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Foreword 

 
This report describes the research carried out by the author during participation 
in the Young Scientists Summer Program 2009 (YSSP) with the Integrated 
Modeling Environment Project. The research documented in this report is part 
of a long-term study that the author has been carrying out at the University of 
Helsinki as part of his Ph.D. research. The objective of the author’s Ph.D. 
research is to evaluate the interactions between agricultural expansion and 
climate change in East Africa in order to outline adaptation strategies towards 
food security and water resources management. Such research is being 
supervised by Prof. Petri Pellikka, leader of the Geoinformatics research group 
located in the Department of Geography at the University of Helsinki.  

The goal for this three months summer program was to assemble an 
integrated modeling framework comprising a Land Use and Land Cover Change 
(LUCC) model and an Evapotranspiration (ET) model in order to evaluate the 
impacts of agricultural expansion on irrigation water requirements in Taita Hills, 
SE-Kenya. Such research contributed for the author’s long-term goals by 
improving the understanding on the water resources requirements in this 
particular region and by assembling a methodology that will be extended to 
other regions in East Africa. The results achieved within these three months will 
also be directly used as inputs for the subsequent parts of the author’s 
research, which will aim to evaluate how changes in irrigation water requirement 
may affect agricultural productivity in the region. 
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Abstract 

 

The presented work aims to evaluate the impacts of agricultural expansion on 
irrigation water requirements in Taita Hills, SE-Kenya. The first procedure of this 
research consists in implementing and calibrating an Evapotraspiration (ET) 
model for the study area. The ET is an important component of the hydrological 
cycle and an accurate quantification of such component is crucial for the design, 
operation and management of irrigation systems. Three temperature based ET 
models are evaluated, namely the Hargreaves, the Thornthwaite and the 
Blaney-Criddle, given that these are the most recommended approaches when 
only air temperature data are available at weather stations. To overcome the 
insufficient data retrieved from ground stations, remote sensing land surface 
temperature data are used as input for the models. One weather station with 
complete climate datasets is used to calibrate the selected model using as 
reference the FAO-56 Penman–Monteith method. Simultaneously, future land 
use scenarios are simulated using a Land Use and Land Cover Change (LUCC) 
model. Synthetic weather datasets (temperature and precipitation) are 
generated using a Monte Carlo simulation. Finally, the ET model and the LUCC 
model are integrated into a modeling framework in order to delineate Irrigation 
Water Requirement (IWR) scenarios. The simulations indicate that throughout 
the next 20 years the low availability of space in highlands will drive agricultural 
expansion to areas with higher IWR in the foothills. However, climate changes 
predicted by GCMs will likely decrease IWR when compared with scenarios 
using the same temperature and precipitation averages as in the historical 
dataset. 
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Impacts of agricultural expansion on irrigation water requirements 
in Taita hills, Kenya  

Eduardo Eiji Maeda* ** (eduardo.maeda@helsinki.fi)  

1. Background and motivation 

Currently roughly 70% of freshwater withdraws are used for agriculture (FAO, 2005). 
Although global withdrawals of water resources are still below the critical limit, more 
than two billion people live in highly water-stressed areas due to the uneven 
distribution of this resource in time and space (Oki and Kanae, 2006). In Kenya, over 
55% of the rural population does not have access to quality drinkable water (FAO, 
2005). Simulated scenarios indicate that up to 59% of the world population will face 
some sort of water shortage by 2050 (Rockstrom et al., 2009).  

In this context, the accurate assessment of water demand and distribution is 
crucial to improve water management. In most Sub-Saharan African countries 
agriculture is the main economic activity, representing around 40% to their gross 
domestic product (Barrios et al. 2008). Consequently, the water use for irrigation in 
such regions must be carefully controlled and future trends in the expansion of 
agricultural areas should be considered during policy decisions.  

The improvement of models and computer capacity in the past decades 
facilitated an increasing number of studies aiming the sustainable use of water 
resources and land use planning. For instance, Land Use and Land Cover Change 
(LUCC) models are extensively used to represent the complexity of land use systems 
in agricultural and urban areas. Such models are considered to be important tools to 
project alternative scenarios into the future and to test our understanding of the LUCC 
process (Veldkamp and Lambin, 2001). A good knowledge of the circumstances and 
driving forces of agricultural expansion is an essential step for elaborating public 
policies that can effectively lead to the conservation of natural resources. 

In irrigation water management, the use of Hydrometeorological models to 
estimate crop Evapotranspiration (ET) results in important contributions at global, 
regional and local scales. ET is defined as the combination of two separate 
processes, in which water is lost on the one hand from the soil surface by evaporation 
and on the other hand from the crop by transpiration (Allen et al., 1998). 
Quantification of ET is needed by water managers for the design, operation and 
management of irrigation systems (Mohan and Arumugam, 1995). 

Although many studies have been undertaken to understand each of these 
processes, scientists are facing today the challenge to integrate or couple these 
models into more complex frameworks in order to better understand the 
interconnected relations between socioeconomic factors and the environment. Water 
resources, agricultural production and land use are closely linked with each other, 
with local climate and with society, assembling a very complex system. The design of 
a modelling framework able to perform an integrated analysis and assessment of this 
system, therefore, is a complex process. 
____________________________________________________________________ 

*Integrated Modeling Project, IIASA 
**University of Helsinki 
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One of the problems commonly faced in the integration of ET models into spatially 
explicit modelling frameworks is the lack of high spatial resolution weather data 
retrieved from ground stations. Therefore, the combination of ET models with remote 
sensing data provides a feasible alternative to obtain temporally and spatially 
continuous information about biophysical variables. According to Wagner et al.  
(2008), in poorly gauged catchments, remote sensing data can significantly improve 
the availability of necessary information, for instance albedo, leaf area index and Land 
Surface Temperature (LST) (Wan, 2008). 

My study addresses the insufficient weather data from ground stations by 
incorporating remote sensing data into an empirical ET model for the region of Taita 
Hills, SE-Kenya. The ET model is calibrated and then integrated with a spatially 
explicit LUCC model in order to delineate irrigation water requirements scenarios for 
the study area. 

1.1 Goal 

Evaluate the impacts of agricultural expansion on irrigation water requirements in 
Taita Hills, SE-Kenya. 

1.2 Research questions 

 Will future climate patterns (e.g. rainfall, temperature) potentially 
increase irrigation water requirements?  

 Which regions inside the study area will experience higher water 
resources demand for agricultural production by 2030?  

 Can Remote sensing data (LST) be used to estimate evapotranspiration 
in this study area? 

 Which is the most appropriate model to estimate ETo in this study area? 

2. Study area 

Taita Hills is the northernmost part of the Eastern Arc Mountains, situated in the 
middle of the Tsavo plains of the Taita-Taveta District in the Coast Province, Kenya 
(Figure 1). Taita Hills cover an area of 1000 km2. The land use in the region is 
dominated by intensive agriculture, while extensive agriculture and grazing are 
dominant land use types on the foothills and plains.  

The population of the whole Taita-Taveta district has grown from 90,146 (1962) 
persons to over 300,000 (Republic of Kenya, 2001). The indigenous cloud forests of 
the Taita Hills, which are of great importance for conservation, have suffered 
substantial loss and degradation since the early 1960s. The hills were forested only a 
few hundred years ago above the elevation of 1400 meters on the southern and 
eastern slopes. Today, only 1% of the forested area remains. 

The area is considered to have high scientific interest, and there is a high 
potential for succeeding in the connectivity development and community-based 
natural resource management. 
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Figure 1. Geographic location of the study area. 

 

 3. Methods 

A Land Use and Land Cover Change (LUCC) model and an Evapotranspiration (ET) 
model were integrated in order to assemble the modelling framework for this study 
case. To achieve this final framework, the following specific steps were performed: 

 Identification of the most appropriate Reference ET (ETo) model for the study 
area. 

 Assimilation of MODIS sensor LST data as input for the ETo model 

 ETo model Calibration 

 Identification of the agricultural calendar and temporal distribution of crop 
phenology using remote sensing data 

 Attribution of crop coefficients based on crop phenology 

 Delineation of LUCC scenarios 

 Integration of the ET model with the LUCC model 

 Delineation of irrigation water requirement scenarios 

 

The flowchart presented in Figure 2 illustrates the concept of the modeling 
framework assembled in the present study. 
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Figure 2. Integrated modeling framework concept  

3.1 LUCC model 

A spatially explicit simulation model of landscape dynamics, DINAMICA-EGO 
(Rodrigues et al., 2007; Soares-Filho et al., 2007), was used in order to model the 
agricultural expansion in the study area and simulate future scenarios of land use. A 
general description of the LUCC model is presented in Figure 3.  

The model receives as inputs land use transition rates, landscape variables 
and landscape parameters. The landscape parameters are usually intrinsic spatially 
distributed features, such as soil type and slope, which are kept constant during the 
simulation process. The landscape variables are spatial-temporal dynamic features 
that are subjected to changes by decision makers, for instance roads and protected 
areas. The land use transition rates were also considered to be decision variables, 
giving that the integrated modelling framework was designed based on the 
assumption that agricultural expansion rates can be modified by public policies or 
other external forces. 

 

Figure 3. LUCC model description 
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The DINAMICA-EGO model uses the weights of evidence (WoE) method, which is 
entirely based on the Bayes’ theorem, in which the effect of each landscape variable 
on a land use transition is calculated independently of a combined solution. The 
spatial probability of a land use transition is given by the following equation (Bonham-
Carter, 1994): 
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where: 

Px,y = probability of transition in a cell with coordinates x,y; 

T = land use/land cover transition; 

Vi = landscape variables i selected to explain transition T; 

O{T} = odds of a transition, represented by the ratio between a determined 
transition probability and the complementary probability of non-occurrence: 

 

}TP{

P{T}
  O{T}                                                                          (2) 

where: 

P{T} = probability of occurring transition T, given by the number of cells where 
the concerned land use/land cover transition occurred divided by the total number of 
cells in the study area; 

P{T }= probability of not occurring transition T, given by the number of cells 
where the concerned land use/land cover transition is absent divided by the total 
number of cells in the study area; 

W
+

x,y = weight of evidence for a determined landscape variable range, defined 
by the following equation: 

}/{

}/{
log

TViP

TViP
W e       (3) 

where: 

P{Vi/T} = probability of occurring variable Vi in face of the previous presence of 
transition T, given by the number of cells where both Vi and T are found divided by 
the total number of cells where T is found; 

P{Vi/T } =  probability of occurring variable Vi in face of the previous absence of 

transition T, given by the number of cells where both Vi and T  are found divided by 
the total number of cells where T is not found. 

3.1.1 LUCC model internal parameters calibration 

DINAMICA-EGO renders two transition algorithms responsible for the allocation of the 
land use/land cover changes: expander and patcher. The expander function performs 
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the expansion of previously existing patches of a certain class. The patcher function, 
in its turn, is designed to generate new patches through a seed formation mechanism 
(Soares-Filho et al., 2002). Therefore, the first parameter to be calibrated in the 
simulation is the percentage of changes that will be addressed by each of these two 
algorithms. For instance, in regions where the landscape changes happen exclusively 
by the expansion of existing patches, the changes should be 100% arranged by the 
expander function. 

The next parameters to be adjusted are the mean and variance of the new 
patches sizes. These parameters can be independently adjusted for the expander 
and patcher functions. The model also includes another heuristic parameter 
denominated patch isometry index. A high isometry index results in compact patches, 
while low values are reflected in more fragmented formations. 

3.1.2 LUCC model validation  

The model performance was evaluated using an adaptation of the method proposed 
by Hagen (2003), in which multiple resolution windows are used to compare the 
simulated and the reference maps within a neighbourhood context. The adaptation 
consists on the fact that each type of change is analysed separately using pairwise 
comparisons involving maps of differences: (i) between the initial land use/land cover 
map and a simulated one, and (ii) between the same initial land use/land cover map 
and the reference one.  

Approaches considering neighbourhood contexts are useful in comparing maps 
that do not exactly match on a cell-by-cell basis, but still present similar spatial 
patterns within certain cell vicinity (Soares-Filho et al., 2002). The method retrieves a 
fuzzy similarity index defined inside a window that is gradually expanded, allowing the 
assessment of the model performance at multiple spatial resolutions. 

3.2 Reference Evapotranspiration (ETo) Models 

The first step towards the estimation of Crop ET (ETc) is to calculate the Reference 
ET (ETo). ETo is defined as the ET rate from a reference surface, where the 
reference surface represents hypothetical grass with specific and well known 
characteristics (Allen et all, 1998). The concept of ETo was introduced to study the 
evaporative demand of the atmosphere independently of crop type, crop phenology 
and management practices.  

Several empirical and physical based ETo models have been developed along 
the last decades, varying in complexity and data requirement. The FAO-56 Penman–
Monteith (FAO-PM) equation is considered the standard and most precise method for 
calculating ETo. Nevertheless, this method demands very detailed meteorological 
data, which are frequently missing from meteorological stations (Jabloun and Sahli, 
2008). In addition, setting up stations capable to record the data required by the FAO-
PM method is highly costly. To overcome this problem, three ET models that requires 
only air temperature data were evaluated, namely, the Hargreaves, the Thornthwaite 
and the Blaney-Criddle. One synoptic station with complete meteorological data sets 
was used to calibrate the models using as reference the FAO-PM method.  

An overall illustration of the Crop evapotranspiration models is presented in 
Figure 4. In the particular case of this study, the climatological entities were 
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considered to be parameters of the model. These parameters were changed during 
different simulation in order to generate alternative scenarios.  

 

 

Figure 4. Crop evapotranspiration model description 

 

The ETo models used in this study are described in details below. 

A) FAO-56 Penman-Monteith method: 

The FAO Penman–Monteith (FAO-PM) method is recommended as the 
standard ETo method and has been accepted by the scientific community as the most 
precise one for its good results when compared with other equations in different 
regions worldwide (Cai et al., 2007; Jabloun and Sahli, 2008). The equation is given 
by (Allen et al., 1998): 

 

   
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where: 

Rn = net radiation at the crop surface [MJ m-2 day-1]; G = soil heat flux density [MJ m-
2 day-1]; T = mean daily air temperature at 2 m height [°C]; u2 = wind speed at 2 m 
height [m s-1]; es = saturation vapour pressure [kPa]; ea = actual vapour pressure 
[kPa]; es - ea = saturation vapour pressure deficit [kPa]; D = slope vapour pressure 
curve [kPa °C-1]; γ = psychrometric constant [kPa °C-1]. 

 

B)  Hargreaves: 

The Hargreaves method has been developed by Hargreaves et al. (1985) to 
overcome the lack of detailed weather data usually required for complex models such 
as the FAO-PM. The Hargreaves equation requires only daily mean, maximum, 
minimum air temperature and extraterrestrial radiation. The equation can be written 
as: 
     8.17minmax0023.0 5.0  TmeanTTRAETo        (5) 
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where: 
RA = extraterrestrial radiation; Tmean = Mean temperature; Tmin = Minimum 
temperature; Tmax = Maximum temperature 

 

C)  Thornthwaite: 

The Thornthwaite method (Thornthwaite, 1948) is based on an empirical relationship 
between ETo and mean air temperature. The value of ETo for a standard month of 30 
days, as a function of the monthly average temperature is given by the following 
equations: 
 

a

I

Tmean
ETo 


 1016                 (6) 

 


 12

1

514,1

5i

it
I        (7) 

492,001791,010.71,710.5,67 2638   IIIa      (8) 

where:  

I = thermal index imposed by the local normal climatic temperature regime. 
 

D)  Blaney-Criddle: 

The Blaney-Criddle equation (Blaney and Criddle, 1962), which was modified by 
Doorenbos and Pruitt (1977) is one of the first empirical models developed to 
estimate ETo. Although it was developed some decades ago, this method is still 
successfully applied in many water management studies (e.g. Loukas et al., 2005; 
Fooladmand and Ahmadi, 2009). The Blaney-Criddle equation is given by: 
  )13.846.0  TmeanpETo     (9) 

where: 

 p= Mean daily percentage of annual daytime hours for different latitudes 

3.2.1 Input data 

The common approach used for modelling ETo is to use weather data retrieve from 
ground meteorological stations as input for the models. However, even when using 
simpler models that require only air temperature, the data available from ground 
stations may not be sufficient to represent the spatial distribution of the ET process in 
detailed scales. To overcome this problem, Land Surface Temperature (LST) data 
obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) were used 
as input to the ETo models. The MODIS sensor (Justice et al., 2002), launched in 
1999 and 2002 on board of the Terra and Aqua satellites, respectively, retrieves 
almost daily LST data. This study made use of the MOD11A2 product (Wan, 2008), 
which offers day-time and night-time LST data stored on a 1-km Sinusoidal grid as the 
average values of clear-sky LSTs during an 8-day period. 
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In total, 368 LST images, corresponding to the entire MOD11A2 product 
dataset from the years 2001 to 2008, were downloaded from the Land Processes 
Distributed Active Archive Center (LP DAAC). The 1-km resolution grids were 
interpolated by kriging in order to reach the same spatial scale as the land use maps 
(20m). The parameters necessary to carry out the kriging (i.e. nugget, lag size, major 
range and partial sill) were defined by geostatistical analyses performed in annual 
average LST images. 

3.2.2 ETo models calibration and error assessment 

Many studies have been reported along the last years applying the Hargreaves, the 
Thornthwaite and the Blaney-Criddle models (Gavilán et al., 2006, Ahmadi and 
Fooladmand, 2008, Fooladmand and Ahmadi, 2009). The results of such studies 
clearly mention that although those models were effective in estimating ETo, the 
empirical nature of these methods makes necessary rigorous local calibration. 

Hence, the empirical equations were calibrated using as reference the FAO-
PM method. It is important to note that the FAO-PM method does not necessarily 
retrieve real ETo values, due to the uncertainties and errors associated with this 
method. However, the FAO-PM has proved to behave well under a variety of climatic 
conditions, and for this reason the use of such method to calibrate or validate 
empirical equations has been widely recommended (Allen et al., 1998; Itenfisu et al., 
2003; Gavilán et al., 2006). 

The meteorological data necessary for the FAO-PM equations were obtained 
from a synoptic station placed at Voi municipality at an altitude of 597 meters, 
longitude 38.34o E, and latitude 3.24o S. ETo values were calculated for this exact 
point using the empirical models and MODIS LST data. The calibration parameters 
were defined using the following equation (Allen et al., 1998): 

 

TR ETobaETo        (10) 

 

Where EToT represents the ETo values estimated using the temperature based 
models, EToR represents the ETo values calculated using the reference method 
(FAO-PM), and a and b are the calibration parameters. 

The models were compared using standard statistics and linear regression 
analysis (Douglas et al. 2009). Root Mean Squared Error (RMSE) and Mean Absolute 
Error (MAE) were computed using the equations described below:  
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3.3 Crop coefficients (Kc) 

In order to calculate the Crop Evapotranspiration (ETc) for a determined ETo 
condition, the ETo value has to be multiplied by a crop coefficient (Kc). Consequently, 
the Kc incorporates into the equation the crop type, variety and development stage, 
enabling the representation of the spatial-temporal distributions of croplands. In 
general, three Kc values are required to describe the crops temporal distribution 
during an agricultural season: those during the initial stage (Kci), the mid-season 
stage (Kcm) and at the end of the late season stage (Kce).  

The Kc values used in the present study were obtained from tables 
recommended by FAO (Allen et al., 1998). Nevertheless, to assign the appropriate Kc 
values it is essential to identify the agriculture calendar in the study area, that is, the 
period of the year when crops are planted, grown and harvested. For this, monthly 
Normalized Difference Vegetation Index (NDVI) obtained from satellite images were 
used to retrieve the phenological stages of croplands.  

The NDVI imagery were obtained from the MOD13Q1 product (Justice et al., 
2002), which provides 16-day composite imagery from the MODIS Terra/Aqua 
sensors. The MODIS sensor, launched in 1999 and 2002 on board of the Terra and 
Aqua satellites, respectively, offers almost daily imagery with a spatial resolution of 
250m in the visible red and near-infrared wavelengths. These bands were specifically 
designed to detect land cover change dynamics (Townshend and Justice 1988). After 
the NDVI imagery were acquired, random points were distributed along the 
agricultural areas. The monthly average NDVI values in each of these points were 
observed throughout the year, in order to identify the development stage of crops.  

A drawback of this approach is the fact that the spatial resolution of the MODIS 
NDVI imagery may be sometimes too coarse to represent agricultural patches from 
small farms. To overcome this problem and reduce the effect of pixel mixture, a 
selection was carried out in the random points in order to choose just the ones 
located over “pure” pixels in agricultural areas. This task was performed based on the 
Pixel Purity Index (PPI), which aim is to find the most spectrally pure pixels in 
multispectral and hyperspectral images. The PPI is computed by repeatedly 
projecting n-dimensional scatter plots on a random unit vector. The extreme pixels in 
each projection (those pixels that fall onto the ends of the unit vector) are recorded 
and the total number of times each pixel is marked as extreme is memorized. A Pixel 
Purity Image is created where each pixel value corresponds to the number of times 
that pixel was recorded as extreme (Boardman et al., 1994). 

3.4 Irrigation water requirement  

Crop water requirement (CWR) is defined as the amount of water required to 
compensate the evapotranspiration loss from the cropped field (Allen et al., 1998). In 
cases where all the water needed for optimal growth of the crop is provided by 
rainfall, irrigation is not required and the Irrigation Water Requirement (IWR) is equals 
to zero. In cases where all water has to be supplied by irrigation the IWR is equals to 
the CWR (ETc). However, when part of the CWR is supplied by rainfall and the 
remaining part by irrigation, the IWR is equal to the difference between the ETc and 
the Effective Precipitation (Peff). In such cases, the IWR was computed using the 
following equation (FAO, 1997): 
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  mmmm PeffEToKcIWR  30
      (13) 

 

where:  

IWR m = Monthly average crop water requirement in month m, [mm] 

Kc m = Crop coefficient in month m, [ ] 

ETo m = Mean daily reference evapotranspiration in month m, [mm.day-1] 

Peffm = Average effective precipitation in month m, [mm] 

The Peff is defined as the fraction of rainfall retained in the root zone, which can 
be effectively used by the plants. That is, the portion of precipitation that is not lost by 
runoff, evaporation or deep percolation (Brouwer and Heibloem, 1986). The monthly 
total rainfall was converted to Peff values using Table 1. 

 

Table 1. Conversion table used to define the monthly effective precipitation 

P 
(mm/month) 

Peff 
(mm/month) 

P 
(mm/month) 

Peff 
(mm/month) 

0 0 130 79 

10 0 140 87 

20 2 150 95 

30 8 160 103 

40 14 170 111 

50 20 180 119 

60 26 190 127 

70 32 200 135 

80 39 210 143 

90 47 220 151 

100 55 230 159 

110 63 240 167 

120 71 250 175 

         Source: Brouwer and Heibloem (1986) 

3.5 Scenarios simulation 

Two climate scenarios and two LUCC scenarios were combined into the modeling 
framework in order to simulate four IWR scenarios. Each of these scenarios is 
described in detail below. 

a) Climate Scenarios 

Without Climate Change: in this scenario, a Monte Carlo simulation was performed 
in order to generate synthetic temperature and precipitation monthly datasets using a 
normal distribution with the same average and standard deviation as observed in the 
historical datasets. 

It is important to emphasize that using a normal distribution to describe the 
temperature and precipitation patterns is a simplified approach, given that these 
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natural processes do not necessarily follow this kind of distribution. The estimation of 
a site specific distribution for temperature and precipitation is itself a complex 
problem, which was not addressed during this study.  

With Climate Change: following the same strategy as in the previous scenario, a 
Monte Carlo simulation was performed in delineating a climate change scenario. 
However, in this case, the averages of the normal distributions representing 
temperature and precipitation were gradually changed along the simulation. These 
changes in the normal distribution averages were based in projections from a set of 
21 General Circulation Models (GCMs) for the A1B scenario, reported in the IPCC 4th 
assessment report. The mean responses in temperature (oC) and precipitation (%) for 
the period 2011-2030 obtained by the GCMs were considered. As the spatial 
resolution of such models are coarser than the resolution in which the present study 
was carried out, only the grid point closest to the centre of the study area was 
considered for each GCM. 

 Hence, it is fundamental to state that the aim of this approach was not to 
perform a spatial downscale in the GCMs outputs, but rather use its result to ground 
plausible changes in temperature and precipitation monthly averages taken from 
historical datasets at a better spatial resolution. 

The A1B scenario assumes “A future world of very rapid economic growth, low 
population growth and rapid introduction of new and more efficient technology. Major 
underlying themes are economic and cultural convergence and capacity building, with 
a substantial reduction in regional differences in per capita income. In this world, 
people pursue personal wealth rather than environmental quality” (IPCC, 2007). 

b) LUCC scenarios  

Business as Usual: This scenario was simulated using an exploratory approach. An 
exploratory scenario is a sequence of emerging events (Alcamo, 2001). In the 
particular case of this work, the average agricultural expansion rates observed from 
1987 to 2003 in the study area were used to build an exploratory scenario with 
stationary behaviour for the year 2030. Hence, in this case agricultural expansion 
rates are not affected by climate changes and just one LUCC scenario is retrieved 
from the simulation. 

Governance: In this case, a prescriptive scenario was simulated. Prescriptive 
scenarios are established a priori by the modeler in accordance with a targeted future 
(Alcamo, 2001). Thus, the agricultural expansion rates were associated to fictitious 
governance policies, in which the LUCCs were constrained according to the 
availability of Renewable Freshwater Resources (RWR). RWR is defined as the water 
that is continuously recharged in the hydrological cycle. In the particular case of this 
work was represented by the annual average rainfall volume.  

The assumption made was that annual IWR could not exceed 70% of the total 
RWR, leaving the remaining 30% to be used by residential or commercial purposes. 
Consequently, the agricultural expansion rates were gradually decreased along the 
simulated years as the IWR would approach the RWR limit. The 70% threshold was 
based on the global average distribution of water resources withdraws (FAO, 2005) 
and used as a virtual limit of water consumption. This approach, however, does not 
represent any real policy or water management strategies. The equation used to 
calculate the transition rates is written as follows: 
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where:  

Ryab = transition rate from a to b along the year y.  

Riab = transition rates for the same land use types in the beginning of the simulation.  

IWRy = annual average irrigation water requirements during year y. 

IWRi = annual average irrigation water requirements in the beginning of the 
simulation. 

RWR = annual average renewable freshwater resources. 

 

Because in this case transition rates vary with IWR, different climate conditions 
result in different LUCC scenarios. Hence, when facing a scenario with climate 
change, the IWR and RWR are gradually changed. These changes are reflected in 
the agricultural expansion rates, which consequently result in a different LUCC 
scenario.  

 

3.5.1 Irrigation water requirement scenarios 

The LUCC scenarios and the climate scenarios were integrated in the modeling 
framework, resulting in four IWR scenarios. This integration is represented in Figure 
5, and briefly described below. 

 

 

Figure 5. Irrigation water requirement scenarios simulated in the present work. 

 

BAU: IWR for an agricultural area expanding at the same rates observed from 1987 
to 2003, and inserted in a climate scenario with the same average and variance as 
observed in the historical dataset available. 
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BAU-CC: IWR for an agricultural area expanding at the same rates observed from 
1987 to 2003, and inserted in a climate scenario where the temperature and 
precipitation averages gradually change in a similar level as indicated in the A1B 
scenario.  

GOV: IWR for an agricultural area which expansion rate is controlled based on the 
availability of renewable freshwater resources. Such agricultural activities are inserted 
in a climate scenario with the same average and variance as observed in the 
historical dataset available. 

GOV-CC: IWR for an agricultural area wherein expansion rate is controlled based on 
the availability of renewable freshwater resources. Such agricultural activities are 
inserted in a climate scenario where the temperature and precipitation averages 
gradually change in a similar level as indicated in the A1B scenario.  

 

4. Results 

4.1 LUCC scenarios 

The annual average agricultural expansion rates observed from 1987 to 2003 are 
shown in Table 2. The highest conversion rates were observed in the transition from 
woodlands to agriculture. However, shrublands areas are the most affected 
considering absolute numbers, given that it currently represents the predominant 
vegetation type in the region. The small regions covered with Broadleaved Forests 
were nearly untouched, presenting low conversion rates, the total area passed from 
7.7 to 6.9 km2 , along the observed period.    

 

Table 2. Annual average agricultural expansion rates (baseline 1987-2003) 

Original 
vegetation 

Annual conversion rate 
(%) 

Shrubland 1.305 

Woodland 2.013 

Plantation Forest 1.161 

Broadleaved 
Forest 

0.289 

Grassland 0.310 

 

The evaluation of the LUCC model performance is illustrated in Figure 6, which 
shows the fuzzy similarity indexes achieved using different widow sizes. The 
maximum fuzzy similarity indices ranged from around 55% at a spatial resolution of 
20 m to 90% at a spatial resolution of 380m.  
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Figure 6. Fuzzy similarity indexes based on multiple size windows. 

 

After the model was calibrated and the role of each landscape variable was 
defined, transition probability maps were created for each simulated year. In Figure 7, 
and example of a transition probability map for the year 2003 is illustrated. In the map, 
the light colors represent areas with higher probability of having the original 
vegetation converted into croplands. Once spatial probabilities are defined, the new 
agricultural patches are stochastically allocated by the “expander” and “patcher” 
algorithms.  

 

Figure7. Original vegetation to cropland transition probability map for 2003. 

 

The numerical results of the simulations are presented in Figure 8, which 
displays the total cropland areas in the study site from 2010 to 2030. In the BAU 
scenario, the cropland areas expanded to around 515 km2 in 2030, corresponding to 
about 60% of the study area. This represent an increase of 40% in comparison to the 
year 2003, when croplands occupied around 365 km2. The GOV scenario showed the 
lowest increase in cropland areas, reaching 488 km2 in 2030.  

The GOV-CC scenario, in turn, had agricultural expansion rates slightly higher 
than the GOV scenario, finishing 2030 with around 495 km2 in cropland areas. This 
result is explained by the fact that changes in rainfall regime simulated by GCMs 
increased the volume of RWR available along a year. Consequently, the transition 
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rates, which were defined as a function of RWR and IRW (equations 14), were 
increased allowing a larger expansion of agricultural areas. 

  

 

Figure 8. LUCC simulation results from 2010 to 2030. 

 

In Figure 9, the historical land use maps for 1987 and 2003 are displayed 
(upper left and upper right) together with the land use maps for 2030 resulted from the 
BAU and GOV scenarios simulations (lower left and lower right). It is observed that in 
1987 croplands were already clearly established along highlands (central area in the 
maps). This is explained by the favorable climatic and edaphic conditions for 
agricultural activities (e.g. high precipitation rates), which resulted in the clearance of 
large areas of forest during the last century. The remaining forests have been used 
for firewood collection, charcoal manufacturing and grazing (Pellikka et al., 2009).  
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Figure 9. Historical land use maps for 1987 and 2003 (upper left and upper right) and 
simulated scenarios for 2030 (lower left and lower right). 

 

Between 1987 and 2003, croplands started to be implemented with higher 
intensity along lowlands, provided that suitable areas for agriculture activities in 
highlands were already almost entirely taken. This trend is clearly reflected in the 
LUCC simulation results. Although each simulated scenarios was created 
independently, using different transitions rates, the spatial distribution of new cropland 
patches followed the same patterns in all simulations. As suitable agricultural areas in 
highland were already taken, the expansion of new patches was distributed in the 
length of foothills. Among the main driving forces of such distribution were the 
distance to markets (here represented by villages or towns), distance to roads and 
distance to rivers.  

Distance to markets and roads played an interesting role in croplands 
distribution, in the sense that the effects of these two variables in the landscape 
dynamic were closely related. Namely, towns and villages acted as core points 
interconnected by roads creating axis in which new cropland patches were settled. 
Such patterns were observed mainly in the southern and southwestern part of the 
study area.  

It is also important to notice the enhanced importance attributed to rivers in the 
land use dynamic. Given that in this region foothills typically have higher average 
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temperatures and lower precipitation volumes, the proximity to water bodies are 
essential to the establishment of agricultural activities.  

4.2 ETo models assessment and calibration 

A comparison between the air temperature records measured at Voi weather station 
and the Land Surface Temperature (LST) records obtained by the MODIS sensor is 
presented in Figure 10. The graphic shows the monthly averages from 2001 to 2008. 
The LST data were acquired from one point with the same latitude and longitude as 
the ground weather station. The day LST corresponds to measurements acquired 
around 10:30 am, while night LST records are acquired around 22:30 pm (local solar 
time). 

A close fitness between the minimum air temperature and the night LST is 
observed. However, seasonal variations are noticed in the comparison between the 
maximum air temperatures and day LST. Such variations were already reported in 
literature. For instance, Mostovoy et al. (2005) observed good correlations between 
LST and max/min air temperatures during winter season over Mississippi. 
Nevertheless, a poor correlation was observed in this same area during summer 
season. The authors consider that this problem may be caused by the fact that green 
vegetation during summer period reduces a deterministic component of the 
relationship between LST and min/max air temperatures.  

 

 

Figure 10. Monthly averages of maximum, minimum and mean air temperature 
measured at Voi weather station and monthly averages of day, night and mean Land 

Surface Temperatures (LST) retrieved from MODIS sensor (2001-2008).  

 

The results obtained in the evaluation of the ETo models are summarized in 
Table 3. The RMSE and MAE were considerably different for each of the evaluated 
models. The average RMSE ranged from 0.57 mm.day-1, with the Blaney-Cridle 
model, to 1.87 mm.day-1, with the Thornthwaite model. The monthly RMSE and MAE 
for the Thornthwaite model (Figure 11) were generally high when compared with 
published works. For instance, in a study case carried out in the south of Iran, Ahmadi 
and Fooladmand (2008) achieved RMSE lower than 1 mm.day-1 using the 
Thornthwaite equation, while in the present study the results ranged from 1.4 to 
2.5mm.day-1. Hence, based on the results achieved in this study and in the 
comparison with previous researches, it was concluded that the Thornthwaite model 
is not the most appropriate for this study area. 
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Table 3. Summary of the results obtained from the models’ error analysis and 
linear regression analysis. 

 Hargreaves Thornthwaite 
Blaney-
Criddle 

Correlation coefficient 
(R) 

0.67 0.66 0.55 

RMSE (mm day-1) 1.07 1.87 0.57 

MAE (mm day-1) 0.98 1.80 0.50 

Calibration parameter (a) 3.221 3.507 -1.980 

Calibration parameter (b) 0.497 0.543 1.379 

 

The errors obtained by the Hargreaves and Blaney-Criddle models were 
consistent with results observed in previous published researches. The average 
RMSE obtained by the Hargreaves model was 1.07mm.day-1, while the monthly 
errors ranged from 0.5 to 1.5 mm.day-1. These results are compatible with the errors 
observed by Gavilán et al. (2006), which evaluated the Hargreaves equation under 
semiarid conditions in Southern Spain, finding RMSE ranging from 0.46 to 1.65mm.d-

1.  

 

 

Figure 11. Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 
achieved by ETo models evaluated 

The Blaney-Criddle model, in turn, achieved an average RMSE of 0.57 mm.d-1 
and a MAE of 0.50 mm.d-1, representing the best results obtained by the models 
when taking into account these criteria. However, as can be observed from Table x, 
the correlation coefficient of 0.55 obtained from a linear regression with the FAO-PM 
method was much lower than the ones achieved by the other models. Such 
correlation is low when compared with previously published results. For instance, 
Fooladmand and Ahmadi (2009) found correlation coefficients up to 0.96 in the linear 
regression analysis between the Blaney-Criddle and the FAO-PM methods applied in 
the south of Iran. 

It is worth mentioning that the results obtained by Fooladmand and Ahmadi 
(2009), Ahmadi and Fooladmand (2008) and Gavilán et al. (2006) were achieved 
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using the same input in every evaluated model (i.e. Hargreaves, Thornthwaite and 
Blaney-Criddle) and in the reference model (i.e FAO-PM). That is to say, all models in 
these quoted works were parameterized using weather data from ground stations, 
while in the particular case of this work the analyzed models were parameterized 
using LST data obtained from the MODIS sensor and the FAO-PM model using 
weather data from a ground station.  

The fitted regression lines and the normal probability plot of the residuals 
resulting from the linear regression analysis are displayed in Figures 12 and 13, 
respectively. The correlation coefficients obtained by the Hargreaves and Thornthwait 
models are consistent with the results reported by Narongrit and Yasuoka (2003), 
which achieved R2 of 0.57 and 0.60 when comparing these respective models with 
the FAO-PM method. 

 

 

Figure 12. Fitted regression lines comparing the results obtained by evaluated 
models with the reference values calculated by the FAO-PM model. 

 

 

Figure 13. Normal probability plots resulted from the linear regression analysis. 

 

Finally, considering the error analysis and the linear regression analysis, the 
Hargreaves model was chosen for this study. Thus, having in hand the chosen model 
with its respective calibration parameters and the input data acquired by the MODIS 
sensor, it was possible to represent the spatial-temporal distribution of the ETo in the 
study area. Figure 14 illustrates the monthly average ETo maps created using as 
baseline LST records from 2001 to 2008, which were used in simulating the scenarios 
described in the presented work. 
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Figure 14. Monthly average Reference Evapotranspiration (ETo) maps obtained 

using the Hargreaves model and LST records from 2001 to 2008. 

4.3 Spatial-Temporal distribution of Crop coefficients (kc) 

The first step carried out in defining the Crop Coefficients (kc) was the identification of 
the agricultural calendar in the study area, that is to say, the identification of the crops 
seeding season, growing season and harvest. For this, 150 random points were 
distributed along the areas classified as croplands in the year 2003 (Figure 15). The 
year 2003 was chosen for having the most recent high resolution land use and land 
cover mapping for this study site. 
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Figure 15. random points distributed along the cropland areas. 

 

Next, the random points were overlapped with monthly NDVI images obtained 
by the MODIS/Terra-Aqua sensors. The monthly NDVI images were compiled using 
the entire MOD13Q1 product dataset from 2001 to 2008 (Figure 16). Because the 
MODIS/NDVI images have a spatial resolution of 250 meters and the agricultural 
activities in this area consist predominantly of small properties, the frequency of pixel 
mixture is likely very high. Hence, a pixel purity analysis was performed in the MODIS 
imagery and from the 150 points randomly distributed only 50 points with the highest 
pixel purity index were chosen to characterize the NDVI profile of croplands.  
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Figure 16. MODIS monthly NDVI images, representing the averages from the years 
2001 to 2008. 

 

The NDVI temporal profile from croplands is displayed in Figure 17a. Two crop 
seasons can be identified based on the vegetation phenology captured by the NDVI.  
A clear seeding season is observed from August to October, when NDVI values reach 
the lowest values. The first growing season happens between October and January, 
when a clear increase in the NDVI values take place. These values decrease again 
from January to February, indicating crops’ senescence period. The NDVI values are 
kept low between February and March, when the crops harvest is taking place 
together with a new seeding season. And finally, from March to August a new 
agricultural cycle takes place. 

The observations exposed above are confirmed by agricultural calendars 
provided by Kenya’s Ministry of Agriculture (Jaetzold, and Schmidt, 1983), which are 
presented in Figures 17b and 17c. Figure xb shows the Maze seeding activities in 
Taita tarveta district, where two clear seeding seasons are evident with it peak 
happening on March and October. The harvest seasons happen mostly in February 
and between June and July (Figure 17c). 
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Figure 17. (a) NDVI temporal profile from cropland areas; (b) Maze seeding calendar 
in Taita Tarveta district; (c) Maze harvest calendar in Taita Tarveta district (source: 

Jaetzold, and Schmidt, 1983). 

 

After the agricultural calendar was identified, Kc values were attributed for 
each crop growth stage based on values recommended by the FAO (Allen et al., 
1998). This procedure is illustrated in Figure 18, which shows a comparison between 
the NDVI temporal profile from cropland areas and the monthly Kc values used in this 
study. 

 

 

Figure 18. Comparison between the NDVI temporal profile from cropland areas and 
the monthly Kc values used in this study. 

 

4.4 Irrigation water requirement (IWR) assessment  

The annual IWR volumes resulting from the scenarios simulation are presented in 
Figure 19. The final simulation results for the year 2030 are summarized in Table 4, 
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together with estimated IWR values for 1987 and 2003. The BAU scenario showed 
the highest IWR, reaching aproximetely 236 million m3.year-1 in the year 2030. In the 
governance scenario inserted in the same climate conditions, the IWR was reduced in 
approximately 1%, representing a decrease of 12 million m3.year-1. On the other 
hand, the GOV-CC scenario retrieved the lowest IWR by 2030. Hence, the results 
indicate that the climate changes simulated by the GCMs are likely to decrease the 
total annual volume of IWR in this study area. These results differ from those obtained 
by studies performed in different regions of the globe. For instance, studying the 
Guadalquivir river basin in Spain, Diaz et al. (2007) found that climate changes may 
result in increases between 15 and 20% in seasonal irrigation need by the 2050s. 

 

 

Figure 19. Simulated scenarios of Irrigation water requirements for Taita hills. 

 

Table 4. Summary of the results obtained in the IWR simulations 

 
106 cubic 
meters 

Annual precipitation volume (entire study 
area) 

389.98 

Annual IWR volume - 1987 110.32 

Annual IWR volume - 2003 163.12 

Annual IWR volume – 2030 - BAU 236.54 

Annual IWR volume – 2030 – BAU-CC 222.32 

Annual IWR volume – 2030 – GOV 224.19 

Annual IWR volume – 2030 – GOV-CC 213.87 

 

In Figure 20 a comparison example between the land use maps and IWR 
maps is presented.  As previously discussed, the highlands located in the central 
region of the study site were already almost totally used for agricultural activities by 
1987 and 2003. This particular aspect of the landscape dynamic in this region is 
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easily comprehensible when analyzing the ETo maps from Figure 14, and the IWR 
maps from Figure 20. The milder temperatures and higher precipitation rates in the 
hills areas result in lower potential ET rates, making agricultural activities more 
attractive, given that less water is required for irrigation. As such regions were 
saturated, croplands started to expand to the vicinities of urban areas and roads in 
the foothills, also attempting for the proximity to water bodies.  

 

Figure 20. Comparisson between the land use maps and IWR simulations.  

 

As a consequence, from 1987 onwards areas with higher average ETo started 
to be used for agriculture. Such fact is clearly illustrated in the histogram presented in 
Figure 21. From 1987 to 2003 a large number of cropland patches were created in 
areas with ETo between 5.7 and 5.9 mm.day-1, while very few new patches were 
implemented in areas with lower ETo. This tendency was sustained during all 
scenarios simulations until 2030. Hence, it is feasible to state that in the next 20 years 
new agricultural properties will likely require higher water volumes for crop production 
in order to achieve the same yield as croplands previously installed in highlands. 
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Figure 21. Histogram showing the cropland patches distribution during 1987, 2003 
and 2030, in relation to the average ETo in the study area. 

 

The average monthly IWR distributions simulated for 2030 are displayed in 
Figure 22. Carrying out an intrannual analysis it is possible to observe that between 
May and October the scenarios accounting for climate change (BAU-CC and GOV-
CC) have a negative impact on IWR, that is, during this period the climate changes 
simulated by the GCMs are expected to slightly increase IWR. Nevertheless, this 
effect is compensated in the remaining months of the year in a much higher 
magnitude, resulting in an overall positive effect, in which the annual average IWR for 
the scenarios with climate change are significantly lower than the scenarios not 
accounting for changes in climate.  

In all scenarios, the highest IWR peak happens in January, which coincides 
with the maximum development of crops during the first growing season. Along 
January and December the highest differences between scenarios are observed, 
reflecting a higher uncertanty during these periods of the year.  
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Figure 22. Monthly IWR distribution for 1987, 2003 and all the 2030 scenarios 

 

In Figure 23, the monthly IWR maps illustrates the spatial-temporal aspect of 
the IWR distribution throughout the year 2030 for the BAU scenario. During 
December, January and February the highest IWR values are clearly distributed along 
the south and southwest foothills, while during May, June and July the east and 
southeast regions show the highest values. 

Along almost the entire year, a clear distinction can be made between the IWR 
values in highlands and lowlands. However, this distinction is curiously reduced 
during July, August and September, when the IWR distribution in the study area 
becomes more homogeneous. 

Consequently, two important aspects can be highlighted from the results of this 
study. Firstly, the construction of LUCC and IWR scenarios at a high spatial resolution 
offers an unquestionable tool for local decision makers in identifying priority areas 
from the point of view of land use allocation and water resources policy. Secondly, the 
development of a methodology based on a ET model with local calibration can benefit 
local stakeholders in the direction of a proper irrigation water management, avoiding 
conflicts, water scarcity and environmental consequences. 
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Figure 23. Monthly IWR maps for 2030 - BAU scenario 

 

5. Conclusions 

The presented research was successful in identifying the main landscape variables 
affecting the landscape dynamic in the study area. A connected relation between 
villages and roads is evident in the definition of new cropland patches. LUCC 
simulations indicate that agricultural expansion will likely take place predominantly in 
lowlands and foothills throughout the next 20 years. Such dynamic will increase the 
spatial dependence on distance to rivers and other water bodies due to the higher 
potential ET in these areas. If current trends persist, it is expected that agricultural 
areas will occupy 60% of the study area by 2030.  

The results of the LUCC simulations described in this research have good 
potential to be used by policy makers in improving the identification of priority regions 
from the point of view of land use allocation and environmental risks. Moreover, it 
renders an important tool for researchers to understand the human-environment 
relations in this region.  



 

32 

 Based on the analysis of RMSE, MAE and linear regression analysis, the 
Hargreaves ETo model was selected as the most appropriate for this particular study 
area. The LST data acquired by the MODIS sensor was successfully used as input for 
the chosen ETo model, retrieving an average RMSE close to 1 mm.d-1, which is 
consistent with results obtained by previous studies reported in the literature. 
Moreover, the errors and uncertainties identified in the use of remote sensing LST 
can be tolerated considering the reduced weather data collection network in Taita 
hills. Further studies should be considered in order to expand this method for the 
entire East-Africa. In particular, the Hargreaves model should to be tested for its 
suitability in the different climate conditions and the spatial variability of the calibration 
parameters needs to be identified.  

In East-Africa, the low availability of weather data from ground stations is a 
limiting factor for using standard ET calculation approaches. This fact, associated with 
poverty and inadequate water management techniques, aggravates the water scarcity 
condition faced in this region. On the other hand, the MODIS-Terra/Aqua sensor 
offers almost daily LST data, which can be easily downloaded from internet. 
Therefore, the methodology presented in this study can be considered a feasible and 
cost free alternative for estimating ETo. The operational use of such method has good 
potential for improving water distribution by allowing an increased control on water 
use for irrigation.   

The results obtained by the modeling framework assembled in the presented 
study indicate that by 2030 climate changes simulated by GCMs will likely decrease 
IWR when compared with a scenario that uses the same temperature and 
precipitation averages as in the historical dataset. The approach used in this study 
can effectively represent the spatial-temporal aspects of the IWR distribution along 
the study area. Due to the low availability of space in highlands, new cropland areas 
are being settled in areas with low precipitation and higher temperatures. The 
continuity of this trend, as simulated by the models, will result in new agricultural 
areas with higher IWR and consequently, an increasing pressure on water resources. 

The management of water use for irrigation is a task that requires long-term 
planning. At the same time, the consequences involved in the inappropriate use of 
water resources also have long-term implications. In this context, the future IWR 
scenarios simulated within this study is an important asset to identify emerging trends 
and support informed strategic decisions.  

Finally, further works are required to improve the results obtained in this study. 
Namely, the consistency of the Monte Carlo simulations to construct synthetic 
weather datasets can be improved by defining site-specific probability distribution 
functions for temperature and precipitation. Additionally, local ET measurements, 
using direct methods, would improve the model’s calibration. Nevertheless, the data 
acquisition necessary to carry out such tasks is evidently time consuming and 
requires significant amount of financial resources. 
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