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ABSTRACT: We derive a comprehensive overview of specialization evolution based on 

analytical results and numerical illustrations. We study the separate and joint evolution of two 

critical facets of specialization local adaptation and habitat choice under different life cycles, 

modes of density regulation, and trade-off strengths. A particular feature of our analysis is the 

investigation of arbitrary trade-off functions. We find that local-adaptation evolution 

qualitatively changes the outcome of habitat-choice evolution under a wide range of 

conditions. In addition, habitat-choice evolution qualitatively and invariably changes the 

outcomes of local-adaptation evolution whenever trade-offs are weak. Even weak trade-offs, 

which favor generalists when habitat choice is fixed, select for specialists once local 

adaptation and habitat choice are both allowed to evolve. Unless trapped by maladaptive 

genetic constraints, joint evolution of local adaptation and habitat choice in the models 

analyzed here thus always leads to specialists, independent of life cycle, density regulation, 

and trade-off strength, thus raising the bar for evolutionarily sound explanations of 

generalism. Whether a single or two specialists evolve depends on the life cycle and the mode 

of density regulation. Finally, we explain why the gradual evolutionary emergence of 

coexisting specialists requires more restrictive conditions than their evolutionarily stable 

maintenance. 
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Ecological specialization is widely recognized as a major determinant of the emergence and 

maintenance of biodiversity (Futuyma and Moreno, 1988; Futuyma 1997; Maynard Smith 

1989). It is therefore of crucial importance to understand the ultimate causes of ecological 

specialization, as well as the relationship between specialization and diversification. To this 

end, it is desirable to understand when evolution in heterogeneous environments leads to a 

single generalist, to a single specialist, or to the diversification and maintenance of several 

specialists and/or generalists. 

Currently available theory offers quite a variety of models for the evolution of 

ecological specialization, each making different assumptions. Table 1 offers an extensive 

overview. Even though some factors have repeatedly been shown to be crucial for promoting 

or inhibiting specialization, their analysis within an integrative framework is as yet pending. 

Three of these factors are of particular importance. First, it is generally understood that for 

adaptation not to lead to a single all-purpose phenotype, which is the fittest in every habitat, 

one or more fitness trade-offs must exist (Levins 1968). Not surprisingly, the outcome of 

evolution has been shown to depend on the trade-off considered, with weaker trade-offs 

favoring generalists over specialists (e.g., Levins 1968; Brown 1990; van Tienderen 1991, 

1997; Wilson and Yoshimura 1994; Sasaki and de Jong 1999; Kisdi 2001; Rueffler et al. 

2004; Egas et al. 2004; Beltman and Metz 2005; Table 1). 

Second, life-cycle characteristics have consistently been shown to affect the emergence 

and maintenance of local-adaptation polymorphisms in heterogeneous environments (seminal 

population genetics models were introduced by Levene 1953 and Dempster 1955; these were 

analyzed and compared by, e.g., Christiansen 1975; Karlin and Campbell 1981; Karlin 1982; 

Rausher 1984; Garcia-Dorado 1986, 1987; Hedrick 1990a; de Meeûs et al. 1993; van 

Tienderen 1997; Ravigné et al. 2004). In particular, local density regulation has been shown 

to generate frequency-dependent selection when acting on populations in habitats with 
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different local allelic frequencies, thereby protecting local-adaptation polymorphisms 

(Ravigné et al. 2004). Population genetics simulation models (Diehl and Bush 1989; Fry 

2003), adaptive dynamics models (Egas et al. 2004; Beltman and Metz 2005), as well as 

quantitative genetics models (Ronce and Kirkpatrick 2001) have confirmed that population 

dynamics, the timing of density regulation, and the spatial scale of density regulation (within 

or across habitats) are essential for the emergence and maintenance of local-adaptation 

polymorphisms (Table 1). 

Third, it has generally been recognized that patterns of distribution of individuals 

among habitats strongly affect the outcome of selection for local adaptation. Specifically, both 

the emergence and the stable coexistence of locally specialized phenotypes are greatly 

facilitated by mechanisms of habitat choice that permit phenotypic segregation. Examples of 

such mechanisms are philopatry (e.g., Maynard Smith 1966; Brown and Pavlovic 1992; 

Meszéna et al. 1997; Geritz and Kisdi 2000; Kisdi 2002), learned habitat preference (e.g., 

Beltman et al. 2004; Beltman and Haccou 2005; Beltman and Metz 2005; Stamps and Davis 

2006), and matching habitat choice (a preference of individuals for the habitat they are best 

adapted to; e.g., de Meeûs et al. 1993; Ravigné et al. 2004). Obviously, dispersal and habitat 

choice may themselves be subject to adaptive evolution (e.g., Fretwell and Lucas 1970; Doyle 

1975; Ward 1987; Brown 1990; Fryxell 1997; see Jaenike 1990; Mayhew 1997; and Morris 

2003 for reviews on habitat selection; see Ronce 2007 for a review on dispersal) and are thus 

expected to evolve jointly with local adaptation (de Meeûs et al. 1993; Rausher 1993; Table 

1). 

In this study we employ an integrative framework for investigating the gradual 

evolution of local adaptation and habitat choice in heterogeneous environments, with the aim 

of bridging across, and thereby unifying, a host of earlier more specialized studies. Our 

analysis simultaneously considers key ecological factors such as different life cycles, modes 
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of density regulation, and trade-off shapes, as well as genetic factors such as the mutational or 

population-level trait variances and covariances. We study the separate evolution of local 

adaptation (performances) and habitat choice (preferences), as well as their joint evolution. 

Summarized in figure 1, our main results offer a synthetic overview, based on analytically 

derived conditions, of how outcomes of specialization evolution depend on the 

aforementioned key ecological factors. A particular feature of our analysis is the investigation 

of arbitrary trade-off functions, which implies that our results in this regard are as general as 

they can be. We also explore how conditions for the gradual emergence of specialization 

polymorphisms differ from those for their maintenance. 

 

Methods 

We consider a species that can inhabit two distinct habitats. Here the term habitat is 

understood in a general sense, as a subset of the environment exposing individuals to specific 

selection pressures (Morris 2003). Individuals are characterized by two traits: a local-

adaptation trait that determines their performance within each habitat, and a habitat-choice 

trait that determines their propensity to settle in one habitat or the other. These traits naturally 

reflect two key facets of ecological specialization: the capacity for improved performance in a 

particular habitat, and the capacity for preferentially entering a particular habitat (Rausher 

1984). We consider an asexual semelparous species with non-overlapping generations. All 

three life cycles described below imply that individuals experience selection in a single 

habitat during each reproductive season, and thus describe coarse-grained environments 

(Levins 1968; Morris 1992). We highlight that our model also applies to the particular case of 

an iteroparous species with discrete generations and survival and fecundities that are not age-

specific. The reason is that surviving parents are then formally equivalent to one of their 

offspring. Iteroparous individuals can experience both habitats during their lifetime, so for 
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them the models describe environments that are fine-grained at the time scale of generations 

and coarse-grained at the time scale of seasons. 

 

Life cycles 

Life cycles underlying the evolution of specialization in classical asexual dispersal-selection 

models comprise three steps: mixing and dispersal between two different habitats, selection 

within habitats, and density regulation. By definition of these models, selection is phenotype-

dependent and density-independent, whereas density regulation is density-dependent and 

phenotype-independent. Density regulation may occur either separately within each habitat 

(local regulation) or jointly across habitats (global regulation). Whether dispersal occurs at the 

juvenile or the adult stage and whether selection concerns viability or fertility does not affect 

the structure, and thus the outcome, of these models. 

As we have recently shown (Ravigné et al. 2004; see also Beltman et al. 2004), there are 

only three prototypical life cycles that can result from permuting these three steps. The first 

life cycle (hereafter called ―Model 1‖) was first described by Levene (1953) and is the most 

common model considered for analyzing soft selection (Wallace 1975). It is characterized by 

a periodic sequence of steps as follows: 

1. Mixing and dispersal between two different habitats. 

2. Selection within habitats. 

3. Local density regulation within habitats. 

As density regulation occurs locally after selection, habitat contributions to the next 

generation are independent of the phenotypic composition within a habitat (this is known as 

―constant habitat outputs‖ in dispersal-selection models of population genetics). 
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The second model (―Model 2‖) is the standard interpretation of a verbal model 

introduced by Dempster (1955). It is the most common model considered for analyzing hard 

selection, and is known to result in frequency-independent selection: 

1. Mixing and dispersal between two different habitats. 

2. Selection within habitats. 

3. Global density regulation across habitats. 

Here, as density regulation is global, habitat outputs depend on the phenotypic composition 

within habitats, and thus vary during the course of evolution (this is known as ―variable 

habitat outputs‖ in dispersal-selection models of population genetics). 

The regulation step may imply the gathering of all individuals in a third habitat in which 

density regulation takes place. For instance, the aphid Pemphigus bursarius (L.) feeds on 

lettuce roots during summer and can utilize two different habitats, soil and poplar trees, 

during winter (Phillips et al. 2000). If density is regulated on lettuce roots, regulation is global 

for traits involved in adaptation to the two winter habitats. 

The last model (―Model 3‖), combines local density regulation (as in Model 1) with 

variable habitat outputs (as in Model 2): 

1. Mixing and dispersal between two different habitats. 

2. Local density regulation within habitats. 

3. Selection within habitats. 

Model 3 (Ravigné et al. 2004) has not been considered traditionally. We have shown 

previously that Model 3 gives rise to frequency-independent selection (i.e., hard selection) 

when individuals distribute randomly among habitats, but causes frequency-dependent 

selection (i.e., soft selection) when they choose the habitat that they are best adapted to 

(Ravigné et al. 2004). 
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For Models 1 and 3, which imply local density regulation, 1C  and 2C  denote the local 

carrying capacities of habitats 1 and 2, respectively. For Model 2, which implies global 

density regulation, the global carrying capacity is chosen as 1 2C C . Local and global density 

regulations are based on a ceiling: only 1C  and 2C  or 1 2C C  individuals, respectively, 

survive the regulation step, independent of their phenotype. Habitats (Models 1 and 3) or the 

entire environment (Model 2) are thus assumed to be saturated after the regulation step. The 

relative carrying capacities of habitats 1 and 2 are denoted by  2111 CCCc   and 

2 11c c  , respectively. 

It is worth pointing out that the question as to which of the three life cycles describes 

above best matches that of a particular organism can have different answers depending on 

which adaptive trait is at focus (Ravigné et al. 2004, Rueffler et al. 2006a, 2006b). 

 

Dispersal and habitat choice 

During the dispersal step at the beginning of each of the three life cycles, individuals settle in 

one habitat where they, or their offspring, experience natural selection. The distribution of 

individuals across habitats is determined by their habitat-choice trait h  (0 1h  ), measuring 

an individual‘s probability of settling in habitat 2 (accordingly, its probability of settling in 

habitat 1 is given by 1 h ). In phytophagous insects, h  may, for instance, represent the 

proportion of eggs laid by a female of phenotype h  on a host plant of type 2, or the 

probability that emerging larvae choose to settle in habitat 2. Habitat choice is assumed to be 

genetically fixed without phenotypic plasticity. 
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Local adaptation and trade-offs 

As a second adaptive trait, we consider a local-adaptation trait p  (0 1p  ) affecting the 

local fitnesses 1( )w p  and 2( )w p  in habitats 1 and 2, respectively. These local fitnesses only 

vary with the phenotype p and not with phenotypic frequencies. In phytophagous insects, p  

and 1 p  may, for instance, describe the relative concentration of two enzymes that facilitate 

assimilation of nutrients from host plants of type 1 and 2 in the digestive tubes of larvae. 

Accordingly, 1( )w p  and 2( )w p  may characterize the survival of larvae feeding on host plants 

of type 1 or 2, respectively. Alternatively, 1( )w p  and 2( )w p  may be interpreted as the 

differential fecundities of adult females feeding on host plants of type 1 or 2, respectively. 

Below we will mostly present analytical results that are valid for arbitrary functions 

1( )w p  and 2( )w p . Following Spichtig and Kawecki (2004; see also HilleRisLambers and 

Dieckmann 2003; Egas et al. 2004), we will occasionally use two specific functions, 

sppw 1)(1           (1a) 

and 

 pspw  11)(2 .         (1b) 

for the sake of concreteness and the purpose of illustration. Here, the parameter   determines 

the shape of the local fitness functions (see below), while the parameter s  determines the 

maximum level of local maladaptation (the lowest possible local fitness is 1 s , where 

0 1s  ). 

Terminology for describing trade-offs such as those defined by equations (1) is 

inhomogeneous in the literature. A first convention for characterizing convexity or concavity 

is based on the trade-off curve 2 1( )w w . The trade-off is described as convex if the second 

derivative of 2 1( )w w  is positive, and as concave otherwise. For the specific functions in 

equations (1), 1  implies a convex trade-off and 1  a concave trade-off. A second 
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convention – used, for example, in the seminal analysis of trade-offs by Levins (1968) – is 

based on fitness sets. Fitness sets are defined as the sets of possible (observable) fitness 

combinations 1 2( , )w w . These are thus delimited by the axes of the positive quadrant together 

with the trade-off curve 2 1( )w w . A fitness set is termed convex if any straight line connecting 

two fitness combinations within the set lies within the set (Levins 1968). Unfortunately, 

convex fitness sets are delimited by concave trade-off curves and vice versa, which can lead 

to confusion when referring to trade-offs as being convex or concave. To avoid any such 

confusion in this study, we adopt a third widely used convention throughout: hereafter we will 

refer to concave trade-off curves (and thus to convex fitness sets) as ―weak trade-offs‖, and to 

convex trade-off curves (and thus to concave fitness sets) as ―strong trade-offs‖ (see the top 

row of figure 1 for illustrations). Under a weak trade-off between two components of fitness, 

increasing one of them only weakly reduces the other, whereas when the trade-off is strong 

this reduction is strong. For the specific functions in equations (1), 1  implies a strong 

trade-off and 1  a weak trade-off. Accordingly, trade-off strength in equations (1) can be 

measured by 1/ , and we thus refer to   as the inverse trade-off strength. 

 

Evolutionary dynamics 

To investigate conditions facilitating the evolution of specialization, the local-adaptation trait 

p  and the habitat-choice trait h  are allowed to evolve. Outcomes of selection on these traits 

are examined using a generalized framework in which evolutionary rates are proportional to 

selection pressures. Two kinds of evolutionary dynamics are considered, which differ in their 

mathematical and biological underpinnings: one, in which the probability and size of 

mutations is assumed to be very small, so that evolution proceeds through the invasion and 

fixation of mutant phenotypes in otherwise monomorphic resident populations (as assumed in 

adaptive dynamics theory; Metz et al. 1992, 1996; Dieckmann and Law 1996; Geritz et al. 
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1997), and another, in which all phenotypes are present at all times, so that evolution proceeds 

by their differential growth in fully polymorphic resident populations (as assumed in 

quantitative genetics theory; Lande 1976; Iwasa et al. 1991; Taper and Case 1992; Abrams et 

al. 1993). In first approximation, both kinds of dynamics give rise to evolutionary rates that 

are proportional to selection gradients (Iwasa et al. 1991; Dieckmann and Law 1996). The 

constant of proportionality involves the variance-covariance matrix either of the mutation 

distribution (in adaptive dynamics theory) or of the population distribution (in quantitative 

genetics theory). This formal equivalence allows our analysis to deal with both kinds of 

evolutionary dynamics at once. 

Our analysis of evolutionary outcomes proceeds in three steps, which will be carried out 

below separately for the three fundamental life cycles described above. We begin by 

calculating invasion fitness, i.e., the long-term exponential growth rate of rare phenotypes 

(Metz et al. 1992). We then identify those (combinations of) trait values for which all 

selection pressures vanish. These are known as evolutionarily singular strategies and require 

that invasion fitness in each trait be at a local minimum or maximum (Metz et al. 1996; Geritz 

et al. 1997). 

In a second step, we determine whether the identified singular strategies are 

convergence stable (CS, i.e., attainable through gradual evolution; Christiansen 1991) and/or 

locally evolutionarily stable (ES, i.e., situated at a local fitness maximum; Maynard Smith and 

Price 1973). These two stability properties are independent (Eshel and Motro 1981; Taylor 

1989) and help distinguish between three different types of singular strategies of single-trait 

evolution: evolutionary end points known as continuously stable strategies (both CS and ES, 

resulting in stabilizing selection; Eshel and Motro 1981), evolutionary repellors (not CS, 

resulting in divergent selection; Metz et al. 1996), and evolutionary branching points (CS but 

not ES, resulting in disruptive selection; Metz et al. 1996). Phenotypic dimorphisms may 
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emerge and be maintained at the latter type of singular strategy. This three-fold classification 

carries over from single-trait evolution to the joint evolution of two traits, except that an extra 

test is then needed for checking whether a protected dimorphism can exist close a singular 

strategy. For single-trait evolution this is guaranteed for any singular strategy that is CS but 

not ES (Dieckmann 1994; Geritz et al. 1997), whereas for joint evolution this property, 

known as mutual invasibility, has to be established separately for identifying evolutionary 

branching points. 

As a third step, we consider the sensitivity of our results with respect to model 

parameters. The latter include 1c , as well as s  and   for the particular trade-offs considered 

in equations (1). When evolution occurs in only one trait, a fourth parameter is given by the 

non-evolving value of either h  or p . Since all of these parameters are already dimensionless 

and affect dynamics separately, the number of essential parameters (either 3 or 4) cannot be 

further decreased. In addition, since the joint evolutionary dynamics of the two traits might 

depend on their variances and covariance (either mutational variances and covariance as in 

adaptive dynamics theory or population-level variances and covariance as in quantitative 

genetics theory), we also study the robustness of our results with respect to variation of these 

quantities. 

 

Results 

In this section we derive analytical expressions for the invasion fitness in each of the three life 

cycles and examine the resultant evolutionary dynamics of local adaptation and habitat choice 

– first separately and then jointly. On this basis, we explain the crucial differences between 

separate and joint evolution, investigate evolutionary bistabilities, and contrast conditions for 

the maintenance and gradual emergence of specialization polymorphisms.  
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Invasion fitnesses 

When density regulation occurs locally after selection (Model 1), the invasion fitness of a 

variant with trait values p  and h  in a population with trait values p  and h  is 

1 2
, 1 2

1 2

(1 ) ( ) ( )
( , ) ln

(1 ) ( ) ( )p h

h w p hw p
s p h c c

h w p hw p

    
   .      (2a) 

When density regulation occurs globally (Model 2), the invasion fitness is 

1 2
,

1 2

(1 ) ( ) ( )
( , ) ln

(1 ) ( ) ( )p h

h w p hw p
s p h

h w p hw p

      
   .      (2b) 

When density regulation occurs locally before selection (Model 3), the invasion fitness is 

1 1 2 2
,

1 1 2 2 1 1 2 2

( ) ( )1
( , ) ln

( ) ( ) 1 ( ) ( )p h

c w p c w ph h
s p h

c w p c w p h c w p c w p h

      
   .   (2c) 

To illustrate the method of derivation, the invasion fitness in equation (2a) is deduced in 

Appendix A. In our model, p  and h  can be interpreted in two alternative ways. First, they 

may be viewed as the trait values of a monomorphic resident population, as in adaptive 

dynamics theory. Second, p  and h  can be interpreted as the population‘s mean trait values in 

a polymorphic resident population, as in quantitative genetics theory, assuming that the 

population-level variances of both traits around these means are small. Our analyses below 

are independent of which of these interpretations is preferred. 

 

Evolution of local adaptation alone 

We first analyze the evolution of local adaptation when habitat choice is fixed and 

monomorphic for some value of h  (under passive and random dispersal, h , the probability of 

settling in habitat 2, is simply given by the frequency of habitat 2 in the environment, 2h c ). 

Results are summarized in figure 1 and proofs are given in Appendix B. Similar analyses 

were performed by Geritz et al. (1997), Kisdi and Geritz (1999; Model 1 for Gaussian local 
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fitnesses), and Kisdi (2001; Model 1 for general local fitnesses). The qualitative conclusions 

reported in those earlier studies were similar to those derived here. In particular, most 

previous studies have emphasized the influence of trade-off strength on evolutionary 

outcomes, including models dealing with fine-grained environments (e.g., Rueffler et al. 

2006b). Models 2 and 3 have not been considered previously in the form they are analyzed 

here. However, Meszéna et al. (1997), Egas et al. (2004; similar fitness functions but different 

density regulation), and Beltman and Metz (2005) examined life cycles that were similar to 

our Model 3. 

Constant habitat outputs. For constant habitat outputs (local regulation after selection, 

Model 1), evolutionarily singular strategies *p  must satisfy 

* *
1 2

1 2* *
1 2

( ) ( )
0

( ) ( )

w p w p
c c

w p w p

   ,        (3a) 

with ( ) ( ) /i iw p dw p dp   for 1,2i  . Evolutionarily singular strategies in Model 1 are 

therefore independent of habitat choice. If an evolutionarily singular strategy does not exist, 

selection always remains directional, so that the population will evolve an extreme degree of 

local adaptation ( * 0p   or * 1p  ). If the trade-off is symmetric (1 2( ) (1 )w p w p  ), and 

local carrying capacities are equal (1 2c c ), the generalist strategy * 1
2p   is always singular 

(for the specific trade-offs given by equations (1) this is illustrated in fig. 2A). If carrying 

capacities differ, intermediate strategies other than * 1
2p   may be singular (fig. 2B). For 

moderately strong trade-offs, the intermediate singular strategy is surrounded by two 

additional singular strategies (fig. 2A-B). 

 

----- Figure 1 and Figure 2 near here ----- 
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We now examine the properties of the evolutionarily singular strategies *p  in equation 

(3a). Results are summarized in figure 1. Singular strategies *p  in Model 1 are locally 

evolutionarily stable (ES) if  

* *
1 2

1 2* *
1 2

( ) ( )
0

( ) ( )

w p w p
c c

w p w p

           (3b) 

and convergence stable (CS) if  

* * * 2 * 2
1 2 1 2

1 2 1 2* * * 2 * 2
1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w p w p w p w p
c c c c

w p w p w p w p

      .     (3c) 

with 2 2( ) ( ) /i iw p d w p dp   for 1,2i  . The first inequality is fulfilled if the trade-off is weak 

at *p , while the second one is fulfilled if the trade-off is weak or moderately strong at *p . 

Thus, if the trade-off is weak at *p , the singular strategy is both ES and CS: selection at *p  is 

stabilizing and *p  is an evolutionary end point (e.g., for the specific trade-offs given by 

equations (1) this is shown by thick curves in fig. 2A-B). The selected intermediate local-

adaptation trait is then more or less generalist depending on relative carrying capacities (fig. 

2A-B). If the trade-off is very strong at *p , the singular strategy is neither ES nor CS: 

selection around *p  is divergent and *p  is an evolutionary repellor (dotted curves in fig. 2A-

B). Selection then favors maximal adaptation to one habitat, depending on the initial trait 

value and relative carrying capacities. If the trade-off is only moderately strong at *p , the 

intermediate singular strategy is CS but not ES: selection at *p  is disruptive and *p  is an 

evolutionary branching point (dashed curves in fig. 2A-B). In this case, an initial morph that 

is not too close to one of the specialists first converges toward *p  and then becomes 

dimorphic owing to the frequency-dependent disruptive selection experienced at *p ; the 

resultant two specialists subsequently evolve away from *p . If one habitat has a much larger 

carrying capacity than the other, the range of trade-off strengths (as measured by 1/  ) for 
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which two coexisting specialists can evolve in this manner is reduced compared to the 

symmetric situation (compare fig. 2A and 2B). 

It is worth highlighting that some trade-offs (such as those defined by equations (1)) 

imply the existence of three singular strategies. In such situations, evolutionary outcomes will 

depend on a population‘s initial level of local adaptation. As illustrated in figure 2A-B, with 

moderately strong trade-offs the intermediate branching point is then surrounded by two 

repellors. Consequently, a population that starts outside the range of local-adaptation traits 

delimited by the two repellors cannot reach the branching point through gradual evolution, 

and will instead maximally adapt to one habitat. In contrast, a population starting in between 

the two repellors will first evolve to the branching point and may then split into two 

coexisting specialists. For the specific trade-offs defined by equations (1), we corroborated 

that after evolutionary branching these two coexisting specialists become maximally adapted 

to either of the two habitats (results not shown). Contingent on the initial level of local 

adaptation, three qualitatively different evolutionary outcomes are thus possible. 

Variable habitat outputs. With fixed habitat choice, life cycles with variable habitat 

outputs (Models 2 and 3) behave analogously to one another (for the specific trade-offs given 

by equations (1) this behavior is illustrated in fig. 2C-D), but rather differently from life 

cycles with constant habitat outputs (Model 1). Evolutionarily singular strategies *p  must 

satisfy the following equations, respectively, for global density regulation (Model 2) and for 

local density regulation (Model 3), 

* *
1 2(1 ) ( ) ( ) 0h w p hw p    ,        (4a) 

* *
1 1 2 2( ) ( ) 0c w p c w p   .        (4b) 

The singular strategy thus only depends on the distribution of individuals at the time of 

selection (described by 1 h  and h  in Model 2, and by 1c  and 2c  in Model 3) and on the 
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local trade-off shape (described by *
1( )w p  and *

2( )w p ). If both habitats have the same 

population size when selection occurs (i.e., if they are equally visited in Model 2, 1 h h  , or 

if they have the same carrying capacity in Model 3, 1 2c c ), strategies *p  with 

* *
1 2( ) ( )w p w p    are singular. If the trade-off is symmetric (1 2( ) (1 )w p w p  ) and the local 

fitness functions are either convex or concave, the latter condition is only fulfilled at * 1
2p  . 

For instance, for the specific trade-offs given by equations (1), in Model 2 the singular 

strategy (fig. 2C-D) is given by 

*

1 1

1

1 1
p

h
     .         (4c) 

We can see that 1
2h   implies * 1

2p  , independent of the trade-off strength 1/  (fig. 2C). In 

Model 3, the singular strategy (fig. 2C-D) is similarly given by 

11
2

1

1 1
p

c


   .         (4d) 

Analogously, 2
1

2 c  implies * 1
2p  , independent of the trade-off strength 1/  (fig. 2C). 

We return to general trade-off functions and examine the properties of the 

evolutionarily singular strategies *p  in equations (4a) and (4b). If the trade-off is strong at 

*p , *p  is a repellor (neither ES nor CS; eqq. [B7/B8] and [B11/B12] are not fulfilled). In this 

case, the population maximally adapts to one habitat or the other, depending on the initial trait 

value and relative carrying capacities. If the trade-off is weak at *p , *p  is an evolutionary 

end point (both CS and ES; eqq. [B7/B8] and [B11/B12] are fulfilled). The selected local-

adaptation trait *p  will then be intermediate between the two extreme specialists. Equations 

(4) show that this intermediate phenotype is tuned by habitat contributions to the next 

generation (i.e., according to relative population sizes just before mixing) if density regulation 

is local (Model 3), whereas it depends on habitat choice if density regulation is global (Model 
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2). It thus corresponds to a strategy that is equally well adapted to both habitats (fig. 2C) only 

when those are of similar quality under local density regulation (Model 3) or are visited in 

equivalent frequencies under global density regulation (Model 2). When one habitat is visited 

more frequently than the other under global density regulation (Model 2), or when it 

possesses a larger carrying capacity than the other under local density regulation (Model 3), 

evolution thus often favors local adaptation biased toward this habitat, irrespective of trade-

off shape (fig. 2D). 

 

Evolution of habitat choice alone 

We now assume that every individual in the population has the same fixed and non-evolving 

level of local adaptation p . Results are summarized in figure 1 and proofs are given in 

Appendix C. Conclusions reported in this section can be found in classical studies on the 

evolution of habitat choice (e.g., Fretwell and Lucas 1970; Rosenzweig 1981). 

With constant habitat outputs (Model 1), the only singular strategy for habitat choice h  

is CS and ES (or, more precisely, neutrally ES, see Appendix C), 

2h c  .           (5a) 

With variable habitat outputs due to global regulation (Model 2), habitat choice h  is 

selectively neutral if p  is such that 1 2( ) ( )w p w p . Otherwise, selection is directional and 

favors maximal preference for the more favorable habitat, 

0h   or 1h  .          (5b) 

With variable habitat outputs due to local regulation before selection (Model 3), the only 

singular strategy for h  is CS and ES, 

2 2

1 1 2 2

( )

( ) ( )

c w p
h

c w p c w p
   .        (5c) 
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In life cycles with local density regulation (Models 1 and 3), the selected strategy is an 

―opportunist‖ (Rosenzweig 1981): individuals distribute themselves according to habitat 

productivities (i.e., according to local population sizes before mixing). Hence, the intensity of 

competition is the same in both habitats, implying an ideal free distribution (Fretwell and 

Lucas 1970; Fretwell 1972; Rosenzweig 1981; Morris 1988). In contrast, when density 

regulation is global, the selected strategy exhibits extreme ―pickiness‖ (Rosenzweig 1981). 

 

Joint evolution of local adaptation and habitat choice 

We now examine the general situation in which local adaptation and habitat choice evolve 

jointly. Results are summarized in figure 1 and proofs are given in Appendix D. 

With constant habitat outputs (local regulation after selection, Model 1), the singular 

strategy * *( , )p h  determined by equations (3a) and (5a) is intermediate. It is not ES (eq. 

[D23]). When the trade-off is sufficiently strong, the singular strategy is an evolutionary 

saddle point (i.e., it attracts the evolutionary dynamics in the two-dimensional trait space in 

one direction, but repels in another direction; fig. 3A). In contrast, when the trade-off is weak 

or moderately strong (fig. 3D; eq. [5]), the singular strategy is convergence stable, 

irrespective of the genetic variance-covariance structure of p  and h  (eq. [D12]). It is then an 

evolutionary branching point (i.e., a point in the vicinity of which a dimorphism can emerge; 

fig. 3D), unless the two traits are strongly negatively correlated (so that the two strategies that 

would naturally diverge from the singular strategy cannot coexist; Appendix D). We have 

thus shown that in Model 1, under the assumptions considered here, joint evolution cannot 

result in a generalist unless maladaptive genetic constraints trap the population at the singular 

point. 

With variable habitat outputs due to global regulation (Model 2), the singular strategy 

* *( , )p h , if it exists (eq. [D4]), is always an evolutionary saddle point (fig. 3C; eq. [D14]), 
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irrespective of the variance-covariance structure. Independent of trade-off shape, selection 

favors a picky specialist that is completely adapted to one habitat and consistently chooses it, 

leaving the other habitat empty. 

With variable habitat outputs due to local regulation before selection (Model 3), the 

singular strategy * *( , )p h  is given by equations (4b) and (5c) (with *p p ). It is never ES 

(eq. [D24]). If the trade-off is strong (eq. [D18] not fulfilled), * *( , )p h  is an evolutionary 

saddle point (fig. 3B), irrespective of the variance-covariance structure. If the trade-off is very 

weak (eq. [D20]), * *( , )p h  is an evolutionary branching point, unless the two traits are 

strongly negatively correlated (so that the two strategies that naturally diverge from the 

singular strategy cannot coexist; Appendix D). If the trade-off is moderately weak, the 

variance-covariance structure determines whether the singular point is CS (making it a 

branching point) or not (making it a repellor): the singular point then is CS unless the 

covariance between p  and h  is positive and larger than a threshold that rises for trade-offs 

that are increasingly weak (eq. [D21]). 

Regarding the impact of genetic variances and covariances on the outcomes of joint 

evolution, we can thus conclude that, in general, the outcome of gradual evolution is 

independent of the relative genetic variances of, and the genetic covariance between, the 

local-adaptation trait and the habitat-choice trait. Depending on the evolutionary dynamics 

considered, this conclusion applies either to the population-level variance-covariance 

structure in the quantitative genetics approach or to the mutational variance-covariance 

structure in the adaptive dynamics approach. This conclusion does not apply only when 

strongly negatively correlated traits are combined with weak to moderately strong trade-offs 

in Model 1 or with weak trade-offs in Model 3, or when strongly positively correlated traits 

are combined with moderately weak trade-offs in Model 3 (Appendix D). 
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----- Figure 3 near here ----- 

 

Comparison of evolutionary dynamics and outcomes 

We now summarize conditions for the gradual emergence of polymorphism under the joint 

evolution of habitat choice and local adaptation. When the trade-off is weak, polymorphisms 

can emerge if density regulation is local, independent of whether this regulation leads to 

variable habitat outputs (Model 3) or to constant habitat outputs (Model 1); global regulation 

then precludes polymorphism. Conversely, when the trade-off is strong, variable habitat 

outputs preclude the emergence of polymorphisms, both in Model 2 (local regulation before 

selection) and in Model 3 (global regulation); polymorphism can then only emerge if local 

regulation occurs after selection (Model 1) and the trade-off is not too strong. 

We have shown that in all three prototypical dispersal-selection models the joint 

evolution of habitat choice and local adaptation leads to outcomes that qualitatively differ 

from those obtained for single-trait evolution as soon as local-adaptation trade-offs are weak 

(gray area in fig. 1). In particular, and perhaps most unexpectedly from a traditional 

perspective, under joint evolution weak trade-offs never select for generalists, but instead 

always favor specialization. Whether or not such specialization is then associated with 

diversification depends on the life cycle, with local regulation enabling diversification. 

 

Geometrical interpretation of analytical results 

To interpret the differences between single-trait and two-trait evolution and to understand 

more generally how trade-offs in our models affect singular strategies and their properties, we 

employ a geometrical analysis (de Mazancourt and Dieckmann 2004; Rueffler et al. 2004) 

that generalizes the classical fitness-set approach introduced by Levins (1968) to systems with 

frequency-dependent selection. The method is based on plotting trade-off functions together 
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with invasion boundaries for the singular strategy being the resident strategy (fig. 4). For each 

resident strategy 1 2( , , )w w h  (not constrained by the trade-off, so that 1w  and 2w  are 

independent), the invasion boundary is defined by the set of variant strategies 1 2
ˆˆ ˆ( , , )w w h  that 

have the same invasion fitness as the resident. We focus the geometrical illustrations below 

on Model 1, since it was this life cycle that exhibited the most dramatic differences between 

single-trait and two-trait evolution (fig. 1A and 1C). 

When habitat choice is fixed and local adaptation evolves alone, the invasion boundary 

lies in the two-dimensional space defined by the two local fitnesses (fig. 4A-B). This invasion 

boundary is linear for all residents and life cycles (fig. 4A-B; eqq. [E2-E4]). Figure 4A shows 

geometrically why in this case a weak trade-off can only induce evolutionarily stable 

strategies (either evolutionary end points or Garden-of-Eden configurations; Hofbauer and 

Sigmund 1990; Dieckmann 1997; Rueffler et al. 2004; de Mazancourt and Dieckmann 2004): 

when the singular local-adaptation trait is resident, resulting in the resident strategy 

* *
1 2( ( ), ( ))w p w p , all other trait combinations 1 2ˆ ˆ( , )w w  along the trade-off curve 2 1( )w w  have 

negative invasion fitness, so that evolution must come to a halt there. This confirms our 

analytical results for single-trait evolution (fig. 1A). 

When allowing for two-trait evolution, in contrast, we can see geometrically that weak 

trade-offs lead to evolutionary branching points. In this case, the invasion boundary is a 

curved surface in the three-dimensional space defined by the two local fitnesses and the 

habitat-choice trait (fig. 4C). The singular local-adaptation trait, which was not invasible 

under single-trait evolution, now becomes invasible by morphs that differ consistently from it 

in both their habitat-choice trait and their local-adaptation trait: relative to the singular morph, 

such morphs have an elevated preference for the habitat in which they perform better. 

Geometrically, this invasibility is visible through the corresponding part of the trade-off 
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surface lying above the invasion boundary, thus extending into the region of positive invasion 

fitness (fig. 4C). The resultant fitness landscape evidences disruptive selection (fig. 4E). 

We provide analogous illustrations for a moderately strong trade-off (fig. 4B, 4D, and 

4F). While for two-trait evolution the situation is similar to that for a weak trade-off (compare 

fig. 4D with fig. 4C and fig. 4F with fig. 4E), a salient difference occurs for single-trait 

evolution (compare fig. 4B with fig. 4A): now, when the singular local-adaptation trait is 

resident, all other trait combinations 1 2ˆ ˆ( , )w w  along the trade-off curve 2 1( )w w  have positive 

invasion fitness, so that evolutionary branching can occur even when habitat choice is fixed. 

 

----- Figure 4 near here ----- 

 

Evolutionary bistability 

The analysis above reveals that sufficiently strong trade-offs and global density regulation, 

either separately or jointly, result in divergent selection on local adaptation (fig. 1A and 1C). 

This favors maximal adaptation to one habitat and, if habitat choice also evolves, maximal 

preference to the same habitat. In such situations, the two specialist phenotypes are alternative 

evolutionary end points, a situation that is best described as evolutionary bistability (fig. 1). It 

is then desirable to predict which habitat a given population will ultimately specialize on. 

When habitat choice is fixed, evolutionary bistability occurs as summarized in figure 

1A. The outcome of local-adaptation evolution then depends on the population‘s initial local-

adaptation trait, and the basins of attraction of the two extreme specialist phenotypes are 

separated by evolutionary repellors (dotted curves in fig. 2). These basin boundaries may 

change with the strength of the trade-off (fig. 2A, 2B, and 2D), as well as with the relative 

habitat carrying capacities in life cycles with local regulation (Models 1 and 3; eqq. [3a] and 
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[4b] respectively; fig. 2B and 2D respectively) or the relative habitat preferences in life cycles 

with global regulation (Model 2; eq. [4a]; fig. 2D). 

When habitat choice evolves jointly with local adaptation, evolutionary bistability 

occurs as summarized in figure 1C. Bistability is then associated with an evolutionary saddle 

point, with this point‘s stable manifold serving as the separatrix (dotted curves in fig. 3) 

between the basins of the two alternative evolutionary attractors. In general, the orientation 

and shape of this separatrix will be affected by the population-level variance-covariance 

structure (quantitative genetics approach) or by the mutational variance-covariance structure 

(adaptive dynamics approach) of the two considered traits. Assuming genetic independence of 

habitat choice and local adaptation evolution, so that the genetic covariance between these 

traits vanishes, allows us to distinguish two qualitatively different cases. When regulation is 

local (Models 1 and 3), initial habitat choice does not affect the evolutionary outcome 

(vertical separatrices in fig. 3A and 3B) and the initial local-adaptation trait then matters just 

as when habitat choice is fixed. In contrast, when regulation is global (Model 2), the initial 

values of both traits jointly affect the evolutionary outcome (slanted separatrix in fig. 3C) and 

the slope of the separatrix varies with trade-off strength (fig. 3E). Specifically, when the 

trade-off is weak (high  ), the separatrix is less steep, so that the evolutionary outcome 

depends more sensitively on initial habitat choice than on initial local adaptation. 

 

Maintenance and gradual emergence of coexisting specialists 

Our analysis so far has determined conditions for the emergence of polymorphisms through 

gradual evolution. Classical population genetics models (e.g., Levene 1953; Dempster 1955; 

Maynard Smith 1966; Templeton and Rothman 1981; Beltman et al. 2004; Ravigné et al. 

2004; model type 1 in Table 1) instead focused on conditions for the maintenance of 

polymorphisms. 
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A polymorphism is called protected, and can thus be maintained against demographic 

perturbations, if all its members can reinvade after their disappearance (Prout 1968). For 

instance, under random dispersal, it is easily shown that with constant habitat outputs (Model 

1) and with fitnesses defined by equations 1, a polymorphism of two extreme specialists 

1 0p   and 2 1p   is protected if 

1 2

1 1
,

2 2

s
c c

s s

    .        (6) 

This leads to two conclusions (fig. 5, upper left panel). First, a polymorphism between the 

two specialists is protected in Model 1 if the carrying capacities of the two habitats are not too 

different and if the maximum level s  of local maladaptation is large enough. Second, whether 

such a polymorphism is protected is independent of the curvature of the trade-off function, as 

the latter only affects intermediate morphs. In contrast, our results above have shown how the 

curvature of a trade-off function restricts the conditions under which a polymorphism can 

emerge through gradual evolution (fig. 1-4). The conditions for the protection of a 

polymorphism are thus wider than those for its emergence through gradual evolution (fig. 5). 

Therefore, mutations or recombinations of particularly large phenotypic effect, or the 

immigration of non-resident strategies from the outside, can facilitate the emergence of 

specialization polymorphisms. When a polymorphism of two specialists cannot emerge 

through gradual evolution, but can be maintained once it has emerged, it may or may not be 

immune against the invasion of intermediate strategies depending on the considered trade-off 

strength. For instance, with constant habitat outputs (Model 1) and fixed random dispersal, a 

protected dimorphism of specialists is globally evolutionaril y stable if and only if the trade-

off is strong (Appendix B). In contrast, when the trade-off is weak, any intermediate strategy 

can invade (Appendix B). This is different under matching habitat choice (sensu Ravigné et 

al. 2004): protected dimorphisms of specialists are then always globally evolutionarily stable, 

irrespective of habitat outputs and trade-off strength (Appendix B). 
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----- Figure 5 near here ----- 

 

Discussion 

Local adaptation and habitat choice have long been recognized as two critical facets of 

ecological specialization (Rosenzweig 1981). Yet, few theoretical studies have explicitly 

addressed their joint evolution (Castillo-Chavez et al. 1988; de Meeûs et al. 1993; Beltman 

and Haccou 2005; Beltman and Metz 2005; Rueffler et al. 2007; Table 1). Here we have 

introduced a simple integrative framework that enabled us to study analytically the separate 

and joint evolution of these two traits under different life cycles, modes of density regulation, 

and arbitrary trade-off shapes. Below, we summarize our main findings and discuss them in 

the wider context of past and future research. 

 

Joint evolution qualitatively changes the specialization process 

Central results of our study concern the conditions under which, relative to separate evolution, 

the joint evolution of local adaptation and habitat choice critically alters the specialization 

process (fig. 1). 

We find that only very strong trade-offs prevent the outcomes of joint evolution from 

differing qualitatively from those of single-trait evolution. In other words, under very strong 

trade-offs, outcomes of joint evolution can be understood simply as the superposition of 

outcomes of single-trait evolution. Indeed, very strong trade-offs always favor i) maximal 

local adaptation to one habitat, and ii) either maximal preference for that habitat (when 

density regulation occurs globally across habitats) or an ideal free distribution across habitats 

(when density regulation occurs locally within habitats). This is because under very strong 

trade-offs the singular strategy (usually an intermediate adaptation trait value) is an 
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evolutionary repellor. Even when habitat choice evolves jointly with local adaptation, gradual 

adaptive evolution can only diverge from this singular point, thereby leading to complete 

specialization on one habitat. 

Habitat-choice evolution can qualitatively change local-adaptation evolution (shaded 

area in fig. 1C). This occurs for weak trade-offs, which always favor generalists when habitat 

choice is fixed (e.g., Levins 1962, 1968; MacArthur and Levins 1964; MacArthur and Pianka 

1966; Lawlor and Maynard Smith 1976; Wilson and Turelli 1986; Van Tienderen 1991; Kisdi 

and Geritz 1999; fig. 1A), but select for specialists once habitat choice is allowed to evolve 

jointly with local adaptation (fig. 1C). A corresponding result was established by Rueffler et 

al. (2007) in a quite different model. 

Similarly, local-adaptation evolution can qualitatively change habitat-choice evolution 

(hatched area in fig. 1C). This occurs when density regulation is local, which under fixed 

local adaptation always favors intermediate habitat choice, and thus leads to an ideal free 

distribution across habitats (Doyle 1975; Fryxell 1997; Fretwell 1972; Fretwell and Lucas 

1970; Rausher 1984; fig. 1B). In contrast, the joint evolution of local adaptation and habitat 

choice under local density regulation can yield coexisting specialists, each with a maximal 

preference for the matching habitat (fig. 1C). 

 

Evolution of habitat choice may leave habitats empty 

A particularly surprising outcome of evolution of habitat choice occurs when density 

regulation is global (Model 2, often regarded as the prototypical model of hard selection; 

Dempster 1955). Selection then always favors the emergence of a single specialist, 

irrespective of whether or not local adaptation evolves together with habitat choice. Under 

joint evolution, this specialist is maximally adapted to one habitat and exhibits maximal 

preference for it. To the extent that habitat choice is accurate, this evolutionary outcome will 
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leave the other habitat essentially empty. This extends a result of former theoretical studies: 

even with matching habitat choice, local-adaptation polymorphisms cannot be maintained 

under hard selection (de Meeûs et al. 1993; Ravigné et al. 2004). Furthermore, even when 

local adaptation is fixed and only habitat choice evolves, evolution under global density 

regulation leads to the exploitation of only a single niche. 

These considerations could explain why some host plants are not utilized by some 

herbivorous insects, even though the plants are suitable for the insects‘ survival and 

reproduction (e.g., Smiley 1978; Rhode 1979; Myers et al. 1981; Anderson et al. 1989). The 

explanation has two components. First, our analyses predict that under global regulation 

habitat preference will evolve to be maximal: regulation being global, there is no benefit in 

exploiting the less crowded and/or productive habitat. Each genotype is in competition with 

every other genotype in the whole population. It is therefore evolutionarily advantageous for 

the focal herbivore species to concentrate its habitat preference on the habitat to which it is 

adapted, even at the expense of leaving the other habitat unexploited. Second, and for the 

same reason, an immigrating herbivore species that enters the empty habitat and is capable of 

exploiting it, without, however, already possessing maximal habitat preference for that empty 

habitat, will be competitively excluded by the focal herbivore species (e.g., de Meeûs et al. 

1993). Owing to global regulation, the empty habitat will thus remain (almost) empty even in 

the face of joint evolution and immigration attempts. Under local regulation, evolutionary 

bistability also leads to a single specialist, but when habitat choice evolves, this specialist 

occurs in both habitats in an ideal free distribution (fig. 1C). 

 

Joint evolution resolves the “soft selection/hard selection dilemma” 

The so-called ―soft selection/hard selection dilemma‖ was put forward in the context of 

population genetics models of resource specialization (de Meeûs 2000). The dilemma arises 
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from recognizing that the evolution of coexisting picky specialists could be difficult, since 

specialization in habitat choice and local adaptation, when viewed as separate processes, 

require different ecological settings to evolve. Specifically, for fixed and monomorphic local 

adaptation, matching habitat choice only evolves either under hard selection (Model 2; 

Garcia-Dorado 1987; de Meeûs et al. 1993; fig. 1B) or in the presence of a pre-existing local-

adaptation polymorphism (leading to the well-known ―ghost of competition past‖; Lawlor and 

Maynard Smith 1976; Rosenzweig 1981; Garcia-Dorado 1987; Castillo-Chavez et al. 1988; 

Brown and Pavlovic 1992; de Meeûs et al. 1993; Morris 1999). In contrast, for fixed and 

unconditional habitat choice, local-adaptation polymorphisms can only be protected under 

soft selection (Model 1; fig. 1A) and even then only evolve under restrictive conditions 

(Levene 1953; Ravigné et al. 2004; fig. 5). 

Our analyses above have shown that, when habitat choice and local adaptation evolve 

jointly, the soft selection/hard selection dilemma is overcome: joint evolution leads to 

coexisting picky specialists under a much wider range of conditions (fig. 1C) than is expected 

from the mere superposition of results of separate evolution (fig. 1A-B). In particular, joint 

evolution allows maximal habitat preferences to evolve even under local regulation, thus 

eliminating the previously perceived discrepancy with requirements for local-adaptation 

polymorphisms. 

 

Joint evolution raises the bar for understanding the evolution of generalists 

For the entire range of models studied here, joint evolution precludes the emergence of 

generalists. Consequently, the classical, and still widely touted, view that weak trade-offs 

favor generalists (Levins 1968) can no longer be regarded as being adequate. 

Our study has shown that the evolution of generalists can only be explained by 

additional factors that are not part of our models. Previous theoretical studies have suggested 
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several such additional factors. First and foremost is temporal variability in habitat quality, 

which has long been recognized as favoring generalists (reviewed by Wilson and Yoshimura 

1994; see also Kisdi 2002; Egas et al. 2004; Abrams 2006a). Fluctuating environments select 

for mean geometric reproductive success, so that specialists that recurrently experience poor 

performance in the habitat to which they are adapted are intrinsically disadvantaged. 

However, when fluctuations are fast, the trade-off curves examined in this study can simply 

be interpreted in terms of mean geometric reproductive success, or long-term fitness, instead 

of in terms of immediate performance, or instantaneous fitness. Our analyses then directly 

carry over to fluctuating environments. 

Second, any ecological factor obstructing the evolution of a matching habitat choice 

will favor generalist local-adaptation strategies. Such constraints may originate from selective 

pressures that favor dispersal (e.g., kin competition; Ronce et al. 2001; Ronce 2007) and thus 

indirectly select against matching habitat choice (sensu Ravigné et al. 2004; see also Edelaar 

et al. 2008). Constraints on matching habitat choice may also arise from physiological limits 

to choice accuracy that result from errors in perception or implementation (Egas et al. 2004), 

or from costs associated with lengthy decision taking (―neural constraint‖; Bernays 1998; see 

Mayhew 1997; Morris 2003 for reviews). Similarly, the time and effort required for sampling 

possibly rare candidate habitats (Jaenike 1990; Mayhew 1997) may favor generalism 

(Rosenzweig 1974; Rueffler et al. 2007). 

Third, generalist species may persist as a result of genetic constraints. Even when 

selection favors the emergence of specialists, the segregation and recombination implied by 

sexual reproduction (with local-adaptation traits determined by multiple loci without extreme 

linkage or epistasis, or by diploid inheritance without full dominance) may impede 

specialization by constantly creating hybrids between the two specialist phenotypes 

(Felsenstein 1981; Dieckmann and Doebeli 1999; Doebeli and Dieckmann 2000). In this 
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manner, frequency-dependent disruptive selection may trap populations at fitness minima 

(Dieckmann et al. 2004a, 2004b). If this phenomenon were significant in nature, generalists 

might be more frequent among sexual species than among asexual and selfing species. 

Moreover, theoretical studies suggest that sexual species are more likely to escape such 

fitness traps by so-called ―one-allele mechanisms‖ (Felsenstein 1981; Dieckmann and Doebeli 

1999, 2004), which apply when matching habitat preferences are based, for example, on 

philopatry or learned habitat preference (e.g., Brown and Pavlovic 1992; Kisdi and Geritz 

1999; Day 2001; Beltman and Metz 2005). It is thus conceivable that one-allele mechanisms 

of habitat choice are relatively more common among recently evolved sexual specialists. 

 

Joint evolution still needs to be understood under more complex types of density regulation 

A common feature of the three models analyzed here is that population dynamics were kept as 

simple as possible. Specifically, density regulation was assumed to occur at a particular time 

in the life cycle and ensured that at most 1 2C C  individuals survived. This assumption is in 

line with most previous models of hard and soft selection, and probably is the main 

prerequisite that allowed us to obtain analytical results (unlike, e.g., Beltman and Metz 2005). 

Naturally, it would be worthwhile to investigate the sensitivity of specialization 

evolution to more complex population dynamics. In many models incorporating such 

dynamics, the population is density-regulated using logistic functions (Egas et al. 2004) or 

Beverton-Holt functions (Kisdi 2002; Beltman and Metz 2005). A careful comparison 

between our results and evolutionary outcomes in those other models leads to the following 

two conclusions. First, when local carrying capacities underlying more realistic types of 

density regulation are assumed to be unaffected by local-adaptation traits, then Model 1 

correctly predicts, depending on the strength of the trade-off, whether the generalist singular 

strategy is an evolutionary end point, a branching point, or a repellor. Second, when such 
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local carrying capacities are assumed to change as local adaptation evolves (e.g., Egas et al. 

2004), then our Model 3 correctly predicts the evolutionary outcomes, again in dependence of 

the assumed trade-off. These conclusions suggest that the three models investigated in this 

study, simple as they may be, might indeed be good approximations of models with more 

complex types of density regulation. Future theoretical work on the interactions between 

population dynamics and local adaptation could examine how far these approximations can be 

taken. 

This study has shown how three key determinants of specialization evolution – the 

spatial scale of density regulation, the dependence of carrying capacities on local-adaptation 

traits, and the shape of local-adaptation trade-offs – can be integrated into a synthetic 

framework. This allowed us to derive analytical results on how the joint dynamics of local 

adaptation and habitat choice is crucial for understanding specialization evolution. We hope 

that theoretical and empirical studies will soon critically evaluate the generality of findings 

presented here. 

 

Acknowledgements 

We thank B. Facon, S. Magalhães, and O. Ronce for stimulating discussions and helpful 

comments on the manuscript. C. Rueffler and T. van Dooren helped clarify invasion 

boundaries, and discussions with M. Egas and M. Spichtig helped shape the presentation of 

our results. We thank O. Leimar for sharing with us an unpublished manuscript. D. W. 

Morris, C. Rueffler and an anonymous reviewer greatly helped improve an earlier version of 

this manuscript. VR acknowledges a PhD grant from the French Ministry of Education and 

Research and a Lavoisier postdoctoral grant from the French Ministry of Foreign Affairs. This 

research was partially funded by the French Ministry of Research through the ACI ―Ecologie 

Quantitative‖ to IO and D. Jolly, University of Montpellier (2002-2005), and the grants ANR-



 

 33 

07-BDIV-003 (Emerfundis project) and ANR-05-BDIV-014 (ABIME project). Part of this 

work was carried out while IO was invited to the Netherlands several weeks per year from 

2004 to 2006 after receiving the Descartes-Huygens prize awarded by the Dutch Embassy in 

France. VR and IO received financial support for travel expenses to the Netherlands from the 

French Ministry of Foreign Affairs (Van Gogh Programme, allocated to IO and M. Sabelis, 

University of Amsterdam) and from the EU programme EVOL (Marie Curie grant to S. 

Magalhães). Collaboration on this research was fostered by UD‘s invitation as a visiting 

professor at the University of Montpellier 2. VR and IO benefited from local support by the 

Evolution and Ecology Program when visiting the International Institute for Applied Systems 

Analysis. UD gratefully acknowledges financial support by the Austrian Science Fund, the 

Vienna Science and Technology Fund, the European Science Foundation, and the European 

Commission. This is contribution number 2009-028 of the Institut des Sciences de l‘Évolution 

de Montpellier. 



 

 34 

APPENDIX: ANALYTICAL PROOFS 

A – Invasion fitnesses 

Here we detail the calculation of invasion fitness for Model 1; calculations for Models 2 and 3 

proceed analogously. We consider the following processes in the life cycle of an asexual 

population: dispersal, selection, regulation, and mixing. At the beginning of each cycle, 

individuals are part of a common pool with ( )N t  residents and a small number ( )N t  of 

variants. They first distribute across the two habitats according to their habitat-choice trait. 

After this stage, habitat 1 thus contains (1 ) ( )h N t    variants and (1 ) ( )h N t  residents, while 

habitat 2 contains ( )hN t   variants and ( )hN t  residents. Selection occurs as individuals 

differentially reproduce and/or survive in each habitat according to their local adaptation trait. 

After this stage, there are thus 1(1 ) ( ) ( )h N t w p     variants and 1(1 ) ( ) ( )h N t w p  residents in 

habitat 1, and 2( ) ( )hN t w p    variants and 2( ) ( )hN t w p  residents in habitat 2. Regulation occurs 

next: only a fixed number of individuals survive in each habitat; this number is independent 

of their strategy. After this stage, the variant population is given by 

1
1 1

1 1

(1 ) ( ) ( )
( )

(1 ) ( ) ( ) (1 ) ( ) ( )

h N t w p
N t C

h N t w p h N t w p

   
  

  
     (A1) 

in habitat 1 and by 

2
2 2

2 2

( ) ( )
( )

( ) ( ) ( ) ( )

hN t w p
N t C

hN t w p hN t w p
 

  
  

      (A2) 

in habitat 2. From one cycle to the next, the variant‘s total population size thus changes 

according to 

1 2( 1) ( ) ( )N t N t N t     .        (A3) 

Assuming that the variant population is small relative to the resident population, so that 

1 2( )N t C C  , allows us to simplify this result, which gives 
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1 1 2 2

1 2 1 1 2 2

(1 ) ( ) ( )
( 1) ( )

(1 ) ( ) ( )

C h w p C hw p
N t N t

C C h w p C C hw p

       
    .    (A4) 

Hence, we obtain the variant‘s invasion fitness in Model 1 as 

1 2
, 1 2

1 2

(1 ) ( ) ( )
( , ) ln

(1 ) ( ) ( )p h

h w p hw p
s p h c c

h w p hw p

    
   ,      (A5) 

thus recovering equation (2a). 

 

B – Evolution of local adaptation alone 

Selection gradients and singular strategies 

The selection gradient is defined as the derivative of invasion fitness taken with respect to the 

variant strategy and evaluated at the resident strategy, 

, ( , )
( , ) p h

p

p p

s p h
D p h

p 

     




.        (B1) 

For Model 1, we obtain 

1 2
1 2

1 2

( ) ( )
( , )

( ) ( )p

w p w p
D p h c c

w p w p

   .       (B2) 

For Model 2, we obtain 

1 2

1 2

(1 ) ( ) ( )
( , )

(1 ) ( ) ( )p

h w p hw p
D p h

h w p hw p

     .       (B3) 

For Model 3, we obtain 

1 1 2 2

1 1 2 2

( ) ( )
( , )

( ) ( )p

c w p c w p
D p h

c w p c w p

   .        (B4) 

A strategy is singular if its selection gradient vanishes. Hence in all three models, if a singular 

local-adaptation trait p  exists, 1( )w p  and 2( )w p  either have opposite signs (i.e., there is a 

trade-off in local adaptation) or both vanish (i.e., p  is optimal in both habitats). If a singular 

local-adaptation trait does not exist, the selection gradient never vanishes, and selection then 
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always remains directional. For the remainder of the appendix, we focus on cases 

characterized by trade-offs between levels of local adaptation that can be achieved in the two 

habitats. 

 

Convergence stability 

A singular strategy *p  is convergence stable, and thus attainable trough gradual evolution, if 

the derivative of the selection gradient evaluated at the singular strategy is negative (Geritz et 

al. 1997), 

( , )
0p

p p

D p h

p 

     .         (B5) 

For Model 1, we obtain 

2 2
1 2 1 2

1 2 1 22 2
1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w p w p w p w p
c c c c

w p w p w p w p

   
   

      .     (B6) 

For Model 2, we obtain 

1 2(1 ) ( ) ( ) 0h w p hw p     .        (B7) 

For Model 3, we obtain 

1 1 2 2( ) ( ) 0c w p c w p    .        (B8) 

 

Local evolutionary stability 

A singular strategy is locally evolutionary stable, and thus immune against invasion by 

neighboring strategies, if it locally maximizes invasion fitness relatively to variant traits. The 

second derivative of invasion fitness taken with respect to the variant strategy and evaluated 

at the singular strategy must then be negative, 

2
,

2

( , )
0p h

p p p

s p h

p  

      




.        (B9) 
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For Model 1, we obtain 

1 2
1 2

1 2

( ) ( )
0

( ) ( )

w p w p
c c

w p w p

 
 

   .        (B10) 

For Model 2, we obtain  

1 2(1 ) ( ) ( ) 0h w p hw p     .        (B11) 

For Model 3, we obtain 

1 1 2 2( ) ( ) 0c w p c w p    .        (B12) 

 

Global evolutionary stability of protected dimorphisms 

Even when a protected dimorphism cannot emerge through gradual evolution, it may appear 

through mutations or recombinations of particularly large phenotypic effect, or through the 

immigration of non-resident strategies from the outside. Such a dimorphism is globally 

evolutionarily stable, and thus immune against the invasion of intermediate strategies, if the 

invasion fitnesses of all intermediate strategies are negative in the population of the two 

resident strategies. For Model 1 with fixed random dispersal (2h c ), the invasion fitness of a 

variant strategy p  in a dimorphic population with the resident specialist strategies 1 0p   and 

2 1p   is then given by 

1 2 2 2 1 1
0,1

1 2 1 2

( )[ (1) (0)] ( )[ (0) (1)]
( ) ln

(0) (1) (1) (0)

w p w w w p w w
s p

w w w w

   
  .    (B13) 

With 1 2(0) (1) 1w w   and 1 2(1) (0) 1w w s   , this gives 

1 2
0,1

( ) ( )
( ) ln

2

w p w p
s p

s

 
  .        (B14) 

This invasion fitness assumes positive values if and only if the trade-off is weak. Hence, the 

considered dimorphism is globally evolutionarily stable if and only if the trade-off is strong. 

If we assume matching habitat choice (1 0h   and 2 1h  ) instead of fixed random dispersal, 
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the invasion fitness of local-adaptation trait p  with a habitat-choice trait h  in a dimorphism 

of specialists is given by 

0,1 1 2( ) ln((1 ) ( ) ( ))s p h w p hw p      .       (B15) 

This invasion fitness can never assume positive values, and hence the considered dimorphism 

is always globally evolutionarily stable. 

 

C – Evolution of habitat choice alone 

Selection gradients and singular strategies 

As before, the selection gradient is defined as the derivative of invasion fitness taken with 

respect to the variant strategy and evaluated at the resident strategy, 

, ( , )
( , ) p h

h

h h

s p h
D p h

h 

      


 .        (C1) 

For Model 1, we obtain 

2 1( , )
1h

c c
D p h

h h
            (C2) 

and thus the singular habitat-choice trait 

2h c  .           (C3) 

For Model 2, we obtain 

2 1

1 2

( ) ( )
( , )

(1 ) ( ) ( )h

w p w p
D p h

h w p hw p

   .       (C4) 

Since the numerator of this expression does not vanish unless local fitness is the same in both 

habitats, selection on habitat choice in Model 2 typically stays directional, favoring maximal 

preference to the habitat in which local fitness is highest. For Model 3, we obtain 

2 2 1 1

1 1 2 2

(1 ) ( ) ( )
( , )

(1 ) [ ( ) ( )]h

h c w p hc w p
D p h

h h c w p c w p

          (C5) 

and thus the singular habitat-choice trait 
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1 1

1 1 2 2

( )

( ) ( )

c w p
h

c w p c w p
   .        (C6) 

 

Convergence stability 

For Model 1, the singular habitat-choice trait is convergence stable if 

1 1
1 2 0c c   ,          (C7) 

which is always true. For Model 3, the singular habitat-choice trait is convergence stable if  

2
1 1 2 2

1 2 1 2

[ ( ) ( )]
0

( ) ( )

c w p c w p

c c w p w p

  ,        (C8) 

which again is always true. Hence, in both models the singular habitat-choice trait is always 

convergence stable. 

 

Local evolutionary stability 

For Models 1 and 3, we obtain 

2
,

2

( , )
0p h

h h h

s p h

h  

      


 .        (C9) 

For Models 1 and 3, rare habitat-choice variants in the neighborhood of the singular habitat-

choice trait are thus always selectively neutral. Therefore, when the singular habitat-choice 

trait is convergence stable, the population will evolve to it and stay in its neighborhood. This 

is what we refer to as neutrally ES. 

 

D – Joint evolution of local adaptation and habitat choice 

We now consider the joint evolution of habitat choice and local adaptation using methods 

presented by Meszéna et al. (2001) and Leimar (2005, in press). A strategy is then always 

described by a vector ( , )p h  of two trait values. 
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Selection gradients and singular strategies 

The selection gradient for joint evolution is the vector ( ( , ), ( , ))p hD p h D p h of the two partial 

derivatives of the invasion fitness taken with respect to the two variant traits and evaluated at 

the resident strategy. For Model 1, we obtain 

1 2
1 2

1 2

2 1

( ) ( )
( , )

( ) ( )

( , )
1

p

h

w p w p
D p h c c

w p w p

c c
D p h

h h

      
,       (D1) 

and the singular strategy ( , )p h   is thus given by 

1 2
1 2

1 2

2

( ) ( )
0

( ) ( )

w p w p
c c

w p w p

h c

 
 



    
.        (D2) 

For Model 2, we obtain 

1 2

1 2

2 1

1 2

(1 ) ( ) ( )
( , )

(1 ) ( ) ( )

( ) ( )
( , )

(1 ) ( ) ( )

p

h

h w p hw p
D p h

h w p hw p

w p w p
D p h

h w p hw p

         
,       (D3) 

and 

1 2

1

1 2

( ) ( )

( )

( ) ( )

w p w p

w p
h

w p w p

 


 

     
.        (D4) 

For Model 3, we obtain 

1 1 2 2

1 1 2 2

2 2 1 1

1 1 2 2

( ) ( )
( , )

( ) ( )

(1 ) ( ) ( )
( , )

(1 ) [ ( ) ( )]

p

h

c w p c w p
D p h

c w p c w p

h c w p hc w p
D p h

h h c w p c w p

        
,      (D5) 

and 
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* *
1 1 2 2

*
1 1
* *

1 1 2 2

( ) ( ) 0

( )

( ) ( )

c w p c w p

c w p
h

c w p c w p


     
.        (D6) 

 

Convergence stability 

A two-trait singular strategy * *( , )p h  is convergence stable if the Jacobian matrix J  of the 

evolutionary dynamics possesses only eigenvalues with negative real parts. This is the case if 

and only if the determinant of J  (which equals the product of J ‘s two eigenvalues) is 

positive and its trace (which equals the sum of J ‘s two eigenvalues) is negative. J  can be 

computed as the product of two matrices, J JV : the Jacobian matrix J  of the selection 

gradient, 

,

( , ) ( , )

( , ) ( , )

p p

h h

p p h h

D p h D p h

p h
J

D p h D p h

p h   

           
,       (D7) 

and the (population-level or mutational) variance-covariance matrix V , 

pp ph

ph hh

V V
V

V V

     .         (D8) 

Excluding biologically degenerate cases, trait variances are always positive, , 0pp hhV V  , and 

their product always exceeds the squared covariance, 2
pp hh phV V V . 

For Model 1, we obtain 

2 2
1 2 1 2

1 2 1 22 2
1 2 1 2

1 1
1 2

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )

0 ( )

w p w p w p w p
c c c c

J w p w p w p w p

c c

   
   

 

            
   (D9) 

and thus 

2 2
2 1 1 1 2 1 2

1 2 1 2 1 22 2
1 2 1 2

( ) ( ) ( ) ( )
det ( )( )

( ) ( ) ( ) ( )pp hh ph

w p w p w p w p
JV V V V c c c c c c

w p w p w p w p

    
   

              (D10) 
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together with 

2 2
1 11 2 1 2

1 2 1 2 1 22 2
1 2 1 2

( ) ( ) ( ) ( )
tr ( )

( ) ( ) ( ) ( )pp hh

w p w p w p w p
JV V c c c c V c c

w p w p w p w p

     
   

            . (D11) 

Both eigenvalues of JV  have negative real parts if and only if their product is positive 

(det 0JV  ) and their sum is negative (tr 0JV  ), which applies if and only if 

2 2
1 2 1 2

1 2 1 22 2
1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w p w p w p w p
c c c c

w p w p w p w p

   
   

      .     (D12) 

Hence, the singular strategy * *( , )p h  is convergence stable, independent of trait variances and 

covariance, if and only if equation (D12) is fulfilled, i.e., for weak and moderately strong 

trade-offs. It is worth highlighting that this is the same condition that describes convergence 

stability when local adaptation evolves alone (eq. [3c]). For very strong trade-offs, equation 

(D12) is not fulfilled and det 0JV . This implies that the eigenvalues of JV  are real with 

opposite signs, so that the singular strategy * *( , )p h  then is an evolutionary saddle point, 

independent of the variance-covariance matrix. 

For Model 2, we obtain 

1 2 2 1

2 1

(1 ) ( ) ( ) ( ) ( )

( ) ( ) 0

h w p hw p w p w p
J

w p w p

   
 
                (D13) 

and thus 

2 2
1 2

2
1 2

( )[ ( ) ( )]
det

[(1 ) ( ) ( )]
pp hh phV V V w p w p

JV
h w p h w p

 
   

      ,      (D14) 

which is always negative. Accordingly, the eigenvalues of JV  are real with opposite signs, so 

that the singular strategy * *( , )p h  lacks convergence stability and is an evolutionary saddle 

point, independent of the trade-off shape and the variance-covariance matrix. 

For Model 3, we obtain 
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1 1 2 2

1 1 2 2

2
2 1 1 1 2 2

2 1 1 2 1 2

( ) ( )
0

( ) ( )

( ) ( ) [ ( ) ( )]

( ) ( ) ( ) ( )

c w p c w p

c w p c w p
J

w p w p c w p c w p

w p w p c c w p w p

 
 
   
   

           
    (D15) 

and thus 

2
1 1 2 2 1 1 2 2

1 2 1 2

( )[ ( ) ( )][ ( ) ( )]
det

( ) ( )
pp hh phV V V c w p c w p c w p c w p

JV
c c w p w p

   
 

        (D16) 

together with 

2
1 1 2 2 1 1 2 2 2 1

1 1 2 2 1 2 1 2 2 1

( ) ( ) [ ( ) ( )] ( ) ( )
tr

( ) ( ) ( ) ( ) ( ) ( )pp hh ph

c w p c w p c w p c w p w p w p
JV V V V

c w p c w p c c w p w p w p w p

     
     

            . (D17) 

The condition det 0JV   thus applies if and only if 

1 1 2 2( ) ( ) 0c w p c w p    ,        (D18) 

while the condition tr 0JV   applies if and only if 

2
1 1 2 2 1 1 2 2 2 1

1 1 2 2 1 2 1 2 2 1

( ) ( ) [ ( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
phhh

pp pp

Vc w p c w p V c w p c w p w p w p

c w p c w p V c c w p w p V w p w p

     
     

           .  (D19) 

We now have to distinguish three cases, according to the sign and magnitude of the left-hand 

side of equation (D19). First, when the trade-off is strong (i.e., eq. [D18] is not fulfilled), 

det 0JV , so the eigenvalues of JV  are real with opposite signs and the singular strategy 

* *( , )p h  is an evolutionary saddle point, independent of the variance-covariance matrix. 

Second, when the trade-off is very weak, i.e., 

2

1 1 2 2 1 2 1 2 2 1
2

1 1 2 2 1 1 2 2 2 1

( ) ( ) 1 ( ) ( ) ( ) ( )

( ) ( ) 4 [ ( ) ( )] ( ) ( )

c w p c w p c c w p w p w p w p

c w p c w p c w p c w p w p w p

     
     

            ,  (D20) 

tr 0JV   applies independent of the variance-covariance matrix. To see this, notice that the 

right-hand side of equation (D20) is the minimum m  that the right-hand side of equation 

(D19) can assume upon variation of /hh hh ppv V V  and /ph ph ppv V V  subject to the 

consistency condition 2
hh phv v : 1 21

4 hh phm x x   at ph hhv v  and 2 21
2hh hh phv x x , where 
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0hhx   and 0phx   are, respectively, the coefficients of hhv  and phv  on the right-hand side 

hh hh ph phv x v x  of equation (D19). Since equation (D20) thus ensures det 0JV   and 

tr 0JV  , both eigenvalues of JV  have negative real parts and the singular strategy * *( , )p h  

is convergence stable independent of the variance-covariance matrix. Third, when the trade-

off is moderately weak, equation (D18) is fulfilled, so det 0JV  , but equation (D20) is not 

fulfilled, so the sign of tr JV  depends on the variance-covariance matrix according to 

equation (D17). Therefore, convergence stability depends on the variance-covariance matrix: 

the singular strategy * *( , )p h  then is convergence stable unless the covariance between the 

local-adaptation trait and the habitat-choice trait is positive and larger than a threshold that 

rises for trade-offs that are increasingly weak, 

2
1 1 2 2 1 1 2 2

1 2 1 2 1 1 2 2

2 1

2 1

[ ( ) ( )] ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

hh pp

ph

c w p c w p c w p c w p
V V

c c w p w p c w p c w p
V

w p w p

w p w p

   
   

 
 

     
.    (D21) 

If the trade-off is weak and equation (D21) is fulfilled, the singular strategy * *( , )p h  is a 

repellor (Appendix fig. 1). 

 

Local evolutionary stability 

A two-trait singular strategy * *( , )p h  is locally evolutionarily stable if the Hessian matrix 

2 2
, ,

2

2 2
, ,

2
,

( , ) ( , )

( , ) ( , )

p h p h

p h p h

p p p h h h

s p h s p h

p p h
H

s p h s p h

p h h     

               

  
 

  
 

      (D22) 

is negative definite. Notice that, in contrast to J  above, the matrix H  is always symmetric. 

Since the two-trait singular strategy is never convergence stable for Model 2, below we only 

consider its evolutionary stability for Models 1 and 3. For Model 1, we obtain 
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1 2 2 1
1 2

1 2 2 1

2 1

2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
0

( ) ( )

w p w p w p w p
c c

w p w p w p w p
H

w p w p

w p w p

   
   
 
 

             
.     (D23) 

For Model 3, we obtain 

1 1 2 2 2 1

1 1 2 2 2 1

2 1

2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
0

( ) ( )

c w p c w p w p w p

c w p c w p w p w p
H

w p w p

w p w p

   
   
 
 

            
.     (D24) 

Both matrixes above possess a negative determinant; hence, they are not negative definite and 

the singular strategy is a saddle point of the fitness landscape, that is, ES in some directions 

and not ES in other directions. 

 

Mutual invasibility 

The direction in which a dimorphism of strategies diverges from an evolutionary branching 

point is given by v Vg , where V  is the variance-covariance matrix and g  is the dominant 

eigenvector of the Hessian matrix H . Mutual invasibility applies when each strategy in this 

dimorphism can invade the other, causing the dimorphism to be protected. This is ensured if 

and only if Tv Mv  is positive, where sM H J   is the difference between the Hessian matrix 

H  and the symmetrised Jacobian matrix sJ . For Model 1, we obtain 

T 2 1 1 2
1 2( ) 2 ( )( ) ( )pp ph pp ph hh ph hh phv Mv z XV V y XV V V XV c c V XV        ,  (D25) 

where 

1 2
1 2

1 2

( ) ( )

( ) ( )

w p w p
x c c

w p w p

 
 
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w p w p
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2 2
1 2

1 22 2
1 2

( ) ( )

( ) ( )

w p w p
z c c

w p w p

 
 
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and 

2 24

2

x x y
X

y

  .         (D29) 

In equation (D25), all terms are positive or zero, except phV , which can be negative. Hence, in 

the absence of covariance between the two traits (0phV  ), or when the traits are positively 

correlated ( 0phV  ), Tv Mv  is always positive, ensuring that dimorphisms emerging around 

the evolutionary branching point are protected. The genetic covariance between the local-

adaptation trait and the habitat-choice trait may obstruct the emergence of such dimorphisms 

only when it is sufficiently negative, falling below a threshold that depends on the shape of 

the trade-off, the relative habitat frequencies, and the genetic variances of the two traits, 

1 1 2 2 2 1 1
1 2 1 2

1 1 2
1 2

( ) ( ) ( ) ( )

2
pp hh pp hh

ph

X Xy z V c c X y V X V V y c c z
V

c c X Xy z

   
 

         .  (D30) 

For Model 3, we obtain 

T ( )[( ) ( ) ]hh ph pp ph hh phv Mv V XV XV V y V XV z     ,     (D31) 

where 

1 1 2 2

1 1 2 2
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c w p c w p
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c w p c w p
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In equation (D31), all terms are positive or zero, except phV , which can be negative. Hence, in 

the absence of covariance between the two traits (0phV  ), or when the traits are positively 

correlated ( 0phV  ), Tv Mv  is always positive, ensuring that dimorphisms emerging around 

the evolutionary branching point are protected. The genetic covariance between the local-

adaptation trait and the habitat-choice trait may obstruct the emergence of such dimorphisms 

only when it is sufficiently negative, falling below a threshold that depends on the shape of 

the trade-off, the relative habitat frequencies, and the genetic variances of the two traits, 

max , pp hhhh
ph

XyV zVV
V

X Xz y

      .       (D36) 

 

E – Invasion boundaries 

The invasion boundary of a resident strategy is defined as the set of strategies, unconstrained 

by a trade-off, that have the same fitness as the resident strategy (de Mazancourt and 

Dieckmann 2004; Rueffler et al. 2004). Their analysis enables understanding the evolutionary 

implications of trade-offs (fig. 4). 

 

Evolution of local adaptation alone 

For fixed and monomorphic habitat choice h , the invasion boundary of a resident strategy 

1 2( ( ), ( ))w p w p  is given by the set of local fitnesses 1 2ˆ ˆ( , )w w  that imply vanishing invasion 

fitness. For Model 1, we obtain 

1 2
1 2

1 2

ˆ ˆ
ln 0

( ) ( )

w w
c c

w p w p

     ,        (E1) 

which yields 
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For Model 2, we obtain 

2 1 2 1

1 1ˆ ˆ( ) ( )
h h

w w p w p w
h h

    .       (E3) 

For Model 3, we obtain 

1 1
2 1 2 1

2 2

ˆ ˆ( ) ( )
c c

w w p w p w
c c

   .       (E4) 

In all three models, the invasion boundary 2 1ˆ ˆ( )w w  is therefore linear. 

 

Joint evolution of local adaptation and habitat choice 

Under joint evolution, the invasion boundary of a resident strategy 1 2( ( ), ( ), )w p w p h  is given 

by the set of strategies 1 2
ˆˆ ˆ( , , )w w h  that imply vanishing invasion fitness. For Model 1, we 

obtain 

2 1 2
2 1

2 2 1

ˆ( ) (1 ) ( )ˆ ˆˆ ˆ(1 ) ( )

hw p c h h w p
w w

c h c h h w p
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For Model 2, we obtain 
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For Model 3, we obtain 
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Table 1 

OVERVIEW OF SOME MODELS ADDRESSING THE EVOLUTION AND COEXISTENCE OF SPECIALISTS 

AND GENERALISTS IN HETEROGENEOUS ENVIRONMENTS 

Reference 
Focal 

research 
question 

Regulation 
and habitat 

output 

Local-
adaptation 
trade-off 

Habitat-
choice 

evolution 

Habitat-
choice 

mechanism 

Abrams 2006b 1 3 5 1 3, 4 

Balkau and Feldman 1973 1 1 1 1 2 

Beltman and Haccou 2005 2 3 5 2 4 

Beltman et al. 2004 1 3 5 1 4 

Beltman and Metz 2005 2 3 5 2 4, 5 

Brown 1990 2 3 3 1, 2 4, 5 

Brown 1998 2 3 3 1, 2 4, 5 

Brown and Pavlovic 1992 2 3 6 1 2 

Bulmer 1972 1 1 1 1 2 

Castillo-Chavez et al. 1988 1 2 2 2 5 

Christiansen 1974 1 1 1 1 2 

Christiansen 1975 1 1, 3 1 1 2 

Czochor and Leonard 1982 1 1, 2 1 1 1 

Day 2001 2 3 5 1 2 

de Meeûs and Goudet 2000 2 1, 2 2 1 1 

de Meeûs et al. 1993 1, 2 1, 2 1 1, 2 1, 3 

Deakin 1966 1 1 1 1 2 

Deakin 1968, 1972 1 1 1 1 2 

Dempster 1955 1 2 1 1 1 
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Diehl and Bush 1989 1 1 1 2 2, 5 

Doyle 1975 4 1, 2 1 2 5 

Egas et al. 2004 1, 2 3 5 1 3 

Fretwell and Lucas 1970; 

Fretwell 1972 
4 1, 3 1 2 3 

Fry 2003 2 1 4 2 5 

Fryxell 1997 4 3 1 2 5 

Garcia-Dorado 1986 1 1 1 1 3 

Garcia-Dorado 1987 1 1 1 2 3 

Gliddon and Strobeck 1975 1 1 1 1 1 

Hedrick 1990a 1 1 1 1 3 

Hedrick 1990b 1 1, 3 1 1 3 

Holsinger and Pacala 1990 2 1, 2 1 1 1 

Holt and Gaines 1992 2 2 2 1 2 

Holt 1985 4 1, 3 1 2 3 

Jaenike and Holt 1991 2 2, 3 1 1 3, 5 

Johnson et al. 1996 1 1 1 2 2, 5 

Karlin and McGregor 1972 1 1 1 1 2 

Karlin and Campbell 1981 1 1, 2 1 1 1,2 

Karlin 1982 1 1, 2 1 1 1,2 

Kawecki 1997 1 1 6 2 2, 5 

Kisdi and Geritz 1999 2 1 5 1 2 

Kisdi 2001 2 1 6 1 1 

Kisdi 2002 2 3 5 2 2 
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Lawlor and Maynard Smith 

1976 
1 3 6 1, 2 5 

Levene 1953 1 1 1 1 1 

Levins 1962 1 2, 3 6 1 1 

Levins 1963 1 1, 2 5 1 4, 5 

Levins and McArthur 1966 1 1 5 1 1, 2 

MacArthur and Levins 1964 1 2 1 1 1, 2 

MacArthur and Levins 1967 1 1 5 1 5 

Maynard Smith 1966 1 1 1 1 2 

Maynard Smith and Hoekstra 

1980 
1 1 1 1 2 

McPeek and Holt 1992 4 1 1 2 2, 4 

Meszéna et al. 1997 2 1 5 1 2 

Muko and Iwasa 1999 1 1,3 1 1 1 

Nurmi and Parvinen 2008 2 3 5 1 2 

Prout 1968 1 1 1 1 1, 2 

Rausher 1984 1, 4 1 1 2 5 

Rausher and Englander 1987 1, 4 1 1 2 5 

Ravigné et al. 2004 1 1, 2, 3 1 1 1, 3 

Robinson and Wilson 1998 1 3 5 1 3 

Rosenzweig 1981 1 3 6 2 4, 5 

Rueffler et al. 2006b 2 1, 3 5 1 1 

Rueffler et al. 2007 2 1, 3 5 2 3, 4 

Sasaki and de Jong 1999 2 1, 2, 3 5 1 2 
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Spichtig and Kawecki 2004 1 1 5 1 2 

Templeton and Rothman 1981 1 1, 2 1 1 3 

van Tienderen 1991 3 1, 2 5 1 1 

van Tienderen 1997 3 1, 2 5 1 1 

Ward 1987 4 1, 2 1 2 5 

Wiener and Feldman 1993 1 1 1 1 2 

Wilson and Yoshimura 1994 1 1, 3 5 1 3 

Yukilevich and True 2006 1 1 1 1 2 

Present study 1, 2, 4 1, 2, 3 6 1, 2 5 

 

Note. -  While most of the 72 models listed in the table adopt a focus on the population 

ecology and evolutionary ecology of specialization, a few representative models based on 

community ecology have also been included. The classification below is based on five 

characteristic dimensions of model differentiation. Focal research question: 1 = Maintenance 

of a local-adaptation polymorphism; 2 = Emergence of a local-adaptation polymorphism; 3 = 

Quantitative genetics of local adaptation; 4 = Habitat-choice evolution under fixed local 

adaptation. Regulation and habitat output: 1 = Local regulation and constant (trait-

independent) habitat output (Model 1); 2 = Global regulation (Model 2); 3 = Local regulation 

and variable (trait-dependent) habitat output (Model 3). Local-adaptation trade-off: 1 = Does 

not matter; 2 = Linear; 3 = Weak; 4 = Strong; 5 = Particular trade-off function; 6 = General 

trade-off function. Habitat-choice evolution: 1 = No; 2 = Yes. Host-choice mechanism: 1 = 

No habitat choice (random dispersal). 2 = Philopatry; 3 = Matching habitat choice 

(pleiotropically determined by local adaptation); 4 = Learned or plastic habitat choice; 5 = 

Habitat choice based on a two-allele mechanism (independent of local adaptation). 
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Figure captions 

Figure 1. Evolutionary outcomes predicted for simple analytical two-deme dispersal-selection 

models in dependence on the sequence of life-cycle events, on the shape of the local-

adaptation trade-off, and on whether or not habitat choice and local adaptation evolve jointly. 

Shaded area: conditions under which habitat-choice evolution qualitatively changes local-

adaptation evolution. Hatched area: conditions under which local-adaptation evolution 

qualitatively changes habitat-choice evolution. For Model 3 with moderately weak trade-offs, 

the population-level or mutational covariance between the local-adaptation trait and the 

habitat-choice trait is assumed not to be too strongly positive. All other results are valid in 

general, irrespective of the variance-covariance structure of the two traits. 

 

Figure 2. Evolutionarily singular local-adaptation strategies resulting for different trade-off 

strengths. Dotted curves: the singular strategy is an evolutionary repellor (not CS). Selection 

is divergent and favors the emergence of a single specialist. Dashed curves: the singular 

strategy is an evolutionary branching point (CS but not ES). Selection is disruptive and favors 

the emergence of two coexisting specialists. Thick continuous curves: the singular strategy is 

an evolutionary attractor (both CS and ES). Selection is stabilizing and favors intermediate 

levels of adaptation, tuned by habitat choice in Model 2 and by habitat carrying capacities in 

Models 1 and 3. Arrows indicate the direction of selection. A) Constant (trait-independent) 

and symmetric habitat outputs (Model 1 with 21 cc  ). Selection favors generalists for weak 

trade-offs, two coexisting specialists for moderately strong trade-offs, and a single specialist 

for very strong trade-offs. B) Constant and asymmetric habitat outputs (Model 1 with 

4.01 c  and 6.02 c ). The range of moderately strong trade-offs that cause the emergence of 

two coexisting specialists is narrowed compared to the symmetric case. C) Variable (trait-

dependent) and symmetric habitat outputs (Model 2 with 5.0h , or equivalently, Model 3 
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with 21 cc  ). No evolutionary branching can occur. Selection favors either a generalist (for 

weak trade-offs) or a single specialist (for strong trade-offs). D) Variable and asymmetric 

habitat outputs (Model 2 with 6.0h , or equivalently, Model 3 with 4.01 c  and 6.02 c ). 

Specialization is now biased toward the most frequent (or productive) habitat. Other 

parameter: 0.8s . 

 

Figure 3. Joint evolutionary dynamics of local adaptation and habitat choice. Gray arrows 

depict the direction of the selection gradient, which determines selection pressures on both 

traits. Thick curves with black arrows show evolutionary trajectories for equal trait variances 

and absent trait covariance. Black circles represent alternative end points of the evolutionary 

process. Grey circles represent evolutionary branching points. Open circles represent 

evolutionary repellors. Dotted lines separate the basins of attraction of two alternative 

evolutionary end points; these lines are known as separatrices. A-C) For very strong trade-

offs, all three life cycles give rise to evolutionary bistability between two alternative 

evolutionary outcomes (here illustrated for 2.0 ). Under local regulation (Models 1 and 3), 

the initial local-adaptation trait determines whether the population specializes on one habitat 

or the other, whereas the initial habitat-choice trait has no effect on the evolutionary outcome 

(A and B). In contrast, under global regulation (Model 2), the initial habitat-choice trait 

affects the evolutionary outcome together with the initial habitat-choice trait (C). D) For weak 

and moderately strong trade-offs, life cycles with local regulation and constant habitat outputs 

(Model 1) may select for the emergence of two coexisting specialists through gradual 

evolution (here illustrated for 9.0 ). E) For weak trade-offs, life cycles with local 

regulation and variable habitat outputs (Model 3) may select for the emergence of two 

coexisting specialists (here illustrated for 1.2  ). In both D and E, the joint evolution of 

local adaptation and habitat choice first converges to the evolutionary branching point, before 
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splitting into two increasingly specialized morphs as indicated by the double-headed dashed 

arrows. F) Under global regulation (Model 2), the angle of the separatrix between the basins 

of attraction of the two specialists varies with the trade-off strength  . For weaker trade-offs 

(larger  ), the separatrix is less steep, which implies that the initial habitat-choice trait has a 

greater influence on the evolutionary outcome than the initial local-adaptation trait. For 

stronger trade-offs (smaller  ), the separatrix is steeper, which implies that that the relative 

importance of initial trait values is reversed. All panels are representative also of evolutionary 

dynamics with some covariance between local-adaptation and habitat-choice traits, unless the 

covariance is strongly positive in Model 3 or strongly negative in Models 1 and 3. Other 

parameters: 0.8s , 4.01 c , and 6.02 c . 

 

Figure 4. Geometrical interpretation of why habitat-choice evolution qualitatively changes 

local-adaptation evolution under weak trade-offs. All illustrations focus on Model 1 with 

genetically independent traits (absent covariance) of equal variance. A) This panel shows a 

weak local-adaptation trade-off (thick line, for 0.9s  and 1.2  ), the singular resident at 

0.5p   (open circle), and its invasion boundary (thin line). Habitat choice is fixed at 0.5h  . 

Only variants above the invasion boundary (white region) can invade the corresponding 

resident, while those below (gray region) cannot. The resident thus is evolutionarily stable, as 

no variant constrained by the trade-off can invade it. B) The local-adaptation trade-off is now 

strong ( 0.9s  and 7.0 ). The singular resident at 0.5p   (open circle) can be invaded by 

any variant lying above the invasion boundary (white region). Since this includes variants 

permitted by the trade-off, the resident is not evolutionarily stable. C-D) Extension of 

preceding considerations to the joint evolution of local adaptation and habitat choice. Three-

dimensional trade-off (light gray surface) and invasion boundary (dark gray surface) of the 

singular resident ( 0.5, 0.5)p h   (open circle). Under a weak trade-off (C), variants with no 
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habitat preference (black arrows; ˆ 0.5p   and ˆ 0.5h  ) lie below the invasion boundary and 

therefore cannot invade the resident. When habitat choice is fixed at 0.5h  , 0.5p   thus is 

evolutionarily stable. In contrast, variants whose local-adaption traits and habitat-choice traits 

differ from the resident in the same direction (white arrows) lie above the invasion boundary 

and therefore can invade the resident. When habitat choice evolves, ( 0.5, 0.5)p h   thus is 

not evolutionarily stable. Under a strong trade-off (D), even variants with no habitat 

preference (black arrows; ˆ 0.5p   and ˆ 0.5h  ) can invade the resident. E-F) Fitness 

landscapes around the singular resident (0.5p  , 0.5h  ). The darker the gray, the higher 

the fitness. Dashed lines connect variants ̂ˆ( , )p h  that experience the same fitness in the 

resident population. Continuous lines connect variants ˆˆ( , )p h  that experience the same fitness 

as the resident. Under a weak trade-off (E), the resident can only be invaded by variants 

whose local-adaption traits and habitat-choice traits differ from the resident in the same 

direction (white arrows). Under a strong trade-off (F), the resident may be invaded also by 

variants with unchanged habitat-choice traits (black arrows). 

 

Figure 5. Comparison of conditions for the maintenance and emergence of local-adaptation 

polymorphisms when habitat outputs are constant or variable and habitat choice is fixed and 

random, fixed and matching, or evolving. The left pair of columns depict conditions for the 

maintenance of two specialists at 0p   and 1p   (Ravigné et al. 2004) in dependence on the 

relative carrying capacity 1c  of habitat 1 (horizontal axes) and on the loss s  of local fitness 

that a specialist experiences in the habitat to which it is not adapted (vertical axes), with either 

fixed and random habitat choice or fixed and matching habitat choice. The right pair of 

columns depict conditions for the emergence of this polymorphism through gradual evolution 
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(eqq. [3b] and [3c] for trade-offs of decreasing strength, ranging from 0.2   (strongest 

trade-off; black regions) to 1.2   (weakest trade-off; light gray regions). 

 

Appendix figure 1. Impact of the variance-covariance structure on the joint evolution of local 

adaptation and habitat choice under local regulation and variable habitat outputs (Model 3). 

Gray arrows depict the direction of the selection gradient after multiplication with the 

variance-covariance matrix. Thick curves with black arrows show the resultant evolutionary 

trajectories. Black circles represent alternative end points of the evolutionary process. The 

grey circle represents an evolutionary branching point and the open circle an evolutionary 

repellor. The double-headed dashed arrows depict the direction in which dimorphic strategies 

diverge from the branching point. The dotted line is the separatrix that separates the basins of 

attraction of the two alternative evolutionary end points. Habitats occur at equal frequencies 

( 1 2 0.5c c  ). The trade-off is moderately weak (i.e., close to linear, 1.1  ). The 

mutational or population-level variance of the local-adaptation trait is 4ppV  , while the 

variance of the habitat-choice trait is 1hhV  . A) No covariance between the two traits, 

0phV  . The singular strategy is an evolutionary branching point. After convergence to this 

point, the population splits and becomes dimorphic. B) Maximal positive covariance between 

the two traits, 2phV  . The singular strategy is an evolutionary repellor. It can never be 

attained through gradual evolution, and the population instead specializes on one habitat or 

the other, depending on initial conditions. For some smaller values of phV  (such as 1.7phV  ), 

the evolutionary repellor is surrounded by an evolutionary limit cycle along which the local-

adaptation trait and the habitat-choice trait oscillate in perpetuity (result not shown; Red 

Queen evolution sensu Dieckmann et al. 1995). Other parameter: 0.9s . 
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