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Abstract

The future development of the energy sector is rife with uncertainties. They concern
virtually the entire energy chain, from resource extraction to conversion technologies,
energy demand, and the stringency of future environmental policies. Investment de-
cisions today need thus not only to be cost-effective from the present perspective,
but have to take into account also the imputed future risks of above uncertain-
ties. This paper introduces a newly developed modeling decision framework with
endogenous representation of above uncertainties. We employ stochastic model-
ing techniques within a system engineering model of the global energy system and
implement several alternative representations of risk.

We aim to identify salient characteristics of least-cost risk hedging strategies that
are adapted to considerably reduce future risks and are hence robust against a wide
range of future uncertainties. These lead to significant changes in response to energy
system and carbon price uncertainties, in particular, (i) higher short- to medium-
term investments into advanced technologies, (ii) pronounced emissions reductions,
and (iii) diversification of the technology portfolio.

From a methodological perspective, we find that there are strong interactions
and synergies between different types of uncertainties. Cost-effective risk hedging
strategies thus need to take a holistic view and comprehensively account for all
uncertainties jointly. With respect to costs, relatively modest risk premiums (or
hedging investments) can significantly reduce the vulnerability of the energy system
against the associated uncertainties. The extent of early investments, diversifica-
tion and emissions reductions, however, depends on the risk premium that decision
makers are willing to pay to respond to prevailing uncertainties, and remains thus
one of the key policy variables.
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Risk Hedging Strategies under Energy System

and Climate Policy Uncertainties

Volker Krey (krey@iiasa.ac.at), Keywan Riahi (riahi@iiasa.ac.at)

1 Introduction

The future development of the energy system is rife with uncertainties that concern
virtually the entire energy chain, from resource extraction to conversion technolo-
gies, energy demand, and the stringency of future environmental polices, in partic-
ular those addressing climate change. Ignorance with respect to the multitude of
uncertainties can be very costly, due to a high share of long-lived capital stock in
the energy system and the resulting long time spans that transitions require. In-
vestment decisions today thus need not only to be cost-effective from the present
perspective, but have to take into account also the imputed future risks of uncer-
tainties. For energy models and scenario analysis this means that uncertainty needs
to be represented endogenously in order to include trade-offs between “optimal”
decisions based on most likely developments and risks resulting from uncertainties
being resolved in one direction of the other.

Although stochastic optimization techniques have been developed several decades
ago [Dantzig, 1955; Beale, 1955], their application to realistic problems has only come
into reach in recent years with the evolution of computational resources. Therefore,
in the majority of energy studies and models uncertainties are typically treated –
if at all – by performing sensitivity analysis for a set of parameters. While it is
possible through sensitivity analysis to better understand the uncertainty space and
broader ranges of future developments, this method is generally not appropriate for
identifying robust “hedging” strategies, including response measures and their eco-
nomic implications to minimize or at least reduce exposure to unwanted risks. More
advanced approaches for performing uncertainty analysis include scenario analysis,
in particular if performed by multiple models (see [Kann and Weyant, 2000]), as
well as robust decision making [Lempert et al., 2006] which aims at deriving robust
strategies through iterative multi-scenario simulations.

Different approaches to uncertainty analysis in energy-economic models have
been described and systematically categorized by Kann and Weyant [2000], and more
recently in Peterson [2006]. With a few exceptions most of the described modeling
approaches fall into the category of aggregated top-down models, which lack explicit
representation of individual energy technologies. In addition, the majority of the
models focuses on uncertainties related to the climate system and climate change
related damages with the climate sensitivity being the most popular parameter that
is treated as uncertain (e.g. [Manne, 1996; Yohe et al., 2004; Loulou et al., 2009]).
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There are a few technology-explicit bottom-up model applications, e.g. [Messner
et al., 1996; Kanudia and Loulou, 1998; Loulou and Kanudia, 1999; Krey et al.,
2007; Loulou et al., 2009], however, they concentrate on a very limited number of
uncertain parameters in comparison to the total number of parameters included in
the models.

In this paper we introduce a newly developed modeling framework of the global
energy system that features an endogenous representation of uncertainties. The ba-
sic structure of the model builds upon the deterministic energy engineering model
MESSAGE [Messner and Strubegger, 1995; Messner et al., 1996; Rao and Riahi,
2006]. We employ risk management techniques, developed for portfolio manage-
ment applications (cf. [Pflug and Roemisch, 2007]) and incorporate a variety of
different representations to measure risks into MESSAGE. Stochastic optimization
techniques are then used to solve the resulting stochastic energy systems model. On
top of a variety of different risk measures we provide a set of alternative (equivalent)
problem formulations (e.g. risk-constrained cost minimization, cost-constrained risk
minimization). The different model formulations increase the flexibility of the mod-
eling approach, and permit us to put more or less emphasis on the tails of the
uncertainty distribution or to consider different risk-attitudes of decision makers
(e.g. towards limiting risks below critical thresholds in contrast to exploring the
effect of different levels of risk premiums1).

In our model application all relevant cost parameters are treated stochastically,
i.e. costs concerning the entire chain of energy technologies including resource ex-
traction, energy conversion technologies and energy-saving measures. In addition,
to account for the uncertainty of the policy intensity to climate change, the carbon
price is also modeled as an uncertain parameter.

Through a series of sensitivity analysis we aim to identify salient characteristics
of least-cost hedging strategies that are able to considerably reduce future risks and
are hence robust against a wide range of future uncertainties. In particular, we
explore the effect of uncertainties on (i) investment decisions in the energy sector,
(ii) technology deployment and diversification of the technology portfolio, and (iii)
associated greenhouse gas emissions. From a methodological perspective, we are also
interested in synergies of hedging strategies against technology- and policy-related
uncertainties. Finally, the question of how much risk can be avoided at which cost
or, alternatively, whether it is possible to come up with more robust strategies at
affordable costs is central to our modeling approach.

The sequel of this paper is structured as follows: In Section 2 we lay out the
methodological basis of our modeling framework, starting with various types of prob-
lem formulations and risk measures. In the later part of the section we also address
the question of how joint distributions of uncertain input parameters are generated.
Section 3 illustrates how the methodology operates on the basis of a very simple
static 3-technology model. The following Section 4 introduces the central applica-
tion of this study, the full global energy systems model and the main scenario input
assumptions. Appendix A complements this section with more detailed information
on the model structure and data. Results of the stochastic modeling exercise are

1In this article the term risk premium refers to additional expenditures to limit exposure to
unwanted risks.



– 3 –

extensively discussed in Section 5, ranging from implications of hedging strategies
for primary energy supply and emissions to diversification of the technology portfo-
lio and reallocation of investments within the energy system. The paper concludes
with a summary of the main findings in Section 6.

2 Stochastic Optimization

Energy systems models are frequently used to aid scenario analysis and to provide
quantitative information about possible future development pathways in the energy
sector. In the process of constructing scenarios many assumptions about future
developments of socio-economic, demographic and technological change have to be
made. In particular, bottom-up energy systems models include a large number
of technologies, which need to be represented in a parametric way. How these
parameters evolve over time is subject to large uncertainties. In our model we
assume all relevant cost parameters (investments, operation and maintenance costs,
carbon price) to be uncertain.

The objective of this paper goes beyond the documentation of our stochastic en-
ergy systems model, but to provide a modeling framework that is generic enough to
be used within (or together with) other similar energy-economic optimization mod-
els. To capture different risk attitudes of decision makers, a number of alternative
ways of measuring risks (e.g. upper mean absolute deviation, downside risk, Condi-
tional Value-at-Risk) have been implemented. In addition, a variety of alternative
(equivalent) problem formulations is provided to increase flexibility of the modeling
framework. All formulations have in common that they describe economic trade-offs
between decisions based on expected (most likely) future trends and the associated
economic risks of the underlying uncertainty. The three alternative problem formu-
lations that we consider are:

1. minimization of a weighted sum of deterministic total system costs and a so-
called risk measure as suggested by Messner et al. [1996],

2. minimization of total system costs under constrained risk, and

3. cost-constrained minimization of risk (which considers a maximum risk pre-
mium that may be paid for the risk reduction).

As mentioned above, an earlier stochastic version of the MESSAGE model [Messner
et al., 1996] used a similar stochastic modeling approach as under point (1), but
concentrated on a very limited number of technologies as well as uncertain param-
eters. Further applications of this type of approach include uncertain import prices
of fossil energy carriers [Krey et al., 2007] as well as uncertain increasing returns to
scale [Grübler and Gritsevskyi, 2002; Gritsevskyi and Nakićenović, 2000]. A more
general discussion of the methodology can be found in [Ermoliev and Wets, 1988;
Marti et al., 2004].

We shall next describe the three different problem formulations (Section 2.1),
followed by a discussion of the employed risk measures (Section 2.2).
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2.1 Generic Problem Formulations

To start with, let us consider the system of equations of a generic inter-temporal
deterministic linear programming (LP) minimization problem:

min
∑

t

cT
t xt · δ(t) ,

Ax = b , (1)

x ≥ 0 ,

Here t = 1 . . . T is the time-period index, ct is the cost coefficient vector of the
objective function in period t and xt are the corresponding decision variables in
period t, with x = (x1, . . . ,xT ) referring to the vector of decision variables for all
periods t = 1 . . . T . The set of constraints is defined by the matrix A and the
vector of the right hand sides b. The last term in the objective function, δ(t), is
the discount factor. In the following we will refer to the deterministic objective
function in the first line of eq. (1) as F det(x) and to the cost-optimal solution of the
deterministic problem as x⋆

det
.

Based on the above defined deterministic model, we now describe a set of stochas-
tic model versions that include an endogenous representation of risk that result from
future uncertainties. For this purpose a risk measure (or risk functional), denoted
by R(x), is introduced (see also Section 2.2). Note in particular that the risk mea-
sure is an endogenous function of the decision variables x, thus depending on e.g.
investment decisions driving technology deployment.

We implemented three alternative problem formulations. From a methodological
perspective, the three formulations represent different ways to combine the deter-
ministic objective function, i.e. total system costs F det(x), and the risk measure
R(x). Conceptually, the formulations allow for different policy perspectives, where
depending on the context it may be preferable to either control costs, or to control
risks, or to define the risk aversion of the decision maker. The formulations are
equivalent to each other and can even be combined in a synergistic way as will be
discussed later in this section. The three formulations are discussed in turn.

1. Minimization of a weighted sum of deterministic total system costs F det(x)
and the risk measure R(x):

F sto(x) = F det(x) + ρ · R(x) .

A simple linear combination of deterministic total system costs and risk mea-
sure allows to explore the impact of risk on the optimal solution. In this
formulation there is no clear focus on either total system costs or risk mea-
sure, but the relative weight of the two can be adjusted with the help of the
factor ρ, an indicator for the risk aversion of the decision maker (cf. [Messner
et al., 1996]).

2. Minimization of deterministic total system costs F det(x) under constrained
risk measure R(x):

min F det(x)

s.t. R(x) ≤ Rmax
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In this formulation the emphasis is on risk reduction. From the perspective
of a decision maker the focus is to reduce the risk by constraining the risk
measure R(x) to a maximal permissible value. The cost minimization then
guarantees that a solution is on the efficient frontier, i.e. the risk level Rmax

is achieved at lowest possible costs. The formulation is particularly important
if critical thresholds for risks can be identified. A practical example would
be local water supply management, which typically focuses on the optimal
allocation of resources in order to reduce the risk of supply-shortages below
certain levels [Dessai and Hulme, 2007].

3. Minimization of risk measure R(x) under constrained expected total system
costs F det(x):

min R(x)

s.t. F det(x) ≤ (1 + f) · F det(x⋆
det

)

In contrast to the previously presented formulation here the focus is to control
the risk premium, i.e. the “additional” costs for reducing risk. These “hedg-
ing expenditures” are limited to a fraction f of the total costs in absence of
uncertainty (the costs of the deterministic solution F det⋆ = F det(x⋆

det
)). The

objective of this problem formulation is then to minimize the resulting risk
(given budgetary constraints for the risk premium). This formulation gains
importance if risk thresholds can not be identified, or when the problem is
characterized by large complexity. Particularly in the latter case a sensitiv-
ity analysis for different risk premiums can provide important policy insights,
enhancing the understanding of the magnitude of risk that can be reduced
at specific costs. Future energy projections, as explored in our paper, are a
typical example of a complex problem with often counter-acting uncertainties
(e.g. the increasing likelihood of high carbon prices and the uncertainty of
future cost improvements for new zero-emissions technologies are pulling the
solution into opposite directions). We will come back to this and primarily
use this formulation for illustrating our results.2

The three formulations are – with appropriately chosen parameters Rmax, f

and ρ – equivalent to each other and their combined use can help to understand
different aspects of risk hedging strategies. Cost constrained risk minimization (3)
has the advantage of being comparatively easy to interpret and to communicate,
since the hedging cost f denotes in essence a risk or insurance premium known also
to non-experts in stochastic methods. However, a drawback is that the risk measure
defines the objective function, leading to shadow prices of e.g. energy carriers or
carbon emissions which are not comparable with those of the deterministic model.
Therefore, combining cost-constrained risk minimization and risk-constrained cost

2From a technical perspective, the latter two formulations have the advantage that the relative
orders of magnitude of total system costs F det(x) and risk measure R(x) can be allowed to be very
different. This happens, e.g. in the case of a linear cost function and a quadratic risk measure
(e.g. semi-variance, see Section 2.2). Apparently this situation causes problems in the third case,
because one of the two terms then dominates the other one for ρ ∼ 1, thus the magnitude of ρ has
to be chosen individually for each risk measure used.
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minimization allows a complementary view on the problem by determining the risk
level corresponding to a certain risk premium f first and then running the model
again in the risk constrained formulation that allows obtaining “ordinary” shadow
prices, like marginal carbon abatement costs. Another interesting aspect is that
the linear combination F sto(x) of expected costs and risk measure implies that –
by definition – the gradients of deterministic total system costs gradF det(x) and
marginal (weighted) risk measure ρ · gradR(x) are equal with opposite sign at the
solution x⋆

sto
. Therefore, the trade-off between expected costs and risk is explicitly

included in the objective function. With an appropriately chosen ρ this allows
deriving an “optimal” level of risk – an admittedly hypothetical concept, but with
clear methodological advantages for exploring cost-benefit analysis of e.g. climate
change.

2.2 Risk Measures

As stated above, we are interested in a generic framework for risk assessment rather
than a particular type of formulation. Therefore, in addition to the different problem
formulations presented above, we have implemented a number of – partly well-known
– risk measures. Similar to the alternative problem formulations the choice of an
appropriate risk measure depends on the risk attitude of a decision maker as well as
on the specific characteristics of the problem under consideration. For instance, if low
probability high impact events are of particular interest, a risk measure that focuses
on the tail of the distribution (e.g. semi-variance, β-CVaR) is more appropriate
than one that equally weights all positive deviations from the expected value (e.g.
upper mean absolute deviation).

In the following, ct(ω) and c̄t are the stochastic cost parameters in period t and
their expected values, respectively. For practical reasons, i.e. to ensure solvability
of the problem we restrict ourselves to measures that are implementable in linear
and quadratic programming.

1. The upper mean absolute deviation is a linear risk measure originally used by
Messner et al. [1996] and is defined in the following way:

R(x, ω) =
∑

t

max
{

0, [ct(ω) − c̄t]
Tx

}

· δ(t) (2)

It’s expected value R(x) = EωR(x, ω) corresponds the expected underestima-
tion of total system costs which is used to measure the economic risk associated
with a strategy x.

2. Conditional Value-at-Risk (CVaR), also referred to as expected shortfall, is
related to the above defined upper mean absolute deviation, but only takes
the worst (1 - β) fraction of outcomes into consideration, where β typically is
chosen to be 0.90, 0.95 or 0.99. Our model implementation is based on the
work of Rockafellar and Uryasev [2000] which, in addition to the risk measure’s
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definition in eq. (2) requires the following two equations:

CVaR(x) = Eω

∑

t

{

αt(1 − β)−1 · zt(ω) · δt

}

R(x, ω, t) = αt − zt(ω)

Here αt serves as a proxy for the so-called Value-at-Risk in period t and zt(ω)
is an auxiliary variable. More background information and details on the im-
plementation can be found in [Palmquist et al., 1999; Rockafellar and Uryasev,
2000].

3. Semi-variance or downside risk:

R(x, ω) =
∑

t

(

max
{

0, [ct(ω) − c̄t]
Tx

})2

· δ(t) (3)

The expected value of this quadratic risk measure corresponds to a semi-
variance, i.e. only positive deviations contribute to it, but in contrast to eq.
(2) quadratically.

4. Linear-Quadratic Risk-Benefit Function

R(x, ω) =
∑

t

{

γ ·
(

max
{

0, [ct(ω) − c̄t]
T
}

x
)2

− min
{

0, [ct(ω) − c̄t]
T
}

x
}

·δ(t)

(4)
Following the arguments by Grübler and Gritsevskyi [2002], positive deviations
from the expected costs c̄t contribute quadratically to the risk-benefit function
whereas negative contributions, i.e. opportunities or benefits contribute lin-
early. This formulation reflects that underestimating costs is penalized more
heavily in competitive markets than overestimation. From a company’s per-
spective the latter might result in lower profits whereas the former can result
in bankruptcy.

The first three risk measures are well-known and widely used in the finance and
risk management literature (cf. [Pflug and Roemisch, 2007]), even though they have
rarely been applied to energy-economic problems. To a large extent the alternative
risk measures represent different risk attitudes towards either the average risk or
extreme tail events. For example, the quadratic risk measures (eq. 3 and 4) put
much more emphasis on the “low probability high cost” events in the tails of the
distributions compared to the upper mean absolute deviation in eq. (2), which
averages risks over the whole range of excess costs. Similarly, the case of CVaR
represents also risk aversion towards the tails, since per definition only the worst (1−
β) fraction of realizations is taken into account. A specific characteristic of the linear-
quadratic risk measure in eq. (4) is that is takes opportunities into consideration.
However, if distributions are sufficiently wide, the quadratic part typically dominates
the linear one such that results turn out to be very close to that of the semi-variance
(eq. 3).
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2.3 Numerical Computation

We assume distribution functions for the stochastic cost parameters (see Section
4.2). For practical implementation purposes we draw a finite number of N samples
from these joint distributions. By doing so we obtain a numerical estimate of the
risk measure R(x) as defined in eq. (5) below

R(x) → RN(x) =
1

N

N
∑

s=1

R(x, ωs) . (5)

Given the sampling procedure the approach can be referred to as distribution-free.
The quality of the solution critically depends on the sample size. In other words, N

needs to be selected large enough, so that it approximates a solution with N → ∞.
We assess the minimum sample size through experiments, where N is increased until
solutions converge and outcomes do not show any qualitative difference. A detailed
description of the convergence criterion as well as the sampling techniques can be
found in Appendix B.

We also account for correlations between uncertain parameters (see Section 4.2).
Depending on the sampling algorithm, we use either so-called copulae (in case of
random sampling) or the algorithm suggested by Iman and Conover [1982] (in case
of latin hypercube sampling) to induce correlation among uncertain parameters.3

3 3-Technology Model

This section presents results from a very simple and idealized model with the aim
to illustrate from a conceptual point of view, how in our modeling approach uncer-
tainties and risks affect the decision making process.

The simple model consists of just three variables x, y, and z. In the energy
context these three variables can be thought of as different types of power plants
(e.g. natural gas, coal, nuclear) with expected values for electricity generation costs
c̄x, c̄y and c̄z respectively. Uncertainties with respect to costs, characterized by the
variance σ2

i , are assumed to differ across the three technologies (see Table 1). The
three power plants need to supply an electricity demand d. To further complication
from inter-temporal effects, the model is chosen to be static.

Assuming that there is no uncertainty, the problem formulation is reduced to
the simple deterministic objective function F det(x, y, z) = c̄xx + c̄yy + c̄zz. Due
to the employed cost-minimization the model suggests to deploy only the cheapest
technology. Even if cost-differences between technologies would be very minimal,
the winner always takes it all. In our example this is the natural gas power plant in
the upper left corner of Figure 1(a) which illustrates the total system costs of the
deterministic objective function. The lines in Figure 1(a) denote cost meridians of
identical system costs for a combination of nuclear and natural gas shares in total

3For k parameters, as a result of both procedures we obtain samples on the k-dimensional unit
cube [0, 1]k that can subsequently be transformed into arbitrary distributions with the correspond-
ing quantile functions. Samples are generated with the help of the graphics and statistics software
R [R Development Core Team, 2008], making use of several add-on packages [Carnell, 2006; Yan,
2007].
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demand. Naturally the lower the contribution of natural gas becomes, the more
the other technologies need to be deployed, leading consequently also to an increase
in the system costs. The third variable z (coal) is not shown explicitly, because its
contribution corresponds just to the gap between the other two technologies’ supplies
and the demand, that is z = d − x − y.4 A major drawback of the deterministic
solution is that it always features the least cost option supplying the total demand.
Small changes in cost assumptions may thus dominate the results, with switching
between one extreme to another. This behavior is known as penny switching or knife
edge effect of linear programming.

Variable Technology c̄i [ct/kWh] σi [ct/kWh]
x Nuclear Power Plant 4.5 1.0
y Natural Gas Power Plant 3.5 1.5
z Coal Power Plant 4.0 1.25

Table 1: Technology specifications in the 3-technology model.

Figure 1: Illustration of (a) total system cost F det(x, y, z) and (b) risk measure
R(x, y, z) as a function of technology activities

Panel (b) in Figure 1 shows the values of the risk measure R(x, y, z) if we as-
sume that the costs are uncertain.5 As illustrated by the graph, also R(x, y, z) is
dependent on the share of the individual technologies. From a pure risk perspec-
tive, however, natural gas has for example become much less attractive due to its
high cost uncertainty (see standard deviations σi in Table 1). Most importantly,
the risk measure in Figure 1(b) features a minimum – again indicated by the black
dot – that corresponds to a diversified technology portfolio with contributions of
all the three power plant types. In that sense, the model confirms the well-known

4In the numerical example without loss of generality the demand is set to d = 1.
5We implemented the risk measure as defined by the upper mean absolute deviation as defined

in eq. (2).
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rule that in the case of uncertainty it is advisable “not to put all the eggs into one
basket”. To which extent diversification or hedging can help to reduce the imputed
risk of uncertainty depends on the problem at hand and the model formulations
presented further above (Section 2.1). Regardless of the problem formulation, ro-
bust response strategies need to consider both panels of Figure 1, and the economic
trade-off between the expected costs F det as well as the imputed risk R.

It needs to be emphasized that diversification can only help as a hedging strat-
egy, if the costs of the technologies are not perfectly correlated. In case of highly
correlated electricity generation costs it is for example preferable to mostly choose
the technology with less volatile costs to minimize the risk measure. This behav-
ior is illustrated in Figure 2 where the correlation coefficient ρyz between gas- and
coal-fired electricity generation is varied between 0 and 1. With increasing corre-
lation the share of natural gas at minimal risk is reduced to zero in comparison to
more than 20% in the case without correlation. Note also that the share of the
uncorrelated nuclear plant is increasing in response to the cost-dependency between
coal and gas. This has important practical implications for the bigger global energy
systems model, presented in the next section.

Figure 2: Influence of correlation on diversification of the technology portfolio for
correlations (a) ρyz = 0 (b) ρyz = 0.5 and (c) ρyz = 1

The introduction of an uncertain carbon price would influence the cost distribu-
tions of the three technologies in our example very differently. The cost distribution
of nuclear as a carbon-free technology would not change at all whereas gas- and in
particular coal-fired power generation would be penalized by shifting the distribu-
tions towards higher costs. As a result the optimal share of nuclear in a risk-minimal
portfolio would increase whereas coal’s contribution would decrease.

The combination of expected costs F det and risk measure R in our modeling
framework is different for the three formulations described in Section 2.1. The
mechanism of the three formulations is illustrated graphically in Figure 3. As in the
previous figures the corresponding minima are again indicated by the black dots in
the graphs.

The left hand panel of Figure 3 represents risk-constrained cost minimization,
i.e. the objective function is identical to that of the deterministic model. In ad-
dition, the risk constraint Rmax – indicated by the red dashed line – is projected
onto the surface of the cost function. The resulting cost-minimum corresponds to
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Figure 3: Illustration of alternative model formulations: (a) minimization of a linear
combination of total system costs and risk measure (b) minimization of total system
costs under a risk constraint (c) minimization of the risk measure under a cost
constraint

a technology portfolio on the edge of the Rmax surface with the lowest possible ob-
jective function value. The risk constraint Rmax excludes the optimal deterministic
solution featuring the extreme of 100% gas electricity generation. Consequently, all
three power plants contribute to electricity generation.

Figure 3(b) denotes the result of a cost-constraint risk minimization. Panel (b)
thus shows the risk measure R with the cost constraint (1 + f) · F det projected
onto its surface as the red dashed line. The resulting risk minimum corresponds
to a technology portfolio on the edge of the surface denoted by the cost constraint.
Synonymous to the above implementation, the cost constraint (1+f) ·F det excludes
the minimum risk solution, thus e.g. natural gas shares are higher than in a case
with pure risk minimization.

The third graph on the right side of Figure 3 corresponds to a linear combina-
tion of expected costs F det⋆ and risk measure R, also featuring an optimum with
a diversified technology portfolio. Moreover, the three Figures 3 (a) - (c) illustrate
the equivalence between the three alternative problem formulations. As a result
the optimum is identical in the three formulations if the parameters ρ, Rmax and
f are chosen accordingly. Although mathematically equivalent, from a conceptual
perspective the three formulations allow for different policy perspectives, where de-
pending on the context it may be preferable to either control risk (left panel) or
costs (middle panel), or to define specific risk aversion of the decision maker (right
panel).

We move next to the more complex global energy systems model, and the im-
plementation of uncertainty into a “real world problem”.

4 Global Energy Systems Model

In order to explore the impact of cost uncertainties on optimal transitions within
the global energy system and the resulting development pathways, we employ above
methodologies within a systems engineering model. On the one hand a relatively
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simple or stylized model structure is a precondition to keep the model transparent
and the results interpretable. On the other hand, stochastic modeling approaches
are computationally more demanding than deterministic models and therefore put
limitations on the number of stochastically treated parameters. Compared to other
energy-economic models, our framework is thus of intermediate complexity, charac-
terized by a relatively comprehensive representation of energy technologies within a
single world-region.

4.1 Model Structure and Scenario Assumptions
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Figure 4: Reference energy system of the one-regional global model

Figure 4 provides a schematic illustration of the model’s reference energy system
(RES). The RES is designed to cover a large number of possible energy supply chains,
from primary energy extraction, to a range of energy conversion technologies, and
the transmission and distribution of final energy carries to three aggregated demand
sectors.

The model includes various fossil, nuclear and renewable energy resources along
with estimates of the associated potentials and extraction costs (see left-hand side of
Figure 4). The conversion sector consists of nine electricity generation technologies
with the possibility of carbon capture and storage from fossil- and biomass-based
power generation. In addition the model considers five alternative technologies to
supply liquid fuels, including refineries for oil-products as well as coal, gas, and
biomass to liquid options and hydrogen6. Transportation and distribution costs

6Hydrogen production is limited to electrolysis. While this permits that hydrogen is produced
from all primary fuels, we did not consider other technologies such as natural gas steam reforming
in order to keep the number of technologies as small as possible for the computationally expensive
stochastic optimization.
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of particularly grid-bound energy carriers, such as electricity and natural gas are
considered as well, however, they are not shown explicitly in Figure 4.

The demand side is more aggregated than the supply side and distinguishes
three demand categories for electric, non-electric (direct use) and transportation
fuel demand. In the demand sectors we currently do not model individual appli-
ances, but use energy conservation cost curves. The reference demand is based on
the B2 scenario [Riahi and Roehrl, 2000] from the IPCC Special Report on Emis-
sions Scenarios (SRES) [Nakićenović and Swart, 2000]. The parameterization of
the conservation cost curves and the corresponding energy conservation potentials
are derived from the recent update of the B2 scenario using the IIASA Integrated
Assessment modeling framework [Riahi et al., 2007; IIASA GGI, 2007] including
the detailed 11-regional MESSAGE-MACRO model [Messner and Schrattenholzer,
2000; Riahi et al., 2007]7.

Large-scale energy systems models typically include a number of additional re-
strictions or constraints in order to (i) avoid typical penny switching effects of linear
programming approaches and (ii) guide the model into a “realistic” direction. Such
external model guidance often mimics market penetration limitations of specific tech-
nologies, remain however to some extent arbitrary with limited empirical basis. In
contrast to this practice, we do only include restrictions that have a physical or
technical motivation, like e.g. resource availability, renewable potentials, maximum
share of intermittent electricity generation (25% of final demand, otherwise addi-
tional backup capacity needed) or baseload constraints (60% of final electricity de-
mand). An exception is the use of solid fuels in the end-use sectors which is limited
to the level of the B2 baseline [IIASA GGI, 2007] in order to mimic non-economic
considerations and inconvenience of solid fuel consumption at the consumer level.

The main underlying assumptions with respect to scenario drivers, such as eco-
nomic growth, population, or technological change build upon the B2 SRES story-
line, and the most recent quantitative update summarized in Riahi et al. [2007]. The
B2 scenario is a middle of the road “dynamics as usual” scenario, which combines in-
termediate population and economic growth with modest, but balanced technology
improvements. The balanced and intermediate characteristic of the scenario makes
it ideal for defining the expected values in our analysis. Hence, the parameterization
of the technologies, including the evolution of expected costs over time, and energy
demand stem mainly from the B2 scenario. In addition, we build upon the review of
technological change in the scenario literature performed by Nakicenovic and Riahi
[2001], which analyzes future distributions of costs of three ensembles of scenarios
for the World Energy Council [Nakićenović et al., 1998], the IPCC SRES, and the
IPCC Third Assessment Report [Metz et al., 2001]. We use their analysis in order
to define broader uncertainty ranges of future technology costs (see Appendix A for
further details on cost and demand assumptions).

As noted earlier, all our scenarios consider a modest price for carbon, approx-
imating that there will be some (but not drastic) efforts to limit climate change
over the long term. The expected carbon price (and its PDF) was derived from a
subset of 58 stabilization scenarios from the IPCC-AR4 scenario database [Hanaoka

7For further details of the B2 scenarios see also the IIASA GGI scenario database: http:

//www.iiasa.ac.at/Research/ENE/GGIDB_index.html
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et al., 2006] with CO2-equivalent concentration targets of 650 ppmv and higher. A
lognormal distribution was fitted to this sample of carbon prices in the year 2100
(see Appendix A.3) and the resulting values were then propagated backwards to
2010 with the discount rate. This procedure results in a moderate expected carbon
price of 4.6 US$/tC in 2010 which grows with the model’s discount rate of 5% over
time. The carbon price in later periods is e.g. 12.2 US$/tC in 2030, 32.5 US$/tC
in 2050 and 372 US$/tC in 2100.

4.2 Stochastic Parameters

We need to define uncertainties with appropriate assumptions about the shape,
variance and correlation between different uncertain cost parameters.

Unlike in natural sciences, controlled experiments are unfortunately not avail-
able to define the shape of probability distribution functions of future technology
costs. There is though some limited empirical evidence from time-series analysis of
historical technology data (e.g. nuclear power generation [Koomey and Hultman,
2007]), which suggest the use of lognormal or similar distributions (e.g. Gamma),
characterized by a tail on the upper side and a cut-off on the lower part of the costs.
Similar to earlier stochastic analysis by for example Gritsevskyi and Nakićenović
[2000] we thus apply lognormal distributions8 to all uncertain cost parameters where
the expected values correspond to the deterministic costs9

Depending on which part of the technology costs are dominant, we either model
(capacity-related) investment or (activity-related) variable operation and mainte-
nance costs as uncertain parameters. For example, the variable costs of fossil fuel
extraction as well as biomass production and nuclear fuel costs are modeled as uncer-
tain parameters. For power generation, including carbon capture and storage (CCS)
and liquid fuel production, investment costs typically dominate levelized production
costs (excl. fuel costs) and are therefore modeled as uncertain. In contrast, for
energy-saving options which operate on the level of conservation cost curves the
cost of the activity is assumed to be uncertain.

We assume also that the cost uncertainty of technologies is increasing over time.
For this purpose we use the future cost distributions from Nakicenovic and Riahi
[2001] as a proxy to define the cost variance for individual technologies at the end
of the time horizon.10 Figure 5 gives a schematic illustration of the increasing
uncertainty over time (technical details of the implementation are given in Appendix
A.2). Apart from the evolution of the expected value, Figure 1 also shows the 25th
and 75th percentile (shaded area) as well as the 1st and 99th percentile of the
distribution function. Given our approach, costs generally change more rapidly in
the first decades and then converge towards their long-term value in the second
half of the century. Perhaps, most importantly our implementation of uncertainty

8The choice of lognormal distributions for the costs corresponds to normally distributed growth
rates of these.

9In total 32 cost parameters are treated as uncertain, 31 of which are technology-related and
the 32nd, the carbon price, is policy-related.

10The cost distributions are defined for the final year of the model’s time horizon, i.e. 2100.
To derive cost paths for the model’s full time horizon (2000 - 2100) we exponentially interpolate
between the base year value in 2000 and the random parameter values in 2100.
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considers not only the possibility of dropping costs, but also a long tail with small
likelihoods of increasing costs as observed during the recent years.

Figure 5: Illustration of cost interpolation procedure (left) and cost distribution in
2100 (right) for investment costs of a natural gas combined cycle power plant.

We distinguish three broader uncertainty categories for individual technologies:
low uncertainty (σlow = 0.15), medium uncertainty (σmed = 0.3) and high uncer-
tainty (σhigh = 0.6). Following Nakicenovic and Riahi [2001], mature technologies
with only small cost reduction potentials (e.g. coal power plant, oil refinery) exhibit
low variance and are thus assigned to the lowest uncertainty category. Readily avail-
able technologies that have been deployed on a large scale, but are still expected
to have significant cost reduction potential (e.g. gas combined cycle power plant)
are grouped in the medium uncertainty category. In addition, also mature technolo-
gies where heterogeneity and local context adds to the cost uncertainty (e.g. hydro
power, fossil fuel extraction, energy-saving measures) are assigned to the intermedi-
ate category. Finally, advanced technologies with potential for high cost reductions
typically show a wide spread of cost assumptions across different scenarios (e.g. so-
lar photovoltaics). These technologies are grouped with those that are affected by
additional risks (e.g. acceptance problems of nuclear power) in the category with
the highest uncertainty. The resulting classification of individual technologies are
denoted in Figure 4 as small letters in the technology boxes (l = low, m = medium
and h = high).

Many energy technologies share similar components (e.g. gas turbines in natural
gas combined cycle and integrated coal gasification combined cycle power plants) or
rely on identical technologies (e.g. exploration and drilling techniques for conven-
tional oil and gas reserves). Hence, the future development of their costs and the
associated diffusion process are not independent from each other [Kann and Weyant,
2000, p.36]. As illustrated earlier, this has major implications for hedging or diversi-
fication strategies. We thus explicitly include correlations among different uncertain
parameters in our modeling framework. For some of the technologies data was avail-
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able from specific technology component analysis (electricity generation technologies
[Kouvaritakis and Panos, 2005]) to derive the correlation coefficients. For others we
rely on expert opinions. Similar to the uncertainty categories, we distinguish several
levels of correlation, i.e. perfect (ρij = 1), high (ρij = 0.7), medium (ρij = 0.35) and
uncorrelated (ρij = 0). A more detailed description of this procedure can be found
in Appendix A.2.

5 Results

This section presents results of the global stochastic modeling framework. We ana-
lyze a series of model runs and compare scenario outcomes with and without consid-
eration of uncertainties. By doing so we explore the main characteristics of least-cost
risk hedging strategies and the extent to which the imputed risk of future uncertain-
ties can be reduced, and at what costs. We are hence particularly interested in the
relationship between the “risk premium” and avoided risk, including implications
for the tail of the cost distribution. In addition, we analyze responses of the energy
system with respect to the technology portfolio and investment patterns, as well as
consequences for carbon emissions under uncertainty.

5.1 Energy System Costs

Our stochastic approach considers the uncertainty of future technology costs as
well as of the carbon price. On an aggregated level these uncertainties translate
into distinct future distributions for the total energy system costs, which critically
depend on investment decisions and the type of technologies that become adopted.
Comparisons of probability distributions of different energy deployment pathways
are thus critically important for understanding the implied risk of different strategies.

A comparison of the probability density function (PDF) of the total energy
system costs of two alternative development pathways, with and without considering
uncertainty, is illustrated in Figure 6(a) - (d). The individual panels show discounted
system costs over the century as well as for individual points in time (2030, 2050,
and 2100).11 The deterministic solution’s PDFs are shown in black whereas the
PDFs of our stochastic model, assuming a risk premium of 1%, are shown in red.

In the deterministic model uncertainty is ignored in the decision process and
system costs are minimized based on expected values of all input parameters. The
resulting distribution of energy system costs is relatively wide, including high-cost
tails with comparatively higher probability of very costly outcomes. In contrast,
the PDFs resulting from the stochastic solution with a risk premium of 1% are
more centered around their expected value than the deterministic ones. While this
tendency increases over time as uncertainties grow towards the end of the century

11The energy system cost PDFs are generated by propagating the joint input distributions
through the model, given a fixed solution. Technically speaking, the N = 20000 realizations
of uncertain cost parameters are multiplied with the deterministic and stochastic solution vectors
respectively, thus obtaining 20000 objective function values. A kernel density estimate is then used
to generate the PDFs in Figure 6.
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(see Section 4.2), the distributions clearly show increasing confidence that future
system costs will be closer to the expected values.

By construction the expected value of system costs, indicated by the red vertical
lines in all subfigures, is shifted by 1% to the right indicating the additional costs
(or hedging investments) that were spend to reduce uncertainties and their imputed
risk. Consequences of this investment are visible in the tails of the cost distribu-
tions, represented by the 99th percentiles in Figure 6 which are shifted towards the
expected value, implying significantly reduced risk of unfavorable outcomes with
extreme costs. Remarkably, the shaving of the tales has occurred even though we
employ upper mean absolute deviation as our default risk measure which puts uni-
form emphasis on all parts of the distribution exceeding the expected value and not
only the tails (see also Section 2.2). This development needs thus be seen as an
endogenous response driven by the characteristics of energy system uncertainties.

This effect is most pronounced in the long term. For example, by 2100 total
costs in the deterministic case are twice as high as the expected value at the 99th
percentile of the distribution (see Figure 6(d)). With additional hedging investments
of just 1% the 99th percentile’s value is reduced by about 60% in relation to the
expected value. Or in other words, hedging investments of just about 100 billion
US$ have acted as a leverage to reduce the risk at the 99th percentile by more than
6 trillion US$. This behavior nicely illustrates the trade-off between expected value
costs and risk of severely underestimating future costs.

As a result of discounting with 5% the PDF of total discounted system costs
(Figure 6(a)) is dominated by the relatively narrow near-term distributions and
exhibits a shape which is similar to the PDFs of 2030 and 2050, but much narrower
than the 2100 PDF which is suppressed by a factor of ∼ 80 in comparison with the
2010 PDF due to discounting.

The above calculations assume a risk or insurance premium of 1%, hence limiting
the additional hedging investments to 1% of total systems costs of the deterministic
case. It needs to be emphasized, however, that in the “real world” the risk premium
is dependent on the risk attitude of the decision maker, and is therefore a policy
variable. A quantitative analysis of the trade-off between the costs of hedging (i.e.
the risk premium f) and the resulting benefits in terms of reduced risk is never-
theless central for providing guidelines and to understand the order of magnitude
of this trade-off. Figure 7 thus shows the relationship between increasing risk pre-
mium and the resulting benefits in terms of reduced risks through changes in the
distribution of future system costs. We specifically focus on the 80th to the 99th
percentile of the cost distribution, with the solid lines showing how these quantiles
change as a function of the risk premium f in case of upper mean absolute deviation
and the dashed lines showing the relationship for the case of semi-variance. As
clearly illustrated by Figure 7, increasing willingness to invest into the risk premium
is generally resulting in reduced risk of high energy system costs. The marginal
benefits of hedging investments, however, decrease with increasing risk premium f –
a clear indication of decreasing returns of scale at high premiums. How the different
quantiles perform as a function of the risk premium also depends on the employed
risk measure. The linear risk measure (upper mean absolute deviation) reduces the
80th and 90th percentiles stronger than the quadratic one (semi-variance) whereas



– 18 –

70 80 90 100 110

0.
00

0.
02

0.
04

0.
06

0.
08

D
en

si
ty

70 80 90 100 110

0.
00

0.
02

0.
04

0.
06

0.
08

(a) total discounted system costs (2010−2100)
trillion US$2000

D
en

si
ty

Mean

99th
 percentile

deterministic model
stochastic model

3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

D
en

si
ty

3.5 4.0 4.5 5.0 5.5 6.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(b) energy system costs (2010−2100)
trillion US$2000

D
en

si
ty

Mean

99th
 percentile

6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

D
en

si
ty

6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

(c) energy system costs (2010−2100)
trillion US$2000

D
en

si
ty

Mean

99th
 percentile

10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

D
en

si
ty

10 15 20 25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

(d) energy system costs (2010−2100)
trillion US$2000

D
en

si
ty

Mean

99th
 percentile

Figure 6: Probability density functions of future energy systems costs. Deterministic
model without uncertainty (black) and stochastic model results assuming a risk
premium of 1% (red): (a) total discounted system costs (2010 – 2100), (b) system
costs in 2030, (c) in 2050 and (d) in 2100.

the situation is the opposite for the 95th and 99th percentiles. As expected, the
quadratic risk measure puts a higher emphasize on reducing the impact of the ex-
treme tail events and therefore the 99th percentile is reduced strongest, followed by
the 95th, 90th and the 80th percentiles in relative terms.

Regarding the choice of the risk premium, Figure 7 clearly shows that 1% is in
the range where the marginal returns of the hedging investments become relatively
saturated – as indicated by the flattening curves for most quantiles in the figure.
We therefore select in the sequel a risk premium of f = 1% as our central case, but
will continue to show the sensitivity of the results for alternative risk premiums if
necessary.

5.2 Primary Energy Supply

The development of total primary energy supply (TPES), resulting from different
assumptions about uncertainty, are shown in Figure 8. Panel (a) displays the de-
velopment in the deterministic case without any uncertainty, while panel (b) to (d)
illustrate the impact of considering either only technology-related uncertainties (b),
only carbon price uncertainties (c), and finally taking both carbon and technology
uncertainties into account simultaneously (d).

Comparing panels (a) and (b) of Figure 8 reveals the main responses of the en-
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Figure 7: Trade-off between expected total system costs and risk for linear (solid
lines) and quadratic risk measure (dashed lines).

ergy system due to technology uncertainty.12 An important characteristic of the
deterministic energy system is that the lack of uncertainty results in the sequen-
tial deployment of first the cheap options until they are exhausted, followed later
by an almost instant switch to new technologies or resources. By contrast hedging
against technology uncertainty results in the comparatively early introduction of
new and advanced alternatives. This is e.g. visible in the deployment schedules
of oil resources, where under technology uncertainty depletion of conventional oil
(characterized by relatively lower uncertainty) is delayed, while unconventional oil
is introduced earlier in time (compared to the deterministic case). The result is
a mixture of conventional and unconventional extraction in order to increase the
resilience of the system against the possibility that unconventional oil might not
become available at the expected price. The same holds for unconventional gas,
but also for other advanced technologies, which deploy comparatively earlier in case
of considering uncertainty. In the medium- to long-term this results in a more di-
verse technology portfolio, which we will discuss in some detail in Section 5.4 on
diversification. Perhaps, worth noting is also the revival of coal under technology
uncertainty, which is a direct result of the relatively lower uncertainty of coal oc-
currences and electricity generation technologies, which push coal tentatively back
into the system around mid century. In the latter half of the century, coal becomes
less deployed due to the increasing carbon price over time.

Comparing Panels (a) and (c) illustrates the impact of carbon price uncertainty.

12It is important to recall that both panels consider a modest expected value carbon price.
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Figure 8: TPES in the (a) deterministic case, (b) technology uncertainties only
case, (c) carbon price uncertainty only case, and (d) technology and carbon price
uncertainties case

It needs to be noted that the case with carbon price only uncertainty corresponds
in theory to an alternative deterministic model run with relatively higher carbon
price, since the risk term penalizes carbon emissions only, and all other energy
system aspects are deterministic. There is thus no trade-off between different types
of uncertainties as in the case of technology uncertainty shown in Panel (b). It
is therefore not surprising that the scenario with uncertain carbon prices features
(compared to the deterministic case) primarily a further reduction of the deployment
of carbon-intensive technologies (and emissions). Diversification as observed under
technology uncertainty is thus lacking in this setup.

Note also the increase in total primary energy use, which is primarily a result of
decarbonization of the end-use sectors by a fuel switch to hydrogen whose production
is quite energy-intensive, in particular because we have adopted fossil fuel equivalent
TPES accounting method for renewable and nuclear energy13.

Comparing all three stochastic panels (b) to (d) with the deterministic panel (a)
we recognize quite different changes in quantity and structure of TPES. Whereas

13Each unit of electricity generated from renewable and nuclear energy contributes with 2.56
units to TPES corresponding to a conversion efficiency of 39%.
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in the technology uncertainties only case (b) an increased use of coal as well as
a diversification of TPES is observed, the carbon price uncertainty only case (c)
mainly shows more pronounced decarbonization and an increase of TPES towards
the end of the century with no revival of coal. The results of the combined technology
and carbon price uncertainty run in panel (d) combines some of these effects and is
characterized by both diversification and decarbonization, but also increased TPES
towards the end of the century.

In summary, we thus conclude that it is important to take a holistic view and
consider both technology- and policy-related uncertainties simultaneously. Only
including one of them leads to either diversification or hedging against possibly
high carbon prices with distinctly different technology portfolios. Incomprehensive
account of uncertainty may thus lead to biased policy recommendations.

5.3 CO2 Emissions

As mentioned earlier, our scenarios assume an expected value for the carbon price
of about 4.6 US$/tC in 2010 which increases with the discount rate to about 370
US$/tC in 2100. This corresponds to the mean over all scenarios in the IPCC
scenario database [Hanaoka et al., 2006] with CO2-equivalent concentration stabi-
lization targets of 650 ppmv and above. The deterministic implementation of this
carbon price trajectory results in our modeling framework in cumulative CO2 emis-
sions of ∼ 880 GtC over the course of the century, corresponding to CO2 concen-
trations around 530 ppm towards 2100. Considering also non-CO2 emissions, based
on the scenario classification from Chapter 3 of the IPCC Fourth Assessment Re-
port [Fisher et al., 2007], this would correspond to about 650 ppmv CO2-equivalent
concentrations. This result, although not surprising, illustrates that our modeling
approach leads to very similar results than other deterministic models assessed by
the IPCC.

Considering the uncertainty of the carbon price, however, we observe signifi-
cant changes of the emissions pathway towards more stringent mitigation. This is
particularly due to the lognormal distribution of the carbon price, including low
probability events in the tail with much higher carbon prices of several thousand
US$/tC. Therefore, in the stochastic cases hedging against the tail of high carbon
prices becomes a major motivation to reduce carbon emissions, even if additional
technology uncertainty is considered. This response to uncertainty has also been
observed in previous studies, such as [Manne and Richels, 1992; Pizer, 1999; Yohe
et al., 2004]. While we derive the same conclusion, the reason for the response is
different. Both Manne and Richels [1992] and Yohe et al. [2004] conclude that rel-
atively lower emissions would be rectified due to the uncertainty of climate change
damages (i.e. uncertainties in the response of the physical climate system to an
increase in GHG emissions), whereas our analysis suggests lower emissions because
of the economic risk of uncertain carbon prices.

We find further that the stringency of mitigation is critically dependent on the
risk premium. The relationship between the risk premium and annual carbon emis-
sions and resulting atmospheric CO2 concentrations are summarized in Figure 9.14

14The annual carbon emissions in Figure 9(a) are a direct model output whereas the CO2 con-
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Figure 9: (a) Annual energy-related carbon emissions in GtC and (b) atmospheric
CO2 concentrations in ppm as a function of the risk premium f

We observe that already very small additional hedging investments of only 0.1%
result in a reduction of cumulative emissions by 50 GtC or 5.5% in comparison to
the deterministic case. This corresponds to a CO2 stabilization level of about 515
ppm. In our standard case with a risk premium of 1%, cumulative emissions are
approximately reduced by an additional 22% (∼ 690 GtC) for the linear risk mea-
sure (upper mean absolute deviation), corresponding to a further reduction of the
CO2 stabilization level to ∼ 480 ppm. The impact of the distribution’s tail is more
pronounced by the quadratic and CVaR risk measures. Thus, in the quadratic case
emissions are reduced by another 2%-points, to about 670 GtC in comparison with
the linear risk measure. The 95%-CVaR risk measure even results in cumulative
emissions of ∼ 620 GtC reaching a CO2 concentration level of close to 460 ppm
CO2 by the end of the century. For higher risk premiums even more effort is put
into carbon abatement to limit the impacts of eventually high carbon prices, e.g. at
f = 3% we find a reduction in excess of one third (580 GtC, 450 ppm) in comparison
with the deterministic optimization and at f = 5% cumulative emission reductions
constitute even more than 40% (510 GtC, 430 ppm).

The peaking year of energy-related CO2 emissions is only marginally affected by
the risk premium and varies just between 2030 and 2040. However, the magnitude
of the emission peak changes considerably from 12 GtC in the deterministic case
(f = 0) to 8.8 GtC at a risk premium of f = 5%. The impact on near-term
emissions is relatively smaller in our standard case with a risk premium of 1%,
where emissions are about 10 GtC around 2030, and stay relatively unaffected until
2020, because of the energy system’s inertia (see Figure 9).

5.4 Diversification

As discussed in the context of the 3-technology model in Section 3, but also in
the previous paragraphs, diversification may serve as a possible hedging strategy to
increase resilience of a system. While we are focusing in this section particularly

centrations in the atmosphere in Figure 9(b) are calculated with the climate model MagiCC 4.1
[Wigley, 2003]. As our model calculates only energy-related emissions, we added for this purpose
non-energy-related CO2 emissions (e.g. land-use change, cement production, gas flaring) from a
670 ppmv stabilization scenario developed at IIASA [Riahi et al., 2007].
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on the diversification within the electricity sector, it needs to be stressed that the
energy system is more complex, and diversification may also occur as a result of
shifting investments between different sectors. These aspects are discussed later in
Section 5.5, which is focusing on the investment patterns under uncertainty.

In order to measure diversity, we employ an integrated multi-criteria diversity
index developed by Stirling [1998], which is based on distance metrics and will be
referred to in the following as the Stirling index15. We are in particular interested
in the relationship between the Stirling index and the risk premium, and to which
extent increasing risk aversion is triggering diversity as a response to uncertainty.

For this purpose, Figures 10(a) and (b) display the electricity generation portfo-
lio’s dependence on the risk premium f in 2030 and 2050 respectively. In addition to
the technology shares in electricity generation, the relationship between the Stirling
index and the risk premium is shown on the right axes of the graphs. As can be
seen from Figures 10(a) and (b) the Stirling index is generally increasing at higher
risk premiums, but the behavior is quite different in 2030 and 2050.

Fossil power generation from natural gas dominates electricity generation in the
short- to medium-term as is evident from its high share in 2030 (Figure 10(a)). In the
deterministic case hydro and wind are the only other two technologies contributing
to electricity generation. At risk premiums below 2% this situation only marginally
changes towards a larger share of hydro power plants. Above 2% nuclear power
comes in as a fourth option, resulting in a significant increase of the Stirling index.
This situation indicates that the gap in levelized electricity generation costs between
natural gas and nuclear is substantial (0.96 ct/kWh which corresponds to ∼ 26%
higher costs for nuclear) which requires a relatively high risk premium of 2% to bring
in this alternative. Coal power generation is phased out until 2030 as a result of a
moderate carbon price and the uncertainties that come along with it.16

Figure 10: Technology shares in electricity generation and corresponding Stirling
index in (a) 2030 and (b) 2050 as a function of the risk premium f .

15The index is defined as M =
∑

ij dijpipj , where pi is technology i’s share of electricity gen-
eration and dij the distance in Euclidean disparity space between technology i and j [Stirling,
1998][chp. 3.2]. For the graphs a distance of 0.5 between fossil energy technologies (coal and gas)
is used whereas for all other technologies we assume a distance of 1.

16We assume on average a lifetime of 30 years for fossil power plants. Therefore by 2030 all
power plants that were built in the base year 2000 reach the end of their lifetime.
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In 2050 the deterministic electricity generation portfolio features four technolo-
gies, namely gas, nuclear, hydro and wind that contribute to electricity generation.
Already at relatively low risk premiums of less than 1% the share of hydro more
than triples at the cost of gas and nuclear power generation, resulting in a noticeably
higher Stirling index. The reason for this early diversification is that levelized elec-
tricity generation costs are very close for these three technologies with hydro only
being some 8% and 6% more expensive than gas and nuclear respectively. With
further increasing risk premium the technology portfolio grows to seven technolo-
gies with biomass CCS power plant, coal CCS power plant and solar PV joining
in. In addition, the shares are much more evenly distributed, such that at f = 5%
no technology supplies more than 31% of total electricity in comparison to almost
42% in the deterministic model run. This is an illustration of the previously cited
Don’t put all your eggs in one basket rule. The observed diversification is though
significantly stronger by 2050 compared to 2030, due to the short-term inertia of
the system against rapid structural changes.

It has to be emphasized that in contrast to modeling frameworks that explicitly
aim at diversification as an objective (e.g. [Stirling, 1994]) in our modeling frame-
work diversification is an endogenous result driven by the aim to reduce risk. The
extent of diversification is, however, critically dependent on the nature of the system
and the dependence structure of joint input distributions which we have assumed
(see Appendix A.2). Our sensitivity analysis of the same scenarios indicate that
in absence of any correlation between the costs of power generation technologies
diversification would be significantly more pronounced.

5.5 Energy-related Investments

We finally review the implications of the risk-hedging strategies for energy-related
investments. Our systems engineering perspective permits us to explore shifts of
investment between various technology clusters in fuel extraction, electric, non-
electric (liquid fuels), and the energy end-use sectors.

The cumulative energy system investments between 2010 and 2050 are summa-
rized in Figure 11. Although we are dealing with a moderate stabilization scenario
(∼ 690 ppmv CO2-equivalent concentration in the deterministic case), investments
into fossil fuel technologies still dominate the first half of the century. In particular
upstream investments, but also electricity generation and liquid fuel production are
characterized by high shares of fossil fuels, particularly in absence of uncertainty.
This situation changes in the stochastic cases with increasing shares of investments
into low-carbon options such as biomass, nuclear and renewable electricity genera-
tion and synthetic fuels. In addition, increased efforts to improve energy efficiency
in the end-use sectors become a more important factor in the stochastic cases, where
the strongest increase occurs at risk premiums higher than 1%. Most of these ef-
ficiency improvements take place in the non-electric and transport end-use sectors,
because decarbonization is typically more costly in these sectors than e.g. for elec-
tricity.

Total energy-related investments in the deterministic case are estimated to be
around 49 trillion US$2000 between 2010 and 2050. Additional investments into
risk-hedging range between 7% and 30%, corresponding to a total of 52 and 64
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Figure 11: Cumulative energy system investments for the period 2010 – 2050 in
different sectors as a function of the risk premium

trillion US$ in the cases with 1% and 5% risk premium respectively. Despite the
comparatively modest increase of total costs, which is determined by the risk pre-
miums, a significant increase in investments is required. Along with the increase of
the total energy investments, we observe a considerable reallocation of investments
among the different sectors of the energy system, most notably from the supply-side
sectors to the end-use sectors, but also from fossil to renewable technology clusters.
For example, the reallocation of investments between the four major sectors indi-
cated in Figure 11 (i.e. resource extraction, electricity generation, non-electric sector
and end-use) comprises 4.5% and 15% of total energy-related investments between
2010 and 2050 under the 1% and the 5% risk premium respectively. These numbers
increase further if reallocation of investment within the four major sectors, e.g. from
fossil electricity generation towards renewables, are taken into account. It is inter-
esting to note that the reallocation of investments becomes increasingly important
for the lowest risk premiums of 1% and below, simply because the total increase of
energy system expenditures, and therefore also investments, is tightly constrained
by the risk premium. For these cases, the reallocation effect is comparable to the
absolute increase of energy investments.

In terms of energy expenditures, i.e. in addition to investments also including
operation and maintenance costs, the reallocation effect is much more drastic. We
find that the reallocation of energy-related expenditures is up to a factor of 10 higher
than the total increase in expenditures in the case of ver low risk premiums. In Sec-
tion 5.1 it was shown that more robust solutions can be obtained even at very low
hedging costs. However, the dominance of redistribution of sectoral investments and
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expenditures over the actual increase in costs, in particular at low risk premiums,
illustrates that hedging results in significantly different investment patterns in com-
parison with the deterministic least expected cost solution. Therefore, it is not so
much the total costs of hedging against technology- and carbon price uncertainties
that need to be in the focus of attention, but rather how investments are allocated
within the energy system17, with major implications also for the appropriate port-
folio of up-front R&D expenditures.

6 Summary and Conclusions

Traditional deterministic energy models without an endogenous representation of
uncertainty favor cost-optimal investments into a limited set of technologies that are
expected to perform best in the future. Exploring the uncertainty of future energy
systems costs, however, we find that such strategies can be very costly. This is in
particular due to the nature of imputed energy systems uncertainties, characterized
by long tails and the possibility of very high costs in case future uncertainties are
resolved in an unfavorable direction.

In this paper we thus presented a new modeling framework of the global energy
system, which combines traditional elements of systems engineering modeling ap-
proaches with salient features of a risk management perspective. Employing stochas-
tic optimization techniques with fully endogenous representation of uncertain costs
and associated risks along the energy chain, including extraction and conversion
technologies as well as demand-side management costs, permitted us to identify fu-
ture development pathways that are cost effective not only from todays perspective
and expectations, but factor in also the imputed risk of uncertainty.

Through a series of sensitivity analysis we identify characteristics of risk hedging
strategies that are adapted to considerably reduce future risks and are hence robust
against a wide range of future uncertainties. We observe significant changes in
response to energy system and carbon price uncertainties with major implications
for the expected energy system costs, timing of investments, the choice of technology
as well as resulting emission levels.

Firstly, we find that hedging strategies under uncertainty are characterized by
higher short- to medium-term investments into advanced technologies, including
earlier deployment of renewables, but also exploration of unconventional natural
gas resources. Our results illustrate that while in absence of uncertainty it seems to
be cost-effective to postpone investments into new alternatives in order to maximize
profits from available low-cost options early on; a more comprehensive view of the
future including the uncertainty that new options might not become available at the
expected costs imposes long-term deployment risks, and thus triggers early up-front
investments into niche markets and demonstration plants.

Secondly, we find that CO2 emission reductions to be much more pronounced
under uncertainty. This response to uncertainty has been observed in previous
studies, such as Manne and Richels [1992]; Yohe et al. [2004]. While we derive the

17From a more technical perspective this illustrates that quasi-degeneration is an important prob-
lem in modeling, i.e. quite different solutions can be accommodated within very small variations
of the objective function value of optimization models.
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same conclusion, the reason for the response is different. Yohe et al. [2004] conclude
that relatively lower emissions would be rectified due to the uncertainty of climate
change damages (i.e. uncertainties in the response of the physical climate system
to an increase in GHG emissions), our analysis suggests lower emissions because of
the economic risk of uncertain carbon prices and technology costs.

Thirdly, our analysis suggests a considerable diversification of the technology
portfolio under uncertainty. Diversification helps not only to reduce the “average
risk”, but results in significant reduction of the risk of high impact tail events. In
our analysis, for example, a modest risk premium of about one percent of total
energy expenditures reduces the value of the 99th percentile by up to a factor of two
relative to the expected value expenditures, thus reducing the risk of large losses
significantly. This conclusion has important implications for energy and climate
policy, emphasizing the risk of unbalanced R&D portfolios or picking winners at a
premature stage, and thus focusing on a too narrow policy portfolio.

With respect to costs, we find that modest risk premiums (or hedging invest-
ments) can significantly reduce the vulnerability of the energy system against the
associated uncertainties. The extent of early investments, diversification and emis-
sions reductions, however, depends on the risk premium that decision makers are
willing to pay to respond to prevailing uncertainties. In other words, our modeling
framework helps to understand how much risk can be avoided through which mech-
anisms and at what costs. How much risk needs to be avoided is though dependent
on the risk aversion of the society by large or decision makers in the respective
sectors - and remains thus one of the key policy variables.
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Nordhaus, W. (Eds.), Technological Change and the Environment. Resources
for the Future Press, Washington DC.
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A Model Input Assumptions

This appendix provides additional information on numerical assumptions that have
been used in the model runs as well as technical details about the model implemen-
tation.

A.1 Demands

As described in Section 4 we distinguish the three demand categories electric, non-
electric (direct use) and transportation fuel demand. Demands are defined in terms
of baseline final energy consumption derived from the B2 scenario that was developed
with the IIASA GGI Integrated Assessment modeling framework [Grübler et al.,
2007; Riahi et al., 2007; IIASA GGI, 2007]. Table 2 presents the numerical demand
values for the periods 2000, 2050 and 2100.

demand [EJ] 2000 2050 2100
electric 45.9 178.2 335.7
non-electric 168.9 348.3 362.1
transport 74.7 190.3 246.7

Table 2: Final energy demands in the three demand categories for the periods 2000,
2050 and 2100.

These demands can be lowered by additional investments into sectoral energy-
saving measures which are modeled on the level of discretized two-step conservation
cost curves. More details on the energy saving potentials and costs will be provided
in the following section on technology data.
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A.2 Technologies

Descriptions of individual technologies in the model include economic (e.g. invest-
ment costs, fixed and variable operation and maintenance costs) as well as technical
parameters (e.g. efficiency, emissions, load factor). In our modeling framework
only economic parameters, i.e. either investment or variable operation and mainte-
nance costs, are assumed to be uncertain whereas all other parameters are treated
deterministically and in addition do not include any time-dependence to simplify
interpretation of results.

technology pll plf eff inv fom vom inv fom vom
– 2000 – – 2100 –

coal extraction 10 1.00 1.00 130 35 130 35
oil conv. extraction 10 1.00 0.96 150 80 150 80
oil unconv. extraction 10 1.00 0.82 225 140 225 140
gas conv. extraction 10 1.00 0.97 100 75 100 75
gas unconv. extraction 10 1.00 0.92 180 160 180 160
biomass < 3US$/GJ 10 1.00 1.00 65 65
biomass ≥ 3US$/GJ 10 1.00 1.00 125 125
nuclear fuel 10 1.00 0.50 30 30
coal power plant 30 0.75 0.38 1300 74 1100 62.6
gas combined cycle 30 0.75 0.50 716 51 400 32
nuclear power plant 30 0.75 0.38 2500 108 1800 99
biomass power plant 30 0.75 0.33 1567 82 1200 68
hydro power plant 50 0.42 0.38 2500 40 2500 40
wind turbine (cat. 1) 30 0.34 0.38 1344 56 600 37
wind turbine (cat. 2) 0.22
solar PV 30 0.25 0.38 4756 111 1000 48
backup (e.g. CAS) 30 0.50 0.80 500 20 500 20
coal CCS module 30 0.75 -.25 705 55.9 705 55.9
gas CCS module 30 0.75 -.13 503 19.8 503 19.8
biomass CCS module 30 0.75 -.25 846 109 846 109
hydrogen electrolysis 30 0.95 0.80 452 20 4 380 15 4
coal methanol 30 0.90 0.63 1350 76 10 1150 76 10
gas methanol 30 0.90 0.68 630 46 5.4 480 35 5.4
bioethanol 30 0.90 0.87 1400 74 8 507 55 8
refinery 30 0.90 0.93 66 7.5 66 7.5
electricity t/d 30 0.55 0.90 800 55 18 800 55 18
gas t/d 30 0.70 0.95 200 24 3.5 200 24 3.5

Table 3: Deterministic technology-specific parameters (pll in years, inv and fom in
US$/kW and vom in US$/kWyr).

Due to the large potential for wind power, we distinguish two categories with
different wind conditions which were derived from the analysis by de Vries et al.
[2007]. The cost data for the two categories are identical, just the load factor is
assumed to be different to reflect the difference in wind conditions. Potentials for
the two wind categories as well as for other renewable energy carriers are summarized
in Table 5 of the following section.
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A.2.1 Deterministic Parameters

Table 3 summarizes the assumptions made for all parameters of individual technolo-
gies. As mentioned above, the technical parameters in the first three columns of the
table (pll = plant lifetime, plf = plant load factor, eff = net conversion efficiency)
are assumed to be time-independent. In contrast to that, economic parameters (inv
= investment costs, fom = fixed operation and maintenance costs, vom = variable
operation and maintenance costs) typically vary over time. Therefore, Table 3 con-
tains two sets of these parameters, one showing the value in the base year 2000
and one for the year 2100. The interpolation procedure between these two values
is described in Section 4.2 and is illustrated in Figure 5 where additional technical
details are provided in the following section on stochastic parameters.

As mentioned in Section 4 we do not model individual technologies in the end-
use sectors, but have chosen to use discretized conservation cost curves instead.
These cost curves were derived from a set of model runs (B2 baseline, 670 ppmv and
480 ppmv stabilization scenarios) with the 11-regional MESSAGE-MACRO model
[Messner and Strubegger, 1995; Messner and Schrattenholzer, 2000; Riahi et al.,
2007] which are documented in the corresponding scenario database [IIASA GGI,
2007]. Original scenario data were aggregated to the global level, after which an
exponential trend in time was fitted to the data to obtain smooth curves. The
resulting two-step discretizations of these conservation cost curves are summarized
in Table 4, for the first year they become available to the model, i.e. in 2010, as
well as for 2050 and for the end of the model’s time horizon 2100. This procedure
allows us to roughly reproduce the demand response in stabilization scenarios of the
much more detailed MESSAGE-MACRO model which is part of IIASA’s Integrated
Assessment modeling framework [Riahi et al., 2007] without adding the same degree
of technological detail.

conservation potential [EJ] costs [US$/GJ]
category 2010 2050 2100 2010 2050 2100
electricity 1 0.57 3.31 30.84 16.62 17.82 19.47
electricity 2 1.51 2.62 5.17 19.15 20.36 21.97
non-electric 1 2.18 11.07 85.43 4.12 6.18 10.18
non-electric 2 9.05 25.01 89.25 4.31 8.18 18.20
transport 1 0.82 5.49 58.78 4.00 6.63 12.49
transport 2 4.23 13.50 57.68 4.28 8.24 18.74

Table 4: Conservation cost curve parameters for the three demand categories.

The resource base of fossil energy carriers has its foundations in [Rogner, 1997]
and is adjusted to the B2 storyline [Riahi et al., 2007; IIASA GGI, 2007]. For coal
all grades A-E are included, conventional oil includes categories I-III and unconven-
tional oil categories IV-V. Conventional gas is an aggregate of categories I-III and
unconventional gas covers categories IV-VI. Potentials of renewable energy carriers
with the exception of wind are based on the estimates used in [Riahi et al., 2007;
IIASA GGI, 2007]. Because of the large potential for wind we distinguish two cate-
gories with different wind conditions which are based on the B2 potentials published
by de Vries et al. [2007]. The assumptions used in the model are documented in
Table 5. The values provided for fossil energy carriers correspond to the resource
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base available in the base year 2000. The quantities available in later years are then
a result of the optimization procedure. For renewable energies the potentials are
provided on an annual basis.

resource category 2000 2050 2100
coal 260450 endogenous
oil conventional 11770 endogenous
oil unconventional 8890 endogenous
gas conventional 17920 endogenous
gas unconventional 23020 endogenous
biomass < 3US$/GJ 107 132 149
biomass ≥ 3US$/GJ 22 62 106
hydro 13 35 50
wind (cat. 1) 20 54 54
wind (cat. 2) 23 61 61
solar PV 2.3 33 73

Table 5: Fossil fuel resource base in 2000 and renewable energy potentials in 2000,
2050 and 2100 [EJ]

To calculate CO2 emissions that originate from burning fossil energy carriers
we uniformly apply the following emission factors on the basis of the lower heating
value.

• coal: 25.8 MtC/EJ

• oil: 20.0 MtC/EJ

• natural gas: 15.3 MtC/EJ

Biomass is predominantly provided by the forest sector and therefore assumed to be
carbon neutral as a result of a sustainable production approach (see [Rokityanskiy
et al., 2007] for details).

A.2.2 Stochastic Parameters

The PDFs of uncertain technology investment costs have been determined in the
following way: Based on a review of technological change across selected energy
scenarios [Nakicenovic and Riahi, 2001] we have determined the expected value of
costs in the year 2100 by calculating the median across the scenario assumptions.
Also the variability of costs has been estimated from this source as described in
Section 4.2. However, we only take the numerical values as a first indicator and
assign the next highest uncertainty category (standard deviation σ: low uncertainty
σlow = 0.15, medium uncertainty σmed = 0.3 and high uncertainty σhigh = 0.6) to
the technologies, because of the limited set of scenarios that was included in the
analysis. This procedure was applied to most electricity generation technologies,
except the backup technology, and all liquid fuel technologies with the exception of
the oil refinery. All other technologies were assigned to one of the three uncertainty
categories based on experts’ opinion, the result of which is shown in Figure 4 as
mentioned in Section 4.2.
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Figures 12 and 13 show histograms and pair-wise scatter-plots for the nine elec-
tricity generation technologies based on the samples that result from the above
described procedure. In Figure 13 only scatter-plots for pairs of technologies with a
correlation coefficient larger than 0.05 are shown. The investment costs correspond
to the period 2100 where random sampling was used to generate samples of size
N = 20000.

Figure 12: Histograms of investment costs [US$/kW] of electricity generation tech-
nologies in the period 2100 for a sample size of N = 20000 (random sampling).

To derive random cost paths for the model’s full time horizon (2000 - 2100) we
proceed in the following way: Based on one of the two sampling procedures described
in Section 2.3 we generate N sets of random cost parameters for the period 2100. We
then exponentially interpolate between the base year value in 2000 and the random
parameter values in 2100. To fix the third parameter in the exponential function
y(x) = y0 +A · exp (−λx) we assume the asymptote y0 to be 1% higher (lower) than
the 2100 value depending on whether the 2100 is higher (lower) than the 2000 value.
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Figure 13: Pair-wise scatter-plots of investment costs [US$/kW] of electricity gen-
eration technologies in the period 2100 with non-zero correlation (ρij > 0.05) for a
sample size of N = 20000 (random sampling).

A graphical illustration of this procedure for the investment costs of a natural gas
combined cycle power plant is given in Figure 5 of Section 4.2. In contrast to linear
interpolation this procedure approaches the final level of costs relatively quickly –
typically within the first half of the century – whereas cost levels stay relatively
constant in the second half of the century. Therefore, envelopes of costs “widen”
quickly, thus creating some overlap of input cost distributions early in the century.

A.3 Carbon Price

As briefly described in Section 4.2 the carbon price and its distribution in 2100 was
derived from a sample of stabilization scenarios from the IPCC scenario database
[Hanaoka et al., 2006]. A lognormal distribution fits the entire set of carbon prices
from a total of 134 stabilization scenarios quite well (see Figure 14). In addition, a
Shapiro-Wilk normality test was conducted with the logarithmized data set which
provides a p-value of 0.14 and therefore does not allow to reject the hypothesis of
the logarithmized data being normally distributed.

The actual fit of the lognormal distribution used in the one-regional global en-
ergy systems model was obtained from a subsample of stabilization scenarios with
CO2-equivalent concentration targets of 650 ppmv and above. Parameters were de-
termined by taking mean and standard deviation of the logarithmized dataset. This
procedure resulted in numerical values for the expected value of p̄c = 372US$/tC and
of σc = 520US$/tC for the standard deviation. The resulting values (mean as well as
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Figure 14: Carbon price distribution of 134 stabilization scenarios in the IPCC
scenario database [Hanaoka et al., 2006] and lognormal fit to data.

stochastic realizations) for the year 2100 were subsequently propagated backwards
to 2010 with the model’s 5% discount rate to obtain carbon price trajectories.

B Sample Function Approximation

As described in Section 2.3, the risk measures R(x, ω) are in practical model appli-
cations estimated by N independent realizations, so-called sample functions, where
N → ∞.

R(x) → RN(x) =
1

N

N
∑

s=1

R(x, ωs)

The sample size N is evaluated by experiment, i.e. N is increased as long as different
draws of the same sample size still produce noticeably varying solutions. Although
it is problematic to proof convergence from a theoretical point of view, we find that
in practice such approximations work better than expected theoretically (see also
Ermoliev and Wets [1988, Chap. 1.8]). For this purpose we introduce a so-called
Taxicab- or 1-norm as a quantitative measure

∥x∥1 =
∑

i

|xi| , (6)

where x = (x1, . . . ,xT ) is the vector of the model’s decision variables for all periods
t = 1 . . . T .

Based on the Taxicab-norm we define a convergence criterion to measure (rela-
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tive) deviations between two solutions i and j with identical sample size N

∆ij =
∥xi − xj∥1

∥xi + xj∥1

, (7)

where xi and xj are the solution vectors of the two solutions respectively. We require
the maximum of all pair-wise distances ∆ij to be less than a ε > 0

max
i,j

∆ij ≤ ε . (8)

Figure 15: Pairwise convergence measure ∆ij as a function of sample size N for
random sampling and LHS (5 model runs resulting in 10 combinations) – double-
logarithmic scale

In realistic applications of energy systems models, the sample size N imposes
restrictions on the number of uncertain parameters. Therefore, improved sampling
methods to decrease the sample size N , but at the same time satisfying a given con-
vergence criterion ε, are a possibility to reduce computational effort or alternatively
increase the number of uncertain parameters. For this purpose we employ latin
hypercube sampling (LHS) (e.g. [Iman and Conover, 1980]) in contrast to random
sampling. Correlations among latin hypercube sampled parameters are introduced
with the algorithm suggested by Iman and Conover [1982] (see also [Zhang and
Pinder, 2004]).

The convergence behavior of LHS in comparison with random sampling can be
seen in Figure 15. This figure was generated with the model presented in Section 4
on the basis of 5 model runs for each sample size N with random and latin hypercube



– 39 –

sampling. LHS gives significantly better convergence across all sample sizes N that
have been analyzed. To obtain the same convergence level ε with LHS the sample size
can be chosen almost one order of magnitude smaller than with random sampling.
Therefore, the additional effort for employing LHS is well justified, in particular
for larger models where memory limitations can become a constraint. As a result
of these numerical experiments we used LHS for all model runs presented in this
article. The sample size was chosen to be N = 20000 corresponding to a convergence
criterion of ε = 0.75%.


