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Abstract

We consider the emission reduction process involving several countries, in which the
countries negotiate, in steps, frequently enough, on small, local emission reductions
and implement their decisions right away. In every step, the countries either find a
mutually acceptable local emission reduction vector and use it as a local emission
reduction plan, or terminate the emission reduction process. We prove that the
process necessarily terminates in some step and the final total emission reduction
vector lies in a small neighborhood of a certain Pareto maximum point in the un-
derlying emission reduction game. We use examples to illustrate some features of
the proposed decision making scheme and discuss a way to organize negotiations in
every step of the emission reduction process.

Key words: emission reduction, Pareto maximum, repeated games, boundedly
rational decisions, environmental negotiations
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On a boundedly rational Pareto-optimal trade in
emission reduction

Arkady Kryazhimskiy(kryazhim@iiasa.ac.at)

1 Introduction

It has been recognized that emission reduction has been a common problem for all
countries in a region. A country’s industrial pollutants travel across borders and
make neighboring countries suffer from contamination. The understanding that the
emission reduction process involves multiple decision makers whose interests are
interconnected but not identical has initiated a series of game-theoretic studies.

Today’s practice in planning and controlling emission reductions is based on
international agreements; accordingly, a significant part of research focuses on coun-
tries’ incentives to participate in conventions, and on issues of formation and stability
of coalitions (see Barrett, 1994, 2003; Finus, 2001). A considerable research effort
concentrates on developing procedures that may lead the parties to an equilibrium
solution and, in result, to a specification of emission reduction commitments. Part
of the procedures proposed assumes that the parties use money transfers to com-
pensate for cleaning up (see Maeler, 1990; Chander and Tulkens, 1992). Another
approach suggests that the international agreements could be formed based on recip-
rocal emission reduction trade (see Hoel, 1991; Nentjes, 1993, 1994; Pethig, 1982);
an analogous theoretical framework has been developed in Ehtamo and Hamalainen
(1993). Kryazhimskiy et al. (2001) interpret environmental negotiations as a “trade”
between the governments, in which emission reductions act as the “goods” traded.
Martin et al. (1993) analyze a multi-agent dynamic game whose equilibrium solution
may justify the countries’ emission reduction plans.

The majority of the game-theoretic studies addressing the issue of emission re-
duction assume that every party has good knowledge on its own utility function
— its overall gain due to emission reduction — and uses that knowledge in the ne-
gotiations leading to an international environmental agreement. That assumption
natural from the standpoint of game theory, can however be criticized as an unre-
alistic one. Indeed, a country’s utility has two components, the cost for national
emission reduction (a negative component) and the ecological benefit from the emis-
sion reduction performed by all countries (a positive component). Even if we assume
that a country’s government is able to construct its cost function, based on economic
considerations®, we should admit that it can hardly estimate in advance, with an

IThis assumption is however not so obvious; one can argue against it by saying that future
changes in prices, unforeseeable today, will ruin today’s cost estimates for high emission reduction
values unreachable in the short run.
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acceptable precision, the sizes of the country’s ecological benefits for all future emis-
sion reduction values. This uncertainty makes one view negotiation patterns, in
which the countries use full information on their global utility functions, as useful
but rather theoretical constructions.

In this paper, we study decisions on reducing emission in the situation where each
country has limited information on its global utility function. Namely, we assume
that given the actual state of the countries in the emission reduction process, i.e.,
the actual values of the countries’ total emission reductions, every country is able
to reconstruct its marginal cost and benefit functions, i.e., the growth rates for
its global cost and benefit functions in small neighborhoods of the actual state.
Moreover, each country has no information on the utility functions of the other
countries.

In this situation, it is hardly possible to provide a classical game-theoretic basis
for shaping, today, a long-term agreement on substantial emission reduction?. A
realistic operational mode is “myopic” planning and “myopic” implementation. In
the “myopic” mode, instead of fixing a long-term agreement, the countries negoti-
ate, in steps, frequently enough, on small, local emission reductions and implement
their decisions right away. In every negotiation step, each country uses its current
marginal utility to understand if a proposed local emission reduction vector meets
the country’s local utility growth criterion, i.e., increases, locally, the value of the
country’s global utility function. The countries’ goal is to identify an acceptable
local emission reduction vector satisfying all local utility growth criteria. The iden-
tified acceptable emission reduction vector defines the countries’ cooperative local
emission reduction plan. If the countries fail to find an acceptable emission reduc-
tion vector, the negations are terminated and the latest total emission reduction
vector is agreed to be the outcome of the emission reduction process. The described
decision making scheme follows the approach of theory of repeated games (see, e.g.,
Brown, 1951; Robinson, 1951; Axelrod, 1984; Smale, 1980; Fudenberg and Kreps,
1993; Weibull, 1995; for examples of economic applications see, e.g., Friedman, 1991;
Kryazhimskiy et al., 2001; Kryazhimskiy et al., 2002).

In section 2 we introduce technical assumptions and describe the emission reduc-
tion process. In section 3 we prove that the process necessarily terminates in some
step and its outcome lies in a small neighborhood of a certain Pareto maximum
point in the emission reduction game; the radius of the neighborhood tends to zero
together with the length of the time period between the points of decision making.
In other words, we state that the proposed “myopic” decision making scheme allows
the countries to find an equilibrium solution with an arbitrarily high precision. In
section 4 we discuss our solvability statement using two examples. One example
shows that the statement may fail to hold if the countries’ network is not fully con-
nected in the sense that there are at least two countries such that pollution produced
by one country is not transported to the other one. The other example shows that
the set of all Pareto maximum points, which are reachable via the proposed emission
reduction process, can be considerably smaller than the set of all Pareto maximum
points in the emission reduction game. In section 5 we discuss a possible way to

2This does not mean that the agreement is not reachable in principle; a reasonable decision can
be found using, for example, political and general environmental considerations.
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organize negotiations bringing the countries to a common decision in each step of
the emission reduction process.

2 Emission reduction process

We consider an emission reduction process involving n countries, numbered 1, ... n,
in which each country, 7, controls its emission reduction value, x; > 0, gradually in-
creasing it over time. The process starts at time 0 with the zero emission reduction
values and develops onward. In the long run, each country, ¢, is interested in maxi-
mizing its utility function, w;:

Here z = (x1,...,2,) is the full emission reduction vector; ¢;(z;) is the cost paid
by country i for the emission reduction z;; b;(y) is the ecological benefit gained by
country ¢ thanks to the reduction of the total pollution load to its territory, y =
Y71 ajixj; and ay; is a proportion of emission from country j, which is transported
to country ¢ (a transport coeffcient). Clearly, >7 ;a5 =1 (j = 1,...,n). We
assume that the countries’ network is fully interconnected in the sense that each
country pollutes itself and every other country, implying

aji>0 (j,’i:L...,n). (22)
We call a vector z = (x1,...,z,) positiveif z; >0 (i =1,...,n).
Our technical assumptions are the following.
(A1) The cost functions, ¢; (i = 1,...,n), defined on [0,00) are continuously

differentiable, convex, strictly monotonically increasing, positive-valued at all points
except 0, and vanish at 0.

(A2) The benefit functions, b; (i =1,...,n), defined on [0, 00) are continuously
differentiable, strictly concave, strictly monotonically increasing, positive-valued at
all points except 0, and vanish at 0; moreover, the benefit functions are bounded
from above, implying, in particular, that

bi(ly) =0 as y—oo (i=1,...,n). (2.3)

(A3) The utility functions, w; (i = 1,...,n), take positive values for all positive
emission vectors belonging to a certain neighborhood of the origin (in this manner
we exclude a trivial situation, in which some of the countries are not interested in
emission reduction, since their utilities are maximized at the zero emission reduction
vector).

The emission reduction process develops in steps. A step k is performed over
a time interval [tg,tr+1] where ¢, = ké with a given small § > 0 (k = 0,1,...).
For every country, ¢, we denote by z;(t;) its total emission reduction value at the
starting time of each step k, tx. In step 0 the countries start with the zero emission
reductions:
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In each step, k, every country, ¢, plans an extra local emission reduction, Az;(t;) > 0;
at time t;,; the country completes the planned local emission reduction process
bringing its total emission reduction value to a new state, x;(tx+1) = ;(tr) +Ax; (tx).
Introducing notations for the initial emission reduction vector in step k, z(t;) =
(x1(tk), ..., za(tr)), and for the local emission reduction vector in step k,

Az(ty) = (Azi(ty), ..., Azn(tis)), (2.5)

we represent the transformation of the emission reduction vector in step k as
:L“(tk+1) = x(tk) + Ax(tk) (26)

Prior to considering the rules for choosing Az;(t;), we assume that information
available for each country, ¢, a priori is the collection of the transport coefficients
aji (j =1,...,n) only. Therefore, a priori each country may have no knowledge on
the cost and benefit functions of the other countries and no knowledge on its own
cost and benefit functions.

In each step, k, country i chooses Ax;(tx) using the following additional infor-
mation: the country’s current emission reduction value, x;(tx); the current value of
the total reduction of the pollution load to its territory,

yi(ty) = Zn;ajixj(tk); (2.7)

and its marginal cost and benefit functions at points z;(t;) and y;(tx), respectively.
The country constructs its marginal cost function at point z;(fx) as a linear ap-
proximation to the virtual increment in its cost value, ¢;(z;(tx) + h) — ci(zi(ty)),
corresponding to every small virtual positive increment in the emission reduction
value, h; that linear approximation can be represented as c(z;(tx))h. Similarly,
the country constructs its marginal cost function at point y;(tx) as a linear ap-
proximation to the virtual increment in its benefit value, b;(v;(tx) + k) — bi(yi(tx)),
corresponding to a small virtual positive increment in the total emission reduction
value, h; that linear approximation can be represented as b (y;(tx))h.

Thus, we assume that in each step, k, the country is able to reconstruct, in
linear approximation, the local structure of its cost and benefit functions in small
neighborhoods of the actual emission reduction value, z;(tx), and actual total pol-
lution reduction value, y;(t), respectively. In more formal terms, we assume that
in each step, k, every country, 4, is able to reconstruct the derivatives c(z;(tx)) and
by (11)).

While choosing a positive Ax;(tx), country ¢ negotiates with the other countries.
In the negotiations, country ¢ trades on exchanging its local emission reduction
value, Ax;(t,,), to the local reduction of the total pollution load to its territory,
which is due to the current efforts of the other countries, Ay?(t;,). Clearly, Ay2(t;)
is the sum of the local emission reductions of all the countries, except of country 4,
weighted with the corresponding transportation coefficients:

G=1,m, j#i
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To each value of Ay?(t;) emerging in the negotiations, country 7 responds with an
emission reduction value Az;(t;) that can be exchanged to Ay?(tx). The country’s
goal in the negotiations is to form a set of the local emission reduction values,
Ax;(ty) (j =1,...,n), that would locally increase the country’s utility, i.e., ensure

wi(x(tr) + Ax(ty)) > wi(x(ty)). (2.9)

Thus, in each round the country acts as a boundedly rational agent (see, e.g., Ru-
binstein, 1998).

Recall that in step k the country’s knowledge about its cost and benefit functions,
¢; and b;, is restricted to the values ¢(z;(tx)) and b;(y;(tx)). Using these values and
referring to (2.1) and (2.7), country 7 reconstructs the partial derivatives

Ow; (z(tr))

or. = aﬂb;(yz(tk)) (] =1,...,n, J 752)7 (210)
W aiibii(i(t)) = ci(@i(t)), (2.11)

which give it its marginal utility at point z(¢), i.e., a linear approximation to the
increment w;(z(tx) + h) — w;(z(tx)) as a function of h. The necessity to use the
marginal utility at point x(¢)) instead of w; makes the country consider a linear
approximation to the original criterion (2.9):

Z MA@(M) + WA@(M) > 0. (2.12)

j=1,.n, ji Ox; Li
The substitution of (2.11) and use of (2.8) transform (2.12) into

O (i (1)) Ay (t) + laaibi (ys(t)) — cilwa(t))| Azi(ts) > 0

> Aylo(tk) > )\,(tk)ALU,(tk) (213)
where
Nlty) = % ~ an (2.14)

We call (2.13) the local utility growth criterion for country 4 in step k.

Let us give several definitions. We call a positive emission reduction vector
Az (tg) (2.5) acceptable in step k if for every country, 7, the values Ay?(t;,) given by
(2.8) and Auz;(ty) satisfy the country’s local utility growth criterion (2.13) in step
k. Every step k, in which there exists an acceptable emission reduction vector, will
be said to be nondegenerate; every step that is not nondegenerate will be called
degenerate.

We introduce two assumptions, (A4) and (A5), characterizing the abilities and
outcomes of the negotiations.

(A4) In the negotiations taking place in a nondegenerate step k, the countries
find a positive emission reduction vector acceptable in step k. In the negotiations
taking place in a degenerate step k, the countries identify that step k is degenerate.
(A possible negotiation pattern is presented Section 5.)
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Let us fix a p > 0. In what follows, | - | is a given norm in the n-dimensional
linear space.

(A5) After finding, though negotiations, a positive emission reduction vector
Az(ty) = (Axy(ty), . .., Az,(tg)) acceptable in a nondegenerate step k, the countries
form the final positive local emission reduction vector acceptable in step k, Ax(t)
(2.5), by normalizing Az (t;) to pd, i.e., by setting Ax;(tx) = plAzi(ty) (i =1,...,n)
with g = pd/|Ax(ty)|.

Assumption (A5) implies that the countries agree a priori that the norms of
the local positive emission reduction vectors, |Az(t;)|, appearing in nondegenerate
steps, k, must be proportional to the size of the time step, 4.

Our next assumption, (A6), suggest a rule for the termination of the emission
reduction process.

(A6) In a first degenerate step, s, whose degeneracy is identified by the countries
through negotiations (see (A4)), the countries terminate the emission reduction
process and view z(t,) as its outcome.

Our final assumption, (A7) summarizes the rules for the countries’ operation in
the emission reduction process.

(A7) In each (nondegenerate) step k preceding the first degenerate step, s, the
countries work out a local positive emission reduction vector Ax(tx) (2.5) through
negotiations as described in (A4) and (A5) and update the total emission reduction
vector using (2.6). If all steps are nondegenerate, then in each step, k, the countries
work out a local positive emission reduction vector Az(tx) (2.5) through negotiations
and update the total emission reduction vector using (2.6); in this situation the
emission reduction process has no outcome.

3 Outcome of the emission reduction process

Holding a game-theoretic viewpoint, we assume that a prioria goal of the countries’
community is to bring the full emission reduction vector to a Pareto maximum point
for the countries’ utilities. A nonnegative emission reduction vector z* is said to be
a Pareto mazimum point in the emission reduction game if switching from z* to any
nonnegative emission reduction vector x # x* either does not change the countries’
utility values, i.e., w;(z) = w;(z*) for all i = 1,...,n, or makes at least one country
lose in utility, i.e., w;(x) < w;(z*) for some ¢ € {1,...,n}. In view of the strict
concavity of the utility functions w;, ..., w, (see (Al) and (A2)), for every positive
21, ..., 2, the maximizer of the sum zjw;(x) + ... + z,w,(x) over all nonnegative
emission reduction vectors x is a Pareto maximum point. Note that by (A3) the
origin is not a Pareto maximum point. Thanks to the strict concavity of the utility
functions (see (Al) and (A2)) a positive emission reduction vector z* maximizes
2w (x) + ... + zpwy(x) if and only if

Owy (z*) Owy,(z*)
ZlTxi + ...+ ZnTxi
(i=1,...,n)

(see, e.g., Germeyer, 1976). Thus, every positive emission reduction vector z* sat-
isfying (3.15) for some positive zy,..., z, is a Pareto maximum point, which can

=0 (3.15)



—7—

be viewed as a target point in the emission reduction process. We call z1,..., z, a
family of Pareto multipliers for the Pareto maximum point x*.

Our goal in this section is to show that the decentralized boundely rational
emission reduction process described in the previous section brings the total emission
reduction vector to a small neighborhood of some Pareto maximum point in a finite
number of steps.

First, we state that the emission reduction process terminates in some step.

Proposition 3.1 There is a degenerate step, in which the emission reduction pro-
cess terminates (see (A6)).

Proof. Assume, to the contrary, that the emission reduction process never termi-
nates, i.e, all the steps are nondegenerate. By (A5) in each step, k, the local emission
reduction vector, Ax(tx), is positive and has the norm pd; hence, the norms of the
total emission reduction vectors, |z(t)| (see (2.6)), tend to infinity as k — oo. Then
for each country, i, the total reduction of the pollution load to its territory, y;(t)
(2.7), tends to infinity as & — oo (here we take into account (2.2)). Therefore, by
(2.3)

bi(yi(te)) =0 as k—oo (i=1,...,n). (3.16)

By (A1) for each country, 4, the cost function ¢;, is strictly monotonically increasing
and convex, implying that c}(z;(tx)) > ¢® > 0 uniformly for all steps k. Combining
with (3.16), we find that for every country, i,

Ai(tg) >0 as k—oo (i=1,...,n). (3.17)

where \;(tx) is given by (2.14). For every step, k, let iy, € {1,...,n} be such that
Ax;, (tx) = max{Azi(tx), ..., Ax; (tx)}. In view of (2.8), for every step, k, we have

Aylok (tk) — )\,k (tk)ALU,k (tk) = Z ajiij(tk) — )\,(tk)ALU,(tk)
J=1,...,m, jFik

< [(n = 1) = Nitr)| Az, (t)

By (3.17) the right hand side is negative for all k sufficiently large. Thus, for a large
k the local utility growth criterion (2.13) is violated for country ix; consequently,
the local emission reduction vector Az(t;) is not acceptable in step k. We get a
contradiction with our initial assumption and finalize the proof.

As we see from (2.4) and (A3), step 0 is nondegenerate. Therefore, for the first
degenerate step, s (see Proposition 3.1), we have s > 1.
Consider the time interval [t;_1,ts]. For every t € [ts_1,ts] we set (see (2.6) and

(2.5))

2(#) = (21(8), - 2n(t)) = 2(ts 1) + t_?‘lm(ts_l) (3.18)
and extend notations (2.7) and (2.14) by setting
W) = S aseslt). M) = ot~ (3.19)



For every t € [ts_1,15] let

hi(t,z) = S anizi— M)z (2= (21,...,2a), i =1,...,n), (3.20)
G=1,0om, G
H(it) = {2>0:]2]=pd, hi(t,z2) >0 (i=1,...,n)}; (3.21)

here and below z > 0 marks that a vector z is positive.

The fact that the local emission reduction vector Axs_;(ts—1) has the norm pd
and is acceptable in the nondegenerate step s — 1, i.e., satisfies the local utility
growth criterion for every country in step s — 1 is equivalent to

Axs_l(ts_l) € H(ts_l) (322)

(see (Ab), (2.13) and (2.8)). Similarly, we see that if H(ts) is nonempty, then for
every z € H(ts) the emission reduction vector Axs(ts) = z is acceptable in step s;
consequently, step s is nondegenerate. Since step s is degenerate, we have

H(ts) = 0. (3.23)
Let
T ={te [tsts]: H(t) # 0} (3.24)
By (3.22) T is nonempty. Denote
T=supT. (3.25)

Prior to formulating our main technical statement — Lemma 3.1, we make a few
simple observations. In view of the contitnuity of the functions h; (3.20) the set T'
is open in [ts_1,ts]. Therefore, if 7 < t5, then 7 & T i.e.,

H(r) = 0; (3.26)

note that if 7 = ¢,, then (3.26) holds by (3.23). By the definition of 7, (3.25), there
exist a sequence (7,,) in [ts_1,7) such that 7, — 7 and H(7,) #0 (m = 1,2,...).
Every sequence (z,,) such that z, € H(n,) (m = 1,2,...) is bounded and has a
limit point.

Lemma 3.1 The following statements hold true.

1) The emission reduction vector x* = z(1) is a Pareto mazimum point.

2) Let (1.,) be a sequence in [ts_1,T) such that 7, — 7 and H(7y,) # 0 (m =
1,2,...), zm € H(tn) (m = 1,2,...), and z = (21,...,2,) be a limit point for
the sequence (zpy,). Then zi, ..., z, is a family of Pareto multipliers for the Pareto
maximum point x*.

Proof. Let (7,) and (z,,) be the sequences defined above and z = (z1,...,2,) be a
limit point for (z,,). Selecting, without renumeration, an appropriate subsequence,
we assume that z,, — z. Taking into account that z,, > 0 and |z,,| = pd (see (3.21)),
we get

z>0 (1=1,...,n), (3.27)

|z| = pé. (3.28)
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Since 1, € T and z,, € H(7,), we have hi(T,2m) >0 (i=1,...,n, m=1,2,...).
Due to the continuity of h; (i = 1,...,n) it holds that h;(7,2) >0 (i = 1,...,n),
or, more specifically (see (3.20)),

hi(T, 2) = Z ajizi — Xi(T)z; >0 (3.29)
J=Lyemn, G
(t=1,...,n)
Suppose
hio (T, Z) = Z Qjin25 — >‘i0 (T)Zio >0 (330)

.]:1 7777 n, ]#ZO
for some ig € {1,...,n}. Then
Yo ez — Aig(T) (21 + €0) >0 (3.31)
.]:1 7777 n, ]#ZO

for a sufficiently small g9 > 0. Let

zZ= (21> .- ->5n) = (21> c ey Rig—1, Rig T €0y Zig+1y - - '>Zn)-
Using (3.29), (2.2) and (3.31), we get
hi(T, Z) = Z ajiZj — )\i(T)Zi >0

J=1yn, i

Then

where

=%

Z¢=(z1,...,Z2)=(Z1+¢€1,...,Zn + 1)

with a sufficiently small £; > 0. In view of (3.27) z* > 0. For z* = pdz*/|z*| we
have |z*| = pd and

hi(T, Z*) = Z ajiz; — )\,(7’)22k >0
=Ly G
(i=1,...,n).
Thus, z* € H(7). The latter contradicts (3.26). The contradiction shows that (3.30)
is not possible for any iy € {1,...,n}. Hence, in view of (3.29) we get
hi(r,z) = Y. ajizi—Xi(1)zi=0 (3.32)
=Ly, i
(i=1,...,n).

As seen from (3.28), there is an i, € {1,...,n} such that z;, > 0. Then for every
ie{l,...,n}, 1 # i,
Z ajizj 2 a2, >0
=Ly G
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(here we use (2.2)). Now (3.32) shows that A;(7) > 0 and z; > 0 for every i €
{1,...,n}, i # i,. Thus, z > 0. Multiplying (3.32) by b}(y;(7)) and using (3.19), we
get

Yo aibi(wi(r))z + laab(yi(r)) — ci(@i(7))]2i = 0 (3.33)
=1, j#i

(1=1,...,n),

or : :
Sowa() o duala(n))

(i=1,...,n)
(see the form of w; (2.1)). Thus, the emission reduction vector x* = z(7) is a Pareto
maximum point and zy, ..., 2, is a family of Pareto multipliers for z*. The lemma
is proved.

Recall that the emission reduction process terminates in step s (see Proposition
3.1). By (A6) the emission reduction vector x(ts) is the outcome of the emission
reduction process. Our principal statement is the following.

Proposition 3.2 The outcome of the emission reduction process, x(ts), lies in the
closed pd-neighborhood of the Pareto mazimum point x* described in Lemma 3.1.

Proof. By (2.6) and (3.18)

te — T

J

By (3.22) and (3.21) |Az(ts_1)| = pd and by (3.25) 0 < ¢, —7 < J. Hence, the norm
of the right hand side in (3.34) is not bigger than pd. Therefore, |x(t5) — z*| < pd.
The proposition is proved.

x(ts) — " = x(ts) — z(1) = Ax(ts—1). (3.34)

Proposition 3.2 tells us that the discrepancy between a certain Pareto maximum
point, z*, and the output of the emission reduction process, x(ts), vanishes as the
size of the time step in the emission reduction process, d, goes to zero, or, equiv-
alently, the frequency, in which the countries negotiate on updating their emission
reductions, grows infinitely. Let us note that in every nondegenerate step of the
emission reduction process, k, the local emission reduction vector, Ax(tx), being a
result of the negotiations in step k (see (A7) and (A5)), is not defined uniquely.
Therefore, the Pareto maximum point, z*, that is approached, approximately, in
the end of the emission reduction process is not pre-determined and can vary de-
pending on the outcomes of the preceding negotiations. To summarize, we can say
that Proposition 3.2 captures a robust but qualitative property of the proposed
decentralized boundedly rational emission reduction strategy: in the beginning of
the emission reduction process the countries can be sure that the process will bring
them close to a solution of the emission reduction game in a finite number of steps;
however the countries should also realize that specific features of that solution will
be seen after the termination of the process only.
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4 Examples

The next example shows that the positivity of the transport coefficients (see (2.2))
is essential for the validity of Proposition 3.2.

Example 4.1 Let the emission reduction process involve two countries, country
1 and country 2 (n = 2). Let country 1 pollute itself only (a3 = 1, a;2 = 0),
country 2 pollute itself and country 1 in equal proportions (az; = age = 1/2), and
the countries’ utility functions be given by

1 T 1 T2

wi(7) T taa2+1 27 () 2 +1 4

here, in the right hand sides, the first terms and second terms represent the countries’
benefit and cost functions, respectively. One can easily state that (Al) — (A3) are
satisfied. We see that in contrast with the earlier assumptions, one of the transport
coefficients, a1o, is zero. Let us show that Proposition 3.2 is no longer true.

First, we find the Pareto maximum points. We have

owi(zr) 1 1 dui(z) _ 1 (4.35)
81‘1 N (£U1+£U2/2+1)2 27 8:52 N 2(%1—1-%2/2—1-1)27 .
Ows(x) Ows(x) 1 1
T T Y R (4.36)

We see that for every positive x the gradients (Qws(x)/0, wi(z)/0x2) and (Qws(z)/0, wa(x)/0z2)
are linearly independent, implying

wi(x + eAx) > wi(z), wa(r+ecAx) > wy(x) (4.37)

for some Az and for all small € > 0. Therefore, a Pareto maximum point cannot be
positive. For every nonnegative x such that

(22/24+ 1) <2 or zy<r=2(2Y2-1) (4.38)

both wy(x)/0z2 and ws(z)/0xs are positive; hence, (4.37) holds with Az = (0, 1)
and a small ¢ > 0. Thus, a Pareto maximum point cannot be in the union of the
x1-axis and the part of the xs-axis, which is located between 0 and r. Take an
arbitrary nonnegative x belonging to the rest part of the zo-axis: x1 =0 and x5 > r

or (see (4.38)) (z2/2 + 1)? > 2. Hence, by (4.35) and (4.36)

ow; () <0 Ows ()
81‘1 -7 8:52

<0. (4.39)

For any nonnegative z # x we have ¥ = = + Ax with Az # 0, Az; > 0. Suppose
Axs # 0. Due to (4.39)
Ows ()

MAZ‘l + 7A£U2 <0 if ALEQ > 0,
81‘1 8:52

O0nl@) ny 1 O E N 20 i Awy <0
81'1 8%2
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The strict concavity of wy(z) and wq(z) in x5 implies that wy(Z) < wa(x) if Aze >0
and w(Z) < wy(x) if Azy < 0. Suppose Azy = 0. Then Az; > 0 and, in view of
(4.39),

8w2(:v)Axl n Ows ()

ow; () Ow; ()
81‘1 8:1:2 Axl +

Ao —
2 07 81‘1 8:1:2

ALEQ S 0.

Since ws(x) is constant in z; and w;(z) is strictly concave in z;, it holds that
wa(Z) = we(z) and wy (Z) < wy(x). We have either wy (Z) < wy(x), or we(Z) < wa(x),
implying that x is a Pareto maximum point. Thus, all x such that 1 =0 and x5 > r
constitute the set of all Pareto maximum points.

Consider the emission reduction process. The fact that the total emission re-
duction for country 1, z;(tx), grows in each nondegenerate step, k, whereas all the
Pareto maximum points, z, have the zero first coordinates, x; = 0, tells us that the
total emission reduction vector, x(tx), may never approach any Pareto maximum
point. To support this intuitive observation, we argue as follows.

Take a step k such that

(z1(tg) + z2/2 + 1)* < 3/2. (4.40)

Using (4.35) and (4.36), we find that for every positive emission reduction vector,
Ax(ty), it holds that

Ows (x(tx)) Owy (z(tr))
0x1 Oz

where a1 =2/3 —1/2 >0, a2 = 2/3 > 0, and

Ows(z (1)) Ows(x(t))

where ag = 1/3 —1/4 > 0. Therefore, every step, k, such that (4.40) holds is
nondegenerate and every positive emission reduction vector is acceptable in that
step.

For k = 0 (4.40) holds since z(0) = 0 (see (2.4)). Suppose in every nondegenerate
step, k, satisfying (4.40), the countries choose an acceptable local emission vector
Ax(ty) such that Az(t) = Azy(ty) = pd (we assume that the norm in the two-
dimensional space is such that |Axz(t;)| = max{|Az1(tx)], |Aza(tx)|}). Let k. be the
maximum of all such k. For every k < k., we have

A:Ul(tk) + A:Ug(tk) > OzllAZ‘l(tk) -+ OzlgALUQ(tk)

Axy(ty) > anAxa(ty)

z1(ty) = x2(tx) = pkd; (4.41)

hence, k. is the maximum of all £ = 0,1,... such that (3pkd/2 + 1)? < 3/2 or
pkd < q where ¢ = 2[(3/2)/2 — 1]/3 > 0. Clearly, pk.d > g — pd, or, in view of
(4.41), z1(tk,) > q — pd. Let § be so small that ¢ — pd > ¢/2. Since z;(t;) grows,
z1(tx) > q/2 in all nondegenerate steps k > k.. Thus, the emission reduction process
either never terminates or terminates with an z1(ts) > ¢/2 in some step s > k,; in
the latter case the final emission reduction vector, x(ts), is at a distance higher than
q/2 from any Pareto maximum point. The statement of Proposition 3.2 is violated.
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As noted in the previous section, the emission reduction process has multiple out-
comes. By Proposition 3.2 each of those outcomes approximates a certain Pareto
maximum point with accuracy pd. Let us call a Pareto maximum point pd-reachable
if it is approximated by some outcome of the emission reduction process with ac-
curacy pd. Let us ask ourselves if all the Pareto maximum points are pd-reachable.
The next example shows that there can be a solid gap between the set of all Pareto
maximum points and the set of all pd-reachable ones.

Example 4.2 Let two countries, country 1 and country 2, involved in the emission
reduction process (n = 2) pollute each other in equal proportions (aj;; = 1/2, j,i =
1,2), and the countries’ utility functions be identical:

1 1 1 i)
2 wy(z)=1- -2
T /2+22/24+1 2 T /2+22/24+1 2

here, in the right hand sides, the first terms and second terms represent the countries’
benefit and cost functions, respectively. One can easily state that (Al) — (A3) are
satisfied.
We find the Pareto maximum points as nonnegative vectors = satisfying
ow; () Ows () ow; () Ows ()
z + 2 =0, =z +z =0
! 81‘1 2 81‘1 ’ ! 8:52 2 8:52

with some z1, 2o > 0. Simple calculations result in the following: the set of all Pareto
maximum points consists of all nonnegative x such that

T1/2+x9/2 =3 =22 1. (4.42)

Geometrically, the latter set is the interval, I, with the end points z(}) = (24,0)
and 2® = (0,23). At the end point 2 the utilities of countries 1 and 2 reach,
respectively, their minimum and maximum values, 1—1/(8+1)—(G and 1—-1/(8+1),
in I; at the end point z(¥ = (0,27) the situation is symmetric. At the middle point
of I, (9, the countries have the same utility value, 1 —1/(3 4+ 1) — 3/2. One can
view the “middle” Pareto maximum point, (%), as the “most fair” one and the end
points, (M) and (@, as the “most unfair” ones. Given a Pareto maximum point, z,
the distance from x to the “most unfair” Pareto maximum point closest to x can be
treated as “the degree of fairness” of x.

Let us consider the emission reduction process described earlier. Using Proposi-
tion 3.2, we find that in every nondegenerate step, k, the total emission reduction
vector, z(ty), lies in the triangle bordered by the z;-axis, zs-axis and interval I, in
particular,

wy(x) =1—

y(te) = z1(tr) /2 + 22(tr) /2 < . (4.43)

In the first degenerate step, s, vector z(t;) constituting the outcome of the emission
reduction process lies necessarily beyond the interior of the triangle, implying

y(ts) > 0. (4.44)

Take a nondegenerate step k. We have z(ty+1) = z(tx) + Ax(ty) where Ax(t)
is a positive emission reduction vector acceptable in step k, i.e., satisfying

Ow; (z(tr)) Ows (x(tx))

Axy(t
81‘1 £U1( k) + 8:52

A:Ug(tk) > 0,
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Ows(x(tr)) Ows(x(tx))

9z, Axl(tk) -+ O A:Ug(tk) > 0,
or ( 1 B 1) N 1 A:UQ(tk)
2(y(te) + 1) 2 2(y(ty) +1))? Al“l(tk)
1 1 A:Ug(tk)
2(y(te) +1)2 " <2<y(tk) + 1) ) A (ty) 0

(here we use explicit forms of the partial derivatives). After an elementary transfor-
mation, we get

1 A:Ug(tk)
Wit + 12 -1 Azi(ty)

The latter inequality implies

Y(ter) —y(te) 1 [ Aza(ty) (y(te) +1)°
Anity) 2 (Axl(tk) * 1) c Ty

> (y(ty) +1)* — 1.

(4.45)

We assume § to be sufficiently small and view (4.45) as a difference approximation
to the differential inequality

dy(xy) _ (g(x1) + 1)
dl‘l - 2

(4.46)

for a function y(z;) at the point (z1(tx),y(x1(tx))). One can prove that for an
arbitrary € > and ¢ sufficiently small, there is a solution to the differential inequality
(4.46), y, defined on [0, 00), satisfying 7(0) = 0 and such that |y(tx) — y(z(tr))| < €
for all nondegenerate steps, k. Clearly, y(z1) > ¥«(z1) (x1 > 0) where g, is the
solution to the differential equation

dy(z1) _ (Fe(z1) +1)?
dl‘l 2 ’

(4.47)

defined on [0, 00) and satisfying ¢.(0) = 0. Therefore, for the last nondegenerate
step, s — 1, it holds that

Y(tsr) = gu(@(tsn)) > —&. (4.48)

By (4.43) with k = s — 1 and by (4.48) we have y,(z(ts-1)) < f+¢. Let Z; > 0 be
such that g.(z1) = 5. If g.(x(ts—1)) < B, then z(ts_1) < Z1. If gu(z(ts-1)) > B, then
z(ts—1) > Z1 and, due to (4.47),

B ACI S AL

21(ts-1) — 71 < AOEEE Yul@i(ts—1) — 9:(21))) < 2e.

Hence, for x;(ts), the final emission reduction value for country 1, we have

z1(ts) < x1(ts—1) +p6 < Ty + 2¢ + po. (4.49)
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Let us find Z;. The integration of the differential equation (4.47) under the initial
condition ,(0) = 0 yields
2

2—1‘1

-1

Yu(21) =

Combining with ¢.(Z;) = § and resolving with respect to z;, we get

=L
I
Then by (4.49)
x(t)gﬂﬂmwp(s (4.50)
Using (4.44) or, equivalently, z1(ts) + z2(ts) > 203, we find that
1
> 93 — - ——— ) —2c —ps. .
zo(ts) > 20 — z1(ts) = 25(1 5—1-1) 2e — po (4.51)

Let the norm of a vector x in the two-dimensional space be defined as |z| =
max{|x1|, |ze|}. Consider the distance from the outcome vector, z(ts), to the “most
unfair” Pareto maximum point () = (23,0). From (4.50) and (4.51) we get

|z(ts) — V| > 23 (1 - ﬁ) — 2e — po.

Note that for every pd-reachable Pareto maximum point, z*, it holds that |z(ts) —
z*| < pd. Thus, for every such z*, we have

1
2" — 2W| > |z(t,) — 2W| — |z(t,) — 2| > 28 (1 — m) — 2e — 2p0.

We see that for an arbitratily small v > 0 one can choose € and ¢ so small that all
Pareto maximum points lying in the (26[1 — 1/(8 + 1)] — v)-neighborhood of the
“most unfair” Pareto maximum point z(!) are not pd-reachable.

A similar argument leads us to a symmetric statement: for an arbitrary v >
0 one can choose € and § so small that all Pareto maximum points lying in the
(26[1 — 1/(B + 1)] — v)-neighborhood of the “most unfair” Pareto maximum point
2? = (243, 0) are not pd-reachable.

Let us note in conclusion that a “converse” statement holds true as well: for an
arbitrary v > 0 one can choose € and § so small that all Pareto maximum points
lying beyond the (28[1 —1/(5 + 1)] + v)-neighborhoods of the “most unfair” Pareto
maximum points () and 2 are pd-reachable; for brevity, we omit a proof.

5 Negotiation pattern

Here, we discuss a negotiation pattern satisfying assumption (A4), i.e., allowing the
countries in each step to either find an acceptable positive emission reduction vector
if the step is nondegenerate, or identify the fact that the step is degenerate.
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Take an arbitrary step of the emission reduction process, k, which is either initial
(k = 0) or such that all the preceding steps are nondegenerate and consider nego-
tiations in step k. The goal of the negotiations is to either find a positive emission
reduction vector acceptable in that step, or identify that the step is degenerate and
terminate the process.

Recall that a positive emission reduction vector Ax(tx) (2.5) is acceptable in
step k if for every country, i, its local utility growth criterion (2.13) is satisfied.
Substituting (2.8) in (2.13), we represent the set of the countries’ local utility growth
criteria in step k as a system of inequalities:

j:17"'7n7 j#i
(i=1,...,n).

We see that if \;(tx) < 0, country i satisfies its local utility growth criterion in
step k with any Az;(tx) > 0; we call such a country, i, a free negotiator (in step k).
Note that the strict inequality, A;(tx) < 0, or, equivalently, b (y;(tx))ai; — c;(zi(tx)) >
0 (see (2.14)), implies that in step k the country’s marginal cost is low enough and
the country can gain in utility even by slightly reducing its emission solely. The
opposite inequality, A;(tx) > 0, implies that in step & the marginal cost for country ¢
is high enough and a local growth in the country’s utility is possible provided other
countries reduce emission; we call such a country, ¢, a constrained negotiator (in step

Our negotiation pattern suggests that the negotiations in step k go in two phases,
phase 1 and phase 2, the latter having two variants, phase 2a and phase 2b.

In phase 1 each country, i, reveals \;(t;). Based on that, the countries’ com-
munity identifies the free negotiators and constrained negotiators. If there are free
negotiators, the countries go to phase 2a. Otherwise the countries go to phase 2b.

Phase 2a is organized as follows. Based on some pre-defined rule, one free ne-
gotiator, i, is selected. The other countries, i # i, propose some Az;(tx) > 0.
The free negotiator i, responds with a sufficiently large Ax; (¢;) > 0 such that the
utility growth criteria (5.52) are satisfied for all ¢ # i,; the latter is guaranteed, if,

for example,
Az; (tg) > max M
i=1,...,n, 1Fix Q.
For ¢ = i, (5.52) is satisfied automatically. The vector Az(t;) (2.5) resulting from
the negotiations is acceptable in step k.

Let us give two comments to phase 2a. First, we see that if there exist free
negotiators in step k, then step k is nondegenerate. Second, if there are several
free negotiators in step k, the proposed simple decision making scheme in phase
2a “discriminates” the selected free negotiator, 7., which is obliged to compensate
for arbitrary choices of all the other negotiators, including the free ones. There are
obviously a number of ways to modify the scheme and make it more cooperative;
for the sake of brevity, we do not discuss such modifications here.

Phase 2b assuming that there are no free negotiators is organized as follows. In
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the beginning, the countries represent their local utility growth criteria (5.52) as

J=1,em, j#i 1t
(t=1,...,n)
where 0o
7t
i — = 17 ey
and
v>1 (i=1,...,n). (5.54)

For each country, i, (5.53) is a formula for its individual response, Az;(t;) > 0, to
the proposals of the other countries, Az;(tx) > 0, j # 1.

Next, the countries switch to negotiations. The negotiations go through an
exploration stage and a decision making stage. In the exploration stage the countries
identify if step k is nondegenetate. If step k is degenerate, the countries cancel
the decision making stage and terminate the emission reduction process (see (A6)).
Otherwise, the countries switch to the decision making stage and find a local emission
reduction vector acceptable in step k of the emission reduction process.

In the exploration stage the negotiations proceed in rounds. Round 1 is organized
as follows. Country 1 communicates its individual response formula,

n

=2

to country 2. Country 2 substitutes (5.55) in its individual response formula,

ﬂl?Axl (t) + Z 532

j=3 I2

A:Ug(tk) tk)

transforming the latter into

Ama(ty) = i— (2 ﬁ—fmj(m) n i ﬂ—wak),
— 621512 tk + zn: (ﬁ]lﬁl? @

) Ax;(tr),

Y172 = Y172 V2
" = 62 (n,m)
Aaa(t) =3 ﬁm(m) (5.56)
where
BPnm = 2225 s ) (5.57)
4@ (y,3) = 1— PPz (5.58)

Y172 7
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here an in what follows we omit elementary transformations. The updated individual
response formula for country 2, (5.56), takes into account the local utility growth
criterion for country 1. The requirement that both sides in (5.56) are positive
imposes a positivity constraint on Y3 (1, 72):

Y (y1,72) > 0. (5.59)

Country 2 communicates its updated individual response formula, (5.56), to country
1, and the latter substitutes (5.56) in its individual response formula (5.55) resulting
in

52 5(2)(717 72) ‘ - ﬁjl ‘
Al‘l(tk) " (]23 mAZ‘](tk) + ]z::; IAZ‘](tk%

Az (ty) = Zﬂﬂ (71, 72) Az;(ty) (5.60)

where
ﬁ](‘g)(%,’h)ﬁm n Bt
N7® (71,72) g
Two formulas, (5.60) and (5.56), represent the formula for a collective response
of countries 1 and 2 to any proposed local emission reduction values of countries
3,...,n. The collective response formula (5.60), (5.56) and positivity constraint
(5.59) constitute the result of round 1.
Round m — 1 where 2 < m < n starts with the situation, in which countries

6 (717 2) = (.7:3>>n) (561)

1,...,m have generated their collective response formula in the form
Azy(ty) = Z B (s ) A (tr) (5.62)
j=m+1

(t=1,...,m—1),

n /B(m)(’yl,,f}/m)
Az, (ty) = I Ax;i(ty), 5.63
( k) j%:ﬂ ’Y(m) (717 o >’Ym) J( k) ( )

where ﬂj(;n) (V1y--y7m) (j = m+1,...,n) are positive automatically, and a set of
positivity constraints:

Countries 1, ..., m communicate the collective response formula, (5.62), (5.63), and
constraints (5.64) to country m + 1.

Let m+1 < n. Country m+1 substitutes (5.62), (5.63) in its individual response
formula

m—1 n

Axm—f—l(tk) = Z ﬁl mtl Ax,(tk) ﬁm mtl AZ‘m tk + Z ﬁ] mtl ij(tk)

i=1 Ym+1 Ym+1 j=m+2 Ym+1
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Calculations run as follows:

m—1

Apmir(ty) = ZM Z B (1, ) A () +

=1 Ym+1 j=m+1
6m m+1 = ﬁjm (71>~~~>7m)
Ym4+1 =i V(m) (717 < >7m)

Bi mi1 Az;(ty)
je=m+2 Tm+l

— 151 m+1

ij(tk) +

= Z (ﬁm-i—l 1(717 s >7m)Axm+1(tk) + zn: ﬁ](:rz)(71> s ,’Ym)ALU](tk)) +

im1 Ym+1 Jj=m+2

Y1\ Y™ (1, m) s Y (71, Ym)

n

j=m+2 Tmtl

Resolving with respect to Ax,,41(tx), country m + 1 gets

ALy (ty) = zn: @Tﬁ%(%’ - ’meH)Am(tk) (5.65)
o Y (71, Ymgn)
where
m—1 ﬁ(m)( ,
m i o\ >7m)ﬁz m+1
ﬁ]( nﬁl(’)’l;---ﬂ’mﬂ) = Z L +
i=1 Ym+1
(m) ‘
ﬁﬂ? ()71777m)ﬁm m+1 + ﬁ] m—|—17 (566)
ym (71, - >7m)7m+1 Y41
m—1
m m 1717--->7mﬁim1
7( +1)(71>'~'77m+1) = 1- Z +1 ( ) 1 _
i=1 Tm+1
ﬁm-i—;l T;L(fy:b s 77WL)ﬁm m+1 . (567)
Y (9, - Y)Yt
The fact that both sides in (5.65) are positive leads to the constraint
A (L Anga) > 0. (5.68)
Equality (5.65) represents an updated individual response formula for country m+1,
in which the local utility growth criteria for countries 1, . . ., m are taken into account.
Country m+ 1 communicates its updated individual response formula, (5.65), to
countries 1,...,m. Countries 1,...,m substitute (5.65) in their collective response

formula (5.62), (5.63), transforming the latter into

Ax;i(ty) = Z (m+1 (Y1, -, Ym) Az (tg) (5.69)

j=m+2

(m) n
ﬁm m-+1 (ﬁm—i—l m(’yl7...,”ym)Axm+1 tk + Z 6 (717,7m)Ax](tk)) +



(t=1,...,m)
where
m+1) m
6(m+1 (Ve Yst) = ﬂ]( nj+1(’>’1, ce. >’Ym+1)ﬂr(n+)1 (Y155 Ym) i
Y YD (1Y)
By Ym) (5.70)
(t=1,...,m—1),
m+1) m
By = B On i) o)
V(m) (717 s 77m)7(m+1)(,},17 s >7m+1)
(m)
Y (717--->7m)
Equalities (5.69) and (5.65) give a collective response formula for countries 1, ..., m+

1. The collective response formula (5.69), (5.65) and positivity constraints (5.64),
(5.68) form the result in round m + 1. Equalities (5.70), (5.71), (5.66), (5.67)
show how the collective response formula for countries 1,...,m + 1, (5.69), (5.65),
are formed based on the collective response formula for countries 1,...,m, (5.62),
(5.63).

Let m + 1 = n. Country n substitutes (5.62), (5.63), where m = n — 1, in its
individual response formula,

A (t) = Z ! B

and gets in result a simplified analogue of (5.65):

(n)
Azy(ty) = £ (71’;"7"‘1)A:cn(tk>

where

(n—1)
n n—1) 6nn Y1y V-1 ﬁn—ln
( )(’)’17---7%—1) E ﬁ( (’Yb---/}%—l)ﬁm-i— 1 ) .

¥
i=1 7(71 1)(717"'7771—1)

The inequality Az, (t;) > 0 implies ™ (y1,...,%-1) = Y and, in view of v, > 1
(see (5.54)),
O™ (v, . ) > 1 (5.72)

Obviously, (5.72) is a necessary condition for the existence of a positive emission
reduction vector Az(t;) acceptable in step k, i.e., satisfying the countries’ utility
growth criteria (5.53). Country n communicates the criterion (5.72) to the other
countries and finalizes round n.

In the final round of the exploration stage the countries verify if (5.72) is feasible
under the constraints imposed on 71, ..., 7v,_1 earlier:

v>1, YDy, >0 (i=1,...,n—1) (5.73)
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(see (5.54), (5.64)). If the countries find that the system of inequalities (5.72),
(5.73) is incompatible, they qualify step k as degenerate, stop the negotiations and
terminate the emission reduction process. Otherwise the countries switch to the
decision making stage.

Note that in order to tell if the system of inequalities (5.72), (5.73) is compatible,
it is sufficient to find " = sup ™ (715 ++y7n—1) under the constraints (5.73).
This constrained optimization problem can be solved numerically using standard
optimization techniques; for small n the problem can be treated analytically (for the
sake of brevity we do not provide examples). Obviously, the system of inequalities
(5.72), (5.73), is compatible if and only if ¢\ > 1.

Let the system of inequalities (5.72), (5.73) be compatible and v, . . ., y,—1 satisfy
(5.72), (5.73). Consider the decision making stage in the negotiations in phase
2b. The proposed negotiation scheme implies that the compatibility of the system
of inequalities (5.72), (5.73) is sufficient for the existence of a positive emission
reduction vector, Ax(ty), satisfying the system of the countries’ local utility growth
criteria (5.53).

In round 1 country n chooses a positive emission reduction value Az,(t;) and
communicates this value to the other countries. In round 2 countries 1,...,n — 1
compute their emission reduction values, Az (ty), ..., Az,_1(tx), using their collec-
tive response formula (5.62), (5.63) designed in round m = n — 2 of the exploration
stage:

Azi(ty) = BU (1, o) A (t) (5.74)

(t=1,...,n—2),

Ay (th) = Bt (0 D) g (1), (5.75)
7(71 1)(717 S 77”—1)

A straightforward argument shows that the resulting emission reduction vector,
Ax(ty), satisfies the countries’ local utility growth criteria (5.53), constituting the
desired outcome of the negotiations in step k of the emission reduction process.

In conclusion, we outline a proof of the validity of (5.53). Let us show that Ax(t)
satisfies the collective response formula (5.62), (5.63) designed in round m =n — 3
of the exploration stage:

sz(tk) ﬂn 1 1(717 <oy Yn— Q)Axn 1(tk) + ﬁnl (717 cee ,7n—2)Axn(tk) (576)

(i=1,...,n—3),

(n—2) (n—2)
ALEn Q(tk) ﬁn 1 n— 2(717"'7771—2)Axn_1(tk)+ ﬁnn )2(717'“7771—2)Axn(tk).

Y2 (s Ynz) YD (715 Yn2)
(5.77)

By (5.70)

(n—1)
B V(g ) = Do 1(717---’1% DBy Tna) N
7(71 )(717"'7771—1)

ﬁ(n ? (717 S 77”—1)

(t=1,...,n—3).




—22—

Substituting in (5.74) for i = 1,...,n — 3 and using (5.75), we get

(n—1) (n—2)
ﬂn n— 1(717 . ( ‘:;;In—l)ﬁn—l 1(717 s 77n—2)Axn(tk) +
y (717"'7771—1)
ﬁ(n ? (717 s 77”—1)Axn(tk)
= BU 1,2 Az (1) + B (1, - 1) Az (8)(5.78)

n

ALE,’ (tk) =

(i=1,...,n—3).
We see that (5.76) holds. By (5.71)

ﬁ](nnll(71>“‘>7n 1) 7(1 1n 2(’)’17---7’Ym)
YDy, )Y (- )
6g(nn 2%(717"'>7n 2)
YD (Y1, Yn2)

)

+

n—1)
ﬁ](n 2(717"'7771—1) =

Substituting in (5.74) for i = n — 2 and using (5.75), we get
/87(1nn12( Yy oo Yn— 1)571 1 n 2(717 s 7771—2)A

YO 2D (1, )Y (1, Ya)
(n 2

)
nn 2(717"'7771—1)
Az, (t
(n 2)(717"'7771—2) (k)

(n—2) (n—2)
Br1 712)2(71> - ’7"_2)A:L“n—1(tk) + O n2)2(717 — 77n_1)A.Tn(tk:).
7(71 (717 s 7771—2) 7(71 (717 to 77"_2)

xn(tk) +

ALU”_Q (tk) =

Thus, (5.77) holds.
Similarly, we state, step by step, that Ax(t;) satisfies the collective response

formula (5.62), (5.63) for m = n — 3,...,1. For m = 1 the collective response
formula (5.62), (5.63) implies that Ax(tx) satisfies the local utility growth criteria

(5.53).
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