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Abstract 

 

In models of pathogen interaction and evolution discrete genotypes in the form of 

bitstrings may be mapped to points in a discrete phenotype space based on similarity 

in antigenic structure. Cross-immunity between strains, that is the reduction in 

susceptibility to strain A conferred to a host by infection with strain B, can then be 

defined for pairs of points in the antigenic space by a specified function. Analysis of 

an SIR type model shows that, if two strains are at equilibrium, the shape of the cross-

immunity function has a strong influence on the invasion and coexistence of a third 

strain and, consequently, the expected evolutionary pathway. A function that is 

constant except for discontinuities at the end points is expected to result in the 

accumulation of diversity until a pair of discordant strains occurs that can, depending 

on parameter values, exclude all other strains. For a function of the form f(h) = hq 

invasion and coexistence is always possible if q ! 1 and little antigenic structure is 

expected in the pathogen population. However, if q > 1 invasion and coexistence may 

be impossible, depending on parameter values, and the pathogen population is 

expected to show significant antigenic structuring. In addition to illuminating the role 

of cross-immunity in pathogen evolution, this analysis indicates that the choice of 

cross-immunity function, the representation of immunity acquired from multiple 

previous infections and the number of elements used to characterize the antigenic 

space must be carefully considered in the development and interpretation of more 

sophisticated models of pathogen dynamics and evolution.  
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1. Introduction 

Pathogens often occur as a variety of strains with slightly modified antigenic 

structures and the antibodies that bind most efficiently with one strain may be 

partially, or completely, ineffective against another strain (Alberts, 2002; Janeway 

and Janeway, 1999). The prevalence and spread of a pathogen strain is strongly 

influenced by the immunological state of the host population. For any given pathogen 

strain this immune landscape is determined by the current and historical prevalence of 

all other variants and the immune interaction with antibodies raised in response to 

those variants. Thus epidemiology, cross-immunity and pathogen evolution are tightly 

interwoven (Adams et al., 2006; Dieckmann, 2002). Central to any study of the 

relationship between antigenic evolution and epidemiology is the concept of an 

antigenic space. One phenotypic characteristic of a pathogen strain is its antigenic 

surface structure. In this article, this phenotype is conceptualized as a point in an 

antigenic space in which the antigenic distance between strains is a measure of the 

similarity in their surface structures. Another phenotypic characteristic of a pathogen 

strain is the cross-reaction between its antigen and antibodies raised in response to 

infection with another strain. This partial cross-immunity between strains is expected 

to be a function of their antigenic distance, and can also be used to define antigenic 

distance directly. Here we consider a discrete antigenic space directly derived from a 

bitstring, or locus-allele, genotype construct, and examine how the function relating 

antigenic distance in this space to partial cross-immunity affects invasion, coexistence 

and, consequently, the evolutionary pathway.  

 

The theory of pathogen evolution is well developed, particularly with respect to the 

evolution of virulence (Anderson and May, 1982; Anderson and May, 1991; Ewald, 

1994). Studies are often based on pairwise invasion analysis, which considers a 

population in which one strain is at equilibrium and asks when a second mutant strain 

can invade and replace the existing strain (Dieckmann, 2002). If two strains have 

identical epidemiological characteristics and cross-immunity is symmetric then many 

simple models predict coexistence. Here, therefore, we progress directly to 

considering two strains at equilibrium and examining when a third strain can invade 

and whether it will exclude either of the existing strains. Where possible we then go 

on to consider invasion and coexistence when three or more strains already coexist.  

 

It has been shown that, in a one dimensional continuous antigenic space, if the 

function relating antigenic distance to cross-immunity is linear or strictly concave 

then the two strain equilibrium can always be invaded by a third strain and all three 

strains will coexist. However, if the function is strictly convex then invasion, and 

coexistence, is not always possible (Adams and Sasaki 2007). In the context of the 

discrete antigenic space employed in this article we consider a discontinuous function 

relating antigenic distance to cross-immunity, in which cross-immunity can take one 

of only three values according to whether the antigenic structures of the strains are 

identical, entirely distinct or related (Gupta et al. 1996, Gupta et al. 1998, Ferguson 

and Andreasen 2002) and continuously defined functions of the form f(h) = hq where 

h is antigenic distance and q is a positive real number. With the discontinuous cross-

immunity function an equilibrium composed of two similar strains can always be 

invaded by a third strain but an equilibrium composed of two discordant strains may 

be resistant to invasion, depending on the degree of cross-immunity and the basic 



 3 

reproductive number. With the continuous cross-immunity function, invasion is 

always possible if q ! 1 but otherwise may be impossible depending on the value of q 

and the basic reproductive number. By carefully examining the mechanisms that 

determine whether invasion and coexistence are possible we show that the shape of 

the cross-immunity function is critical because of its influence on secondary 

infections while the basic reproductive number particularly influences the impact of 

tertiary, or subsequent, infections. The number of elements used in the bitstring 

characterization of the antigenic configuration, which implicitly defines the antigenic 

change associated with a single mutation, is also important as it influences when 

branching can occur during a sequence of point mutations. In addition to improving 

our understanding of how cross-immunity influences pathogen evolution and 

diversity, this work highlights important factors to consider in the development and 

interpretation of more complex simulation models of this type of system.  

 

2. Model description 

2.1 SIR framework 

SIR models (Anderson and May, 1991; Castillo-Chavez, 2002) with multiple 

pathogen strains interacting by cross-immunity group the host population according to 

their current infection status and infection history. Since recording all possible 

infection histories in a system with N strains requires 2N compartments, models 

rapidly become very large as N increases (Andreasen et al., 1997; Ferguson and 

Andreasen, 2002; Gomes et al., 2002), and a number of simplification have been 

proposed including: status based approaches, whereby an infected individual either 

gains complete immunity to cross-reactive strains with some probability or else 

remains completely susceptible; the assumption that immunity reduces infectivity 

rather than susceptibility; the assumption that many of the strains have identical 

immune interactions; approximations for the size of host groups that have experienced 

multiple previous infections (Calvez et al., 2005; Gog and Grenfell, 2002; Gupta et 

al., 1998; Gupta et al., 1996; Kryazhimskiy et al., 2007). However, since we will 

focus on situations with just a few strains, the original formulation can be used: the 

host population is grouped according to all possible infection histories and immunity 

acts on susceptibility by reducing the probability of subsequent infection.   

 

A complete description of this model can be found in several other places (Andreasen 

et al., 1997; Ferguson and Andreasen, 2002; Gomes et al., 2002) so only a brief 

review is provided here. Given a set K of N strains, the population is divided into 2N 

compartments SJ where J are all the subsets of K including " and K. Each 

compartment SJ represents the proportion of the host population currently or 

previously infected with all the strains in J. A further N equations record the forces of 

infection !i of strains i = 1...N. Cross-immunity is expressed by "J
i, where 0 ! "J

i ! 1 

and represents reduction in susceptibility to strain i conferred by infection history J. 

When "J
i = 0 cross-immunity is perfect. When "J

i = 1 cross-immunity is absent. The 

host population is assumed to be well mixed and the rate at which hosts with infection 

history J are infected with strain i # J is given by "J
iSJ!i. Birth and death rates are 

constant and equal so the total population size is also constant. Infected individuals 

recover at a constant rate. A non-dimensional form of the equations is used 

(Andreasen et al., 1997) and so parameters for the birth, death and recovery rates do 

not appear directly but are compounded into parameters e, the ratio of the duration of 

infection and life-expectancy, and r which would be the basic reproductive number if 
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just one strain was introduced into a naïve population. In order to focus on the impact 

of cross-immunity, these epidemiological parameters, e and r, are assumed to be the 

same for all strains. Due to non-dimensionalization the total population size is always 

1. Differential equations describing the model are: 

 

  (1) 

 

The analysis in this article focuses on the situation when two strains are at equilibrium 

and a third strain attempts to invade. Therefore it is expedient to dispense with the set 

theory notation and write x = S" (never infected, therefore susceptible to primary 

infection), y1 = S, (currently or previously infected with strain S1, therefore 

susceptible to secondary infection with strain S2 or S3), y2 = S{2} (currently or 

previously infected with strain S2, therefore susceptible to secondary infection with 

strain S1 or S3) y12 = S{12} (currently or previously infected with strains S1 and S2, 

therefore susceptible to tertiary infection with strain S3). As described in Section 2.2 

the degree of cross-immunity between strain S1 and S2, previously given by the 

parameter "1
2 = "2

1,is now given by the function f(h12) where h12 is antigenic distance. 

Homologous immunity is assumed to be perfect. Hence the two strain model is 

described by the equations: 

 

  (2) 

 

2.2 Antigenic space and cross-immunity 

An individual has one genotype but many phenotypes. One pathogen phenotype is the 

efficiency with which its antigen binds with antibodies raised in response to infection 

with another phenotype. This is often measured using HI assays (Smith et al., 2004) 

and conceptualized as the degree of cross-immunity. Another pathogen phenotype is 

the physical structure of the antigen determined by the configuration of surface 

proteins. Antigenic distance may be defined by the similarity between two strains in 

either of these phenotype spaces (Gupta et al., 2006; Smith et al., 1999; Smith et al., 

2004). Models often represent genotypes by sequences of alleles or, sometimes, 

nucleotides, codons or amino acids. Sophisticated schemes can then be used to map a 

genotype to its phenotypes (Koelle et al., 2006; Lapedes and Farber, 2001) but 

simpler approaches are often pragmatic. Some frameworks determine the similarity 

between genotypes, using the Hamming distance or a related measure, and map this 

directly to cross-immunity without explicitly considering surface structure similarity 

(Ferguson and Andreasen, 2002; Girvan et al., 2002; Gupta et al., 1998; Tria et al., 
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2005). However, another well established approach is to map the genotype to a point 

in antigenic space based on surface structure and use another function to determine 

the immune cross-reaction from the antigenic distance (Andreasen et al., 1997; 

Ferguson et al., 2003; Gog and Grenfell, 2002; Gomes et al., 2002). In this article 

adopt the second of these frameworks.  

 

We express the genotype as a sequence of n elements each taking one of m possible 

values (Andreasen et al., 1997; Calvez et al., 2005; Ferguson and Andreasen, 2002; 

Ferguson et al., 2003; Girvan et al., 2002; Gupta et al., 1998; Gupta et al., 1996; 

Recker et al., 2007). Often this is thought of as an n locus, m allele system and the 

genotype is rendered as a bitstring by setting m = 2. The similarity between the 

genotypes of strains S1 and S2 is expressed in terms of the normalized Hamming 

distance h12, the proportion of positions at which the two bitstrings have different 

elements. The antigenic distance, in the structural phenotype space, is then taken to be 

identical to the normalized Hamming distance. Thus the antigenic distance is 0 when 

the two strains are identical and 1 when they are entirely distinct, often termed 

discordant. This antigenic space is high dimensional and discrete. The discreteness is 

further emphasized by the small number of possible antigenic distances. For example 

the an 8 element bitstring gives a total of 28 = 256 different strains but there are only 8 

possible distances between them. Analysis in this space can be difficult because even 

when the number of elements is small it has complicated geometry and there may be 

several possible antigenic locations for a strain S3 with distance h13 from strain S1 and 

h23 from strain S2.   

 

Given two strains at known locations in this structural antigenic space, some function 

f must be used to relate the antigenic distance (i.e. structural similarity) to the degree 

of cross-immunity. In this article it is assumed that f is a monotonic increasing 

function of h with f(0) = 0 and f(1) = 1, implying that cross-protection is perfect 

between identical strains and entirely absent between discordant strains. In Section 4 

we consider a discontinuous function f(hij) = 0 if  hij = 0, " if 0 < hij < 1 and 1 if  hij = 

1. This function classifies strains into three groups, identical, related and discordant, 

simplifying analysis but increasing discreteness. The same framework is often used to 

map bitstring genotypes directly to the cross-immunity phenotype. In Section 5 we 

consider continuously defined functions of the form f(hij) = hij
q where 0 < q < #. The 

linear form of this function f(hij) = hij implies that cross-immunity is directly 

proportional to antigenic distance. The convex form, for example f(hij) = hij
2, implies 

that cross-immunity diverges slowly when antigenic distances are small but rapidly 

when distances are large. The concave form, for example, f(hij) = hij
1/2,  implies that 

cross-immunity diverges slowly when antigenic distances are large but rapidly when 

distances are small.   

 

To complete the model it is necessary to define how immunity from two or more 

previous infections affects the probability of subsequent infection by another strain. 

This is not well understood empirically. Many models assume that only the most 

closely related previous infection is effective f(h12, h13) = min{f(h12), f(h13)} or that the 

combination of antibodies from previous infections is more effective than any one of 

them individually f(h12, h13) = f(h12)f(h13). Further alternatives include assuming that 

no more than two infections can be experienced, f(h12, h13) = 0 (Cummings et al., 

2005) or that only the most recent infection is effective (Andreasen and Sasaki, 2006). 

The minimum function will be used in this study. Other studies have found that 
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similar steady states arise from both the minimum and multiplicative forms, although 

transient dynamics may be more variable (Adams and Sasaki, 2007; Gomes et al., 

2002).   

 

3. General two strain equilibrium and invasion criterion 

Given two strains, S1 and S2, with identical epidemiological parameters the 

coexistence equilibrium of system (2) has y1
*
 = y2

*
 = y

*
, !1

*
 = !2

*
 = !*

 and:  

 

  (3) 

  

Furthermore, since !*
[r(x

*
 + f (h12)y

*
) – 1] = 0 and !* 

!  0, x
*
 + f (h12)y

*
 = 1/r. 

Numerical investigation has suggested this coexistence equilibrium is globally stable 

as long as r > 1 and, even if the basic reproductive numbers of the two strains, say r1 

and r2, are not identical, there is stable coexistence as long as r1[1 – ($/(1 – $))(r1 – 

1)]-1 < r2 < r1[1 + $(r1 – 1)]-1 (Castillo-Chavez et al. 1989). Given strains S1 and S2 at 

the symmetric coexistence equilibrium another strain, S3, can invade if the rate of 

change of the force of infection !3 > 0 when the number of S3 infections is small. The 

force of infection !3 is easily found from equation (1):  

 

 (4) 

 

So, the invasion function #(h13, h23) gives the invasion criterion: 

 

  (5) 

 

Given that y1
* = y2

* = y* and x* + f(h12)y
* = 1/r this can also be written as: 

 

     (6) 

 

Additionally, y12
*
 can be expressed as y12

*
 = (1 – x

*
 – 2y

*
) or, from (3), y12

*
 = [(2r – 1) 

f (h12) – 2 + "]y
*
/2. If it is also assumed that h13 < h23 then f(h13) < f(h23) and an 

alternative form of the invasion criterion is:  

   

          (7) 

 

A similar expression is obtained if it is assumed that h23 < h13. 
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4. Invasion, coexistence and evolution with a discontinuous cross-immunity 

function 

We now consider in detail when invasion is possible if the cross-immunity function is 

discontinuous. This structure of f means that the system is independent of the number 

of bitstring elements n. Each strain has cross-immunity 0 with itself, cross-immunity 

1 with exactly one discordant partner and cross-immunity $ with all other (related) 

strains. An equilibrium composed of two related strains can always be invaded. But 

an equilibrium composed of two discordant strains is resistant to invasion if r < 1/(2$) 

and the intrinsic growth rate is insufficient to compensate for cross-immunity 

(Ferguson and Andreasen, 2002). This threshold is shown in Figure 1. Consequently, 

three related strains will always coexist but a trio consisting of a discordant pair plus 

one related strain will only coexist if r is sufficiently large, otherwise the related strain 

will be excluded. Examining the contributions of primary, secondary and tertiary 

infections to the invasion function given in (5) shows why only discordant pairs are 

resistant and why the threshold for invasion depends on r and $. Assuming that S1 

and S2 are the two existing strains and S3 is the invading strain, there are three cases 

to consider: 

 

Case i. If S1, S2 and S3 are all related then f(h12) = f(h23) = f(h23) = $. From (6) the 

invasion function is $(h13, h23) = and so the invasion criterion is clearly 

always satisfied. Considering (5), and using the equilibrium solutions given in (3), the 

contribution of primary infections is 2!r/((2r + 1)! – 2 + %), the contribution of 

secondary infections is 1 – 2/((2r – 1)! + %) and the contribution of tertiary infections 

is ((2r – 1)! – 2 + %)2/(4(2r – 1)! + %). The first column of Figure 2 shows how 

these components depend on r and !. Weaker cross-immunity (larger $) reduces the 

contribution of primary infections, increases the contribution of secondary and tertiary 

infections. Overall, the changes in the primary and secondary infections 

approximately balance but the tertiary infections ensure that invasion is always 

possible.  

 

Case ii: If S1 and S2 are related and S3 is discordant with S1 then f(h12) = f(h23) = $ 

and f(h13) = 1. From (6) the invasion function is $(h13, h23) = and the 

invasion criterion is always satisfied. Considering (5), and using the equilibrium 

solutions given in (3), the contributions of primary and tertiary infections to invasion 

are the same as in case i. The contribution of secondary infections is (1 + !)/2! – (1 + 

!)/((2r – 1)! + %)!). The second column of Figure 2 shows how these components 

depend on r and !. In contrast to case i, weaker cross-immunity reduces the 

contribution of secondary infections unless r is small, in which case there is a slight 

increase. However, a rapid increase in tertiary infections as ! increases still ensures 

that invasion is always possible.  

 

Case iii: If S1 and S2 are discordant and both related to S3 then f(h12) = 1 and f(h13) = 

f(h23) = $. The invasion function is #(h13, h23) = . Using the 

equilibrium solutions given in (3) this becomes and so 

invasion is only possible if r > 1/(2$). Considering (5), the contribution of primary 

infections to invasion is rx
* 
= r/(2r – 1). The contribution of secondary infections is 

$ry
*
 = 2!(r – 1)/(2r – 1) and the contribution of tertiary infections is $ry12

*
 = 2!(r – 

1)
2
/(2r – 1). The third column of Figure 2 shows how these components depend on r 
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and !. The primary component is independent of $ but both the secondary and tertiary 

components increase linearly as ! increases. When $ = 0 strain 3 is restricted to 

primary infections and invasion is always impossible. It only becomes possible when 

cross-immunity is weaker and there are sufficient secondary and tertiary infections. 

Increasing the value of r has relatively little impact on the contributions of primary 

and secondary infections but the contribution of tertiary infections increases 

significantly. This reduces the value of $ at which invasion first becomes possible.  

 

When more than two strains are able to coexist, the equilibrium solution is not always 

stable and the system may exhibit complex oscillatory behavior (Andreasen et al., 

1997; Ferguson and Andreasen, 2002; Gupta et al., 1998). It is not, therefore, possible 

to examine the invasibility of additional strains analytically but numerical solutions 

offer some insight. Due to the rapid increase in complexity, we considered a 

maximum of 6 strains. The system was initialized with between 2 and 6 strains 

present and iterated to a quasi-equilibrium state. The invasion function for an 

additional strain was derived by extending (5) to accommodate multiple strains in the 

obvious way implied by (1). It turns out that the oscillatory nature of the system 

means that the invasion function may not remain on the same side of the invasion 

threshold along the entire solution trajectory. Therefore, the system was solved for a 

further 10
5
 time units to determine the total proportion of time for which the invasion 

criterion was satisfied. For more details, see the caption to Figure 3.  

 

If all the initial strains were related, any other strain could always invade. Results for 

other strain combinations are shown in Figure 3. However many strains were initially 

present, the set of strains present at quasi-equilibrium always consisted of either all 

the initial strains, a single discordant pair of strains or, when r or $ were small, two 

discordant pairs of strains. If the initial collection of up to six strains only included 

one discordant pair, the regions of the r -$ parameter space for which this pair 

excluded all other strains was identical to the region in which such a discordant pair 

was shown analytically, and in Figure 1, to be resistant to invasion by any other 

strain. This result suggests that dominance of a discordant pair is independent of the 

number of strains initially present. Outside of this region of parameter space, and 

away from the boundary, any additional strain could always invade. However, in a 

narrow region close to the boundary the value of the invasion function fluctuated 

across the threshold of the invasion criterion, indicating that an additional strain could 

only invade for part of the time. The precise region of parameter space in which this 

phenomenon was observed depended on how the initial strains were related to one 

another and to the invading strain. For oscillations in the population dynamics to 

occur at all, at least three strains are necessary. For the invasion function to oscillate 

across the invasion threshold at least four strains appear to be necessary, but not 

sufficient, and the occurrence of such behavior was generally more extensive when 

the invading strain was not discordant with any of the existing strains. A detailed 

mathematical analysis carried out for the special case of 4 strains made up of 2 

discordant pairs (Dawes and Gog, 2002) has detected a narrow region of parameter 

space close to the boundary for dominance of the discordant pair in which a non-

oscillatory asymmetric equilibrium is stable. The numerical results presented in this 

article are oscillatory and so do not correspond to this equilibrium. It may, however, 

be possible to develop similar methods to examine the underlying reasons behind this 
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ambiguity in the invasion function. While of mathematical interest this will not be 

pursued further here as the parameter region in which it is observed is very narrow 

and has limited relevance to this study. 

 

The framework of invasion analysis used here does not explicitly include the process 

of mutation. It is, however, possible to infer the consequences of mutation from 

Figure 3 based on the reasonable hypothesis that results will remain similar even 

when more than six strains are co-circulating. If the basic reproductive number is 

small or the cross-immunity between similar strains is strong then the system will lie 

in the black shaded areas of the invasion plots, indicating that a single discordant pair 

can exclude all other strains. Starting with a single strain we expect the process of 

mutation to lead to the emergence and coexistence of multiple related strains with 

diversity continuing to accumulate until a discordant pair appears, excludes all others 

and forms an evolutionary stable alliance. If the basic reproductive number or cross-

immunity are not such that a discordant pair will be dominant, all strains will coexist 

and the process of mutation is expected to lead from a single initial strain to a highly 

diverse population without any clear antigenic structure. The discrete antigenic space 

with discontinuous cross-immunity considered here is very basic but may be 

considered an abstraction of a portion of a neutral network model proposed for 

influenza (Koelle et al., 2006). In our model the immune interaction between a mutant 

and the existing strains is always the same unless it has a rare genotype that forms one 

half of a discordant pair and thus experiences a significant reduction in host 

immunity. In the neutral network model, the cross-reaction between a mutant and the 

existing strains is always the same as long as it remains in the same network but, 

under certain conditions, a mutant crosses to an adjacent network and the cross-

reaction with existing strains becomes radically weaker. Numerical simulations using 

the neutral network framework predict pathogen evolution characterized by 

accumulations of diversity punctuated by clade replacement events when a new 

network is accessed (Koelle et al., 2006). Applying invasion analysis in our simple 

model to infer the process of mutation and selection leads to a strikingly similar 

prediction of boom and bust in diversity, and a thorough assessment of any similarity 

in the underlying mechanisms merits further attention in the future.  

  

5. Invasion, coexistence and evolution with a continuously defined cross-

immunity function  

We now return to the model with two existing strains at equilibrium and make a 

detailed examination of when a third strain can invade if cross-immunity is a 

continuously defined function of the antigenic distance. As before, the existing strains 

are labeled S1 and S2, the invading strain S3. If strains S1 and S2 are fixed at distance 

h12 then h13 and h23, are not independent but, in contrast to a one-dimensional antigenic 

space, fixing h13 does not necessarily uniquely define h23. Using the form of the 

invasion function given in (6), for fixed h12 and h13, the function is smallest, and 

invasion is most difficult, when h23 takes the minimum admissible value h*
23. Here we 

show that, for f(h) = hq and fixed h12, the minimum value of the invasion fuction is 

positive for all values of h13 if q ! 1 but could be negative if q > 1. This means that 

invasion is possible for any arrangement of strains in antigenic space if q ! 1. 

However, invasion may be impossible for some arrangements if q > 1 and we 

consider the case of q = 2 as a particular example. For the purposes of this proof we 
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consider h to be continuous, so that f(h) = hq is also continuous. However, it should be 

clear that the result still applies when h is discrete.  

 

We begin by showing that, if h12 and h13 are fixed and the genotype and structural 

phenotype are defined by the same binary string of length n, the minimum possible 

value of h23 is h*
23 =  and the set of all possible values for 

h23 is { } where . 

To see this let S1 and S2 be fixed binary strings of length n having nh12 positions with 

different values and n - nh12 positions with identical values. Let S3 be another binary 

string having nh13 positions with values different from S1. Then the value of h23 is 

minimized if S3 is constructed from S1 by, so far as possible, switching values at 

positions that are different between S1 and S2. If h13 !  h12 then initially S2 and S3 

have nh12 different positions but nh13 of these are made identical by the switching, 

leaving nh12 – nh13 different positions and giving h23 = h12 – h13. If h13 > h12 then all of 

the nh12 initially different positions are made identical by the switching, but nh13 – 

nh12 of the initially identical positions are made different giving h23 = h13 – h12. The 

maximum possible values are found by a similar argument. Values of h23 change in 

steps of 2 between the maximum and minimum since switching an element of S3 to 

adjust h23 always requires switching an additional element to ensure that h13 remains 

constant.  

 

We now use this expression for minimum possible value for h23 in terms of h12 and h13 

together with the invasion function given in (6) to show that invasion is possible for 

all values of h12 and h13 if q ! 1 but may not always be possible if q > 1. Four cases, of 

which only three are admissible, describe the antigenic relationships between the 

three strains. To complement the analysis, these cases are illustrated in Figure 4 with 

an invasion function evaluated for the specific example of q = 2. Note that throughout 

the following the coexistence equilibrium of the original two strains x* and y* is 

written as x and y to simplify notation.  

 

Case i: Suppose h13 ! h12, hence h*
23 = h12 – h13. Suppose also h13 ! h*

23, implying that 

h13 ! h12/2. Then, from (6) and using y12 = 1 – x – 2y, the minimum value of the 

invasion function as a function of h13 is:  

 

  (8) 

 

Differentiating with respect to h13: 

 

   (9) 

   (10) 

 

So, $ has at most one turning point and this occurs when  

 

                                   (11) 

 

Also, from (8), $(0) = 0 and, substituting f(h) = hq into (9), the gradient at this point is:  



 11 

 

  (12) 

 

 

Note that x + 2y + y12 = 1 means that y/(1 – x – y) < 1 and, by assumption, h13/(h12 – 

h13) ! 1 . So, if q ! 1, then (11) cannot be satisfied and $ cannot have a turning point. 

Furthermore, if q ! 1 then by (12) $'(0) > 0, so the minimum value of $(h13) > 0 and 

invasion is possible for all 0 ! h13 ! h12/2. If q > 1, (11) may have an admissible 

solution but this is not guaranteed. However, if a turning point does exist it will be a 

minimum because f ''(h) = q(q – 1)hq-2 > 0. From (12), if q > 1 then $'(0) < 0 so there 

must always be some interval (0, hx] where invasion is impossible although, since h13 

actually changes in discrete steps of size 1/n, invasion will only be impossible in 

practice if hx > 1/n.  

 

Case ii: As before, suppose h13 ! h12, hence h
*

23 = h12 – h13. Suppose also h13 > h
*

23, 

implying that h13 > h12/2. Then a similar analysis to case i shows that, if q ! 1 

invasion is possible for all h12/2 ! h13 ! h12 but if q > 1 invasion is not possible in an 

interval [hy, h12).  
 

Case iii: Suppose h13 > h12 then h
*

23 = h13 – h12 and h13 < h
*

23 is impossible. 

 

Case iv: Suppose h13 > h12, hence h
*

23 = h13 – h12. Suppose also h13 $ h
*

23. Then, 

using (6) and y12 = 1 – x – 2y: 

 

                 (13) 

 

Differentiating with respect to h13: 

 

                               (14) 

   

Since f is monotonic increasing by assumption, #'(h13) > 0 for h12 ! h13 ! 1. For 

all values of q, #(h12) > 0 and so invasion is always possible for h12 ! h13 ! 1.  

 

Hence invasion, and coexistence, of a third strain is always possible when q ! 1 but 

may be impossible for certain parameter sets when q > 1. We now consider q = 2 as a 

specific example. Assume, as in case i, that 0 ! h13 !  h12/2. Then the minimum value 

of the invasion function given in (8) becomes:  

 

     (15) 

 

Invasion is possible when $ given by (15) is positive. That is, when  

 

  (16) 

 

A similar threshold arises from case ii. For h12/2 ! h13 ! h12 invasion is possible when: 
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    (17) 

 

From case iv, invasion is always possible when h12 ! h13 ! 1. Recall that these 

thresholds, shown in Figure 5 for several values of r, correspond to the value of h13 at 

which invasion is possible when h*
23 minimizes the invasion function. When these 

thresholds are satisfied, invasion is possible for all admissible values of h23. When 

they are not satisfied, invasion is impossible for h23 = h*
23, but may be possible at 

other values. From Figure 5, when r ! 2, invasion is impossible for h23 =h*
23 unless h13 

> h12. As r increases, a region of the h13 axis centered on h12/2 appears where, for large 

h12, invasion is possible at h23 =h*
23. For higher values of r this region appears at lower 

values of h12 and spans a broader range of h13 values. Invasion for q = 2, n = 10 and 

values of h23 other than h*
23 was explored numerically. When the two existing strains 

were dissimilar (h12 close to 1) invasion was generally restricted to locations close to 

one of the existing strains and distant from the other. When the existing strains were 

similar (h12 close to 0) invasion was generally possible in all admissible locations 

except those very close to both existing strains. Invasion was always easier, and 

occurred for a broader range of the admissible h23 values, for larger values of r. Figure 

6 shows when invasion is possible for all admissible combinations h12, h13 and h23 

when r = 1.01. Systems of up to 6 strains were also explored numerically for q = &, 1 

and 2, a range of values of r and all admissible combinations of h12, h13 and h23. This 

indicated that for q = & or q = 1 at least 6 strains will always coexist, although not 

always at a constant equilibrium. However, for q = 2 invasion, and hence coexistence 

of multiple strains, is not always possible and depends in a complex way on the 

distribution of strains in antigenic space and the basic reproductive number.  

 

The preceding analysis shows that invasion depends on the shape of the cross-

immunity function f. We now investigate why. The reasons for this dependency are 

most clearly seen when the existing strains S1 and S2 are discordant since, in this 

case, h23 is uniquely determined for any pair h12 and h13. Based on (5), Figure 7 shows 

how the primary, secondary and tertiary (x
*
, y

*
 and y12

*
) components of the invasion 

function contribute to the total for q = &, 1 and 2 and a range of values of h13. As 

expected, the contribution of primary infections does not depend on h13 since they are 

not affected by cross-immunity. However, the contribution of tertiary infections 

depends strongly on h13. For all three forms of f, tertiary infections increase rapidly as 

h13 increases, reaching a maximum at h13 = 1/2 when strain S3 is equidistant from S1 

and S2. The contribution of secondary infections is somewhat different for each 

functional form. When f is linear, the net contribution of secondary infections does 

not depend on h13. This is because as h13 increases, the number of secondary 

infections by S3 of hosts previously infected with S1 increase at exactly the same rate 

as the number of secondary infections of hosts previously infected with S2 decrease. 

When f is a square-root the contribution of secondary infections increases with h13 to a 

maximum at h13 = 1/2 then decreases again symmetrically. This is because the number 

of S1-S3 secondary infections increases more rapidly than the number of S2-S3 

secondary infections decreases as h13 increases from 0 to n/2. When f is parabolic the 

converse occurs and the contribution of secondary infections deceases to a minimum 

at h13 = n/2. So, assuming that S3 is closer to S1 than S2, for linear and square-root 

forms of f all components of the invasion function are either constant or increasing 
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with h13. The converse assumption leads to a symmetric result. Since invasion must be 

neutral when h13 = 0 (S1 and S3 are identical) it must be possible at all other points. 

However, when f is parabolic, invasion is only possible when there are sufficient 

tertiary infections to compensate for the decrease in secondary infections with h13. 

The contribution of primary and secondary infections depends only weakly on r. 

However, the contribution of tertiary infections is approximately proportional to r. So 

larger values of r mean that the increase in tertiary infections compensates for the 

decrease in secondary infections, and invasion becomes possible, at lower values of 

h13.  
 

The case with S1 and S2 discordant is instructive, and corresponds closely to results 

for a continuous one-dimensional antigenic space (Adams and Sasaki, 2007). When 

S1 and S2 are not discordant the situation is much more complex and difficult to 

interpret. Figure 8 shows the components of the invasion function when n = 10 and 

h12 = 7/10. When f is parabolic invasion is possible for some values of h23 when h13 ! 

6/10 but the interactions are clearer in the region h13 < 5/10. Here, for all forms of f 

tertiary infections are insensitive to h23 because immunity is controlled by the 

minimum of f(h13) and f(h23), which is either f(h13) or very close to it. When h13 is close 

to 0, each change in h13 leads to a large change in f(h13) if q < 1 but a small change in 

f(h13) if q > 1. So the contribution of tertiary infections to invasion increases more 

rapidly with h13, and is generally more significant, when q < 1. The contribution of 

secondary infections to invasion is more sensitive to h23. When q > 1 a small change 

in h23 often leads to a large change in f(h23) and there is considerable variation in the 

contribution of secondary infections for any given value of h13. Conversely, when q < 

1, f(h23) is less sensitive and the variation is much smaller. Combined with the low 

baseline of tertiary infections, the high variation in secondary infection means that 

invasion is sometimes impossible when q > 1.  

 

The form of the cross-immunity function f plays a critical role in determining the 

expected evolutionary pathway of the pathogen. When q ! 1 two strains at 

equilibrium can always be invaded by a third strain. Numerical results indicate that at 

least 6 strains can always coexist and it seems likely that this extends to any number 

of strains. Therefore, cross-immunity is not a strong selective force and pathogens 

will exist as a cloud of strains with little antigenic structure to the population. When q 

> 1 invasion and coexistence are limited and the pathogen population is expected to 

be highly antigenically structured. To investigate further, we set q = 2 and assume that 

one strain is initially present. Then a mutant strain can arise by the random switching 

of a single bitstring element. This will lead to two coexisting strains, S1 and S2, with 

h12 = 1/n. A third strain S3 can then arise by random switching of a single element in 

either of these bitstrings. We wish to know if S3 can invade and, if so, whether it will 

coexist with or replace the existing strains. The process of mutation and replacement 

will maintain an evolutionary trajectory composed of two distinct branches, while 

coexistence of the mutant with both existing strains will lead to the establishment of a 

new branch. This event is our primary focus here and we refer to it as branching. It is 

expedient to consider the more general situation of two existing strains S1 and S2 

with distance h12 and a mutant strain S3 resulting from S1 and so having h13 = 1/n. 

Clearly a symmetric argument will apply if the mutant strain results from S2. There 

are two cases to consider:  
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Case i, step-out mutant: The element j in S1 that is switched to create S3 is such that 

S1[j] = S2[j]. Then S3[j] % S2[j] but all other elements are unchanged so h23 = h12 + 

1/n. Substituting these values into (6) gives the invasion criterion 

. Clearly this is always satisfied. Furthermore, the invasion 

criterion if S1 and S3 are at equilibrium and S2 is attempting to invade is 

which is also always satisfied. However, the invasion 

criterion if S2 and S3 are at equilibrium and S1 is attempting to invade is: 

     (18) 

 

Here h12 ' 1/n, otherwise S1 and S2 would be identical. The explicit expressions for y* 

and y*
23 can be written in terms of h12, r and n and, substituting these into (18) gives:  

 

  (19) 

 

where . This simplifies to the threshold: 

 

    (20) 

 

There is also a lower threshold that results from a negative square root in (20) but it 

can be shown that this is always less than 1/n and so never admissible.  

 

Case ii, step-in mutant: The element j in S1 that is switched is such that S1[j] % 

S2[j]. Then S3[j] = S2[j] and h23 = h12 – 1/n. Then, using (7), and substituting the 

explicit expressions for the equilibrium solutions, the invasion criterion is:  

 

      (21) 

 

where . This simplifies to the threshold: 

 

    (22) 

 

This condition is only valid if h12 ' 2/n since, if h12 = 0 then h23 = h12 – 1/n is nonsense 

and, if h12 = 1/n then h23 = 0 would imply that S2 and S3 are identical. Again, there is 

a lower threshold that results from a negative square root in (22) but it can be shown 

that this is always less than 2/n and so never admissible. Furthermore, the threshold &2 

is clearly always greater than &1 and so we need only consider case i when examining 

the conditions for branching.  

 

The three invasion conditions derived in case i show that an equilibrium composed of 

S1 and S2 is locally unstable to invasion by S3, an equilibrium composed of S1 and 

S3 is locally unstable to invasion by S2 but an equilibrium composed of S2 and S3 is 
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locally stable to invasion by S1 unless (20) is satisfied. Together, these results mean 

that a mutant S3 can invade, the existing strain S2 cannot be excluded but the existing 

strain S1 will be excluded unless there is a bistable state with all three strains 

coexisting. We do not provide an analytic result to rule out such bistability. However, 

numerical bifurcation analysis suggests that the threshold for local stability given in 

(20) is identical to the threshold for the existence of a solution with three strains 

coexisting, as shown in Figure 9. So, starting with two strains with distance 1/n, a one 

step mutant strain can always invade and, since the three strain equilibrium does not 

exist, it must replace one of the existing strains to form a new pair. This process will 

continue until the distance between the current pair reaches the threshold %1 given in 

(20). At that point three strains can coexist and a new evolutionary branch appears. 

The way in which the threshold distance for branching given by (20) depends on r and 

n is shown in Figure 9. Branching does not occur for r < n. If r is increased branching 

first occurs when the existing strains are increasingly antigenically similar until, when 

r is large in comparison to n, branching occurs immediately. The number of elements 

in the bitstring, n, is important here because it implicitly determines the magnitude of 

antigenic change associated with a single point mutation. There is a region around 

each existing strain, the width of which is determined by their antigenic similarity and 

the basic reproductive number, where invasion and coexistence are impossible. In 

order for a mutant to establish a new evolutionary branch it must escape this region. 

When n is small the antigenic change associated with each point mutation is large and 

such an escape is more likely. Thus branching can occur even when two existing 

strains are antigenically similar. Conversely, if n is large, each mutation is associated 

with very little antigenic change and escape is difficult. Thus branching can only 

occur when the two existing strains are distant and the antigenic influence of the 

strain most dissimilar to the mutant strain is weak.   

 

The ordinary differential equation model extended to incorporate a maximum of 6 

strains was solved numerically to simulate the evolutionary process when r = 15. A 

new strain could occur as the result of switching a random element in an existing 

strain. A strain was assumed to be extinct if its force of infection became very small. 

The mutation rate was set sufficiently low to ensure that extinction occurred at a 

similar rate as the production of new strains and so the total number of strains 

remained below 6 as long there was no branching. For more details see the caption to 

Figure 10. Simulations were terminated as soon as 6 strains appeared, usually 

indicating the existence of three stable strain branches and one mutant strain from 

each which may or may not persist if the simulation were continued. From (20) and 

Figure 9, when r = 15 branching is predicted to occur immediately for n = 5, at h12 = 

6/10 for n = 10 and never for n = 15 and n = 20. As Figure 10 shows, simulation 

results were largely in agreement although the value of h12 at which the simulation 

was actually terminated was often 1 or 2 mutational steps greater than the predicted 

branching value because further mutation and extinction events involving the two 

founder branches occurred before a total of six strains accumulated. There were also a 

few cases when, by chance, a rapid sequence of mutations led to the premature 

accumulation of six strains although most of these would be expected to become 

extinct if the simulation could have been continued. 

 

6. Discussion 

In this paper we have shown that, in the context of a discrete bitstring derived 

antigenic space, the form of the relationship between antigenic distance and cross-
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immunity is of critical importance in the invasion, coexistence and predicted 

evolution of pathogen strains. If the relationship is discontinuous and only 

differentiates between identical, related or discordant strains then two coexisting 

related strains can always be invaded by another strain, whether it is related or 

discordant, mainly as the result of tertiary infections. Two coexisting discordant 

strains, however, may be resistant to invasion if cross-immunity between related 

strains is strong or the basic reproductive number of the pathogen is low and 

secondary or tertiary infections are rare. If more than two strains are initially present 

the incidence of each may show complex oscillations. However, the cross-immunity 

and basic reproductive numbers required for dominance of a pair of discordant strains 

show no change. Thus, if epidemiological characteristics are such that a discordant 

pair cannot be dominant, then we can infer that the evolutionary pathway will be 

characterized by the continuous accumulation of diversity without antigenic selection. 

If a discordant pair can be dominant, we can infer that the evolutionary pathway will 

characterized by the accumulation of diversity as related strains proliferate followed 

by widespread extinction when a discordant pair finally arises. Here it is the 

discordant pair of strains behind the selective sweep, not either strain individually.  

 

If the relationship between antigenic distance and cross-immunity can be 

continuously defined (say f(h) = hq) then the curvature, (represented by q) has a big 

impact influence on invasion and coexistence. When the relationship is concave (q < 

1) cross-immunity is disproportionately weak between strains that are close together. 

Given two coexisting strains invasion, and coexistence, of a third strain with any 

antigenic type is possible, mainly as the result of the strong influence of tertiary 

infections. Extending further, at least 6, and possibly any number, of strains will 

coexist. Thus cross-immunity is not a strong selective force and pathogens may be 

expected to exist as clouds of strains with little or no antigenic structuring. When the 

relationship is convex (q > 1) cross-immunity between strains that are close together 

is disproportionately strong compared to those that are far apart. Given two coexisting 

strains, invasion of a third strain, and subsequent coexistence, depends on the 

distribution of the strains in antigenic space and the basic reproductive number. The 

inter-relationship of these factors is complicated but, generally, invasion and 

coexistence are more likely when the basic reproductive number is larger. When the 

existing strains are antigenically dissimilar, invasion is restricted to regions of 

antigenic space close to one of these strains and distant from the other. When the 

existing strains are antigenically similar, invasion is possible anywhere except the 

region of antigenic space that is close to both of them. In both cases, successful 

invasion may result in the extinction of one of the existing strains. The inferred 

evolutionary pathway will be characterized by such events. Mutant strains replace 

members of a dominant pair until the antigenic distance between them is sufficiently 

great that a subsequent mutant can escape the antigenic shadow of its progenitor and 

establish a new lineage. The antigenic change associated with a single mutation is 

important. Smaller changes mean that mutants can only escape the antigenic shadow 

when the existing strains are further apart. In general, the total number of strains may 

be limited by both the availability of antigenic niches and the accessibility of these 

niches by a sequence of relatively small mutations alone. So cross-immunity may be a 

strong selective force and the pathogen population may show significant antigenic 

structuring, particularly when the basic reproductive number is small.  
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Many pathogens exist in populations displaying considerable antigenic variation. 

Immune escape is likely to be a significant aspect of the evolutionary process and 

may be particularly important for the management of vaccine preventable diseases 

such as influenza, Haemophilus influenzae, Streptococcus pneumoniae, Neisseria 

meningitides and Bordetella pertussis (Martcheva et al., 2008).  Models using discrete 

antigenic spaces have been already developed for both influenza and N. meningitidis 

(Gupta et al., 1998; Recker et al., 2007) and will undoubtedly be elaborated and 

applied to other pathogens in the future. The analysis presented here offers general 

insights into the role of cross-immunity in pathogen evolution and highlights several 

important factors that must be considered when developing more sophisticated 

models. The choice of function relating antigenic distance to cross-immunity, the 

calculation of immunity arising from two or more previous infections and the number 

of elements used in the bitstring genotype all have a significant impact on invasion, 

coexistence and the evolutionary trajectory the model predicts whether the antigenic 

space is continuous and one-dimensional or, as used here, discrete and high 

dimensional. At present there are few empirical results available to guide the 

construction and parameterization of these key components and the choice is often 

rather arbitrary. Such analysis will hopefully become available eventually. In the 

meantime, its absence need not be an obstacle to the development and application of 

models for pathogen evolution as long as their predictions are interpreted with an 

appropriate element of caution.  
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Figure captions 

Figure 1: Invasibility depending on r and $ when cross-immunity is discontinuous, 

two discordant strains are at equilibrium and the invading strain is related to both of 

them. Invasion is possible in the white region, impossible in the black region. 

 

Figure 2: Invasion functions and components depending on r and $ when the cross-

immunity function is discontinuous and two existing strains are at equilibrium. First 

column: all strains related. Second column: existing strains related, invading strain 

discordant. Third column: existing strains discordant, invading strain related. Solid 

black line – total invasion function, grey lines – components: dashed – primary 

infections, dot-dash – secondary infections, solid – tertiary infections. The dotted 

black line shows the invasion threshold. 
 

 

Figure 3: Invasion potential, expressed as the proportion of 10,000 time units for 

which the invasion criterion for a mutant is satisfied, when different combinations of 

2 to 6 existing strains co-circulate at quasi-equilibrium. Black indicates the invasion 

criterion is never satisfied, white indicates it is always satisfied, shades of grey 

indicate it is satisfied for some of the time. Hatching indicates parameter 

combinations that are inadmissible because the required initial qausi-equilibrium does 

not exist. In each panel the initial strains present are indicated by D and R, for 

instance D2R3 indicates a discordant pair and 3 related strains. The strain introduced 

is indicated by the final letter, +D or +R indicating a discordant or related strain 

respectively. The top left panel, D2+R, is the same as Figure 1, but determined 

numerically. The initial quasi-equilibrium was found by applying a Runge-Kutta 

method until t = 10
5
. The system was then iterated for a further 10

5
 time units during 

which period the invasion criterion for the introduced strain was evaluated at regular, 

small time intervals.  
 

Figure 4: Minimum value of invasion function ' for strain S3 as function of  h13 when 

existing strains S1 and S2 have antigenic distance h12 = 0.7 and r = 5. For case i h13 % 

h12, the minimum value of h23, h
*

23 = h12 - h13, h13 % h
*

23 and equation (8) applies. For 

case ii h13 % h12, h
*

23 = h12 - h13, h13 > h
*

23. For case iv h13 > h12, the minimum value of 

h23, h
*

23 = h13 - h12, h13 > h
*

23 and equation (13) applies. 
 

Figure 5: Threshold value of h13 for invasion when f(h) = h
2
. Strains S1 and S2, with 

antigenic distance h12, are at equilibrium. In the black regions, given by &1% h13 % h12/2 

and h12/2 % h13 % &2 and h12 % h13 invasion is possible for all values of h23 associated 

with the given value of h13.  In the white regions invasion is impossible for at least 

one value of h23. 
 

 

Figure 6: Numerically evaluated invasion criteria when two strains are initially 

present f(h) = h
2
, n = 10 and r = 1.01. Existing strains S1 and S2 have antigenic 

distance h12 and the distance between S1 and S3 is h13. The exact location of S3 is 

then determined by h23. Admissible values for h23 are shaded black if invasion is 

possible for S3 at this location and white if invasion is impossible. Inadmissible 

values for h23 are shaded grey.   
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Figure 7: Invasion functions and components depending on h13 with r = 3, n = 10 and 

h12 = 10/10 (S1 and S2 are discordant). Note that h23 is uniquely defined by h23 = 1 – 

h13. Since h13 is discrete, makers donate actual values of the invasion fucntions, lines 

are only added to aid visualization. Grey lines are the components: circles – primary, 

triangles – secondary, squares – tertiary component. Black lines and circles are the 

total invasion functions. Columns from left to right, parabolic, linear and square-root 

cross-immunity functions 

 

 

Figure 8: Invasion functions and components depending on h13 and h23 for r = 3, n = 

10, and h12 = 7/10. For most values of h13 there are several possible values of h23. All 

of these are marked, with numbers corresponding to n x h23. Grey circles denote the 

contribution from secondary infections, crosses the contribution from tertiary 

infections, black circles the total invasion function. The contribution from primary 

infections is constant in all cases and so has been omitted for clarity.  

 

 
Figure 9: Threshold distance between two existing strains for a new branch to appear. 

A third strain S3 can only invade and coexist with two existing strains S1 and S2 

when the distance between them h12 > %1(r, n). The solid lines show thresholds for 

mutual invasibility of all strains and strain pairings derived by local stability analysis 

and given by (20). The dashed grey lines show thresholds for the existence of a 

solution with three strains coexisting calculated by numerical bifurcation analysis.   

 

 

Figure 10: Value of h12 at which 6 strains first appear in an evolutionary simulation 

with r = 15 and n = 5, 10, 15 and 20. For each value of n, 20 independent runs were 

made. Initially one strain was present. New strains were generated by random 

switching of a single node in the bitstring of an existing strain with probability 5x10
-6

 

per infection per time unit. Strains were assumed to be extinct if the force of infection 

was less than 10
-80

.   
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