criteria. The parameters of the ASF of the RFP
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method are defined implicitly for at least three subsets of values of each criterion, thus
the trade-offs between criteria change.
• The WS method provides solutions that optimize the corresponding ASF on the given

set of feasible solutions. Solutions in the RFP approach optimize the corresponding ASF
along the line that crosses the selected reference point and has the direction defined by
the parameters of the ASF.
• The WS requires scaling/normalization of criteria and weights values (typically to the

[0,1] or [0,100] interval); the weights have an interpretation of trade-off coefficients
between values of normalized criteria. The RFP uses original values of criteria, and the
CAF for each criterion has an interpretation similar to the Membership Function of the
Fuzzy Sets.
• The WS method is likely to cause the so-called ”rank-reversal” problem (i.e., a change

of ranking after removing an alternative from consideration). The RFP method is not
exposed to such problems.
• Both methods are difficult to use for problems having multimodal distributions of cri-

teria values, especially if the ranges of values differ by several orders of magnitude.
However, customized solutions for such cases can be implemented.

6.3.1 Methodological roots of the WS and RFP methods

There are essentially two main methods of parameterizing Pareto-optimal decisions:
• By using weighting coefficients, i.e., specifying how much relative importance we as-

sign to various objectives. Mathematically, the method corresponds to, e.g., maximizing
the weighted sum of all objective functions over the set of admissible decisions. When
the weighting coefficients are all positive, the maximization of the weighted sum results
in Pareto-optimal decisions. However, more important is the issue of whether we could
produce all Pareto-optimal decisions (which is called a complete parametric characteri-
zation of the Pareto frontier). When using the maximization of a weighted sum, we can
sometimes produce all Pareto-optimal decisions and outcomes by changing weighting
coefficients, but only under restrictive assumptions – e.g., the set of attainable objectives
must be convex (or even strictly convex).
• By using goals or reference objectives in decision space, i.e., specifying what objective

outcomes we would like to achieve. This method might work in a much more general
setting than the method of using weighting coefficients, but it is more complicated math-
ematically. At first glance, an appealing mathematical method would be to minimize a
distance measure or simply a norm of the difference between the goal and the attainable
objective vector. Such techniques of norm minimization were first used historically, ei-
ther in the displaced ideal method of [90] or in the broad family of goal programming
techniques starting with the work of [10]. However, simple examples show that norm
minimization might produce decisions that are not Pareto-optimal, thus additional as-
sumptions are necessary. They amount, generally, to limiting the specification of goals
to values that are highly unrealistic.19 This motivated the development of a different
approach – the reference point approach – that uses reference objectives that can be

19The specification of attainable goals results in finding solutions that are not Pareto-efficient. Since
attainable goals are often difficult to determine, to be on the safe side userstypically specify unrealistic
goals.
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realistic, but avoids norm minimization and instead uses more complicated functions to
be optimized (usually, maximized), called order-consistent achievement functions.

Thus, the reference point methodology could be considered as a generalization of goal
programming, aiming at using arbitrary (not only unrealistic) goals or reference objectives
and obtaining only efficient outcomes, at the cost of avoiding norm minimization and
replacing it by optimization of a more complicated function. We shall discuss now the
relations between these methods in more detail.

The main advantages of goal programming are related to the psychologically appeal-
ing idea that we can set a goal in objective space and try to come close to it. Coming
close to a goal suggests minimizing a distance measure (usually a norm of the difference)
between an attainable objective vector (decision outcome) and the goal vector.

The basic disadvantage relates to the fact that this idea is mathematically inconsistent
with the concept of Pareto-optimality or efficiency. One of the basic requirements – a
general sufficient condition for efficiency – for a function to produce a Pareto-optimal or
vector-optimal outcome (when minimized or maximized) is an appropriate monotonic-
ity of this function. However, any distance measure is obviously not monotone when
its argument crosses zero. Therefore, distance minimization cannot, without additional
assumptions, result in Pareto-optimal solutions.

6.4 Pareto solutions and rankings

There is a common temptation among analysts and software designers to exploit informa-
tion gathered during the process of Pareto-set analysis for ranking of (possibly all) other
(than the one Pareto solution finally selected) solutions. In particular there is a common
belief that the values of ASF are a good measure of goodness for all solutions and thus
can be used for ordering the whole set of alternatives. One should be aware that ranking
based on the values of ASFs is likely to be different than a ranking which results from
a sequence ofm− 1 (wherem denotes the number of alternatives) multicriteria analysis
of sets of alternatives, where each analysis (except the first one) will be done on a set
composed of alternatives that will remain after removing the selected Pareto-optimal one.

The reason for not using the values of an ASF for ranking comes directly from the
meaning of ASF. That is, ASFs are designed for identifying a Pareto-optimal solution that
corresponds best to a given representation of the user preferences, and the user substan-
tially changes parameters of the used ASF during the analysis process. Thus there are at
least four mutually linked reasons for not using ASFs for ranking:
• The main reason for interactive (as opposed to a”one-shot”) multicriteria analysis is

the commonly known fact that not only inexpert users but also experienced analysts
substantially change preferences while learning about the problem properties during
its multicriteria analysis. Modifications of ASFs are driven by unsatisfactory trade-
offs between criteria values of a current solution; while ASFs are helpful for analyzing
Pareto-solutions they are not suitable for ranking all solutions.
• ASF provides a local (i.e., for the current state of analysis) representation of the user

preferences.
• Many (a typically infinite number of) ASFs correspond to a given Pareto solution (e,g.,

for the problem illustrated in Figure 15 on page 34 the solution at point D will be
selected for any weight with a value between the two values corresponding to the slopes
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of segments AD and DG, respectively).
• Often even small changes of ASF result in a rather qualitative change not only of the

corresponding solution but even bigger changes in ranking induced by ASFs, see Sec-
tion 6.2.1 for an example.

Another argument for avoiding making a ranking on the basis of ASF values comes
from a quick analysis of the discrete case example in Figure 15. Assume that the user has
selected the Pareto solution at point D (which corresponds to a compromise between costs
and the pollution concentration). If this solution was selected through ASF with a slope
close to the slope of segment DG, then the second (in terms of the values of the ASF)
solution would be an extreme (highest cost and best pollution level) solution at point G.
However, most likely the user would prefer as the second choice either the solution at
point C (slightly cheaper than solution D but with a higher pollution level) or at point E
(substantially more expensive but with a lower pollution concentration). Also solutions B
and F are likely to be more preferable than solution G.

One more illustration of the problems related to using ASFs for ranking of alternatives
is provided in Section 7.4.1.

7 Multicriteria methodology for the NEEDS project

7.1 Characteristics of the problem

We briefly restate here a summary of the basic characteristics of the NEEDS problem
(presented in detail in [48]) that the proposed multicriteria methodology must satisfy:
• The analysis is to be done in two stages. First, individual stakeholder preferences are

to be elicited in an interactive and iterative process during which each stakeholder will
make individual multicriteria analysis of the sets of technologies and scenarios. Second,
individual stakeholder preferences and the corresponding solutions will be analyzed for
group similarities and contrasts, and compared to a total cost ranking of the respective
alternatives.
• The sizes of alternative and of criteria sets exclude methods using pairwise comparison.
• The group of stakeholders is expected to be widely diversified, with correspondingly

different preferences.
• Both technology and scenario alternatives are expected to have at least some criteria

that exhibit multi-modal value distributions.

7.2 Why none of the standard MCDA is suitable

The characteristics of the NEEDS problem and our previous discussion of the relative
advantages and disadvantages of existing methods lead us to the conclusion that there is
no existing method that is suited to the requirements defined in [48]. This is true for three
primary reasons.

First, we need a two-stage analysis: (1) individual multicriteria analysis of alternatives
by up to approximately 1500 stakeholders from four countries, and (2) analysis of eight
sets (two sets of alternatives, each pair for four countries) of solutions corresponding to
individual preferences. Different methods should be implemented for each stage of the
analysis, and the methods must be capable of producing consistent and useful final results.
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Second, there is no existing multicriteria analysis method and the corresponding tool
that can be used for the analysis in the first stage. Most of the widely used methods for dis-
crete alternatives use pairwise comparisons. However, the numbers of the alternatives and
of the criteria in our problem implies that multicriteria analysis methods that use pairwise
comparisons of alternatives/criteria are not practical. Moreover, the two main existing
methods that can be used for problems with large numbers of alternatives/criteria (i.e., the
classical weighted sum and reference point approaches) have key disadvantages that have
been described earlier. These disadvantages include rank reversal and unsuitability for
hierarchical structure of criteria. Rank reversal is a problem for any method that requires
scaling/transformation of criteria values, including the classical weighted sum approach
(see Section 7.4.1). The classical reference point method does not deal with hierarchical
structure of criteria.

Third, the second stage of the analysis also requires a problem-specific method. Given
the number and the diversity of stakeholders (who will make only individual multicriteria
analysis) one needs rather advanced data analysis method for a comprehensive analysis
of the problem by the analysts who will analyze the stakeholder preferences and the cor-
responding solutions. An approach to such an analysis using a clustering and sensitivity
approach is suggested in Section 7.3.4.

The analytic team in WP9 believes that the strong possibility exists to develop a new
multicriteria analysis method that will fit the requirements of the NEEDS problem. Such
a method can be based on elements of the WS and RFP approaches. A draft of such
a method is outlined in Section 7.4.2 of this document and fulfills the modified objective
of WP9, which is to propose a multicriteria analysis methodology and its implementation.
In addition to developing a new multicriteria analysis methodology, it will be necessary to
develop an online (web-based) application for iterative elicitation of stakeholder prefer-
ences, with interactive use of a graphical presentation of preferences and the correspond-
ing solutions. An approach for such a method is outline in Section 7.3.3.

It is acknowledged that such new developments are beyond the original scope of the
planned NEEDS MCDA application, and will require some significant design and testing
within the time frame of the rest of the project. For these reasons, it is considered that an
existing MCDA method (or combination of methods) will be chosen, and this less theo-
retically suitable method may be used as an alternative or in parallel to the new proposed
methodology as seems necessary or useful.

The WP9 team has extensive experience in a diverse range of methods of model and
data analysis, and in adapting or developing the corresponding software tools, including
multicriteria analysis and web-based applications. This experience has led to our conclu-
sions that for the NEEDS problem a much better (than any existing) multicriteria analysis
method is possible, and that such a method can be developed within the available time
framework.

7.3 Proposed methodology

The structure of the multicriteria analysis process illustrated in Figure 16 is discussed in
detail in Section onUse casesof [49]. Here we discuss methodological issues related to
the following (interrelated but methodologically distinct) elements of the analysis process:
• Elicitation of stakeholder preferences, in Section 7.3.2.
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Figure 16: The main components of the process of analysis of alternatives

• Multicriteria analysis by individual stakeholders, in Section 7.3.3.
• Multicriteria analysis by analysts, in Section 7.3.4.

7.3.1 Preparation of the MC analysis

Before turning to the methodological issues we briefly summarize the characteristics of
the problem, and the necessary preparatory steps.

The problems to be subjected to multicriteria analysis have the following features:20:
• set of up to 20 discrete alternatives,
• approximately 60 criteria organized into an up to four-level hierarchy (branches of the

hierarchy tree have different depths),
• each alternative is defined by values of all criteria,
• criteria are of both quantitative and qualitative types,
• value distributions for some criteria are multimodal,
• the first stage of the analysis is done by/for each stakeholder individually using a Web-

based interactive tool for multicriteria analysis,
• the second stage of analysis will be done by the analysts, who will apply data analysis

methods to the results of the first stage.
This report focuses on methodological issues. Therefore we assume that the following

elements of the analysis process will be completed according to the approach proposed
in [48]. This in particular includes:

20Detailed specification of the problem is available in [48].
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• availability of a Web-based data-server,
• a proper preparation of data pertinent to the specification of criteria, and of alternatives,
• preliminary data analysis,
• development a of Web-based survey combined with an interactive multicriteria analysis

of alternatives.

7.3.2 Elicitation of stakeholder preferences

One of the most important tasks of multicriteria analysis is the preference elicitation pro-
cess. This will be done through an interactive Web-based survey directly linked with an
application supporting a multicriteria analysis of alternatives outlined in Section 7.3.3.
Here we summarize the basic methodological issues that should be considered during the
design and implementation of the survey.

In the multicriteria preference modeling one distinguishes the phase of definition of
the set of criteria (possibly organized in a hierarchy). Due to the conflicting/competing
nature of criteria, stakeholders typically cannot order alternatives on the basis of criteria
values. Therefore, elicitation of preferences involves gathering and analysis of diversi-
fied types of information. Typically in terms related to criteria but also related to the
stakeholder preferences in the solution (alternatives) space.

The process of preference elicitation is actually equivalent to finding a link between a
formal computerized model of preferences and the stakeholders. The main problem arises
from the various languages/representations of formal methods and the way the stakehold-
ers think about (and can express) his/her preferences. Therefore, we have different views
of the information required by the algorithm and information presented to the stakeholder
end retrieved from her/him. Examples of the method of communication with the stake-
holders in comparison to mathematical languages can be found in [11].

The process of preference elicitation is well described e.g., in [54]. Moreover, a good
overview of preference elicitation methods can be found in [11].

7.3.3 MC analysis by individual stakeholders

As shown in Section 7.2 no existing multicriteria analysis method is directly applicable
to our case. However, it is possible to adapt (or to combine) for the needs of our case two
well established methods, namely the weighted sum (WS) and the reference point (RFP).
This work could not have been done during the period for which the work reported here
was planned. The scope of the latter work was to specify the requirement analysis for the
multicriteria analysis, and to propose an existing method (and the corresponding software
tool) to meet the requirements.

After the requirement analysis was advanced it became clear that a new multicriteria
analysis method needed to be developed. Thus we have explored this path and summarize
here the current state of the corresponding research, which requires about 10 months more
to be completed. The reasons for this time extension are as follows:
• The proposed methodology must be tested, and most likely modified based on the results

of extensive tests.
• Implementation of the proposed methodology for the NEEDS project will certainly re-

quire some fine-tuning, and the latter will only be possible when a representative sample
of actual data is available.
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We propose that the methods will be transparent to the stakeholder, i.e., that the survey
will be designed in such a way that it will work with either one or more methods:
• Preferences will be specified in such a way that complete information will be provided

for either one or more analysis methods.
• The results presented to stakeholders will combine the results obtained with all imple-

mented methods.
• The stakeholders will have the option to switch on/off a particular method; this may be

desired by users with knowledge of multicriteria methodology who may want to make
more advanced analysis.

The methodological background of the multicriteria analysis approach proposed to be
explored is summarized in Section 7.4.2. The proposed methodology attempts to combine
the advantages of two approaches, namely the WS and the RFP methods. It proposed
alternative approaches that need to be tested to find out which one is most suitable for our
problem.

Moreover, one needs to explore how to effectively and properly use the criteria hier-
archy specified in the form of an unbalanced tree. At least two approaches need to be
explored:
• asking stakeholders to specify preferences for each branch of the criteria tree,
• using nodes of the criteria tree for organizing the interaction with the user.

Another problem that needs to be solved is an appropriate treatment of criteria with
multimodal distributions of values. Especially for the WS-based method this may require
a combination of:
• a more sophisticated specification of weights, e.g., either in relative terms (instead of

typically used fractions), or for ranges of criteria values (to be defined by the user),
• a more sophisticated scaling of criteria values (needed only for the WS method).

Finally, additional functionality dedicated to problems with a large number of criteria
may be desired. This may include:
• introducing threshold levels for criteria values,
• easy (for the users) exploitation of the criteria hierarchy.

7.3.4 MC analysis by analysts

This analysis can be started after finalizing the process of elicitation of the stakeholder
preferences. The analyst will start with preprocessing of the received data from the stake-
holders.

The following types of analyses are proposed:

Preprocessing: This is a routine element of any data analysis process necessary for
cleansing data and performing an initial data analysis, e.g., to identify missing data,
outliers; a basic statistical data analysis is also part of the preprocessing task.

Clustering of the stakeholders according to their preferences:The analyst will ex-
plore the data using various clustering algorithm. Such analysis aims to find groups
of the stakeholders with similar preferences. Next, intersections of the identified
groups with the predefined categories of the stakeholders should be analyzed. Such
analysis can answer a number of questions including:
• Do the stakeholders belonging to the same category have similar preferences?
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• Are there sub-groups of stakeholders within the same category with similar pat-
terns of preferences?
• Are there sub-groups of stakeholders belonging to different categories but ex-

pressing the same preferences?

Analysis of the results: The mathematical properties of the underlying problem imply
that there is no way to obtain a robust ”best” ranking of technologies or scenarios.
Therefore, we propose to plan for the provision of a concise report based on various
analyses of the problem. Such analysis may include identification of categories/sets
of solutions (either technologies or scenarios) and/or stakeholders, each having cer-
tain (to be defined by analysts during the analysis process) properties. Such analysis
may provide various sets of results, including:
• Sets of solutions corresponding to groups of stakeholders, either identified during

the analysis, or defined a priori by predefined stakeholder categories.
• Clusters of solutions similar (according to various similarity measures to be de-

fined by analysts).
• Clusters of stakeholders corresponding to clusters of solutions.
• Sensitivity analysis of the results. For example, analysis of possible changes of

the clusters/classifications of technologies (or scenarios or stakeholders) by small
changes of parameters of the algorithms.
• Identification of the most important factors of the preferences for each group of

stakeholders.
• Comparison of results calculated by different algorithms.

The above are only examples of the possibilities offered by diversified data mining
methods. It is practically impossible to specify in advance the data analysis because a
complete specification is only possible after the characteristics of the data are available,
and the latter will only be provided after the process of elicitation of stakeholder prefer-
ences is almost completed.

7.4 Methodological issues

7.4.1 Multimodal distribution of criteria values

We illustrate here the problems caused by criteria values having multimodal distribu-
tion.21 In order to use a realistic example we have extracted the data from an energy case
study [25]. It should, however, be stressed that the data analysis described here is qualita-
tively different from the analysis [25]. Therefore, the comparisons and conclusions from
our illustrative example do not apply to the case study from which a sample of data was
taken.

The example shows the rank reversal problem, i.e., a change in ranking after removing
one of the alternatives. We use data summarized in Table 2. The problem is to rank
8 technologies evaluated by two criteria: production cost (c1) and long term sustainability
- energetic (c2).22

21See the footnote on page 17 for the explanation of the multimodal distribution.
22Value of this criterion for Hydro, Wind and PV should be∞ but since scaling of the problem of a

problem requires a finite value we replace∞ value by1E6.
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LABEL Production cost Long term sustainability
[c/kWh] [Years]
c1 c2

1 Lignite 3,3 400
2 Hard Coal 3 2000
3 Oil 3,1 100
4 NG 3,6 100
5 Nuclear 2,1 500
6 Hydro 7 1000000
7 Wind 9 1000000
8 PV 60 1000000

Table 2: Summary of the data used for the illustration of the rank reversal problem

For ranking technologies (from best to worst) we apply the scalarizing function:

s(w, c) = w1 ∗ c
′
1 − (1− w1) ∗ c

′
2 (38)

where the scaled values of criteriac′i are computed in the usual way, i.e.:

c′i =
ci −min(ci)

max(ci)−min(ci)
(39)

Figure 17: Plot of the scaled (for all alternatives) values of criteria: production cost on
X-axis, and long-term sustainability on Y-axis.

The scatter plot of the scaled criteria is illustrated in Figure 17. It is easy to prove
that the following ranking (illustrated in Figure 18) results from a minimization of the
scalarizing function (38) for0.9152 ≤ w1 < 1:
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Figure 18: Ranking of eight alternatives.

Figure 19: Plot of the scaled (for all alternatives but PV) values of criteria: production
cost on X-axis, and long-term sustainability on Y-axis.
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Figure 20: Ranking of seven alternatives (illustrates rank-reversal of the ranking shown
in Figure 18).

1. Hydro,
2. Nuclear,
3. Hard Coal,
4. Oil,
5. Lignite,
6. NG,
7. Wind, and
8. PV.

Next we repeated (with the same weight) the analysis for the same data without the
last alternative (PV), see the plot in Figure 19. The results presented in Figures 18 and 20,
respectively show two problems. First, the technology (Hydro) which was the best in the
first analysis is now ranked the last but one. Second, the values of the scalarizing function
(which are almost the same for all but two (Hydro and PV) technology in the first analysis,
became diversified in the second analysis.

Another problem that can be demonstrated by these two sets of data (that differ by
the PV technology) is the value ofw1 which causes the change of ranking. For the first
data set the ranking is unchanged for0.9152 ≤ w1 < 1, while for the second data set the
ranking is unchanged for a much wider range ofw1 values, namely0.7104 ≤ w1 < 1.

The example shows that the weights within the range0.7104 ≤ w1 ≤ 0.9152 will
result in very different rankings for two sets of alternatives that differ by only one alter-
native. This in turn illustrates the commonly known problem, namely that rankings based
on a scalarizing function are likely to be unreliable.

7.4.2 An objective multicriteria choice

In interactive decision analysis, we usually assume that the individual decision maker -
the user of the decision support system - should be fully sovereign in the definition of his
preferences, whatever form this definition takes (determination of weighting coefficients,
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or determination of aspiration and reservation levels, etc.). However, when it comes to
ranking, the user could also propose her/his own subjective ranking list resulting, e.g.,
in forming intuitive pair-wise comparisons of subsequent alternatives. Thus, if the user
wants a support of decision analysis in ranking, it is usually because she/he wants to have
some objective grounds for this ranking.

The need of having some objective ranking is recognized. For an individual decision
maker, this might mean that she/he needs some independent reasons for ranking, such as
a Dean cannot rank the laboratories in her/his school fully subjectively, they must have
some reasonable, objective grounds that can be explained to the entire faculty. For a
ranking that expresses the preferences of a group, diverse methods of aggregating group
preferences might be considered; but they must be accepted as fair - thus objective in the
sense of inter-subjective fairness by the group. For this purpose, both weighting coeffi-
cients and/or aspiration and reservation levels should be determined in some objective or
inter-subjectively fair fashion. We shall consider three possible ways of achieving this
goal: neutral, statistical and voting.

Neutralmeans equal in relative terms, if we do not have any reasons for differentiating.
This is a very poor method, if we use weighting coefficients alone: it means that we accept
rationally substantiated, objective weighting coefficients for compensatory criteria (here
we have reasons for differentiating), but use weighting coefficients equal in size for all
non-compensatory criteria. This is actually a basic reason (there are also others) why we
propose to use reference points and achievement functions for non-compensatory criteria.
A neutral definition of reference points (say, all aspiration levels equal to 67% of criteria
ranges, all reservation levels equal to 33% of these ranges) gives, as we shall show in
further examples, far more reasonable rankings than a neutral definition of weighting
coefficients (say, all weighting coefficients equal to 100%/|I |).

Statisticalmeans based on some meaningful statistics. It is very difficult to find sta-
tistical data to substantiate weighting coefficients, but it is easy in the case of reference
points used for ranking. The average score of all alternatives on a given criterion is a
good statistical basis for determining the reference points, for example, as in the equation
below:

qmi =
∑

j∈J

qij/|J |, qai = 1.33q
m
i , qri = 0.67q

m
i ; i ∈ I (40)

whereI andJ is a set of criteria and alternatives, respectively.
Votingmeans based on a voting procedure between a group of decision makers. Nat-

urally, the members of this group could vote directly on the ranking of options. But
this would make the results susceptible to various voting paradoxes and manipulations,
see [26]. Moreover, the result of such direct voting would only aggregate the subjective
rankings of voting members - and they often perceive themselves the need for a more ob-
jective procedure. When voting first on the values of weighting coefficients or reference
points, we might suggest the use of a voting procedure that is, according to [26], least sus-
ceptible to voting paradoxes. This procedure consists of assigning 100% points to every
voting member of a group. Each member subdivides his allotted 100% points between
voting options (in this case, between all criteria, because we want to establish either the
weighting coefficients or the reference levels) in his vote; the vote is valid if she/he assigns
no more than 100% in total. If the problem is politically and socially contentious, as for
the choice of technologies of energy production, we can add a modification based on the
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procedure described in [88]: group members and criteria might be classified according to
factions they represent and criteria ”owned” by the factions, then the votes on own criteria
are not counted (or counted as not valid) when determining the results.

In the case of voting on weighting coefficients, the resulting weighting coefficients are
just the voting averages (averages between valid votes of all voting members) of values of
points obtained by each criterion. In the case of reference points, the middle, aspiration
and reservation levels are placed on the intervals of change for each criterion according
to the same voting average. This is more precisely specified by the following formulae:

wi = vi =
∑

k∈K

vik/
∑

i∈I

∑

k∈K

vik i ∈ I (41)

qmi = vi, qai = 1.33vi, qri = 0.67vi i ∈ I (42)

wherek denotes a voting member,K is the set of all voting members,vik is the number
of percentage points given in a valid vote by the voting memberk to the criterioni, and
I denotes set of criteria. The subdivision by the double sum in (41) is needed if not all
voting members use fully their allotted 100% points;vi in (42) are computed as in (41).
Note that Eq. (42) is valid in relative terms, after the transformation; in absolute terms, it
means thatqmi = q

lo
i + vi(q

up
i q
lo
i ), similarly for qai andqri .
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8 Summary

This report provides an extensive overview of methods pertinent to multicriteria analysis
of sets of discrete alternatives, with a particular focus on large sets and large numbers of
criteria. Although many methods for analysis of discrete sets of alternatives exist, none
of them is best suited for analysis of the current problem considered in Stream 2b of the
NEEDS project. This might be a surprising conclusion, therefore the report provides a de-
tailed analysis of the features of such methods and compares the features with the charac-
teristics of the problem defined in the requirement analysis originally described in [49];
the update version of this report, which includes also an outline of actual implementation
is presented in [48].

The authors of the report are aware that multicriteria analysis is an essential require-
ment for the whole NEEDS project, therefore an intensive research effort has been initi-
ated to develop a consistent methodology for the whole multicriteria process which will
be tailored to the requirements of the NEEDS project. Intermediate results of this research
are summarized in the report.

The experienced project staff believed in 2006 (the time when the first version of this
report was written) that development of a new methodology would be successful, and this
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was actually the case. Over thirty new methods have been developed, implemented within
the dedicated Web site, and tested for their suitability to the NEEDS project. These meth-
ods are described together with the corresponding methodological background in [23, 46];
a more specific discussion on management of attainable tradeoffs between conflicting
criteria can be found in [45]. One of the developed methods has been selected for the
multicriteria analysis of future energy technologies done within the NEEDS project; the
implementation of this analysis is described in [48].

The new methods and the dedicated Web site developed for the NEEDS project have
provided a good starting point for development of a general-purpose Web site for multicri-
teria analysis called MCA. This Web site23 is now open for non-commercial research and
educational use; the corresponding user guide is available on-line (linked to the MCA) as
well as [47].

23The site is linked tohttp://www.iiasa.ac.at/ ∼marek .
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