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Foreword

Practically all important decisions involve analysis of several (or even many), typically
conflicting, criteria. Analysis of trade-offs between criteria is difficult because such
trade-offs for most problems are practically impossible to be defined a-priori even by
analysts experienced in Multi-Criteria Analysis (MCA). Therefore, the trade-offs emerge
during an interactive MCA which actually supports a learning process about the trade-
offs. Hence, effective MCA methods are important for actual support of decision-making
processes, especially those related to policy-making.

IIASA has been developing novel methods for MCA since mid 1970s, and success-
fully applying them to many practical problems in various areas. However, there are new
practical problems for which the existing MCA methods (developed not only at IIASA
but also by many researchers all over the world) are not satisfactory. In particular, dis-
crete decision problems with a large number of criteria and alternatives (the latter making
pairwise comparisons by the users impracticable) demand new methods. For example,
MCA analysis of future energy technologies involves over 60 criteria and over 20 dis-
crete alternatives; a careful requirement analysis of this application has proven that none
of the existing MCA methods is suitable for an effective analysis of the corresponding
problem. Moreover, this analysis has been done by a large number of stakeholders with
diverse backgrounds and preferences; most of them have no analytical skills, therefore the
specification of preferences needed to be simple but still provide effective and intuitive
analysis of the Pareto set.

The paper introduces new methods for MCA of discrete alternatives together with
several associated concepts, including automated pairwise comparisons which lead to the
corresponding pairwise outperformance aggregations. The methodological background
for the developed methods is presented, and the methods are compared using a large
sample of preferences coming from actual analyses made by a large and diversified set of
stakeholders.
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Abstract

Many methods have been developed for multiple criteria analysis and/or ranking of dis-
crete alternatives. Most of them require complex specification of preferences. Therefore,
they are not applicable for problems with numerous alternatives and/or criteria, where
preference specification by the decision makers can hardly be done in a way acceptable
for small problems, e.g., for pair-wise comparisons.

In this paper we describe several new methods implemented for a real-life application
dealing with multi-criteria analysis of future energy technologies. This analysis involves
large numbers of both alternatives and criteria. Moreover, the analysis was made by a
large number of stakeholders without experience in analytical methods. Therefore, a sim-
ple method for interactive preference specification was a condition for the analysis. The
paper presents a number of new methods based on the developed outperformance aggre-
gations that take into account inter-alternative factors. Finally, a comparison of methods
and experience of using them is discussed.
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Notation

Notation:

• attributes, indicators or outcomes, or criteria.,ci indexed byi = 1, . . . , n (also
denotedi ∈ I).

• alternatives, options denoted byoj and indexed byj = 1, . . . ,m (alsoj ∈ J),

• attribute values denoted byqij = ci(oj) specified for each pair{i, j}

• outcome vectorq j = (q1j, q2j, . . . , qnj)

• ai : R→ R - Individual Achievement (IA) functions measuring (for each criterion
separately) the satisfaction level corresponding to a value of the criterion.
Individual achievementsaij = ai(qij)
achievement vectora j = (a1j, a2j, . . . , anj)

• S : Rn → R - Scalarizing Function (aggregation) measuring satisfaction levels for
each alternative.
S(a j) scalarized achievement for alternativeoj

• wi(ri ) andvi(wi) - relative importance criteria scaling/weighting;
they can be used in definition of scalarizing functionS or IA functionsai.

• ordered achievements
the ordering mapΘ : Rn → Rn such thatΘ(y) = (θ1(y), θ2(y), . . . , θn(y)),
whereθ1(y) ≤ θ2(y) ≤ · · · ≤ θn(y) and there exists a permutationτ of setI such
thatθi(y) = yτ (i) for i ∈ I .
Ordering operator defined by vectora j can be applied to another vector, e.g., to
vector of the corresponding weights, we will denote it as
Θj(w) = (θj1(w), θ

j
2(w), . . . , θ

j
n(w)) = (wτ (1), wτ (2), . . . , wτ (n)), whereτ is a

permutation of setI ordering vectora j , i.e., such thatθi(a j) = aτ (i)j for i ∈ I .
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Multiple Criteria Analysis of Discrete Alternatives with a
Simple Preference Specification:

Pairwise-outperformance based Approaches

Janusz Granat* *** (J.Granat@itl.waw.pl)
Marek Makowski** (marek@iiasa.ac.at)

Włodzimierz Ogryczak*** (W.Ogryczak@ia.pw.edu.pl)

1 Introduction

Multiple Criteria Analysis is a well established area of applied science, which has been
developed in response of needs for problem analysis that could not be met by traditional
Operational Research methods. A sample of diverse approaches and the corresponding
tools can be found e.g., in [1, 3, 5, 7, 11, 14, 27, 29, 30, 31, 36, 37]. One can thus ask why
still new methods need to be developed. Therefore we start this paper with summarizing
the motivation for the reported research.

Multicriteria analysis was needed for supporting a large number of diversified stake-
holders in individual analysis of preferences for diverse future energy technologies de-
veloped with the European Integrated Project NEEDS.3 A concerted effort of European
researchers resulted in defining over 20 technologies in each of the four analyzed Euro-
pean countries; each technology is characterized by about 40 attributes. The attributes
were organized in a hierarchical structure composed of three subsets of criteria following
the concept of sustainable development, i.e., environmental, economic, and social crite-
ria. From a modeling point of view for each of the four countries a multicriteria analysis
was done for a set of over 20 alternatives, each characterized by 61 criteria (composed
of attributes, three top-level criteria, and intermediate criteria) organized in a hierarchical
structure forming an unbalanced criteria tree.

Over 3,000 stakeholders invited to the analysis had diversified backgrounds and typ-
ically rather limited mathematical skills. Due to the number of stakeholders and their
geographical dispersion as well as limited time, the analysis was done through the Web.
Moreover, the users typically had little time to become familiar with the tool supporting
the analysis, and to complete the analysis. Therefore the Web-based tool for multicriteria
analysis had to be easy to use; in particular, specification of preferences had to be intu-
itive and the corresponding multicriteria analysis method needed to support an effective

* National Institute of Telecommunications, Warsaw, Poland.
** Integrated Modeling Environment Project, IIASA.

*** Warsaw University of Technology, Warsaw, Poland.
3Information about the NEEDS Project is available athttp://www.needs-project.org/

2009/ , and e.g., [18, 28].
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analysis of a large number Pareto efficient alternatives characterized by a large number
of criteria organized in a hierarchical structure. A detailed requirement analysis of this
problem is provided in [18].

There have been no multicriteria analysis methods meeting these requirements al-
though various approaches to multicriteria analysis in energy have been used, see e.g.,
[9], [4]. A comprehensive justification of this statement is available in [8]. In order to
provide adequate support for analysis of the class of problems outlined above over 30 new
methods have been developed and tested; 12 of these methods are presented in this paper,
other methods are described in [35] and [16].

The structure of the remaining part of the paper is as follows. Basic terminology is
introduced in Section 2. Then the specification of preferences as well as the methods of
preferences’ aggregation are discussed in Section 3. The fundamental assumption for the
designed methods was simplicity of the preference specification which resulted in using
the relative importance of criteria for representation of preferences. Due to the strong
demand for organizing the large number of criteria into three pillars of sustainability, the
corresponding hierarchy of the criteria was implemented. The main scientific result is pre-
sented in Section 4. The formulated Pairwise Outperformance Measure takes into account
the differences of the compared achievements as well as the modified absolute values of
the achievements. Next, in Section 5 we define the Ordered Pairwise Outperformance Ag-
gregation and show its applicability. Such an aggregation is based on comparison of pairs
of achievements ordered (for each criterion) from the worst to the best. The transitivity
property of the developed methods, and Net-Flow approaches are discussed in Section 6.
The correspondence between the implemented methods and the described methodology is
presented in Section 7. Section 8 summarizes extensive experiments with the developed
methods. Finally, Section 9 contains conclusions.

2 Preliminaries

2.1 Problem definition

In this paper we focus on the problem of analysis of discrete set of alternatives (objects)oj ,
j ∈ J = {1, 2, . . . ,m}. The set of all alternatives will be referred asQ = {oj : j ∈ J}.
Objectsoj are described by numerical attributes (or criteria, selected outcomes)ci, i ∈
I = {1, 2, . . . , n}. Attribute values are denoted byqij = ci(oj) specified for each pair
{i, j}.

object o1 o2 . . . om
attribute

c1 q1,1 q1,2 . . . q1,m
c2 q2,1 q2,2 . . . q2,m
. . . . . . . . . . . . . . .
cn qn,1 qn,2 . . . qn,m

In the process of problem analysis the user selects some of the attributes as criteria
and decide on each criterion type (minimization or maximization). Optionally, the user
can define hierarchical structure of criteria forming a tree, in which leafs are the criteria
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defined by the selected attributes, and the higher-level criteria are defined to aggregate
lower-level criteria, see [17] for details.

There are three basic types of multicriteria analysis:
• choice: select the most preferred object,
• ranking: order all objects from the most preferred to the last preferred,
• sorting: partition of the set of alternatives into several categories.

The essence of multiple criteria analysis is to help the user in finding a solution (either
an object or a ranking or a sorting) that fits best her/his preferences. The basic function of
multicriteria analysis is to support the user in an interactive modification of her/his pref-
erences upon analysis of the corresponding solutions. This approach substantially differs
from the classical (single-objective) optimization which requires a prior specification of
one objective function (optimization criterion).

In order to facilitate the discussion we recall now the basic concepts of Pareto effi-
ciency (Pareto-optimal solution) and preference models.

2.2 Basic concepts of Pareto efficiency

Pareto-optimal alternative: An alternative is called Pareto-optimal, if there is no other
alternative which has a better value of at least one criterion while no criterion has
a worst value. In other words (and assuming for the following definition that all
criteria are maximized) alternativeol ∈ Q is Pareto-optimal if and only if:

¬∃oj ∈ Q : {ci(oj) ≥ ci(ol) ∀i ∈ I and
∃k ∈ I : ck(oj) > ck(ol) } (1)

If such an alternativeoj exists than we say that it dominatesol. A Pareto-optimal
alternative is also called anefficientor non-dominated one.

Further on, a properly Pareto-optimal alternative will be simply called Pareto solu-
tion.4

Pareto-optimal point: Pareto-optimal point is composed of values of all criteria for a
corresponding Pareto-optimal alternative.

Pareto set: Pareto-optimal set is composed of all Pareto-optimal alternatives.

It is clear that a dominated alternative is not a rational choice. Therefore, it is rational
to analyze trade-offs between non-dominated alternatives only. Thus the purpose of mul-
ticriteria analysis is help the user to analyze the Pareto set in order to find either a Pareto
efficient solution or a ranking of non-dominated alternatives.

2.3 Preference model

Preferences for alternatives can be analyzed in terms of the corresponding outcome vec-
tors (shortly: outcomes), i.e., criteria values of the corresponding alternatives. Those
approaches are equivalent, and we will use both of them interchangeably.

4In actual applications one usually deals with properly Pareto-optimal alternativeswith a prior bound on
trade-off coefficients (see [34] for more details). For the sake of brevity we don’t exploitthis concept here.
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Let us consider now pairwise comparison, i.e., the problem of deciding which of two
(sayoj1 andoj2) selected alternatives (or corresponding outcomes) is preferred. One can
distinguish two situations:
• one of these alternatives dominates the other; in this case the dominating outcome is

clearly preferred.
• if the alternatives do not dominate each other, then one cannot objectively decide which

one is better; however the user either (subjectively) prefers one of them or cannot decide
which one is preferred.

Generally, it is clear that if an outcome dominates another one, then it is better than the
other one. In truly multicriteria problems however, there is no alternative that dominates
all other alternatives. In other words, one cannot distinguish a best (in terms of strict
mathematical relations) alternative because the nondominated outcomes are incomparable
on the basis of the specified set of criteria. However, a user usually has preferences which
help him/her to select an alternative that fits best these preferences.

A preference structure[24] (that can be used for definition of advanced preference
models) is a collection of binary relations defined on the set of alternativesQ such that
exactly one relation is satisfied.

The simplest preference model assumes that while comparing two different elements
of the setQ we can distinguish only two situations:
• preference of one element to the other (relation≻), or
• indifference of one element to the other (relation∼).

Above simple preference model can be defined bypreference structurecomposed of
two disjoint binary relations onQ×Q:

〈≻,∼〉. (2)

Note that≻ is asymmetric while∼ is reflexive and symmetric.
We summarize here the basic features of the preference model:

1. the preference model (2) is called complete if for any pair of alternatives(oj1, oj2)
eitheroj1 ≻ oj2 or oj2 ≻ oj1, or oj1 ∼ oj2;

2. the preference model (2) is called transitive, if for any three alternativesoj1, oj2, oj3 the
following implications hold:
• if oj1 ≻ oj2 andoj2 ≻ oj3 thenoj1 ≻ oj3, and
• if oj1 ∼ oj2 andoj2 ∼ oj3 thenoj1 ∼ oj3.
By extending properties of the binary relations one can define various more specific

preference structures calledorderse.g. total, weak, semi-order, interval order. For exam-
ple outranking methods are based on preference structures called partial and quasi order.
The details of various preference structures can be found e.g., in [24].

The preference models might have also numerical representations. The most common
numerical representations of preference models is a value functionV : Q → R defined
for each alternative. In such cases while considering a pair of two alternatives(oj1, oj2):
• alternativeoj1 is preferred tooj2 (i.e.,oj1 ≻ oj2), if and only ifV (oj1) > V (oj2);
• oj1 andoj2 are indifferent (i.e.,oj1 ∼ oj2) if and only if V (oj1) = V (oj2).

The preference model defined by a value function is obviously complete and transi-
tive. The value function can also be considered as a simple method of aggregation of the
criteria.

A specific form of value function is so called Achievement Scalarizing Function
(ASF) introduced by Wierzbicki, see e.g., [32, 33, 34, 36]. ASF can be written in a
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form:

ASF = V (q , qa , q r)

whereV (q , qa , q r) is a strictly monotone function of criteria (increasing for maximized
and decreasing for minimized), whileqa andq r are user-defined parameters representing
the values of the aspiration and reservation levels for the corresponding criterion, respec-
tively.

3 Specification and aggregation of preferences

In order to support the user in analysis of Pareto-optimal alternatives one needs to provide
an effective way for specification of his/her preferences, and to aggregate them in a way
that results in finding a Pareto-alternative that possibly well fits the user preferences. We
now discuss these two topics.

3.1 Specification of preferences

Preference information are generally considered in two categories:
• information between the criteria, e.g., relative importance of criteria;
• information within each criterion, e.g., satisfaction/utility levels for different values of

a criterion.
Due to the requirements explained in Section 1, the developed methods had to use a

very simple way of preference specification that is suitable also for users without analyt-
ical skills. For the considered problem the inter-criteria preferences need to be specified;
therefore, we refrained from specification of preferences within each criterion. Inorder
to rationally deal with criteria types (maximized or minimized) and very diverse orders
of criteria value magnitudes, all criteria values are linearly mapped in the [0, 1] interval,
where 0 and 1 correspond to the worst and best value, respectively. Moreover, the lack of
specification by the user of intra-criterion preferences is to some extend compensated by
the pairwise outperformance measures presented in Section 4.

It has been agreed that specification of relative importance of each criterion using the
importance categories was the most suitable way for specification of preferences. There-
fore, the preferences for each criterion are specified interactively by selecting one of eight
levels which is interpreted as the corresponding value ofrii, i ∈ I as follows:
• rii = 4 denotes average importance;
• rii values 5 through 7: more, much more, vastly more, important than average, respec-

tively;
• rii values 3 through 1: less, much less, vastly less, important than average, respectively;
• rii = 0 temporally ignore the criterion.

The non-zero values ofri are mapped into weightswi, i ∈ I in one (depending on
the selected method) of the following ways. The ignored criteria (and their children in
the criteria hierarchy, if one is specified) are excluded from the set of criteria used for
defining the weights.

The first is the simplest linear (standard) mapping defined by:

ωi = rii/6, i = 1, . . . , n (3)
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The second is the multiplicative mapping which is less popular than the linear one, but
it has a number of advantages (see e.g., [14]); it is therefore used by all methods described
in this paper. The multiplicative mapping is defined by:

ωi = (
√
2)xi (4)

wherexi is selected from therii-th position from the following vector

{−8,−4,−2, 0, 2, 4, 8} (5)

In other words, the values of weights can be selected from the vector

{1/16, 1/4, 1/2, 1, 2, 4, 16} (6)

from the position defined by the relative importance button.
For both methods the vectorω is normalized to get

w̄i = ωi/
n
∑

i=1

ωi, i = 1, . . . , n (7)

3.1.1 Weights for criteria hierarchy

If a criteria hierarchy is defined then the following procedure is applied:
1. Compute weights̄w defined by (7).
2. Define setsSk, k = 1, . . . , K composed of siblings (i.e., nodes having a common parent

node) of criteria.
3. Normalize subsets of siblings:

ŵl = w̄l/

Lk
∑

l=1

w̄l, l ∈ Sk, k = 1, . . . , K (8)

whereLk is the number of elements inSk.
4. For each leaf-criterion define

wi =
∏

k∈Mi

ŵk, i = 1, . . . , n (9)

where setMi is composed of indices of the following criteria:
• i-th leaf criterion,
• intermediate-levels criteria belonging to the branch of the active criteria tree leading

to thei-th criterion.
Note that the weightsw generated by the above procedure are already normalized in

the sense that
n
∑

i=1

wi = 1.
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3.2 Aggregation of preferences

In order to select a satisfactory efficient solution, most of multiple criteria methods aggre-
gate the individual outcomes with some scalarizing functions or relations based on some
aggregations. The scalarizing functions may have various constructions and properties
depending on the specific approach to preference modeling applied in several methods.
Nevertheless, most scalarizing functions can be viewed as two-stage transformation of the
original outcomes:
• First, the individual outcomes are rescaled to some uniform measures of achievements

with respect to several criteria and preference parameters. Thus, the individual achieve-
ment functionsai are built to measure actual achievement of each outcome in a uniform
scale [0, 1].
• Second, the outcomes transformed into a uniform scale of individual achievements are

aggregated at the second stage to form a final scalarization. The aggregation may mea-
sure, for instance, the average or the worst individual achievement. Typically the ag-
gregation is impartial or symmetric with respect to the individual achievements thus is
treats all individual achievements as equally important as long as there is no criteria
importance introduced.

In the methods presented in this paper the user specifies his/her preferences as relative
criteria importance. Therefore, the corresponding weights are used in the aggregations of
preferences. The weights representing criteria importance can be introduced into methods
either within the aggregation level or within the individual achievement model. Here we
outline both approaches. Each of them is used for the same three pairwise outperformance
measures. In other words, we will present six methods organized into two sets character-
ized by the way in which the weights are used for aggregation of preferences. These two
sets of pairwise outperformance methods are presented in Sections 4 and 5, respectively.

3.2.1 Weights within individual achievements

The traditional weighted sum aggregation

V =

n
∑

i=1

wiai (10)

is one of the oldest approaches to multicriteria analysis. The weights are there typically
interpreted in terms of a tradeoff preference model. That means an additional scaling
of individual achievements is introduced to transform them into equally important units
while the aggregation itself remains impartial (symmetric). Depending on the method
(or later applied aggregation) the individual achievement are multiplied either bywi or
by 1/wi. This approach is still popular because it is believed to be simple, intuitive, and
reliable. Actually however, the weights applied in the form of (10) support poorly analysis
of Pareto sets, and are often contra-intuitive. The discussion of this approach is beyond
the scope of this paper, but it can be found e.g., in [15, 19, 20].

3.2.2 Weights at the aggregation level

Formula (10) may also be interpreted as the weighted average achievement with impor-
tance weights introduced on the aggregation level. This interpretation follows the rule that
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the importance weightswi define a repetition measure within the distribution (population)
of achievement values while the impartial aggregation take into account this repetition
measures. For example, let us consider two symmetric achievement vectorsa1 = (0, 1)
anda2 = (1, 0) and introducing importance weightsw1 = 0.75 andw2 = 0.25 we re-
placea1 = (0, 1) with the distribution taking value 0 with the repetition measure 0.75 and
taking value 1 with the repetition measure 0.25 whilea2 = (1, 0) is replaced with the dis-
tribution taking value 0 with the repetition measure 0.25 and taking value 1 with the rep-
etition measure 0.75. In this specific case, the distributions may easily be equivalently in-
terpreted in terms of four dimensional space of equally important achievements (measure
1/4 each) where the original first achievement has been triplicated, thusā1 = (0, 0, 0, 1)
andā2 = (1, 1, 1, 0).

Certainly, different interpretations of the weighted sum aggregation do not change its
properties. It shows however, how the importance weights can be utilized in more compli-
cated aggregations. We will use such an approach in Section 5 to exploit the importance
weights for defining ordered achievements.

4 Pairwise outperformance aggregation

We present here the background, motivation and implementation of three methods based
on the pairwise outperformance aggregation approach. Further on we assume the achieve-
ments are normalized to [0, 1], where 0 and 1 correspond to the worst and best values,
respectively.

4.1 Standard component-wise aggregation

A natural improvement of the weighted sum aggregation is to transform individual
achievements by a nonlinear (utility) function. The scalarizing functions is then defined
by:

S(oj) =
n
∑

i=1

wiu(aij), j ∈ J (11)

The utility functionu(aij) may be used to amplify the impact of increasing weak
values (much) more than that of good values. A concave increasing utility function guar-
antees that an improvement of smaller value may result in a larger satisfaction increase
than the same (in terms of the criterion value) improvement of a larger value. Further, a
standard (user defined) importance weightswi are applied on the aggregation level. Thus,
the entire scalarization may be viewed as the weighted average of nonlinear utilities.

As already mentioned, such a scalarizing function can be used for defining outperfor-
mance aggregation. Let us consider two alternativesoj andol and apply such a nonlinear
aggregation to a simple preference model, e.g.:

oj ≻ ol ⇔
n
∑

i=1

wi[u(akj)− u(akl)] > 0

oj ∼ ol ⇔
n
∑

i=1

wi[u(akj)− u(akl)] = 0
(12)
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Such a preference model is based on scalarizing functions defined for each alternative
separately, and therefore does not take into account inter-alternative factors. However,
the latter is strongly desired for pairwise comparisons, and this observation motivated
the authors to develop a new approach to pairwise outperformance aggregation. This
approach assumes that due to the number of alternatives the user cannot make pairwise
comparisons directly.

4.2 Outranking Procedures for Aggregation

Various approaches to aggregation of preference-relations are discussed in [3]. One of
them is the widely used outranking procedure. Pirlot in [25] presented a common frame-
work for defining some outranking procedures. These procedures use pairwise compar-
isons instead attempting to numerical evaluation of each alternative using a common scale.
The ELECTRE methods are examples of outranking procedures and belong to the class
of weighted majority relation with veto. In such procedures the statementalternativeoi
outranksoj is equivalent to the statement that it is at least as good asoj. The procedure of
checking if an alternative outranks another one is based on semiorderSi and veto relation
Vi. The semiorderSi is determined in the following way:

qij Si qil ⇔ qij ≥ qil − τi

and the veto relationVi is defined as

qil Vi qij ⇔ qil > qij + νi

oj outranksol if the following condition is valid:

oj S ol ⇐⇒







∑

i∈I:qijSiqil
wi ≥ δ

and there is no i on which qil Vi qij

wherewi denotes the normalized weights andδ stands for the majority threshold that
belongs to the[0.5, 1] interval. The above formula means that the sum of weights of the
criteria for which the criteria values are better with respect toSi are grater then a given
thresholdδ, and there is no veto (Vi) on any other criterion. The above procedure is called
ELECTRE I. There are other more advanced definitions of the outranking relationS, e.g.,
ELECTRE II andIII, PROMETHEE I and II.

However, the outranking procedure of this type is not applicable to problems with
many criteria; as pointed out in [6], the ELECTRE methods are suitable for decision mod-
els that include more than five criteria and preferably less than thirteen criteria. Moreover,
for problems with many (practically more than 6) alternatives methods based on pairwise
comparisons are not likely to be actually used.

4.3 Motivation and basic features

For pairwise comparison it is desired to evaluatei-th achievements from the perspective
of both compared alternatives, and then to aggregate such evaluations for all criteria.
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Let us consider two alternativesoj andol. While evaluating thei-th achievement value
of alternativeol from the perspective of alternativeoj we consider the difference of the
values relative toaij:

dc′jli = β(aij)(aij − ail) i = 1, 2, . . . , n (13)

whereβ(·) is a convex, decreasing, and positive internal scaling function.
The role ofβ(·) is to amplify differently the impact of a given difference of a crite-

rion values for both alternatives. The amplification for weak5 criterion values is stronger
than for strong (i.e., close to 1) values. To illustrate this feature let us consider equal
weights/importance for all criteria, and alternativeso1 ando2 defined in Table 4.3.

alternatives o1 o2 . . . om
achievements

a1 0.0 0.1 . . . 1
a2 1.0 0.9 . . . 1
a3 0.5 0.5 . . . 0

Typically, o2 is preferred too1 (although the sum of differences in criteria values is
equal to 0) because the improvement of the worst value ofa1 is usually preferred over
worsening the much better performinga2 by the same value.

Coming back to comparing the alternativesoj andol we shall also consider the com-
parison from the perspective of alternativeol. Symmetrically to (13) we define

dc′′jli = dc
′
lji = β(ail)(ail − aij) i = 1, 2, . . . , n (14)

By aggregating both comparisons we define for each criterion the following compo-
nentsdcjli of the outperformance aggregation:

dcjli = dc
′
jli − dc′′jli = (β(aij) + β(ail))(aij − ail) i = 1, 2, . . . , n (15)

Thus, the two factors of componentsdcjli have the following roles:
• Factor(aij− ail) is a difference betweeni-th criterion values of both compared alterna-

tives.
• Factor(β(aij) + β(ail)) averages the amplification of the difference of the compared

achievements. The amplification depends on both achievement’s values under compar-
ison, and thus averages scaling the difference of the achievements in order to equally
treat both alternatives.

One may also note the following properties of (15):
• For absolute large value of(aij− ail) one element of(β(aij)+β(ail)) is also large, and

thus the value ofdcjli is large.
• For a small value of(aij − ail) the value ofdcjli depends on whether the corresponding

achievements are weak (small) or strong (large).

5For the applied criteria normalization weak means values close to 0.
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4.4 Pairwise Outperformance Aggregation (POA)

Based on the discussion in Section 4.3 we aggregate the componentsdcjli defined for each
criterion by (15) into the following Pairwise Outperformance MeasurePOA(oj , ol) to be
used for comparing alternatives(oj , ol):

POA(oj , ol) = POA(a
j, al) =

n
∑

i=1

widcjli =

n
∑

i=1

wi(β(aij) + β(ail))(aij − ail) (16)

In other words, we define pairwise outperformance aggregation as:

POA(oj , ol) > 0 ⇒ oj ≻ ol (17)

POA(oj , ol) = 0 ⇒ oj ∼ ol
The properties ofPOA(·) depend on the choice ofβ(·). Two forms of the function

β(x) (wherex ∈ [0, 1] stands for normalized values of criteria and the parameterλ > 1)
have been analyzed and implemented, namely:

β(x) = λ−x (18)

β(x) =
λ− 1

1 + (λ− 1)x (19)

The choice of the form ofβ(x) and its parameterλ not only implies the analytical
properties of thePOA(·) but also the behavior of the corresponding multicriteria method.
From the point of view of multicriteria method implementation the following two ele-
ments are important:
• The ratioλ of values ofβ(·) for the worst and best values of normalized criteria:

λ =
β(0)

β(1)
(20)

which characterizes the amplification depending on the performance (weakness or
strength) of the corresponding criterion. Note that forβ(x) defined by either (18) or (19)
the ratioλ is actually equal to the parameterλ. Experiments show that values ofλ about
10 are satisfactory. However, advanced users should have a possibility to control the
value ofλ.
• Consistency of the aggregation (16) in the sense of monotonicy with respect to the

Pareto dominance relation, i.e.:

oj ≻P ol ⇒ POA(oj , ol) > 0 (21)

If (21) does not hold then application of (18) does not guarantee that a non-dominated
alternative will be selected. In order to avoid such situations a preprocessing of alter-
natives is needed for filtering-out the dominated alternatives before the pairwise out-
performance aggregation (16) is applied. Such a preprocessing is very easy for dis-
crete alternatives problems but cannot be applied for MCA of mathematical models (for
which an auxiliary parametric optimization problem is generated for each specification
of preferences).

Therefore, the analytical properties ofPOA(·) are discussed in Section 4.5, and its
application to multicriteria analysis is presented in Section 7.
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4.5 Properties of POA

In this Section we analyze the dependence between the form and parameter of functions
β(·) defined above, the concavity and monotonicity properties of POA, as well as their
relations to the corresponding valued preference relations. These properties of POA are
illustrated by simple examples in Section 4.5.2. The transitivity properties are discussed
in Section 6.

For the sake brevity we use in this Section a simplified notation for POA. For any
alternativeoj we consider a relative outperformance function comparing any achievement
vectory = (y1, y2, . . . , yn) with the achievement vectora j defined by the alternativeoj ,
and denote:

Pj(y) = POA(y , a
j) =

n
∑

k=1

wk(β(yk) + β(a
j
k))(yk − ajk) (22)

4.5.1 Concavity and monotonicity

The two propositions below deal with concavity of monotonicity properties of POA for
β(·) defined by (18) and (19), respectively.

Proposition 1 For any achievement vectora j the corresponding relative outperformance
functionPj is concave and strictly increasing with respect to each achievementyk when-
everβ(x) = λ−x with 1 ≤ λ ≤ e.
Proof. Calculating the partial derivatives of functionPj we get

∂Pj(y)

∂yk
= wk[(1− µyk + akjµ)λ−yk + λ−akj ], k = 1, 2, . . . , n

whereµ = lnλ. If 1 ≤ λ ≤ e, then0 ≤ µ ≤ 1 and1−µyk+akjµ ≥ 0 for any0 < yk < 1
and0 ≤ akj ≤ 1. Therefore,

∂Pj(y)

∂yk
> 0 ∀0 < yk < 1.

Further, calculating the second order partial derivatives we get obviously

∂2Pj(y)

∂yk′∂yk′′
= 0 ∀k′ 6= k′′

and

∂2Pj(y)

∂y2k
= wk(µ

2yk − 2µ + akjµ2)λ−yk , k = 1, 2, . . . , n

If 1 ≤ λ ≤ e, then0 ≤ µ ≤ 1 and(yk − akj)µ ≤ 2 for any0 < yk < 1 and0 ≤ akj ≤ 1.
Therefore,

∂2Pj(y)

∂y2k
≤ 0 ∀0 < yk < 1
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thus guaranteeing the concavity properties. 2

Summing up, the POA defined by (16) withβ(·) defined by (18) is concave and strictly
increasing forλ ∈ [1, e]. Such a rather small range of values ofλ results is a rather small
amplification of weak criteria values. Therefore, the corresponding method may either
have undesired behavior for some problems (if applied withλ < e) or does not guarantee
finding Pareto-efficient solution forλ > e.

Although the latter problem may be effectively addressed by filtering-out dominated
alternatives in a preprocessing phase of the multicriteria analysis we have found an alter-
native form ofβ(·) which guarantees concavity and monotonicity of POA for anyλ > 1.

To show this let us now considerβ(·) defined by (19). By applyingβ(·) defined (19)
to (13) one gets

dc′jlk =
λ− 1

1 + (λ− 1)akj
(akj − akl) =

1

ãkj
(ãkj − ãkl) (23)

where

ãkj =
1

λ
+ (1− 1

λ
)akj (24)

In other words, the criteria values are rescaled by (24) from [0, 1] to[ 1
λ
, 1], which in turn

allows for applying the standard inverse-proportional scaling.
Similarly,

dc′′jlk = dc
′
ljk =

1

ãkl
(ãkl − ãkj) k = 1, 2, . . . , n (25)

and

dcjlk = dc
′
jlk − dc′′jlk = (

1

ãkj
+
1

ãkl
)(ãkj − ãkl) =

ãkj
ãkl
− ãkl
ãkj

k = 1, 2, . . . , n (26)

The corresponding relative outperformance function (22) comparing any achievement
vectory = (y1, y2, . . . , yn) with achievements ofoj takes then form

Pj(y) =
n
∑

k=1

wk(
ỹk
ãkl
− ãkl
ỹk
) =

n
∑

k=1

wk(
1 + (λ− 1)yk
1 + (λ− 1)akl

− 1 + (λ− 1)akl
1 + (λ− 1)yk

) (27)

Proposition 2 For any achievement vectora j the corresponding relative outperformance
function (27) is concave and strictly increasing with respect to each achievementyk when-
everβ is defined by (19) withλ > 1.

Proof. Calculating the partial derivatives of functionPj we get

∂Pj(y)

∂yk
= wk[

(λ− 1)(1 + (λ− 1)akj)
(1 + (λ− 1)yk)2

+
λ− 1

1 + (λ− 1)akj
], k = 1, 2, . . . , n

If λ > 1, then

∂Pj(y)

∂yk
> 0 ∀y : 0 ≤ yk ≤ 1.
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Further, calculating the second order partial derivatives we get obviously

∂2Pj(y)

∂yk′∂yk′′
= 0 k′ 6= k′′

and

∂2Pj(y)

∂y2k
= wk

−2(λ− 1)2(1 + (λ− 1)akj)
(1 + (λ− 1)yk)3

, k = 1, 2, . . . , n

If λ > 1, then

∂2Pj(y)

∂y2k
≤ 0 ∀y : 0 ≤ yk ≤ 1

thus guaranteeing the concavity properties. 2

Note that by choosing a (very) large value ofλ for β defined by (19) the achievements
values rescaled by (24) can be made very close to the original achievements, and the
POA aggregation will be driven by improving the worst values of achievements. This
is, in a sense, consistent with the Rawlsian approach (improve the weakest) which is a
methodological justification of using the max-min scalarizing functions in the reference
point approaches.

4.5.2 Illustration of POA properties

Now we illustrate some properties ofPj(y) using a sample problem with two criteria
and nine alternatives. We focus our discussion on two pairs of alternatives(o6, o8) and
(o3, o7). Equal relative importance of criteria is assumed, and the criteria values are
normalized (value of 1 corresponds to the best value). These four alternatives differ sub-
stantially, but they were defined in such a way that the pairs(o6, o8) and(o3, o7) have the
same differences of achievement values for criterion 1 and for criterion 2, respectively.
The achievement values are shown in Table 1.

o6 o8 o3 o7 o6 - o8 o3 - o7
a1 0.80 1.00 0.20 0.40 -0.20 -0.20
a2 0.05 0.00 0.75 0.70 0.05 0.05

Table 1: Values of achievementsa1 anda2 for alternativeso6, o8, o3, o7, and their differ-
ences for pairs(o6, o8) and(o3, o7).

We focus on two pairs of comparisons, namely(o6, o8) and(o3, o7). Let us observe
that:
• both alternatives of the pair(o6, o8) perform very well in respect of criterion 1 and very

poorly on criterion 2;
• alternatives(o3, o7) performs moderately on criterion 1 (20% to 40% of the best value,

respectively) but rather well on criterion 2 (75% to 70% of the best value, respectively).
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For both pairs, the trade-off (in terms of the difference of the criteria values) between
the two corresponding alternatives is the same: 20% of improvement/worsening of crite-
rion 1 for 5% of worsening/improvement of criterion 2. Therefore, any method that does
not take into account inter-criteria relations6 will result in either:
• o6 ≻ o8 ando3 ≻ o7, or
• o6 ≺ o8 ando3 ≺ o7.
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(a) FunctionP6(y), λ = 10
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(b) FunctionP3(y), λ = 10
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(c) FunctionP6(y), λ = e
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(d) FunctionP3(y), λ = e

Figure 1: Isoline contours of functionsP6(y) andP3(y) for λ equal to 10 ande.

All alternatives are shown in Figure 1 as points marked with the corresponding num-
bers 1 through 9. The coordinates of the points correspond to the criteria values (crite-
rion 1 is shown on the horizontal axis). It is easy to see that all alternatives buto2 are
Pareto optimal.

6Such methods use separable component achievement scalarizing functions, i.e., functions built foreach
criterion separately.
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Figures 1(a) through 1(d) provide isoline contours for different functionsPj(·);
namely, from the perspective ofo6 (P6(y) Fig. 1(a) and 1(c)), and ofo3 (P3(y) Fig. 1(b)
and 1(d)), respectively. These two pairs of Figures differ by the applied functionβ(·).

The values of functionsP6(·) andP3(·) are in the ranges:
• P6(y): [−1.021, 0.993], and[−1.258, 1.412], for λ equal to 10 ande, respectively.
• P3(y): [−1.21, 0.654] and[−1.469, 1.161], for λ equal to 10 ande, respectively.

The contour lines are displayed for the values that differ by 0.05, and increase in the
up and right direction. In other words, the outperformance relation can be easily seen by
comparing any two alternatives and the corresponding isolines.

We now illustrate some of the properties of the POA by comparing the above defined
two pairs of alternatives, and two forms ofβ(·). Let us first consider the isoline contours
of functionP6(y) for β(x) = 10−x shown in Fig. 1(a). From the isoline contours around
alternatives 6 and 8 one can see thato6 is preferred overo8. However, the result of
such a pairwise comparison is different forP6(y) that usesβ(x) = e−x; the latter is
illustrated in Fig. 1(c). This example illustrates the scaling role of functionβ(·), and
is easy to explain by considering the form of (22). The ratio of improving the value of
criterion 1 to compromising the value of criterion 2 (between alternative 6 and 8) is equal
to 4. To compensate this (in the sense of preferring the small improvement of the weakly
performing criterion 2 over much the larger improvement of of very well performing
criterion 1) the sum ofβ(·) for criterion 2 needs to be more than four times larger than for
criterion 1. By easy calculations one can show that forλ ≥ 5 this is the case, ando6 ≻ o8,
while λ ≤ 4.9 results ino6 ≺ o8.

Figures 1(b) and 1(d) show isoline contours of functionsP3(y) for β(·) = 10−x, and
β(·) = e−x, respectively. It is easy to see that in both caseso7 ≻ o3. The explanation of
this situation is obvious: for these two alternatives criterion 1 is weaker (than criterion 2),
therefore there is a good justification7 for such a preference.

4.5.3 POA and preference relations

The aggregated outperformance measure (16) allows us to build the corresponding valued
preference relation. Note that values of the component measuresdcjlk anddcljk have
different signs but equal absolute values. Similarly,djl = −dlj. Hence, we can define the
preference model (18) as

(oj ≻ ol ⇔ djl > 0) and (oj ∼ ol ⇔ djl = 0) (28)

We will refer to this preference model as the outperformance relation. Respectively, we
will say that alternativeoj weakly outperforms alternativeol (oj � ol) if

oj � ol ⇔ djl ≥ 0 (29)

The weak outperformance relation might be considered an outranking relation with re-
spect to the classical general definition of the outranking relation as a binary relation
defined onQ × Q such thatoj � ol if there are enough arguments to decide thatoj is
at least as good asol, while there is no essential reason to refuse that statement [26, 30].
Although it is quite different from the commonly used outranking relations. Therefore,
we use the different name.

7Let us recall that the relative importance of criteria is assumed to be equal.
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The outperformance relation can be lexicographically enhanced by comparison of the
original differences when the scaled once leads to the equal results, i.e.

oj ≻e ol ⇔ djl > 0 or

(

djl = 0 and
n
∑

k=1

wk(ajk − alk) > 0
)

oj ∼e ol ⇔ djl = 0 and
n
∑

k=1

wk(ajk − alk) = 0
(30)

Note that while the enhancement narrows the indifference relation it does not affect the
weak outperformance relation as

oj �e ol ⇔ djl ≥ 0 ⇔ oj � ol

5 Ordered Pairwise Outperformance Aggregation
(OPOA)

5.1 Background

Standard multiple criteria optimization problems with a general preference structure es-
sentially assume the criteria to be incomparable, i.e. having no basis of comparison.
Nevertheless, in our approach as in many typical multiple criteria optimization methods
the individual achievement functions are built to measure actual achievement of each out-
come with respect to the corresponding preference parameters. Thus, all the outcomes
are transformed into a uniform scale of individual achievements within intervals[0, 1].
This allows one to compare achievement values for various criteria and, in particular, to
compare each other small values and large values of achievements, respectively.

In the case of unweighted (equally important) attributes, the outperformance aggrega-
tion can easily be applied to the ordered achievement values thus guaranteeing comparison
of the worst results, the second worst etc. This can be formalized as follows. First we
introduce the ordering mapΘ : Rn → Rn such thatΘ(y) = (θ1(y), θ2(y), . . . , θn(y)),
whereθ1(y) ≤ θ2(y) ≤ · · · ≤ θn(y) and there exists a permutationτ of setI such that
θi(y) = yτ (i) for i ∈ I .

We define the single criterion outperformance components in a similar way as in Sec-
tion 4.3:

odcjlk = (β(θk(a
j)) + β(θk(a

l)))(θk(a
j)− θk(a l)) k = 1, 2, . . . , n (31)

In particular the role of functionβ(·) is the same as discussed in Section 4.3, i.e., to
amplify the influence of weak achievements values more than that of good ones.

The ordered pairwise outperformance relation is based on the aggregated quantities:

odjl =
1

n

n
∑

k=1

odcjlk =
1

n

n
∑

k=1

(β(θk(a
j)) + β(θk(a

l)))(θk(a
j)− θk(a l)) (32)

In the ordered outperformance aggregation (32) only distribution of achievements val-
ues is evaluated. When two alternativesoj andol result in different achievement vectors
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a j anda l that are built of identically distributed achievement values, they lead to the zero
value of the ordered outperformance value. Indeed, two achievement vectorsa j anda l

which differ only with the order of individual achievement values, i.e.,

(a1j, a2j, . . . , anj) = (aσ(1)l, aσ(2)l, . . . , aσ(n)l)

for some permutationσ of setI , thenΘ(a j) = Θ(a l) and therebyodjl = odlj = 0. For
instance, havinga j = (0.1, 0.2, 0.3) anda l = (0.3, 0.1, 0.2) we get unordered outperfor-
mance measuredjl = 2β(−0.2)−β(−0.3)−β(−0.3) which is negative due to convexity
of β while obviously for the ordered measureodjl = odlj = 0.

The ordered outperformance aggregation (32) is built for equally important achieve-
ments. Importance weights of achievements can be introduced into the aggregation fol-
lowing the rule that importance weightswi define a repetition measure within the distri-
bution (population) of achievement values, similarly to [21, 22, 23]. The outperformance
components are then calculated within specific quantiles of this distribution, small enough
to guarantee constant values of the ordered achievements for both alternatives. For in-
stance, considering two symmetric achievement vectorsa1 = (0, 1) anda2 = (1, 0)
results in the corresponding ordered outperformance measureod12 equal 0. While intro-
ducing importance weightsw1 = 0.75 andw2 = 0.25 we replacea1 = (0, 1) with the
distribution taking value 0 with the repetition measure 0.75 and taking value 1 with the
repetition measure 0.25 whilea2 = (1, 0) is replaced with the distribution taking value
1 with the repetition measure 0.75 and taking value 0 with the repetition measure 0.25.
In this specific case, the distributions may easily be equivalently interpreted in terms of
four dimensional space of equally important achievements (measure 1/4 each) where the
original first achievement has been triplicated, thusā1 = (0, 0, 0, 1) andā2 = (1, 1, 1, 0).
The ordered outperformance aggregation calculated for subsequent quantiles of size1/4
results then in the value

od12 = 0.25(1 + 1)(0− 0) + 0.25(1 + 0.1)(0− 1) + 0.25(1 + 0.1)(0− 1)
+ 0.25(0.1 + 0.1)(1− 1) = −0.55

Certainly, one does not need to transform all the cases to equally important achievements
in order to calculate appropriate aggregation value. The pairwise analysis may be split
into (various size) quantile intervals of constant ordered achievements for both alternatives
instead of quantile intervals of equal size. For our straightforward example it takes the
following form

od12 = 0.25(1 + 1)(0− 0) + 0.5(1 + 0.1)(0− 1) + 0.25(0.1 + 0.1)(1− 1) = −0.55

Actually, independently from the importance weighting patterns, there are no more than
2n such quantile intervals to be analyzed. It can also be mathematically formalized as
follows. First, we introduce the right-continuous cumulative distribution function (cdf) of
achievement values:

Fj(d) =
n
∑

i=1

wiδij(d) (33)

whereδij(d) = 1 if aij ≤ d and 0 otherwise. Next, we introduce the quantile func-
tion F (−1)j as the left-continuous inverse of the cumulative distribution functionFj, ie.,
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F (−1)j (ξ) = inf {η : Fj(η) ≥ ξ} for 0 < ξ ≤ 1. Finally,

odjl =

∫ 1

0

(β(F
(−1)
j (ξ)) + β(F

(−1)
l (ξ)))(F

(−1)
j (ξ)− F (−1)l (ξ)) dξ (34)

Note that in the case of equal weightswi = 1/n one gets

F (−1)j (ξ) = θk(a
j) for

k − 1
n
< ξ ≤ k

n
, k = 1, 2, . . . , n

and similarly

F
(−1)
l (ξ) = θk(a

l) for
k − 1
n
< ξ ≤ k

n
, k = 1, 2, . . . , n

thus allowing us to reduce formula (34) to the unweighted formula (32). However, in
general case the formula (34) cannot be simplified in this way. Nevertheless, since both
F
(−1)
j (ξ) andF (−1)l (ξ) are stepwise functions withn breakpoints, the entire integrated

function is also stepwise with no more than2n breakpoints. Therefore, the ordered out-
performance aggregation (34) can simply be computed as a sum of2n terms. The com-
putation procedure can be formulated as follows:

Data:
• ordered vectorOAj = Θ(a j) and respectively ordered weights vector
OWj = Θj(w);

• ordered vectorOAl = Θ(a l) and respectively ordered weights vectorOWl =
Θl(w);

Initialize working variables:
• indices:Ij = Il = 1;
• current value:ODjl = 0.0 ;

Compute:
while ((Ij <= n)&&(Il <= n)) do{

if (OWj [Ij] <= OWl[Il]) {
ODjl+ = OWj [Ij](β(OAj[Ij]) + β(OAl[Il]))(OAj[Ij]−OAl[Il]);
OWl[Il]− = OWj [Ij];
+ + Ij;
} else{
ODjl+ = OWl[Il](β(OAj[Ij]) + β(OAl[Il]))(OAj[Ij]−OAl[Il]);
OWj [Ij]− = OWl[Il];
+ + Il;
}
}

5.2 Properties

The ordered outperformance aggregation (34) retains the property that only distribution
of achievements values is evaluated. When two alternativesoj andol result in different
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achievement vectorsa j anda l but both built of identically distributed achievement values
taking into account the importance weightswi, then they lead to the zero value of the
ordered outperformance value. Actually, two achievement vectorsa j anda l result then
in the same cumulative distribution functionsFj andFl. Therefore,F (−1)j = F

(−1)
l and

therebyodjl = odlj = 0. Moreover, the ordered outperformance aggregation (34) has the
properties of monotonicity and equitability [12, 13].

Proposition 3 The ordered outperformance aggregation (34) is monotonic and equitable.

Proof. The monotonicity follows simply from the fact thatF (−1)j (ξ) ≥ F (−1)l (ξ) for all
0 < ξ ≤ 1 while functionsβ are positive. Hence,a j ≥ a l impliesodjl ≥ 0.

In order to prove the equitability we need to reformulate the aggregation formula (34).

OPOA(oj , ol) = odjl =

∫ 1

0

β(F
(−1)
j (ξ))(F

(−1)
j (ξ) − F (−1)l (ξ)) dξ

+

∫ 1

0

β(F (−1)l (ξ))(F (−1)j (ξ) − F (−1)l (ξ)) dξ (35)

where

F (−1)j (ξ) = θk(a
j) for ξjk−1 < ξ ≤ ξjk, k = 1, 2, . . . , n

with ξj0 = 0 andξjk =
∑k

i=1wτ j(i) for k = 1, 2, . . . , n, and

F (−1)l (ξ) = θk(a
l) for ξlk−1 < ξ ≤ ξlk−1, k = 1, 2, . . . , n

with ξl0 = 0 andξlk =
k
∑

i=1

wτ l(i). Hence,

odjl =
n
∑

i=1

[β(θk(a
j))

∫ ξ
j
k

ξ
j
k−1

(F (−1)j (ξ) − F (−1)l (ξ)) dξ]

+
n
∑

i=1

[β(θk(a
l))

∫ ξlk

ξl
k−1

(F (−1)j (ξ) − F (−1)l (ξ)) dξ]

=
n
∑

i=1

[βjk

∫ ξ
j
k

0

(F
(−1)
j (ξ)− F (−1)l (ξ)) dξ]

+
n
∑

i=1

[β lk

∫ ξl
k

0

(F
(−1)
j (ξ) − F (−1)l (ξ)) dξ] (36)

where

βjn = β(θn(a
j)), βjk = β(θk(a

j))− β(θk+1(a j)) k = 1, 2, . . . , k − 1

and

β ln = β(θn(a
l)), β lk = β(θk(a

l))− β(θk+1(a l)) k = 1, 2, . . . , k − 1
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Hence,
∫ ξ

0

F
(−1)
j (ξ) dξ ≥

∫ ξ

0

F
(−1)
l (ξ) dξ for all 0 < ξ ≤ 1 impliesodjl ≥ 0. 2

Similarly to the unordered approach, we introduce the ordered outperformance pref-
erence model as

oj ≻ ol ⇔ odjl > 0 and oj ∼ ol ⇔ odjl = 0 (37)

The model can be lexicographically enhanced by comparison of the unscaled ordered
differences when the scaled ones lead to the equal results. However, for unscaled ordered
differences we get

∫ 1

0

(F
(−1)
j (ξ) − F (−1)l (ξ)) dξ =

∫ 1

0

F
(−1)
j (ξ) dξ −

∫ 1

0

F
(−1)
l (ξ) dξ

=

n
∑

k=1

wkajk −
n
∑

k=1

wkalk

Hence, comparison of the unscaled ordered differences is equivalent to the comparison
of the average achievements and the enhanced preference model can be formalized as
follows

oj ≻e ol ⇔ odjl > 0 or

(

odjl = 0 and
n
∑

k=1

wk(ajk − alk) > 0
)

oj ∼e ol ⇔ odjl = 0 and
n
∑

k=1

wk(ajk − alk) = 0
(38)

The ordered outperformance relation defined by (38) used with the linear search algorithm
has been implemented as three methods (OPOA, OPOA-E, OPOA-Inv) depending on the
applied form of theβ(·) function, see Section 7.

6 Transitivity property and Net-Flow approaches

6.1 Transitivity property of POA and OPOA

Unfortunately, neither standard nor enhanced preference models developed for POA and
OPOA meet the transitivity requirement. This means that although all the alternatives are
comparable there may not exist the best alternative (weakly) outperforming all the others
either the maximal (nondominated) alternative not outperformed (strictly) by any other
alternative. Such a situation is also known as the Condorcet paradox (see e.g., [3]), and it
can be illustrated with a simple example of three alternatives with two attributes.

Let us consider alternativeso1, o2 ando3 with the corresponding achievement vectors
a1 = (0.7255, 0.3110), a2 = (1.0, 0.2285) anda3 = (0.2230, 0.9992), respectively.
Using the pairwise outperformance aggregation (16) withβ(x) = 10−x we get:
POA(o1, o2) = 0.01, POA(o2, o3) = 0.0101, andPOA(o3, o1) = 0.01.

Hence,o1 ≻ o2, o2 ≻ o3, ando3 ≻ o1, which contradicts the transitivity. Indeed,
alternativeso1, o2 ando3 generate a cycle according to the pairwise outperformance ag-
gregation (16), in which each alternative outperforms an alternative and is outperformed
by another alternative.

The transitivity property is summarized by the following proposition.
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Proposition 4 Any alternativeob selected by the linear search algorithm either weakly
outperforms all the alternativesoj (j ∈ J) or belongs to a cycleob � oj1 � oj2 � . . . �
ojk � ob (with possible alternative repetitionsoji′ = oji′′ ) such that for any alternativeoj
(j ∈ J) there exists (weakly) outperforming it alternativeoj′ belonging to the cycle.

Proof. If o1 remains the selected alternative after the linear search algorithm then
obviously oj 6≻ o1 for any j = 2, 3, . . . ,m and therebyo1 � oj for any j ∈ J .
Otherwise, the algorithm builds the sequence of subsequent outperforming alternatives
o1 = oj1 ≺ oj2 ≺ . . . ≺ ojp = ob and it identifies the following relations:
oj1 � oj1+1, oj1 � oj1+2, . . . oj1 � oj2−1,
oj2 � oj2+1, oj2 � oj2+2, . . . oj2 � oj3−1,
. . . ,
ojp � ojp+1, ojp � ojp+2, . . . ojp � on.
If ob does not outperform weakly all the alternatives then there exist an alternative outper-
formingob. If alternativeoji outperformsob then we get cycleob ≺ oji ≺ oji+1 ≺ . . . ≺ ob.
If alternativeoji+t outperformsob then we get a longer cycleob ≺ oji ≺ oji+1 ≺ . . . ≺ ob.
If some alternativeojk (k < i) outperforms all alternatives of the cycle then we need to
extend the cycle with additional cycleoji ≺ ojk ≺ ojk+1 ≺ . . . ≺ oji . If some alternative
ojk+t (k < i) outperforms all alternatives of the cycle then we need to extend the cycle
with additional cycleoji ≺ ojk+t � ojk ≺ ojk+1 ≺ . . . ≺ oji . After possible more exten-
sion we get finally a cycle with possible repetitions such that for any alternativeoj (j ∈ J)
there exists (weakly) outperforming it alternativeoj′ belonging to the cycle. 2

Generally, for large problems it is difficult to either proof or disproof the transitiv-
ity property for pairwise outperformance methods (both POA and OPOA approaches).
Actually, for some methods rather extensive tests (see Section 8) were needed to detect
the Condorcet paradox. Therefore, use of these methods is risky in the sense that either
dominated alternatives may be returned as Pareto-efficient or the algorithm may loop in-
finitely. On the other hand, the pairwise comparison methods are attractive because of
their convincing background.

Fortunately, it is possible to exploit the advantages of the pairwise outperformance
method by applying the approach outlined below.

6.2 Net-Flow methods

The pairwise outperformance relations are built as the corresponding valued preference
relations. Therefore, in order to guarantee the existence of a best alternative one may use
the standard way to obtain a ranking method associated with valued preference relations,
the so-called Net Flow Method. Actually, the Net Flow method is the only ranking method
that is neutral, strongly monotonic and independent of circuits [2].

For each alternativeoj we define the aggregate outperformance measureds:

dsj = 0.5
∑

l∈J

(djl − dlj) (39)

where, depending on the method, either

djl = POA(oj , ol) (40)
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or

djl = OPOA(oj , ol) (41)

Note that the symmetry property ofPOA(·) defined by (16) also holds forOPOA(·),
i.e.:

OPOA(oj , ol) = −OPOA(ol, oj) (42)

Therefore,dsj defined by (39) can be redefined as:

dsj =
∑

l∈J

djl (43)

Measure (43) assigns a real number to each alternative, therefore this can be treated as
a scalarizing function and used for generating a complete ranking. Indeed, the preference
model based on comparison of the measure values

(oj ≻n ol ⇔ dsj > dsl) and (oj ∼n ol ⇔ dsj = dsl) (44)

is complete and transitive thus allowing us to identify the best alternative. In particular, for
our three alternative cycle we getds1 = 0.02−0.02 = 0, ds2 = −0.02+0.0202+0.0002
andds3 = 0.02− 0.0202 = −0.0002 and the final rankingo2 ≻n o1 ≻n o3 with o2 as the
best alternative. Usage of the linear search algorithm with relation≻n allows us to always
identify the best alternativeob such thatob �n oj for all j ∈ J .

Proposition 5 If the outperformance functionsPj(·) are strictly monotonic, then the best
solutionob selected according to the net flow ranking�n is Pareto-optimal.

Proof. Suppose there exists an alternativeoĵ dominatingob, that isakĵ ≥ akb for all k ∈ I
andak̂ĵ > ak̂b. Due to strict monotonicity of functionsPj , we get thendjĵ < djb for all
j ∈ J . Hence,

dsb =
∑

j∈J,j 6=b

2dbj = −
∑

j∈J,j 6=b

2djb < −
∑

j∈J,j 6=b

2djĵ =
∑

j∈J,j 6=b

2dĵj = dsĵ

which contradicts the optimality ofob according to ranking�n. 2

The corresponding methods are summarized in Section 7. The results of experiments
presented in Section 8 show that the pairs of methods (either a POA or an OPOA method,
and its Net-Flow version) have similar properties (in the sense of returning the same
Pareto-optimal solution for a given preferences).

7 Methods implemented for multicriteria analysis

For the users of the MCA software we summarize here the correspondence between the
method’s acronym and the described methodology. Note that the first three methods are
described in Section 4, the next three in Section 5, and the last six in Section 6.
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POA uses the pairwise outperformance aggregation defined by (16) withβ(·) defined
by (18) forλ = 10. Thus alternativeoj dominatesol, if

n
∑

i=1

wi(10
−aij + 10−ail)(aij − ail) > 0

Actually, the safeguard defined by (30) is implemented in all POA methods to deal
with the unlikely cases in which the above expression is equal to 0.

POA-E differs from POA only by the value ofλ = e. Thus alternativeoj dominatesol,
if

n
∑

i=1

wi(e
−aij + e−ail)(aij − ail) > 0

POA-Inv uses the pairwise outperformance aggregation defined by (16) withβ(·)defined
by (19) forλ = 10. Thus alternativeoj dominatesol, if

n
∑

i=1

wi(
1 + (λ− 1)aij
1 + (λ− 1)ail

− 1 + (λ− 1)ail
1 + (λ− 1)aij

) > 0

OPOA differs from the POA method by the applied outperformance method; instead of
the pairwise outperformance aggregation defined by (16) it uses the ordered pair-
wise outperformance aggregation (35).

OPOA-E differs from the POA-E method by the applied outperformance method; instead
of the pairwise outperformance aggregation defined by (16) it uses the ordered pair-
wise outperformance aggregation (35).

OPOA-Inv differs from the POA-Inv method by the applied outperformance method; in-
stead of the pairwise outperformance aggregation defined by (16) it uses the ordered
pairwise outperformance aggregation (35).

POA-NF, POA-E-NF, POA-Inv-NF, OPOA-NF, OPOA-E-NF, OPOA-Inv-NF are the
Net-Flow modifications of the corresponding (i.e., having acronyms without the
-NF suffix) methods defined above.

8 Case study: experiences and results

The new methods described above have been developed and modified successively upon
analysis of the features and performance of the earlier developed and/or modified meth-
ods. We summarize here the experience with the described methods in order to illustrate
some of the methodological issues discussed above, and to provide a justification of the
methods selected for the public version of the MCA.

The methods have been implemented as the Web-based application called MCA, us-
ing the client-server architecture, see [17] for details. The application is available free
of charge for research and educational purposes athttp://www.iiasa.ac.at/
˜marek .
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8.1 Classification of the methods

A key feature of each method is the mapping of the preferences (specified as relative
importance of each criterion) into the corresponding outperformance measure. We dis-
cuss here six different outperformance measures reflected by the corresponding method
acronym: POA, POA-E, POA-Inv, OPOA, OPOA-E, and OPOA-Inv.

There are two types of similarities between these methods:
• The first three methods (POA, POA-E, POA-Inv) use linear aggregations while the other

three (OPOA, OPOA-E, OPOA-Inv) use quantile aggregations. We will refer to these
subsets of methods as LA (Linear Aggregation) and QA (Quantile Aggregation), re-
spectively.
• Pairs of methods (POA, OPOA), (POA-E, OPOA-E), and (POA-Inv, OPOA-Inv) share

the same representation of key elements of the corresponding outperformance measure.
Another key feature is the form of the corresponding scalarizing function. Here we

distinguish two groups of methods:
• Local (pairwise) - the scalarizing function uses only comparisons of pairs of alternatives
• Global (NF) - the scalarizing function based on the Net-Flow approach (see Section 6).

For the sake of discussing the features of the twelve methods we group them in two
ways:
• Six pairs of methods, each composed of a method using the local scalarizing function

and the corresponding NF method.
• Two subsets of methods using the Local (pairwise) and Global (NF) scalarizing func-

tions, respectively.

8.2 Problems used for exploring the features of the methods

The features of the developed methods have been studied using the following five real-
world problems of multicriteria analysis:

Future energy technologies developed by the EU funded project NEEDS8 for each of the
four countries denoted in the follow-up discussion by the corresponding code of the
internet:
• ch - Switzerland,
• de - Germany,
• fr - France,
• it - Italy.

ch de fr it robot
number of criteria 61 61 61 61 5
number of alternatives 19 25 26 21 184
number of preferences235 96 179 60 32

Table 2: Summary of problems.

The details of these problems are summarized in Table 2. The problems are doc-
umented (and available for further testing and use) through the dedicated appli-

8Details are available at:http://www.needs-project.org/ .
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cation called MCA-NEEDS which is linked tohttp://www.iiasa.ac.at/
˜marek .

These problems have about9 20 alternatives, and 61 criteria organized in hierarchi-
cal structures. Over 3000 stakeholders from several countries were invited to make
individual analysis using the Web-based application. Finally, 348 stakeholders ini-
tialized the analysis, and 162 actually completed it. Out of all preferences specified
by these 162 stakeholders 570 were unique; these preferences were extracted from
the database, and used (with the corresponding problem) for exploring properties
of all described methods.

Robot, the acronym used for the path-design problem for remote control of a partly au-
tonomous space robot, see [10]. This is a pretty complex engineering problem for
which a large number of instances has been generated (each instance corresponds
to a specific area of the asteroid for which the robot10 was sent). The instance of
this problem selected for comparing the developed MCA methods has a different
characteristic than the future energy technologies problems, namely it has 183 al-
ternatives and only five criteria. MCA of this instance had been made by analysts
who specified 32 unique preferences during the analysis.

The approach outlined above resulted in using a pretty large and diversified set of
actual preferences of stakeholders having different backgrounds and priorities. The num-
bers of the unique preferences specified for each of the problems is presented in Table 2.
We note that such a sample of actual preferences is both very valuable and rather rarely
available.

8.3 Transitivity properties for the designed methods

A common feature of the methods described here is an automated pairwise outperfor-
mance approach. Pairwise comparison had to be automatized because of the number of
alternatives which makes human pairwise comparison not practical. A natural and strong
requirement for such procedure is assuring the transitivity of preferences (see Section 6),
a lack of which is known as the Condorcet paradox (see e.g., [3]).

In Table 3 we summarize for each method and each of the problems the percentage
of preferences for which the Condorcet paradox occurred. For each problem we provide
two numbers:
• All - denotes all occurrences during the process of determining the ranking of alter-

natives. The ranking was based on an iterative procedure, in which the chosen Pareto
alternative was removed from the set of alternatives, and the next best (forthe same
preferences) Pareto solution was found in such a smaller set.
• Par. - denotes the occurrences during searching for the Pareto alternative.

Actually, the results collected during the ranking procedure can be considered as a
generation of a large (over 10 times larger than the original problem) number of subprob-
lems derived from each of original problems. However, we did not use these results for
the comparison of methods, because the preferences were specified by the users for the
full sets of alternatives only.

9The numbers slightly differ amongst countries.
10The robot has the form of cube of 10cm size; it is a ”jumping” robot, thus difficult to control.
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ch de fr it robot
method All Par. All Par. All Par. All Par. All Par.

% % % % % % % % % %
POA 27.7 18.3 50.0 31.3 46.4 22.9 35.0 23.3 100.0 75.0
POA-E 2.1 1.3 6.3 2.1 4.5 2.8 3.3 0.0 56.3 28.1
POA-Inv 71.9 50.2 93.8 76.0 85.5 63.1 76.7 63.3 100.0 84.4
OPOA 1.7 0.4 3.1 1.0 4.5 1.7 0.0 0.0 90.6 43.8
OPOA-E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 9.4
OPOA-Inv 7.2 3.8 13.5 8.3 23.5 9.5 3.3 1.7 100.0 62.5
POA-NF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
POA-E-NF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
POA-Inv-NF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OPOA-NF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OPOA-E-NF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OPOA-Inv-NF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: Summary of experiments related to the Condorcet paradox.

It is not surprising that the last six methods listed in Table 3 (i.e., the methods belong-
ing to the NF subset) conform to the transitivity requirement, i.e., the Condorcet paradox
was not detected. However, it is worth to note that detecting the Condorcet paradox for
some of other the methods is not easy. In particular for the OPOA-E the transitivity prob-
lem was not detected for any of the 570 preferences (which is equivalent to analysis of
about 6000 combinations of problems and preferences) of the four energy problems. This
observation implies also a general recommendation for analyzing features of the methods
based on also a rather large number of tests. In this particular case, one may tend to be-
lieve that the OPOA-E method is likely to have the transitivity property because such a
hypothesis was not falsified by over 6000 of tests.

In our opinion the transitivity property is a necessary condition for any method to be
recommended for a wide use. Such a property obviously cannot be proven for the six
methods belonging to the subset calledLocal. Therefore these methods has been shown
for comparison with other approaches although the net flow methods are preferred from
the point of view of applications.

8.4 Pairwise comparisons of methods

For the reasons explained in Section 8.3 we recommend for actual use only the six meth-
ods that form the subset calledNF. However, we found it interesting to explore the sim-
ilarities of each of these methods with the corresponding method from the subsetLocal
in order to provide indications how often the results (for each of the considered 602 pref-
erences) differ depending which method from each of such pairs is used. The results of
such comparisons are summarized in Table 4.

It is interesting to note that the corresponding pairs of the methods are rather likely (on
average in more than 90% of cases) provide the same Pareto alternative. Thus replacing
a Local outperformance measure by its correspondingNF scalarizing function does not
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1st method 2nd method ch de fr it robot Average
% % % % % %

POA POA-NF 93.2 93.8 93.3 81.7 87.5 91.9
POA-E POA-E-NF 87.7 83.3 81.6 95.0 68.8 84.9
POA-Inv POA-Inv-NF 91.5 89.6 86.6 93.3 84.4 89.5
OPOA OPOA-NF 95.3 93.8 93.3 93.3 87.5 93.9
OPOA-E OPOA-E-NF 99.6 100.0 98.9 93.3 96.9 98.7
OPOA-Inv OPOA-Inv-NF 94.9 96.9 91.1 93.3 93.8 93.9

Table 4: Pairwise comparison of methods (without and with the Net-Flow).

change the characteristics of the method (understood as the correspondence between the
specified preferences and the resulting Pareto solution).

8.5 Net-Flow based methods

Considering the properties of the methods confirmed by the experience summarized in
Section 8.3 we recommend to use the sixNF methods, and to refrain from using methods
belonging to the subset of methods denoted byLocal. The latter recommendation is also
supported by the results presented in Section 8.4.

1st method 2nd method ch de fr it robot Avarage
% % % % % %

POA-NF POA-E-NF 100.0 100.0 98.3 100.0 100.0 99.5
POA-NF POA-Inv-NF 88.5 75.0 91.6 80.0 93.8 86.7
POA-NF OPOA-NF 94.9 89.6 84.9 91.7 100.0 91.0
POA-NF OPOA-E-NF 86.0 82.3 78.8 95.0 68.8 83.2
POA-NF OPOA-Inv-NF 94.0 90.6 84.4 95.0 100.0 91.0
POA-E-NF POA-Inv-NF 88.5 75.0 91.6 80.0 93.8 86.7
POA-E-NF OPOA-NF 94.9 89.6 84.9 91.7 100.0 91.0
POA-E-NF OPOA-E-NF 86.0 82.3 78.8 95.0 68.8 83.2
POA-E-NF OPOA-Inv-NF 94.0 90.6 84.4 95.0 100.0 91.0
POA-Inv-NF OPOA-NF 83.4 64.6 81.6 71.7 93.8 79.2
POA-Inv-NF OPOA-E-NF 75.3 61.5 75.4 75.0 65.6 72.6
POA-Inv-NF OPOA-Inv-NF 83.4 67.7 81.0 75.0 93.8 79.9
OPOA-NF OPOA-E-NF 88.9 89.6 85.5 93.3 68.8 87.4
OPOA-NF OPOA-Inv-NF 98.3 96.9 97.8 96.7 100.0 97.8
OPOA-E-NF OPOA-Inv-NF 88.5 88.5 84.9 90.0 68.8 86.5

Table 5: Comparison of the Net-Flow methods.

There is no clear recommendation for a choice of any of these six methods. Users with
analytical skills may have personal preferences based on the methodological background
of a particular method. However, from the point of view of mapping the preferences
(specified as relative importance of criteria) into the selected Pareto solutions most of
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the methods are similar (i.e., most likely providing the same Pareto solution for a given
preferences). To justify this statement we summarize in Table 5 the results of 15 pairwise
comparisons of the six net-flow based methods, each done for 602 unique preferences
specified for the five problems used for analysis of the methods’ properties. One can
observe that especially two pairs of methods, namely (POA-NF, POA-E-NF) and (OPOA-
NF and OPOA-Inv-NF) provide the same Pareto solution for a given preferences in 99.5%
and 97.8% of preferences, respectively. On the other hand, the pair (POA-Inv-NF, OPOA-
E-NF) has the smallest (72.6%) similarity.

Considering the trade-off between providing diversity of methods and problems re-
lated to a rational choice from a large number of methods, we made two of theNF meth-
ods (namely POA-NF and OPOA-Inv-NF) available in the standard configuration11 of the
MCAA (see [17] for details). However, all methods can be made available for testing
(within a customized version of the MCAA) upon request.

8.6 Summary of the experience

All methods described in the report have also been tested on several other problems,
including the two problems described in [35], and several small (in terms of numbers
of both criteria and alternatives) problems. All performed experiments show that the
methods support analysis of all Pareto alternatives in an intuitive and easy (in terms of
criteria specification) way. This is especially important for problems with large numbers
of criteria and alternatives. Thus the methods conform to the basic necessary conditions
of multicriteria analysis, namely the requirements for an effective analysis of the whole
Pareto set.

An easy way for specification of preferences has clear advantages for users without
analytical skills and/or needs. However, analysts may prefer more advanced ways for
specification of preferences, which provide also possibilities of more advanced explo-
rations of certain parts of the Pareto set. Some of such methods have also been developed
and implemented in MCA, see [16, 17] for details.

9 Conclusions

The newly developed methods described in this paper support effective multiple criteria
analysis of problems with many alternatives and many criteria. Specification of prefer-
ences is done in very simple way that is especially suitable for the users having limited
analytical skills. Yet the methods and the way they have been implemented support an
effective analysis of the whole Pareto-set.

The methods exploit the pairwise comparison approaches. A key feature of these
methods is that the users are not asked for making comparisons for each pair of alterna-
tives, which would not be practicable for more than several alternatives.

The pairwise comparison methods generally do not possess the transitivity property,
which is needed for guaranteeing uniqueness of the solution. Therefore, the Net-Flow
method has been applied to various pairwise comparison techniques to guarantee a unique
selection of a best alternative corresponding to the specified preferences. Extensive tests

11Several other methods described in [17] are also included in the standard configuration ofthe MCAA.
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using a large and diverse sample of actual user preferences have shown that the behavior
(in the sense of mapping the preferences into the corresponding Pareto solution) of the
pairs of methods (defined as a given method implemented with and without the Net-Flow
approach) is rather similar.

Within our implementation all dominated alternatives are eliminated in the preprocess-
ing phase of the solver, thus always guaranteeing efficiency of the best alternative selected
according to the Net-Flow method. If not eliminated, a method may select a dominated al-
ternative if the corresponding pairwise outperformance relation is not (strictly) monotonic
(Proposition 5). One may notice that in the case of unordered pairwise outperformance
relations their monotonicity is related with properties of theβ(·) functions. For someβ(·)
functions their parameter have to conform to quite strong restrictions in order to result in
the strict monotonicity of the outperformance relation, while for other forms ofβ(·) there
are no such restrictions. On the other hand, the ordered pairwise outperformance rela-
tions preserve monotonicity for any positive functionβ(·). Thus the presented properties
of the developed methods offer quite a lot of flexibility in modeling of amplification of
differences within specific intervals of achievements.
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