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Foreword

Practically all important decisions involve analysis of several (or even many), typically
conflicting, criteria. Analysis of trade-offs between criteria is difficult because such trade-
offs for most problems are practically impossible to be defined a-priori even by analysts
experienced in Multi-Criteria Analysis (MCA). Therefore the trade-offs emerge during an
interactive MCA which actually supports a learning process about the trade-offs. Hence,
effective MCA methods are important for actual support of decision-making processes,
especially those related to policy-making.

IIASA has been developing novel methods for MCA since mid 1970s, and success-
fully applying them to many practical problems in various areas of applications. How-
ever, there are new practical problems for which the existing MCA methods (developed
not only at IIASA but also by many researchers all over the world) are not satisfactory.
In particular, discrete decision problems with a large number of criteria and alternatives
(the latter making pairwise comparisons by the users impracticable) demand new meth-
ods. For example, MCA analysis of future energy technologies involves over 60 criteria
and over 20 discrete alternatives; a careful requirement analysis of this application has
proven that none of the existing MCA methods is suitable for an effective analysis of
the corresponding problem. Moreover, this analysis has been done by a large number of
stakeholders with diverse backgrounds and preferences; most of them have no analyti-
cal skills, therefore the specification of preferences needed to be simple but still provide
effective and intuitive analysis of the Pareto set.

The paper provides an overview of several new methods for MCA of discrete alter-
natives that have been implemented in the MCA, the Web-based application for multiple
criteria analysis of discrete alternatives.
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Abstract

Many methods have been developed for multiple criteria analysis and/or ranking of dis-
crete alternatives. Most of them require complex specification of preferences. Therefore,
they are not applicable for problems with numerous alternatives and/or criteria, where
preference specification by the decision makers can hardly be done in a way acceptable
for small problems, e.g., for pair-wise comparisons.

In this paper we describe several new methods implemented for a real-life application
dealing with multi-criteria analysis of future energy technologies. This analysis involves
large numbers of both alternatives and criteria. Moreover, the analysis was made by a
large number of stakeholders without experience in analytical methods. Therefore a sim-
ple method for interactive preference specification was a condition for the analysis. The
paper provides overview of several of new methods based on diverse concepts developed
for multicriteria analysis, and summarizes a comparison of methods and experience of
using them.
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Overview of Methods Implemented in MCA:
Multiple Criteria Analysis of Discrete Alternatives

with a Simple Preference Specification

Marek Makowski* (marek@iiasa.ac.at)
Janusz Granat** *** (J.Granat@itl.waw.pl)

Włodzimierz Ogryczak*** (W.Ogryczak@ia.pw.edu.pl)

1 Introduction

The paper has a rather technical character; it provides an overview of several new methods
for Multiple Criteria Analysis (MCA) of discrete alternatives that have been implemented
in the MCA, the Web-based application for multiple criteria analysis of discrete alterna-
tives; the user guide and tutorial to the MCA is available in [6].

This report is addressed to advanced users who are interested in general properties of
the new methods. Detailed presentation of some of these methods and their methodolog-
ical background together with several associated concepts, including automated pairwise
comparisons which lead to the corresponding pairwise outperformance aggregations, are
provided in [2].

The structure of the paper is as follows: Section 2 summarizes the background of the
MCA, followed by the simple approach to specification of preferences and their represen-
tation is solvers described in Section 4 and 5, respectively. The next two Sections provide
specifications of objects and functions used in the specifications of methods. The methods
are specified in Section 8. Section 9 summarizes results of comparing the methods. The
remaining two Sections provide auxiliary information, and the Appendix summarizes the
basic information about the Lorenz curve and quantile measures.

2 Background

Multi-Criteria Analysis (MCA) deals with finding optimal (best in the sense of selected
goal function) solution1 for a problem characterized by a vector of outcomes;2 i.e., the

* Integrated Modeling Environment Project, IIASA.
** National Institute of Telecommunications, Warsaw, Poland.

*** Warsaw University of Technology, Warsaw, Poland.
1For discrete problems alternatives are usually called alternatives; in this paper we use both terms as

synonyms.
2Outcomes are often called attributes, or criteria, or indicators. We use these terms interchangeably, and

also often omit the phrasevector of, i.e., outcomes actually stands for vector of outcomes.
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problem can be formulated as a multiple-criteria optimization one. Without a loss of gen-
eralization one usually considers maximization of all outcomes. The qualitative difference
between the classical (single-criterion) optimization and the MCA is that for the former
one it is possible to define an apriori goal function which induces a complete ordering in
the solution space, thus allows for finding an optimal solution.

For a truly multi-criteria problem it is impractical to define such an apriori goal func-
tion, therefore there exist alternatives that cannot be ordered (based on a formal compari-
son resulting in deciding that solution is better than another one). In many applications it
is possible to limit the analysis to a subset of all solutions called thePareto set.3 A solu-
tion is called Pareto-efficient, if there is no other solution for which at least one criterion
has a better value while values of remaining criteria are the same or better. In other words,
one cannot improve any criterion without worsening at least one other criterion. Solutions
that are not Pareto efficient are called dominated.

Alternatives belonging to a Pareto set cannot be compared in mathematical sense, i.e.,
one cannot objectively decide which one of any two selected from this set is better. How-
ever, the user has to eventually select one alternatives at thebestone. The user is usually
able to make a pair-wise comparison, i.e., subjectively select one of two presented alter-
natives as a preferred one. Pair-wise comparisons can be very efficient, if the numbers of
both alternatives and criteria are very small.4 For non-trivial problems however computer-
based support is needed for helping the user to specify preferences in a structured way,
and to modify them while learning about attainable trade-offs between the criteria values.
The preferences are typically specified in two categories:
• a measure of satisfaction level from achieving specific values of each criterion;
• information on trade-offs between the satisfaction levels of different criteria.

This document summarizes methodological background and outlines implementation
of several MCA methods developed for a specific class of multicriteria analysis of a set
of discrete alternatives characterized by:
• large number of discrete alternatives (about 20), each defined by about 40 attributes

(some of the attributes having multimodal distribution of values);
• large number of criteria (about 60) organized in hierarchical structure (the criteria in-

clude the attributes that define the alternatives);
• large number of stakeholders (about 3000) invited for making individual analysis; the

stakeholders have diversified backgrounds, very few of them have knowledge/experience
about/in multicriteria analysis.

We stress that we deal with multicriteria analysis (as opposed to the commonly used
term multicriteria decision analysis). This class of problems requires:
• development of new MCA methods (see [1] for the justification of this statement), and

also clarification of several methodological issues;
• a simple and intuitive interface for specification of user preferences that meets the re-

quirements specified in [7].
These both elements may be interesting for a broad audience of researchers and prac-

titioners involved in the MCA.
3Also called: Pareto-efficient solutions, Pareto frontier, non-dominated solutions. For the sake of brevity

we don’t deal here with more advanced concepts, e.g., properly efficient solutions; theseare discussed e.g.,
in [13].

4Note that 15 pair-wise comparisons are needed for 6 alternatives.
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In order to help the users to analyze the problem and to find thebestalternative we
have implemented a Web-based interactive iterative procedure composed of the following
steps:
• the user specifies preferences in the criteria space;
• the preferences are used for defining an ad-hoc goal function, and applying it for finding

a solution;
• the user confronts the criteria values in the found solution with the specified preferences;
• the moves to the first step as long as the trade-offs between the found criteria values

differ from the user expectations.
Thus we consider MCA as an iterative process composed of iterations. The first it-

eration is generated automatically. Then the user can select any of theiterations (from
the tree of iterations belonging to his/her analysis composed of the initial iteration, and
the iterations he/she has made) as a basis for creating a new iteration. Upon analysis of
criteria values for the selected basis iteration the user modifies her/his preferences, and
calls the solver, which provides a Pareto-efficient alternative corresponding best to the
specified preferences.

This typical MCA procedure contains the main challenge for any multicriteria anal-
ysis method:how to find a Pareto solution that matches best the user preferences. This
challenge appears to be even bigger, if the MCA methods are designed and implemented
for users having no experience in mathematical modeling. However, it has been observed
that also users with extensive experience in MCA have problems with a consistent speci-
fication of preferences, if such a specification involves a process with several interlinked
steps.

Specification of preferences for all methods described in this paper is done in the
probably easiest way: by selecting a relative importance of each criterion. The relative
importance is expressed in qualitative terms, and then the relative importance are mapped
(see Section 6.3) into the user defined weights. Note that the weights are normalized,
therefore specifying an equal importance for all criteria has the same effect irrespectively
of the selected importance level.

Thus the user forms a pattern of relative criteria importance, and expects to get a
Pareto solution (alternative) having the corresponding pattern of criteria values, e.g., pos-
sibly best values of all very important criteria, good values for all important criteria, etc.
However, usually there is no alternative having criteria values that correspond well to the
user expectations.

The MCA is actually a learning process during which the user modifies his/her pref-
erences in order to find an alternative with trade-offs between criteria values that fits best
the user preferences. In other words, a specification of preferences is a tool for finding a
preferred alternative. The preferred means that it has the best (in subjective opinion of the
user) trade-offs of the criteria values amongst all alternatives; this should not be confused
with the specified trade-offs which are often not attainable (i.e., there exists no alterna-
tive having the specified pattern of criteria values). Moreover, it is not really important
which pattern of criteria importance led to finding the preferred alternative; actually, each
alternative can be found for many rather different specified preferences.

A good method for MCA shall therefore provide the user with an intuitive way to
modify specification of preferences in order to help the user to find his/her preferred al-
ternative. The user preferences are then used as parameters for a selected Scalarizing
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Function SF that induces an ad-hoc complete order in the set of Pareto alternatives. In
other words, the SF is defined on vectors of outcomes (characterizing each alternative),
and thus assigns a real value for each alternative. Thus any MCA method can be charac-
terized by the parameters representing the user preferences, and the corresponding SF (or
a procedure used instead of the SF for inducing a complete order in the alternative space).

A SF is actually a way for aggregating the individual outcomes according to the user
preferences. SFs have various forms and properties that correspond on diversified ap-
proaches to preference modeling. Nevertheless, most scalarizing functions can be viewed
as two-stage transformations of the original outcomes.

First the individual outcomes are rescaled to some uniform measures of achievements;
these measures may include some preference parameters. Thus, the role of individual
achievement functions is to measure (on a scale common to all criteria) the user sat-
isfaction level related to each possible criterion value. This measure does not concern
preferences related to trade-offs between criteria.

In the second stage the individual outcomes transformed into a uniform scale of indi-
vidual achievements they are aggregated through a definition of the SF into a final scalar-
ization. Different MCA methods use different aggregations (e.g., measuring the total or
average, or the worst individual achievement). Moreover, the methods differ by one of
two possible assumptions. The first assumes that the aggregation is impartial or sym-
metric with respect to the individual achievements; thus the achievements are treated as
equally important. The second approach uses for the aggregation diversified measures
reflecting relative criteria importance.

3 Structure of the multicriteria analysis specification

MCAA is an iterative process, i.e., the user makes a sequence of iterations for a selected
analysis instance. For efficiency reasons analysis instances are defined in three stages:
1. problem specification (Sec. 3.1)
2. problem instance specification (Sec. 3.2)
3. analysis instance specification (Sec. 3.3)

For each analysis instance (later on calledanalysis) initial iteration is generated au-
tomatically. Then the user selects any iteration (from the tree of iterations composedof
the initial iteration, and the iterations he/she has made), analyses the current trade-offs be-
tween criteria, specifies new preferences, and calls a solver. Thus an iteration is composed
of:
• specified preferences for the criteria (equitable preferences are assumed for the initial

iteration),
• the corresponding Pareto solution,
• optionally,5 a method chosen for selecting a Pareto solution.

3.1 Problem specification

Multicriteria problem specification is composed of three parts:
• attribute names6, indexed byi = 1, . . . , n (also denotedi ∈ I).

5A default method is used, if the user does not select a method.
6Attributes are also called indicators or outcomes, or criteria.
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• alternative names, indexed byj = 1, . . . ,m (alsoj ∈ J),
• attribute values denoted byqij specified for each pair{i, j}

Thus the attribute values are organized in a matrixQ composed of elementsqij. For
conveniencej-th column ofQ (composed of values of all criteria forj-th alternative) is
denoted byqj, andi-th row ofQ (composed of values ofi-th criterion for all alternatives)
is denoted byqi.

3.2 Instance specification

Multicriteria problem instance is composed of:
• Set of alternatives (selected from the problem specification).
• Set of criteria defined using a selected attribute and one of defined types (maximized,

minimized, target7).
• Optionally, a hierarchy of criteria (Sec. 3.2.1) can be defined. In such cases, when it is

necessary to distinguish the criteria derived from attributes they are called leaf-criteria
or lowest-level criteria.

3.2.1 Hierarchy of criteria

Optionally, criteria can be organized in a hierarchical structure forming a tree, as illus-
trated8 in Fig. 1.

Hydrocarbons

Environment

Social

Economy

Rad. waste

Resources

CO2 emissions

Ecosystems

Waste

Energy

Minerals

Normal

Severe Acc.

Chemical Waste

Fossil Fuels

Uranium

Metal

Biodiversity

Ecotoxity

Air pollution

Land contam.

Figure 1: Example of criteria hierarchy.

Criteria values (Sec. 3.2) are specified only for leaf-nodes (lowest-level criteria). How-
ever, preferences are specified for all leaf-criteria, and for those intermediate nodes (i.e.,

7Interface to the target-type has not been implemented yet.
8Only one branch from the top level criteria in shown. Therefore criteria belonging to the Economy and

Social criteria sets are not displayed.
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excluding the root node) for which they can influence the selection of Pareto solutions.
We stress that the analysis results can be interpreted only for the leaf-criteria. Higher

level criteria are used only as an additional way of specification of preferences for the
leaf-criteria (see Section 6.3). Actually, one can always receive the same solution fortwo
associated problem instances:
•With a criteria hierarchy by specifying the preferences for all criteria; the preferences

for higher (above the leaf) levels are then used for modifying the preferences at the leaf
level, see Sec. 6.3 for explanations.
•Without the hierarchy; the preferences are specified only for the leaf-criteria (the only

criteria for which attribute values are known).

3.3 Analysis specification

An analysis of the problem instance is – from the user of point of view – just a container
for a set of iterations done for by a user for a selected problem instance. This approach
provides a structure for possibly large sets of iterations, and also to assure privacy (the
user of the MCAA has access only to iterations they he/she has created).

First iteration is generated automatically (with equal preferences for all criteria se-
lected for the corresponding model instance). Each user created iteration starts from a
previously done iteration that is selected by the user. Therefore the user implicitly creates
a tree of iterations. To create a new iteration the user:
• Selects a parent iteration.
• Selects a MC method (from the set of methods described in Sec. 8), if more then one

method is provided for the user.
• Specifies the preferences (Sec. 4).
• After specifying the preferences clicks on theSolvebutton.

For each selected iteration the user may:9

• Attach a note.
• Examine the chart of alternative characteristics.⋆

• Examine the chart comparing alternatives by criteria.⋆

• Browse through the problem instance data.10⋆

• Users having access to more than one analysis can browse (by clicking on theReturn
button) the tree composed of: problems, instances, and analyses.
• Browse through the help.⋆

4 Specification of preferences

4.1 Required for all methods

• ri - relative importance of criteria, specified for each criterion by a button position;
currently 8 buttons (numbered by 0 through 7):

9Each of the actions marked below by the⋆ characters results in opening a new window. Each of these
windows (except of the help) is labeled by the a string composed of: problem name, instancename, analysis
name, iteration number, and the symbol of the MC method used for this iteration.

10The data are of course common for all iterations, however the access is providedfrom each iteration.
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⋆ 0-th button: ignore the criterion;
Note:criteria ”below” (i.e., children, grandchildren, . . . ) ignored criteria are assumed
to be also ignored (therefore solvers redefine the specified values of correspondingrii
to 0).
⋆ 4-th button: average importance;
⋆ buttons 5 through 7: more, much more, vastly more, important than average, respec-

tively;
⋆ buttons 3 through 1: less, much less, vastly less, important than average, respectively;

4.1.1 Required for some methods

• impr - selection of criteria that shall be improved and those to be compromised; this
is specified for each criterion by a button position; currently 4 buttons (numbered by 0
through 3):
⋆ 0th button: allow to compromise (worsen) the criterion value;
⋆ 1st button: free the criterion (change in any direction);
⋆ 2nd button: stabilize the criterion value (preference for keeping changes small);
⋆ 3rd button: improve the criterion value;

4.1.2 Optional or computed from data

• res reservation andasp aspiration values for each criterion
• rfp reference point (one value for each criterion)

5 Representation of preferences in MC solvers

The preferences are specified for each iteration (except of the initial one). First, the user
optionally selects for each iteration the method which will be used to find a Pareto solution
that fits best his/her preferences. The way the preferences are specified depends on the
method so advanced users may experiment with different methods and find the favorite
one. Each method uses the associated solver. The methods/solvers differ by the internal
representation of user preferences, and the way in which a Pareto solution is selected for
specific preferences. However, several elements of solvers are common, and are therefore
presented before each method will be outlined with method-specific elements.

All methods use the following six11 types of objects and corresponding functions:
• selection of active leaf-criteria
• selection of Pareto alternatives
• wi(ri) andvi(wi) - criteria scaling/weighting;
• IAi(qi) - Individual Achievement functions measuring (for each criterion separately)

the satisfaction level corresponding to a value of the criterion;
• AFi(w , v , IA) - Achievement Function measuring (for each criterion) the satisfaction

level corresponding to a value of the criterion taking into account relative importance
(represented bywi(ri) or/andvi(wi)) of all criteria;
• SF (AF) - Scalarizing Function measuring satisfaction levels for each alternative.

11We present here only a subset of solver elements that are necessary for understanding themethods
used.



M. Makowski, J. Granat, W. Ogryczak - 8 - Overview of methods implemented in MCA

The first four are common for all methods, while the other two are specific for a
method (or a set of methods). For the latter some auxiliary functions or relations are
defined later. Therefore we first (Sec. 6) define the common functions, and then (Sec. 8)
introduce methods, each of the latter accompanying with the corresponding definitions of
AF(·) andSF(·).

6 Objects and functions common for all methods

6.1 Active leaf-criteria

Hydrocarbons

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

Environment

Social

Economy

Rad. waste

Resources

CO2 emissions

Ecosystems

Waste

Energy

Minerals

Normal

Severe Acc.

Chemical Waste

Fossil Fuels

Uranium

Metal

Biodiversity
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Figure 2: Hierarchy of active criteria

The user may chose to ignore some criteria (cf Sec. 4.1) therefore the set of active leaf-
criteria has to be defined for each iteration. This is a trivial operation for analysis without
hierarchical structure. If criteria hierarchy is defined (see example in Fig. 1) thencriteria
at any hierarchy level can be specified as inactive, see example in Fig. 2. In such cases
then the set of active-leaf criteria is defined as follows:
• full criteria tree is defined (see Fig. 1).
• Activity of all criteria is defined according the selection of the value of relative criteria

importance button (Sec. 4.1).
• active criteria tree is defined by removing from the full criteria tree nodes corresponding

to inactive criteria and the branches originating from such nodes.12 Note that activity
of criteria imply changes in the impact of the selected relative criteria importance, see
Sec. 6.3.
12In the example shown in Fig. 2 only two criteria (marked by white nodes) were selected to be not

active. However seven more criteria (marked by gray nodes) become inactive because their parent criteria
are inactive.
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• The set of active leaf-criteria is composed of leaves of the active criteria tree.
Note: Further on we use the termcriteria for the active leaf-criteria, since only such

criteria are considered for analysis. Also the number of criterian denotes the number of
active leaf-criteria. The role of intermediate-level active criteria is defined in Sec. 6.3.

6.2 Set of Pareto alternatives

The set of Pareto alternatives13 is defined for the considered criteria according to the com-
monly used definition:A solution is called Pareto-efficient, if there is no other solution
for which at least one criterion has a better value while values of remaining criteria are
the same or better.In other words, one cannot improve any criterion without worsening
at least one other criterion. Solutions that are not Pareto efficient are called dominated.

Note that each analysis iteration is actually composed of a series of subproblems de-
fined for determining ranking of alternatives (see Sec. 10). For each subproblem a new
set of Pareto alternatives is defined.

6.3 Criteria relative importance

Preferences for all but one (described in Sec. 8.1.1) methods described in this note are
specified as relative criteria importanceri , see Sec. 4.1. Theri are mapped into two
associated vectors:
• wi, i = 1, . . . , n
• vi, i = 1, . . . , n

Definition of criteria scaling coefficients (traditionally called weights)w is rather
complex and therefore before presenting it we specify the simple definition ofv com-
posed of two stages: First, components ofv are defined as:

vi = 1/wi, i = 1, . . . , n. (1)

Second, thev is normalized using the standard procedure:

vi = vi/
n
∑

i=1

vi, i = 1, . . . , n (2)

The definition ofw is done in two stages:
1. Relative criteria importance (for all active criteria) are mapped into real values using

one of the approaches specified in Sec. 6.3.1 and Sec. 6.3.2, respectively. The choice
of the mapping is specific for the method.

2. Procedure described in Sec. 6.3.3 is applied, if criteria hierarchy is defined.

6.3.1 Standard mapping

For the current implementation (seven importance levels for not ignored criteria) the stan-
dard mapping is defined by:

wi = rii/6, i = 1, . . . , ncrit (3)

13Also called: Pareto-efficient solutions, Pareto frontier, non-dominated solutions. For the sake of brevity
we don’t deal here with more advanced concepts, e.g., properly efficient solutions.
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wherencrit is the number of all active criteria, andrii is the position of the selected
button position indicating relative importance ofi-th criterion.14 After the mapping the
vectorw is normalized in the same way as (2).

6.3.2 Multiplicative mapping

Multiplicative mapping is less popular than the standard mapping, but it has a number
of advantages (see, e.g., [3]) therefore it is used by almost all methods. The mapping is
defined by:

wi = (
√
2)xi (4)

wherexi is selected from therii-th position from the following vector:

{−8,−4,−2, 0, 2, 4, 8} (5)

In other words, the values of weights can be selected from the vector

{1/16, 1/4, 1/2, 1, 2, 4, 16} (6)

from the position defined by the relative importance button.
After the mapping the vectorw is normalized in the same way as (2).

6.3.3 Weights for criteria hierarchy

If a criteria hierarchy is defined then (after one of the above described mappings is applied
to all active criteria) the following procedure is applied:
1. Denote bywa weights defined for all active criteria
2. Define setsSk, k = 1, . . . , K composed of siblings (i.e., nodes having a common parent

node) of active criteria.
3. Normalize subsets of siblings:

wal = wal/

Lk
∑

l=1

wal, l ∈ Sk, k = 1, . . . , K (7)

whereLk is the number of elements inSk.
4. For each leaf-criterion define

wi =
∏

k∈Mi

wak, i = 1, . . . , n (8)

where setMi is composed of indices of the following active criteria:
• i-th leaf criterion
• intermediate-levels criteria belonging to the branch of the active criteria tree leading

to thei-th criterion.
5. Normalizew :

wi = wi/
n
∑

i=1

wi, i = 1, . . . , n (9)

14Note that ignored criteria are not included, thereforewi > 0.
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6.4 Individual Achievement Functions

For each criterion define the defaultIAi(qi) (Individual Achievement) function is defined
for each criterion separately.IAi(qi) measures the level of satisfaction (goodness) for
each possible value of the corresponding criterion.
IA functions have the same properties as the Achievement Function in the RFP (Ref-

erence Point) method15, in particular to be strictly monotone (increasing/decreasing for
maximized/minimized criteria.16). However, in the RFP methods the Achievement Func-
tion represents also the inter-criteria preferences. Therefore in the current implementation
we distinguish theIA and theAF functions, both having the same mathematical prop-
erties, but the latter including inter-criteria preferences.
IA are defined as follows:

1. Denote (for each criterion) by utopia and nadir the best and the worst (over all alterna-
tives) values of the criterion.

2. Set the default values ofaspi (aspiration) andresi (reservation) to be equal to the
corresponding utopia and nadir values.

3. Implicitly define the defaultIAi(qi) function17 to be a PWL (Piece-Wise Linear) func-
tion composed of one segment:
• IAi(nadiri) = IAi(resi) = 0
• IAi(utopiai) = IAi(aspi) = 1
• IAi(·) ∈ [0, 1]:
Note: Such anIA(·) are equivalent to the normalized and unified (to make allmaxi-
mized) criteria value mappingsyji in the standard implementations of the weighted-sum
methods, which typically defineyji as:
• scaled and shifted to the rangeyji ∈ [0, 1], j ∈ J, i ∈ I
•maximized; i.e. a minimized̄y is replaced byy = 1− ȳ.
Therefore the default values of utopia, aspiration, reservation, nadir in the weighted-sum
method are defined implicitly as:
• utopiai = aspi = 1
• nadiri = resi = 0

7 Auxiliary functions

The following functions are used by more than one method, therefore we defined them
here.

7.1 Ordered Achievement Functions (OAF)

Ordered achievement function valuesOAF j(·) are defined for each alternative as sorted
(in order corresponding to improving the argument values18) of AFi(qj), whereqj is the

15Actually also implicitly used by the WS (Weighted-Sum) method.
16Target-type criteria are handled byIA(·) composed of twoIA(·): maximized/minimized for criteria

values smaller/larger than the specified target value.
17By qi we denote vector composed ofi-th criterion values (for all alternatives).
18Equal values are ordered randomly.
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vector of criteria values forj-th alternative):

OAF j = sort(AFi(qj )), j ∈ J (10)

whereAFi(·) is the achievement function specific for each method.

7.2 PWL functions for Quantile Aggregation

Define a PWL (Piece-Wise-Linear) function generated by vector ofn+ 1 points{x ,y}:

xi = i/n, yi, i = 0, 1, . . . , n (11)

wherey
y0 = 0; yi = yi−1 + αsi i = 1, . . . , n (12)

wheres denotes preferential OWA weights defined by:

si = 1−
(

i− 1
n

)0.25

, i = 1, . . . , n (13)

and

α = 1/
n
∑

i=1

si (14)

7.3 Aggregated Ordered Achievement Functions (AOAF)

The concept of Lorenz curves outlined in Appendix A has been adapted for defining
Aggregated Ordered Achievement FunctionsAOAF .

Two types of aggregation are used which results in twoAOAFs denoted byL1 and
L2 , respectively. The first one represents the so-called worst conditional mean which is
natural generalization of the minimum (worst) achievement aggregation. It is defined as
the mean within the specified tolerance level (amount) of the worst achievements. For
the simplest case one may simply define the worst conditional mean as the mean of the
k worst-off achievements (or ratherk/n portion of the worst achievements). This can be
mathematically formalized as

L1jk =
1

k

k
∑

l=1

OAFjl (15)

aggregating values ofk-worstOAFj(·)). Note that fork = 1, L1j1 represents the mini-
mum achievement, and fork = n,

L1jn =
1

n

n
∑

l=1

OAFjl =
1

n

n
∑

i=1

AFji (16)

which is the mean achievement.
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AggregationL1jk can be viewed as a simple transformation of the Absolute Lorenz
Curve19 for alternativej (denoted byALCj), which is defined as the PWL curve connect-
ing the point (0,0) and points:

(
i

n
,
1

n

i
∑

l=1

OAFjl) for i = 1, . . . , n. (17)

Exactly,

L1jk =
n

k
ALCj

(

k

n

)

. (18)

Formula (18) is easily extendable for any (not necessarily representing an integer number)
fraction of all criteria. Let this fraction be denoted byκ. Then

L1j(κ) =
1

κ
ALCj(κ) =

1

nκ

[

k
∑

l=1

OAFjl + (nκ− k)OAFj,k+1
]

(19)

wherek = ⌊nκ⌋ and the corresponding sum is equal to 0 fork = 0.
The second aggregation is built as the weighted sum of sorted achievements

L2jk =
k−1
∑

l=1

L2jl + sk ∗OAFjk (20)

with weights

sk =







1 if k = 1 orL2j,k−1 = 0.
1

n ∗
√
k

otherwise (21)

The aggregation is similar the so-called Ordered Weighted Average (OWA) where de-
creasing weightssi defined by formula (21) allow us to model decreasing importance of
subsequenti/n quantiles, i.e., decreasing importance of the second worst criteria values in
comparison to the importance of the worst ones, decreasing importance of the third worst
criteria values in comparison to the importance of the second worst ones, etc. Although
the weights defined by (21) are alternative dependent which guarantees that all the worst
achievements are equally weighted but also differentiate the aggregation from the stan-
dard OWA. The relations specified above provide us with faster decreasing of importance
for earlier quantiles and slower for the further ones.

8 Methods

We define here the methods currently implemented in the MCA. Each of them is defined
by two functions:
• Achievement FunctionsAF that measures (for each criterion) the satisfaction level

corresponding to a value of the criterion taking into account the relative importance of
this criterion and its individual achievement.
• Scalarizing FunctionsSFj(·) which assigns for each alternative a real value. The alter-

native with the largest value ofSFj is selected as the Pareto solution corresponding best
to the specified preferences.

19See Appendix A.
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8.1 Objective Choice (OC)

This is the only method which assumes equitable approach, i.e., all criteria having equal
importance. It is typically used for an initial iteration, which is generated automatically,
therefore user preferences are unknown (should the method be used by a user then the
specified preferences are ignored).

In the OC method objective values of aspiration and reservation levels are computed
first, and then used for the AFs.

8.1.1 Objective ASP/RES

Aspiration and reservation values can be defined from the values of the corresponding
criterion, e.g.:

resi = α ∗ averi (22)

aspi = α ∗ (averi+ 1) (23)

where the average value ofi-th criterion is defined by:

averi =

m
∑

j=1

qij/m (24)

wherem is the number of alternatives, andα is a given parameter (currently equal to 0.5).
Note: values ofresi andaspi are defined by the data, and therefore will most likely not
correspond to the actual (i.e. defined by an alternative) criterion value.

8.1.2 Achievement Functions

The AFs are defined as PWL functions composed of three segments defined by the fol-
lowing points:
• AFi(nadiri) = 0;
• AFi(resi) = 3;
• AFi(aspi) = 7;
• AFi(utopiai) = 10;

Then the values of theAFi(·) are computed as values of such PWL functions for actual
values ofIAi.

8.1.3 Scalarizing Functions

The values ofAF are used as arguments ofOAF , see eq. (10). ThenSFj are defined
by:

SFj = L1j(κ), j ∈ J (25)

whereL1j(κ) is defined by (19), andκ is the criteria quantile that can be changed after
more experiments. Currently:

κ = float(n)/3, (26)

which implies that the selection is based on theAOAF (cumulativeOAFs) defined for
the worst 1/3 of criteria. Illustration of theAOAF is shown in Fig. 3.
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Figure 3: Examples of the Aggregated Ordered Achievement FunctionsL1j (15) for the
problem with 4 alternatives and 16 criteria.

8.2 Aspiration-Reservation (AspRes)

The AspRes method differs from the above described OC method by replacing the com-
putation (from the problem data) of the aspiration and reservation level values by specifi-
cation of these values by the user.

The user specifies the aspiration and reservation values interactively. The Graphi-
cal User Interface (GUI) assures that aspiration values are better than the correspond-
ing reservation values (i.e., are larger/smaller for maximized/minimized criteria, respec-
tively). Moreover, both values are within the range defined for each criterion by the
corresponding values of nadir and utopia.

8.3 RFP - Nadir

This method takes as the Reference Point (RFP) the Nadir point (defined by the worst
values of all criteria), and looks for a Pareto solution along the direction defined byw ,
see Fig. 4 for illustration.

The Scalarizing Function is defined in the following way:
• Select the improvement direction equal to the vectorw

• Define a rayR from the Nadir point in this direction
• Define lineL by two points:j-th alternative and Nadir
• The value ofSFj is equal to the angle between theL andR.

In other words, we are looking for an alternative that improves the the criteria values
at the Nadir in the proportions defined byw . Such an alternative lies on the boundary of
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w

Figure 4: Nadir-based RFP method. The improvement direction is defined by the scal-
ing/weighting vectorw , see eq. (3) or (9).

the cone marked in the Fig. 4 by the gray area. This approach is similar to the Weighted
Sum (WS – linear criteria aggregation) approach outlined in Sec. 6.3 in the sense that
criteria improvement ratios are specified as weights. However, the RFP approach avoids
many deficiencies of the WS method; in particular, it supports analysis of the full Pareto
set.

8.4 RFP - Utopia

This method, see Fig. 5 for illustration, is based on a concept similar to that used for the
RFP-Nadir method.

q

q

2

1

v

U

Figure 5: Utopia-based RFP method. The direction is defined by the vectorv , see eq. (1).

The Scalarizing Function is defined in the following way:
• Select the worsening direction equal to the vectorv
• Define a rayR from the Utopia point in this direction
• Define lineL by two points:j-th alternative and the Utopia
• The value ofSFj is equal to the angle between theL andR.

In other words, we are looking for an alternative that worsens the the criteria values at
the Utopia in the proportions defined byv .
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8.5 RFP - Pareto

This method finds (for a given Pareto solution denoted here as RFP) another Pareto solu-
tion that:
• has better criteria values fori ∈ IMPROV E
• compromises (if necessary) criteria values fori ∈ RELAX
• attempts to stabilize criteria values fori ∈ STABILIZE
• does not consider criteria values fori ∈ FREE

In other words, the users splits all criteria in these four disjoint sets; it is assumed that
the two setsIMPROV E andRELAX ∪ FREE must be non-empty.

q 2

q 1

z

Figure 6: RFP-Pareto (not reliable) method.

We have first experimented with a method being a combination of the RFP-Nadir
and RFP-Utopia methods, see Fig. 6 for illustration. For such an approach a vectorz is
defined as follows:

zi =















wi if i ∈ IMPROV E
−vi if i ∈ RELAX
0.1 ∗ wi if i ∈ STABILIZE
0 otherwise

(27)

This approach works well for some problems (especially for problems with small number
of criteria), but is not satisfactory for other problems. Therefore we have implemented a
simpler method, concept of which is shown in Fig. 7.

The Achievement Function is defined as:

AFij = sci ∗ rij (28)

where
rij = IAij −RFPij (29)

sci =































wi if i ∈ IMPROV E andrij > 0.
−∞ if i ∈ IMPROV E andrij < 0.
wi if i ∈ RELAX
0.5 ∗ wi if i ∈ STABILIZE andrij > 0.
2 ∗ wi if i ∈ STABILIZE andrij ≤ 0.
0 otherwise

(30)

Note the following features of this method:
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Figure 7: RFP-Pareto method.

• It never selects an alternative whose anyi-th criterion (fori ∈ IMPROV E) is worse
than for the RFP.
• Criteria from the setRELAX that have values better than for the RFP contribute pos-

itively to the corresponding components ofAF (lack of this feature is a major disad-
vantage of the alternative RFP-Pareto method outlined above).
• Criteria from the setSTABILIZE contribute to theAF much stronger/weaker de-

pending on worse/better value for the corresponding alternative.
The Scalarizing Function is defined as:

SFj =
n
∑

i=1

AFij (31)

8.6 Pairwise Outperformance Aggregation (POA)

The following dominance relation for two alternatives, say(j, l) is defined to allow for
selecting (byn− 1 pair-wise comparisons)the bestalternative. The comparisons involve
only two rows of matrixIA corresponding to the selected pair of alternatives.
• Select a weighting functionβ(·), e.g.:

β(x) = 10−x (32)

• Define dominance componentsdc as:20

dijlk = wk ∗ (IAjk − IAlk) (33)

dcjlk = β(IAjk) ∗ dijlk (34)

dcljk = β(IAlk) ∗ diljk = −β(IAlk) ∗ dijlk (35)

20This definition assumes that range ofIA(·) values is about 1. For a substantially larger/smaller ranges
a scaling factor should be considered.
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• Define the dominance indexd as the cumulative difference of the corresponding domi-
nance components:

djl =
n
∑

i=1

(dcjli − dclji) =
n
∑

i=1

(β(IAji) + β(IAli)) ∗ dijli (36)

Comments:
• One also can define a setK = {k : djlk > 0} and interpretk ∈ K as the sequence-

numbers of criteria, at which thej-th alternative is better than thel-th alternative (in the
sense of the cumulative dominance component).

Dominance definition: We say that alternativej dominates alternativel (j ≻ l) if:

djln > 0 or

(

djln = 0 and
n
∑

k=1

dijlk > 0

)

(37)

Otherwise alternativej is (weakly) dominated by alternativel.
Comments:

• The method selects alternative that dominates all other alternatives; this is done by
comparingn− 1 pairs of alternatives.
• The difference of values of each pair defining the corresponding dominance component

is weighted by:
• β(·) in order toamplify the influence of weak/bad criteria values (much) more than

that of good values;
• wi to reflect relative importance ofi-th criterion.
Note that values ofdcjlk anddcljk have different signs (unless both are equal to 0), and
their absolute values may differ substantially, especially, if only one of the compared
alternatives has thek-th criterion value that is bad.
• The dominance relation is based on a cumulative index, therefore several/many small

components (contributions) can be offset by a smaller number of larger contributions.
The indexbest of best (i.e. dominating all other) alternative is selected by the follow-

ing algorithm:
• Setb = 1
• for(j = 2; j ≤m; ++j) {

if(j ≻ b) b = j;
}

where the dominance relation (j ≻ b) is defined by (37).
A more detailed description of the POA method (and 11 other methods belonging to

the class of pairwise-outperformance based approaches) can be found in [2].

8.7 Non-linear Aggregation (NA)

AF are defined by:
AFij = wi ∗ (IAij(qij))a, i ∈ I (38)

where0 < a < 1 is the method dependent constant.
The scalarizing functions are defined by:

SFj =
n
∑

i=1

AFij, j ∈ J (39)
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The achievement functions (38) take into account two factors. First, the root of de-
gree1/a is used to amplify the influence of increasing weak/bad criteria values (much)
more than that of good values. Any improvement of a given value results in a larger
increase of satisfaction (utility) than the same improvement of a larger value. Experi-
ments have shown thata = 0.4 works sufficiently well for most problems. Note, that this
value provides at least 10 times larger impact of improvement value within the 10% worst
quantile than for improvements within the 10% best quantile. Second, user defined im-
portance weights are applied to reflect the trade-offs between satisfaction levels of the
corresponding criteria.

8.8 Quantile Aggregation (QA)

This method uses two sets of weights:
• user-defined weightsw which reflect relative importance of criteria,
• method-defined weightss (defined in Section 7.2) allocated ton quantiles and repre-

senting levels of aversion to criteria values (i.e., the worse the criterion value the higher
the corresponding weight).

TheAF is defined by
AFji = IAji (40)

and the OAF by eq. (10).
The method uses the final OWA weightsω defined by:

ωji = PWL(sowji)− PWL(sowj,i−1), i = 1, . . . , n; j ∈ J (41)

where thePWL is defined by points (11), andsowj by:

sowj,0 = 0; sowji = sowj,i−1 + owji, i = 1, . . . , n; j ∈ J (42)

Theowj vectors are composed of the ordered weights, i.e. is defined byw sorted in
the same way as OAF defined by eq. (10), i.e. by the corresponding values ofqj .

TheSF is defined as

SFj =
n
∑

i=1

ωjiOAFji; j ∈ J (43)

The aggregation (43) represents the so-called importance Weighted OWA (WOWA)21

Usage of importance weights to intensify or abate some criteria causes that thei/n quan-
tiles no longer correspond strictly to the worst achievement value, the second worst
achievement value etc. Therefore, while referring to the latter the corresponding weights
si have to be recalculated taking into account changes in quantiles caused by weightswi.
This is achieved by the aggregation of weightssi through the PWL function defined by the
points (11), and then their disaggregation according to the weightswi ordered according
to the corresponding achievements.

21See e.g., [12].



M. Makowski, J. Granat, W. Ogryczak - 21 - Overview of methods implemented in MCA

8.9 LexMaxReg

This method is an extension of the LexMax method, see e.g., [9, 11]. AF is defined by:

AFji = wi ∗ IAji(qji), i ∈ I (44)

Then OAF is computed as defined by eq. (10). The LexMax method uses

SFj = OAFkj (45)

for the smallest k for which the values of thek-th row of the OAF differ.
The LexMaxReg method uses the scalarizing function defined as:

SFj = L2jn (46)

whereL2 is defined by (20).
The LexMaxReg method is similar to the LexMax (both attempt to maximize the

worst criterion). However, the LexMaxReg includes in the scalarizing function (as a sort
of regularizing term) all criteria. Therefore, if the differences betweenSFj defined by
eq. (45) are small (in comparison with other criteria) then the regularizing term included
in SF defined by (46) is likely to cause selection of that has slightly worse value of the
worst criterion but much better values of the other criteria.

8.10 Weighted Sum (WS)

AF are defined by:
AFij = wi ∗ IAij(qij), i ∈ I (47)

and the scalarizing functions:

SFj =
n
∑

i=1

AFij, j ∈ J (48)

This method was implemented for testing purposes. Due to its properties it is not rec-
ommended to be used for actual analysis. More detailed arguments are provided e.g.,
in [5], [8].

9 Comparison of selected methods

Table 1 summarizes the results of pairwise comparisons of six methods. The results are
shown for each of the five selected problems; the last column contains their average. The
results are the frequency of returning by both compared methods the same Pareto solution
for a given preferences. Fig. 8 shows the histogram of last column in Table 1. The results
of most comparisons are in the range60 − 95% (see histogram). However, there is one
methodABA1 that appears to be an outlier: the similarity of this method to all others is
below 20%.
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1st method 2nd method ch de fr it robot average
% % % % % %

POA-NF WS 66.9 70.8 63.2 78.3 46.9 66.5
POA-NF WS-L 74.6 75.0 68.6 90.0 43.8 72.7
POA-NF ABA1 18.2 13.5 15.7 15.0 34.4 17.2
POA-NF NA-L 91.9 89.6 88.6 80.0 87.5 89.2
POA-NF QA-L 92.4 89.6 78.9 93.3 62.5 86.4
OPOA-Inv-NF WS 63.6 75.0 56.2 76.7 46.9 63.5
OPOA-Inv-NF WS-L 75.8 81.3 73.0 85.0 43.8 75.0
OPOA-Inv-NF ABA1 17.4 11.5 21.1 16.7 34.4 18.4
OPOA-Inv-NF NA-L 89.4 86.5 89.2 85.0 87.5 88.3
OPOA-Inv-NF QA-L 95.3 99.0 92.4 98.3 62.5 93.6
WS WS-L 55.9 78.1 59.5 83.3 78.1 64.4
WS ABA1 16.9 3.1 9.2 3.3 31.3 11.8
WS NA-L 71.6 68.8 58.9 63.3 43.8 65.0
WS QA-L 63.6 76.0 52.4 78.3 68.8 63.9
WS-L ABA1 18.6 10.4 19.5 10.0 34.4 17.6
WS-L NA-L 70.8 69.8 70.3 70.0 43.8 69.0
WS-L QA-L 78.4 82.3 72.4 83.3 62.5 76.8
ABA1 NA-L 16.9 14.6 17.3 26.7 34.4 18.6
ABA1 QA-L 17.4 11.5 22.2 16.7 34.4 18.7
NA-L QA-L 88.6 85.4 85.4 83.3 56.3 84.9

Table 1: Pairwise comparisons of methods.

10 Ranking of alternatives

In order to avoid therank reversal problemranking of alternatives is done by solving
sequentially the following problems:
1. Start with the full set of alternatives defined for the problem instance.
2. Select the Pareto solution22 fitting best the selected preferences.
3. Remove the selected solution from the set of alternatives, and go to step 2.

11 Other functions of the solvers

11.1 Preprocessing

1. Mark dominated (not Pareto-optimal) alternatives.
2. Prepare basic statistics on criteria and the above defined functions (distribution of val-

ues, quantiles, median).
3. Precompute elements needed for fast composition of criteria charts.
4. Select intermediate-level criteria for which no preferences should be defined (because

they will have to be ignored). Such criteria are:

22Note that more than one solution can be selected.
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Figure 8: Histogram of the average frequency of the comparison results.

• if a higher-level criterion is the only child;
• if the leaf-criterion is the only child, then preferences are not specified for its parent.

5. Define the structures needed for possibly fast execution of the GUI (run as a Web
client).

11.2 Info provided with the best alternative

Generally interaction should be done in the criteria space, i.e., we assume that the users
will consider/analyze trade-offs in terms of criteria values. Thebestalternative (i.e., the
one corresponding best to the specified preferences) implies the corresponding trade-offs
between criteria values.
1. For facilitating interaction (aimed at verifying/modifying preferences) we provide pos-

sibly clear information about the criteria ofbestalternative, and help in examining fea-
sible changes in the criteria space.

2. The user can display for any selected subset of alternatives the characteristics of:
• criteria for which the alternative isstrong
• criteria for which the alternative isweak

3. Ranking resulting from the procedure described in Sec. 10 is provided in the graphical
form.

4. Values of theSF are also available as a chart.

11.3 More info about the MCA

Detailed user guide and tutorial to the MCA is available in [6]. It contains also information
about access to the MCA, which is free for research and educational purposes.
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A Lorenz curve and quantile measures

The concept of Lorenz curves is over 100 years old, see [4]. In income economics the
Lorenz curve is a cumulative population versus income curve. A modification of the clas-
sical example is shown in Fig. 9. It represents cumulative distribution of several selected
levels of household incomes (sorted by increasing levels), e.g., about 30% of the bottom
households accumulates about 5% of total income. Lorenz curve is (weakly) increasing
when built for positive (nonnegative) outcomes. It is always convex (provided that the
mean value is positive), but not necessarily strictly convex. A perfectly equal income
distribution would result in equal income for each household. The corresponding Lorenz
curve would be a line with slope of 45 degree. Another extreme is that one household
has all the income. Then the Lorenz curve would be composed of a flat line and a single
point.

20

% of income

% of hausehold

20 60 1008040

100

80

60

40

Figure 9: Lorenz curve illustrating distribution of household incomes.

A similar approach can be used for illustrating the cumulative distribution of the
OAF values. Although the original Lorenz curve is focused on equity while ignoring
the mean result. Recall that any perfectly equal distribution of income as the Lorenz
curve has the diagonal line (the same independently from the income value) and no other
income vector can be better. Therefore, in the so-called equitable optimization the Ab-
solute Lorenz Curves (ALC) are used. The ALCs are not normalized, i.e., they take into
account also values of the achievements. An ALC is defined as the PWL curve connecting
point (0,0) and points

(
i

n
,
1

n

i
∑

l=1

OAFlj), i = 1, . . . , n

thus ending at the point(1, µj), where

µj =
1

n

n
∑

l=1

AFjl
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Figure 10: Absolute Lorenz Curves.

represent the mean (average) achievement for given alternative. The original Lorenz curve
is defined by points

(
i

n
,
1

nµj

i
∑

l=1

OAFlj), i = 1, . . . , n

and therefore it ends at point(1, 1).
Within the ALC model vectors of equal achievements are further distinguished ac-

cording to their achievement values. The achievements are graphically represented with
various rising lines. Vector of equal achievements obviously dominates any unequal vec-
tor with the same mean. However, a vector of unequal but larger achievements may be
preferred to a vector with smaller although equal achievements.

Fig. 10 presents the ALCs for three achievement vectors. One can easily see that vec-
tor of perfectly equal achievementsq 2 = (0.3, 0.3, 0.3) dominates vectorq 1 = (0.1, 0.3, 0.5)
having the same mean value. However,q2 is dominated byq 3 = (0.4, 0.5, 0.9) composed
of unequal achievements with larger ordered values.

For the four alternatives defined in the problem presented in Sec. 8.1.1 the ALCs are
shown in Fig. 11. Note that in this example curves do not cross. This is not always
the case. For other problems alternatives have more diversified distributions of criteria
values. Therefore the corresponding Lorenz curves are flat for several criteria (for which
the values are bad), and then increase rapidly for the other criteria. Depending on the
pattern of criteria importance set by the user such alternatives might be strongly preferred
or strongly disliked.

Lorenz curves may provide experienced users with useful characteristics of the alter-
natives. However, they can be misleading for less experienced users. Therefore we have
decided to not display them. Although they are used to build some aggregations.

The so-called worst conditional23 mean is a natural generalization of the minimum
(worst) achievement aggregation, see Fig. 12 for illustration, and [10] for details. It is

23Theconditionalhere means that one considers only values worse than the corresponding threshold.
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Figure 11: Lorenz curve for the alternatives presented in Sec. 8.1.1.

defined as the mean worst achievements within the specified threshold level. For the
simplest case one may simply define the worst conditional mean as the mean for the
k worst achievements (or ratherk/n fraction of the worst achievements). This can be
mathematically formalized as

µj(
k

n
) =
1

k

k
∑

l=1

OAFjl =
n

k
ALCj(

k

n
) (49)

aggregating values ofk-worstOAFjl. Note that fork = 1, µj(1/n) represents the min-
imum achievement, and fork = n, it reaches the mean achievementµj(n/n) = µj .
Relation to theALCj extends the definition for any (i.e., not necessarily representing an
integer number of criteria) fraction of criteria. If the latter is denoted byκ, then

µj(κ) =
1

κ
ALCj(κ). (50)

The worst conditional mean actually takes into account only single points of the ALC.
Now we will discuss other aggregations that take into account entire curves. The ALC
may be also used for illustrating the concept of the Ordered Weighted Average (OWA),
see e.g., [14, 15].

n
∑

i=1

siOAFji (51)

where decreasing quantile weightssi are assigned to the ordered achievements. The quan-
tile weightssi are used for representing decreasing importance of subsequenti/n quan-
tiles, i.e., the decreasing importance of the second worst criteria values in comparison to
the importance of the worst ones, then the further decreasing importance of the third worst
criteria values in comparison to the importance of the second worst ones, etc. Indeed

n
∑

i=1

siOAFji =
n
∑

i=1

s̄iALCj(
i

n
) (52)
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Figure 12: Absolute Lorenz Curve and the worst conditional mean.

with weights
s̄i = si − si+1, i = 1, . . . , n− 1; s̄n = sn. (53)

Hence, the OWA aggregation with the decreasing quantile weights may be viewed as the
weighted arithmetic mean of the ALC segments with appropriate positive weights.

For the curves corresponding to the four alternatives illustrated in Fig. 11 the alterna-
tive B is dominating all other alternatives in the sense that it has the most equal distribution
of criteria values as well as the largest worst conditional means. For equitable preferences
(all criteria has the same importance) the alternative B might be also preferred by the
user. However, this reasoning will not be justified if the importance the user attaches to
criteria differ. A justification for selecting another alternative might be that the criteria
with higher importance have better values (note that the OAFs are sorted, and typically
different criteria are the worst ones for different alternatives).

The OWA aggregation (51) is built for equally important achievements where only the
distribution of achievements values is evaluated. Actually, achievement vectors having
the same OWA value may differ only by the order of achievement values. For instance,
consider two symmetric achievements vectorsq 1 = (0, 1) andq 2 = (1, 0), and OWA
weightss1 = 0.9 ands2 = 0.1; the OWA aggregation for both vectors is equal:

OWA1 = OWA2 = 0.9 · 0 + 0.1 · 1 = 0.1.

However, the users typically want to associate different importance to the elements of
achievement vectors. This can be done by introducing into the OWA aggregation the
importance weightswi, which define a repetition measure within the distribution (popu-
lation) of achievement values. Note, that the OWA weightssi are applied to the averages
within specific quantiles of size1/n for this distribution. To illustrate this concept let
us consider the importance weightsw1 = 0.75 andw2 = 0.25. Then the achievement
vectorq 1 = (0, 1) is represented by the distribution having the value 0 with the repe-
tition measure 0.75, and the value 1 with the repetition measure 0.25; the achievement
vectorq 2 = (1, 0) is represented by the distribution having the value 1 with the repetition
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measure 0.75, and the value 0 with the repetition measure 0.25. In this specific case, the
distributions may be equivalently interpreted in four dimensional space of equally impor-
tant achievements (applying the measure of 0.25 to each element) where the original first
achievement has been triplicated; thusq̄ 1 = (0, 0, 0, 1) andq̄ 2 = (1, 1, 1, 0). The OWA
aggregation with weightss1 = 0.9 ands2 = 0.1 applied to the corresponding averages
within quantiles of size0.5 results in the aggregation values0.9 ·0+0.1 ·(0+1)/2 = 0.05
for q̄ 1, and0.9 · (0 + 1)/2 + 0.1 · 1 = 0.55 for q̄ 2, respectively.

Certainly, one do not need to transform all the cases to equally important achievements
in order to calculate the appropriate OWA value. The WOWA aggregation24 provides
a way for including the importance weighting into the OWA concept. The WOWA is
defined as:

WOWAj =

n
∑

i=1

ωiOAFji with ωi = PWL(

i
∑

k=1

wτ (k))− PWL(
i−1
∑

k=1

wτ (k)) (54)

where PWL denotes the piecewise linear function representing the linear interpolation of
the points

(
i

n
,

i
∑

k=1

sk)

together with the point(0, 0), andτ represents the ordering permutation forAFji (i.e.,
AFjτ (i) = OAFji).
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Figure 13: WOWA calculation according to formula (54).

Fig 13 illustrates application of formula (54) to the example discussed above, i.e., two
achievement vectorsq 1 = (0, 1) andq 2 = (1, 0), OWA weightss1 = 0.9 s2 = 0.1, and
the importance (reflecting the user preferences) weightsw1 = 0.75, w2 = 0.25. Fig 13 (a)
illustrates the calculation of theω = (0.95, 0.05) for the achievement vectorq1 , which
results inWOWA1 = 0.95 · 0 + 0.05 · 1 = 0.05. Fig 13 (b) illustrates the calculation of
theω for q2 , which results inWOWA2 = 0.45 · 0 + 0.55 · 1 = 0.55, thus showing that
q2 clearly dominatesq1 .

24See e.g., [12].


