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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 141

EEP

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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ABSTRACT

Goal: Elucidating the role of the eco-evolutionary feedback loop in determining
evolutionarily stable life histories, with particular reference to the methodological status
of the optimisation procedures of classical evolutionary ecology.
Key assumption: The fitness ρ  of a type depends both on its strategy X and on the
environment E, ρ = ρ(X,E), where E comprises everything, biotic and abiotic, outside an
individual that may influence its population dynamically relevant behaviour. Through
the community dynamics this environment is determined (up to non-evolving external
drivers) by the resident stategy Xr: E =  Eattr(Xr).   
Procedures: Use the indicated notation to derive necessary and sufficient conditions for
the existence of an evolutionary optimisation principle, and for the reduction of such a
principle to straightforward r - or R0-maximisation. Develop quick tests to diagnose
whether an eco-evolutionary model supports an optimisation principle.
Results: It is necessary and sufficient for the existence of an optimisation principle that
the strategy affects fitness in an effectively monotone one-dimensional manner, or
equivalently, that the environment affects fitness in an effectively monotone one-
dimensional manner. In particular, there should exist functions ψ of the strategies and φ
of the environments such that sign[ρ(X,E)] = sign[ψ(X)+ φ(E)]. Pairwise Invasibility
Plots of an eco-evolutionary model that supports an optimisation principle, have a
special easily recognisable shape. Natural selection just maximises r, or R0, if and only
if r (X,E) can be written as α(r(X,E0),E), respectively R0(X,E) can be written as
exp[α(ln[R0(X,E0)],E)] , with α  increasing in its first argument, and E0 fixed, but
otherwise arbitrary.
Conclusion: A pure optimisation approach holds water only when the eco-evolutionary
feedbacks are of a particularly simple kind.
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1. Introduction

The literature is replete with statements that evolutionary predictions about e.g.
behavioural or life history parameters should be based on the maximisation of
individual lifetime reproductive success, R0 (Stearns, 1992, Roff, 1992, Charnov, 1993,
Charlesworth, 1994, provide surveys), or else the intrinsic rate of natural increase, r
(Stearns, 1992, Roff, 1992, Charlesworth, 1994, Caswell, 2000). In the former case it is
often added, rather confusingly, that due to density dependence necessarily R0 = 1 (see
e.g. Charnov, 1993, and its review by Maynard Smith, 1993). No doubt most authors
dealing with life history theory know how to interpret the last statement, and are aware
of the implicit limitations of the traditional optimisation considerations. However, some
asking around indicated that this awareness (i) has little diffusion among
experimentalists, and (ii) appears rather dim even among most theorists. Our quick and
dirty survey also revealed that probably the main cause of this small awareness is that
advertising positive predictions gives more kudos than spelling out limitations. Yet, we
feel that delimiting the applicability of particular evolutionary arguments is a worthy
effort, not only for philosophical but also for practical reasons: By extending the limits
as far as one can, one usually also extends the effective toolbox.

In this paper we put forward three closely related messages: 
(i) We argue that adhering to a simple explicit notation fosters the awareness of some
implicit limitations of life history arguments. Our notation differs from the traditional
one only in that the roles of (a) the life history traits, and in particular (b) the
environment, in determining the population dynamical behaviour of an individual, are
made visible. This visibility also has the advantage of removing the minor confusion
about R0 simultaneously being maximised and kept equal to 1. We sincerely ask you to
adopt this notation, or else to develop your own variant of it. The use of more simplified
notations too often misleads! 
(ii) We give necessary and sufficient conditions for the eventual outcome of the
evolutionary process to be characterisable by some optimisation principle, and more in
particular by straight r - or R0-maximisation. These conditions are phrased in
mathematical, structural, terms only. So far we have not been able to delimit clear
classes of corresponding physiological mechanisms. Dreaming up simple classes of
mechanisms subsumed under our conditions is easy. We give some examples. But how
wide exactly is the net?
(iii) We describe the special patterns visible in Pairwise Invasibility Plots that are
characteristic for the presence of an optimisation principle.

In a companion paper (Metz et al., 2008) we demonstrate how the details of the
population dynamical embedding may have considerable influence on evolutionary
predictions. The models used in that paper were specifically rigged to allow various
optimisation principles, depending on the specific choice of the environmental feedback
loop. For those models the proposed explicit notation also alerted us to the fact that life
history parameters determined in the field often will show patterns that differ in a non-
trivial way from the patterns in the parameters determined under laboratory conditions.
The various feedback loops led to very different optimisation principles and, without
any clear relation to the optimisation principles, very different relations between field
adult mortality and maturation time. These results may act as an antidote to the,
apparently common, belief that in most practical applications the proposed additional
notation will only be a burden without being of much help. This is not the case. The
added clarity not only prevents mistakes, it also opens new vistas.

The present paper may be seen as an extension of Mylius & Diekmann (1995).
There various examples of sufficient conditions for the existence of an optimisation
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principle are demonstrated. Here we characterise the collection of all possible scenarios
allowing such principles.

2.  Setting the stage: fitness, density dependence, and ESS considerations

Our starting point is that there is one master fitness concept: the hypothetical average
rate of exponential growth ρ which results from the thought experiment in which we let
a clone of the type under consideration grow in an ergodic environment (Charlesworth,
1994; Tuljapurkar, 1989, 1990; Caswell, 2000; Metz et al., 1992; Rand et al., 1994;
Ferrière & Gatto, 1995; Metz, 2008). The term “ergodic” in the preceding statement is a
key phrase used by mathematicians to indicate the most general conditions guaranteeing
that temporal averaging operations yield definite results; in practice the requirement
boils down to the absence of any longer trends and the nonexistence of different regimes
occurring with nonzero probabilities that once realized exclude each other for all time.
The term “environment” is, in the tradition of the theory of structured populations,
supposed to refer to everything, whether biotic or abiotic, outside an individual that has
the potential to influence its population dynamically relevant behaviour.

The mental construction of hypothetical clonal individuals out of Mendelian
ones still needs some elaboration: We have to discount offspring each generation by a
factor one half to account for the fact that each individual only carries half of the alleles
of one of its Mendelian parents. Hence, the fitness of a diploid phenotype is defined as
the asymptotic time-averaged relative growth rate of the so discounted number of
descendants, in a thought experiment where these descendants all have the same life
history parameters as their ancestor. These parameters include mating propensities
while mating opportunities are considered a component of the environment.

Remark 2.1: The reasons for our particular choice of a definition are: (i) It is consistent
with the use of the word fitness in the context of simple evolutionary scenarios on all
points that count in a long-term evolutionary context. (ii) For a large range of ecological
scenarios it is sufficiently precise to yield a definite number. (iii) The number so defined
is almost the minimal information necessary to deduce predictions about both
evolutionary final states and non-equilibrium evolutionary patterns. See the arguments
below, and Metz et al. (1996a) and Metz (2008) for a further elaboration.

Our verbal definition immediately brings out that ρ necessarily depends both on
the type X of the clone and the environment E in which it supposedly lives. To keep our
arguments clear we should account explicitly for this dependency in the notation, by
writing

ρ(X,E)     (2.1)

(c.f. Diekmann & Metz, 1994, and Mylius & Diekmann, 1995).
A potential source of confusion may be that as E refers to the environment as

perceived by the individuals, for instance density and types of conspecifics may come
as part and parcel of E (Michod, 1979; Metz & Diekmann, 1986; Pásztor, 1988; Metz &
de Roos, 1992; Diekmann & Metz, 1994; Pásztor et al., 1996). Yet, in our thought
experiment we consider those densities as given ergodic random functions of time, not
influenced by the growth of our clone. The justification of this mental somersault is that
we should think of fitness as the rate of invasion of a rare mutant multiplying amidst a
large resident population. This presupposes that all evolutionarily relevant resident
(sub)populations of the species are large, so that initially the influence of the mutant on
the environment is properly diluted. The mutant heterozygote swarm reproduces
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faithfully by crossing with the residents. If dilution fails due to the interaction ranges of
the individuals containing but a few more permanent sparring partners, we can
sometimes take recourse to inclusive fitness considerations (see e.g. Taylor, 1988a,
1988b, 1989 for technicalities), but in ultimate generality the concept of fitness resists
further extension. Luckily, the range of conditions covered is sufficiently large that we
need not be overly bothered.

The corollary is that predictions about the trait values favoured by evolution
should always derive from an ESS argument (e.g. Roughgarden, 1979; Charlesworth,
1994; Lessard, 1990; Eshel, 1996): 

1. Maximise ρ(X,E) for each given E over all potential trait values, resulting in a
function Xopt(E).

2. Determine for each trait value the environment that it generates as a resident,
Eattr(X). (The notional index "attr" alludes to the assumption that the population
dynamics converges to an attractor. If such were not the case the resident
phenotype would not have a well-defined environment attached to it.)

3. Vary X to find an evolutionarily unbeatable value X*, i.e., an X* such that

Xopt(Eattr(X*))  =  X*. (2.2)

4. Ascertain that the set of trait values X0 from which X* is approximated with non-
zero probability through a sequence X0, X1, X2,…, such that ρ(Xi+1,Eattr(Xi)) > 0,
possibly interspersed with polymorphisms, is sufficiently large to warrant
consideration of X* as a potential evolutionary trap.

Note that although the last condition is not part and parcel of the ESS concept as such (it
should have been!), only the subset of attracting ESSes, customarily called CSSes, is
relevant for making predictions (c.f. Eshel, 1983; Taylor, 1989; Eshel, 1996; Geritz et
al. 1998).

The above description is only meant as a definition, not as a practical algorithm.
The general procedure 1 to 4 has a habit of exceeding the available computer capacity,
except in the simplest possible cases. Practical algorithms circumvent this by using
special properties of particular cases.

Remark 2.2: In general it cannot be excluded that the function Eattr is multi-valued. In
theory this does not invalidate our arguments, except that our present phrasing is
definitely lacking in the details. But it may considerably complicate attempts at
applying them in practice. The wording of the special arguments in Sections 3, 5  and 6
and the Appendix apply without change to the multi-valued case.

Monomorphic ESSes, as defined above, are not the only possible evolutionary
endpoints, there also may exist polymorphic endpoints. To describe the corresponding
intricacies a little more notation is needed. Combinations of trait values that can coexist
will be denoted as C  =  { X1,… ,  X k}, the corresponding environments as Eattr(C). For
monomorphic and for clonal populations

                ρ(X,Eattr(C))  =  0   whenever   X ∈  C.  (2.3)

In polymorphic Mendelian populations (2.3) also holds true on the level of the (clonally
reproducing!) alleles, where we have to interpret the elements of C as allelic traits, but
in general not at the level of phenotypes (with ρ calculated as described in the
introductory paragraphs of this section).

In clonal populations the evolutionary endpoints, generically denoted here as C*
(or possibly X* if we want to stress that we are dealing with the monomorphic case), are
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always ESSes, characterised by (2.3) together with the fact that each trait in C*
maximises fitness in Eattr(C*).

In the Mendelian case there may exist other polymorphic endpoints where
evolution gets stuck due to so-called genetic constraints. This can happen for example
when the phenotypes can be ranked in a linear order from worst to best, independent of
the environment, and the superior phenotypes can only be realised by genotypes with
one or more heterozygote loci. Such constraints tend to be specific and there is little
chance that ever a general theory can be built telling how and when they will occur.
Hence we restrict the discussion to cases that are covered by

Assumption A: There are no long term genetic constraints, or, more positively
phrased, the only long term constraints that are present are “physiological”, i.e., can

be described in terms of a developmentally realisable subset of the trait space.

Proposition 2.1 (e.g. Bulmer, 1994; see also Eshel & Feldman, 1984; Liberman, 1988;
Metz, 2008): If the community dynamics goes to a point-attractor, and individuals have
but a single birth state, then in the absence of genetic constraints also in the Mendelian
case any polymorphic evolutionary endpoints C* are phenotypic ESSes, by which we
mean that they satisfy (2.3) and each trait in C* maximises fitness in Eattr(C*).

Proof: Define R0 of a phenotype as half the lifetime offspring production by that

phenotype. Then for phenotypes as well as for alleles R0 >< 1 ⇔  ρ  >< 0. At a point
attractor the R0 of the alleles involved in the polymorphism, which are all equal to 1, are
averages of the R0 of the phenotypes (see e.g. Diekmann et al., 2003). Hence, if the R0 of
the phenotypes are not equal, some of them will be smaller and some of them larger
than 1. Therefore, if (2.3) were not satisfied at the ESS, for the corresponding
community attractor there exist trait values with positive fitness. However, in that case
any mutant that would transform all phenotypes with negative fitness into one with
positive fitness could invade. Hence, by contradiction, (2.3) applies. Similarly, if not
each trait in C* were to maximise fitness in Eattr(C*), there would exist a trait value
having a positive fitness in Eattr(C*), and a mutant that transformed all phenotypes into
that trait value could invade.

Remark 2.3: Whether or not convergence to the unbeatable strategy can occur will also
depend on the (non-)presence of genetic constraints. The belief is that Assumption A, at
least under the same conditions as in Proposition 2.1, guarantees that convergence for
the Mendelian case parallels that for the clonal case, as it allows us to dream up any
needed mutations, including mutations that break up heterotic polymorphisms (c.f.
Hammerstein & Selten, 1994, and Hammerstein, 1996; see also Eshel, 1996; Weissing
1996).

It is an open problem how far the consequent in Proposition 2.1 extends to
fluctuating environments or life histories with multiple birth states (like populations
distributed over patches with different local environmental conditions).  Of course, the
idea of the proof applies as soon as at a community attractor where the coexisting
phenotypes have different fitnesses not all of these fitnesses are negative (while yet the
population persists indefinitely!). Therefore, the mathematical question is whether it is
possible that while the allelic averages of the growth rate over birth states and time are
zero, yet the corresponding averages for the phenotypes could be all negative. Although
such a statement feels exceedingly counterintuitive, there exists so far no proof of its
negation.
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We would have preferred to make only the natural Assumption A. However, to
reach any interesting conclusions we need

Assumption B: Relation (2.3) holds good at any ESSes.

The previous considerations imply that Assumption A implies assumption B for (i)
clonally reproducing populations, (ii) cases where there are no ESSes beyond the
monomorphic ones, and (iii) when the community dynamics converges to a point-
attractor and all individuals are born equal except possibly for differences in their
genotype. Hence, unless otherwise specified, the results below hold good under only
Assumption A at least in cases (i) to (iii).

Assumption B makes that in the definition of an ESS we could just as well have
restricted the attention to those E that can occur as Eattr(C) for which (2.3) holds good.
As this restriction becomes essential in the arguments below we introduce the

Convention: Whenever we refer to E we shall mean only those E that can occur as
Eattr(C) for some C such that (2.3) holds true.

3.  When does evolution optimise?

This section deals largely with the abstract basics. Here we show that the outcome of
the ESS calculation can be reached by the straightforward application of some
extremisation principle (like the maximisation of R0 or r or the minimisation of a single
limiting resource) only when the function ρ(X,E) satisfies some rather stringent
restrictions. Section 4 contains some representative examples. An additional set of
examples, demonstrating some further intricacies, may be found in the companion paper
Metz et al (2008).

First we give some

Definitions: We shall say that the trait vector acts in a monotone one-dimensional
manner whenever there exists a function ψ of X to the real numbers such that

sign ρ(X,E)  =  sign α(ψ(X),E), (3.1)

for some function α which increases in its first argument. Similarly, we shall say that
the environment acts in a monotone one-dimensional manner whenever there exists a
function φ of E to the real numbers such that

sign ρ(X,E)  =  sign β(X,φ(E)), (3.2)

for some function β which increases in its second argument.

Note that “acts” stands here as a shorthand for “acts effectively”, where the epithet
“effectively” refers to the fact that the action needs only be one-dimensional monotone
where it counts, i.e., around zero fitness.

Example 3.1: Assume that we need to deal only with constant environments. Whenever
we can write the average lifetime offspring production as

R0(X,E)  =  φ(E)R0(X,EV) (3.3)

(‘V’ for virgin, where the term ‘virgin’ refers to the absence of the focal organisms), we
can arrive at (3.1) and (3.2) by defining
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          ψ := R0(X,EV),   α(ψ(X),E) = β(X,φ(E)) := ln[φ(E)]+ ln[ψ(X)] = ln[R0(X,E)] (3.4)

(c.f. Example 6.2).

Definitions: We shall call a function ψ of X to the real numbers with the property that
evolution maximises ψ under any constraint on X an optimisation principle. Similarly,
we call a function φ of E to the real numbers with the property that evolution minimises
φ(Eattr(X)) for any constraint on X, a pessimisation principle or Verelendungs principle.

The proviso “for any constraint” in the previous definition mirrors the usual practice of

combining an optimization principle, derived from the population dynamics, with a

discussion of the dependence of the evolutionary outcome on the possible constraints.

Proposition 3.1:  Models in which the trait vector acts in a monotone one-dimensional
manner have an optimisation principle, and vice versa.

The forward implication is immediate as any C satisfying (2.3) for which ψ(X) is not
maximal for the X in C is invadable. (Note that by (2.3) ψ is flat on C.) The argument
underlying the somewhat unexpected reverse implication is spelled out in the Appendix.

Proposition 3.1 is of course a weakened form of the familiar justification for
many of our commonly used optimisation principles: “Being more “efficient” increases
your fitness in any relevant environment.” (The condition “in any relevant environment”
is crucial, but rarely is mentioned explicitly.)

Likewise we have

Proposition 3.2:  Models in which the environment acts in a monotone one-dimensional
manner have a pessimisation principle, and vice versa.

The forward implication is immediate as any E for which φ(E) is not minimal is
invadable. The argument underlying the somewhat unexpected reverse implication is
spelled out in the Appendix.

In the Appendix we construct a β such that (3.2) holds true for the pessimisation
principle φ. This construction also provided the heuristics for the term Verelendungs
principle: Any φ satisfying (3.2), with β increasing in its second argument, allows a
natural interpretation as a measure of environmental quality, as perceived through the
physiology of our individuals.

Proposition 3.2 is of course nothing but the ultimate generalisation of two
familiar evolutionary extremisation principles pertaining to the case of population
dynamical equilibrium: (i) “Evolution minimises the availability of a limiting resource”,
and (ii) “Evolution maximises total population density if the individual life history
parameters are negatively affected by the total population density (and are unaffected by
any other environmental variable influenced by the population)”.

Remark 3.1: Principle (i) has a counterpart saying that also population dynamically
(i.e., when we may neglect mutations altogether) if there is a single limiting resource
for, say, all algae or bacteria in a chemostat, in the end the type which needs the
minimum resource concentration to survive remains when the experiment is started with
a mixture of types. (All rare mutations do is possibly extend the space of types from
which the most thrifty type is chosen.) This extremisation principle stands out for its
long history and the resulting completeness of its analysis. The resource concentration
on which a species just survives was dubbed R* by Tilman (1982). Powell (1958) may
be the first to have given explicit expression to the general suite of ideas. Tilman (1976;
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written as Titman) and Hansen & Hubbell (1980) provide early experimental
corroborations. For unstructured populations Hsu et al. (1977), Armstrong & McGehee
(1980), Wolkowics & Lu (1992) and Li (1999) gave increasingly more encompassing
proofs for the purely population dynamical case.

All authors cited above assume that their populations do not have any internal
structure. For physiologically structured populations there exists the possibility of single
species oscillations. See e.g. Gurney & Nisbet (1985) and De Roos et al. (1990). Where
the space of single resource densities is one-dimensional, the space of resource
oscillations is infinite dimensional. Hence, except when the physiology handles the
resource fluctuations in an excruciatingly special way, the environment will not act one-
dimensionally. When the community dynamics goes to a point attractor and no species
in finite time irreversibly runs out of reproductives (see Example 3.1 in Gyllenberg et
al. (2003) for the reason for the latter proviso), also in the structured case the species
with the lowest R* remains. For if such were not the case close to the purported
equilibrium point the most thrifty species would start growing in numbers, and hence
the point cannot be an attractor.

Principle (ii) has an about equally long theoretical history. Some early papers are
Charlesworth (1971; also 1994), Roughgarden (1976; also 1979), Kimura (1978) and
Nagylaki (1979; also 1992). This class of models has not led to any experiments,
presumably due to the primarily phenomenological character of the model assumption.

Proposition 3.3: Any pessimisation principle carries an optimisation principle in its
wake and vice versa.

This is easily proved by gauging the “ability to cope” to the “quality of the
environment” through

     ψ(X)  =  - φ(Eattr(X)). (3.5)

The above recipe produces a ψ for any φ pried out of an expression for ρ, or vice
versa. But beware, (3.5) usually does not hold true for a ψ and a φ arrived at separately.
The strongest possible statement that can be made about two ψ’s, or φ’s, found by
different means is that they are necessarily monotonically related.

The construction by which Proposition 3.3 is proved in the Appendix has as a
corollary:

Proposition 3.4: Whenever the trait vector acts in a monotone one-dimensional manner
it is possible to find a function φ of E to the real numbers, or alternatively, whenever the
environment acts in a monotone one-dimensional manner it is possible to find a function
ψ of X to the real numbers, such that

sign ρ(X,E)  =  sign [ψ(X)+φ(E)].     (3.6)

However, somewhat unexpectedly the aesthetically pleasing symmetry of (3.6) is not
very helpful, as usually at most one of the functions φ and ψ occurring in it can be
expressed as an explicit formula. In contrast, the seemingly less restrictive
characterisations of one-dimensional action by means of either (3.1) or (3.2) often can
be readily applied.

The arguments in the Appendix are only based on uninvadability considerations.
For completeness we summarise some immediately associated evolutionary attractivity
properties
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Proposition 3.5: When (i) evolution operates in a context that allows an optimisation
principle ψ that is at least piecewise continuous, (ii) (2.3) applies over all evolutionary
trajectories under consideration (as will be the case when reproduction is clonal or
when the trajectories do not pass through any polymorphisms) and (iii) the supports of
any mutation distributions contain at least the intersection of an ε-neighbourhood of the
trait value of the progenitor X with the developmentally realisable subset X of the trait
space, with ε independent of X:
1. A unique global optimum of ψ that is not an isolated point of X has a non-negligible
basin of evolutionary attraction. Better still, it will often be a global evolutionary
attractor. This happens for example when (a) the supports of the mutation distributions
equal X, or (b) X is connected, ψ is continuous, and there are no local optima other
than the global one.
2. When mutant trait values are restricted to a δ-neighbourhood of X, a particular local
optimum of ψ that is not an isolated point of X will have a non-negligible basin of
evolutionary attraction whenever δ is sufficiently small.

The application of (3.5) immediately yields the corresponding proposition for
pessimisation principles.

As a final point we mention that (for a monotone one-dimensionally acting
environment) φ(Eattr(X)) can be directly determined from

             β(X,φ(Eattr(X)))  =  0.  (3.7)

This allows the construction of a simple general algorithm for numerically analysing
any model with a one-dimensionally acting environment: Numerically maximise ψ
defined by (3.5), where φ(Eattr(X)) is at each iteration step numerically determined from
(3.7). This way there is no need to calculate the potentially unpleasant object Eattr(X).

Remark 3.2: Whether a monomorphic ESS exists at all for an X that maximisesψ, still
depends on whether X is in the domain of the map Eattr, or, less cryptically phrased,
whether there exists an internal community dynamical attractor for X, or, in even more
biological terms, whether the community dynamics will support an X-monomorphism.
It can also happen that ψ is maximised by more than one value of X. Then the ESSes
correspond to the subsets C of the set of optimising values that are in the domain of Eattr.
Such a situation will, for example, regularly occur when some high dimensional
physiological trait space is mapped to a lower dimensional space of life history traits. In
that case a manifold of physiological traits may underlie a unique optimal life history.
For the clonal case we may nevertheless expect the end result of an evolutionary
transient to be monomorphic: In the presence of an optimisation principle generically
two or more trait values brought together to see whether they can coexist will have
different values of ψ and hence will fail to do so. The extension of this argument to a
community constructed by evolution goes as follows. The presence of an optimisation
principle will keep a population monomorphic over the course of an evolutionary
transient, as any discrepancy in their ψ  values will destroy the coexistence of strains.
Therefore, even when unbeatable polymorphisms exist, they do not as such attract,
although once the community is at an ESS, in many (but not all) cases there will exist a
set of trait values that are neutral relative to each other, which then allows
diversification by random drift within this set. For Mendelian populations the situation
is less clear, due to the possibility of short-term attractors that do not satisfy (2.3). Our
present guess is that even here a polymorphic ESS will at best attract only very rarely.
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4. Examples

In this section we consider three examples that may be considered representative for the
results of the previous section. The first example serves to demonstrate the various
concepts in rigorous detail, unencumbered by technical distractions. Its second purpose
is demonstrating how the formal definition of a one-dimensionally acting environment
may possibly differ from one’s uninformed mechanistic intuition. The second example
demonstrates that, although we know that it exists, it may be difficult to find an explicit
pessimisation principle from a given optimisation principle. The third example shows
how it may be possible to find a pessimisation principle for non-equilibrium attractors,
leading to an otherwise non-obvious optimisation principle.

Before starting on the examples we introduce one more piece of notation as this
considerably simplifies their presentation. In unstructured populations fitness in a
potentially fluctuating environment should in the discrete time case be calculated as the
logarithm of the geometric mean of the per capita reproduction (starting from newly
born individuals) in the different time steps. We shall denote the geometric mean
operator as G,

    G z z t
T

t

T

T( ) : lim ( )=
→∞ =

∏
1

, (4.1)

and its logarithm as L, i.e.

L z T z t
T

t

T

( ) : lim ln( ( ))=
→∞

−

=
∑1

1

. (4.2)

In order not to unduly complicate the examples we shall moreover proceed as if
reproduction were clonal.

Example 4.1: Consider the following thought experiment. Birds are limited by the
availability of nest sites. These sites have a density s. Only birds that have obtained a
nest site in spring breed. The number of young M that they produce per capita is an
increasing function of their ability to gather energy ψ(X), where X is the trait that is
assumed to be under evolutionary control. (X may take any well-defined values, be they
discrete or continuous, finite dimensional vectors, or even whole functions.) We
measure this ability by the number of offspring it produces:

M = ψ(X). (4.3)

Old and young survive the winter with a probability p. Next spring, nest sites are
allotted randomly among the survivors.  Birds that fail to obtain a site are removed from
the system.

An obvious choice for the condition of the environment in year t as perceived by
a bird, is the total density n of winter survivors, of all trait types together,

E(t)  =  n(t). (4.4)

We shall present side by side a classical population dynamical calculation, and a
calculation along the route laid out above. In neither calculation we take the obvious
shortcuts, as this would obstruct their comparison.

We shall distinguish the resident and mutant types by means of the indices 0 and
1. With this notation the population equations become, with i = 0, 1,
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with (4.5)
E(t)  =  n(t)  =  n0(t) + n1(t). 

(For notational simplicity we confine ourselves to initial conditions such that
consistently n(t) > s.)

Applying the definition of ρ from the introduction of Section 2 to (4.5) (without
already confining the attention to the Eattr(X) which for this particular model necessarily
are constant) results in

ρ ψ

ψ

( , ) ( ( ))

ln[ ] ln[ ( )

X E L ps X
E

ps X

= +





= + +

1
1

1 ]] ( ).− L E

          (4.6)

Given the functional form of (4.6) and the verbal model description with which
we started, one natural choice for φ is

φ( ) :
( )

E
G E

=
1

, (4.7)

i.e., we measure the quality of the environment of a bird as the inverse of (the geometric
mean of) the density of competitors that it encounters when it is searching for a nest
site. With this definition we can write

ρ(X,E)  =   ln[ps] + ln[1+ψ(X)] + ln[φ(E)]. (4.8)

From this formula we see that both the trait and the environment act one-dimensionally,
with

 α(ψ(X),E) :=  ρ(X,E)  =:  β(X,φ(E)).             (4.9)

The conclusions that ψ is an optimisation, and φ a pessimisation principle, will not
come as a surprise. Combining (3.5) with (3.7) and (4.8) leads to the, equivalent,
optimisation principle

′ = − =
−
+

ψ φ
ψ

( ) : ( ( ))
( ( ))

X E X
ps Xattr

1

1
.       (4.10)

Our first choice was to have our measure for the quality of the environment, φ,
inversely proportional to the density of conspecifics. The matching “ability to cope”,
ψ ́ , given by (4.10), is, of course, monotonically related to energy gathering ability ψ.
A measure of environmental quality which matches the optimisation principle ψ, is
given by

′ = − = −φ
φ

( )
( )

( )
E

ps E

G E

ps
1

1
1 . (4.11)

For each of these pairs (3.6) holds good:

sign ρ(X,E)  =  sign [ψ ́ (X)+φ(E)]  =  sign [ψ(X)+φ́ (E)]. (4.12)

For the population dynamical invasion calculation we set E(t) = n0(t), with n0(t)
set equal to the mutant-unencumbered equilibrium n0 , to get
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n(t)  =  n0   =  ps (1+ψ(X0)),
and

n t ps X
n t
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1
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 (4.13)

(4.13) tells that evolution leads to the optimisation of ψ ́ ´(X) := 1+ψ(X).
This example also shows how our unguided intuition may clash with our formal

characterisations. Mechanistically the bird density is regulated by the nest sites, but
structurally (i.e., in terms of the mathematical relations connecting the various
population dynamical variables) by the density of conspecifics competing for those
sites. One should watch out for this type of discrepancy when applying proposition 3.2
to 3.4  in mechanistically formulated examples.

Example 4.2: We make the following changes in the previous example. Losers of the
lottery for nest sites are not removed, and winter survival is variable. In that case

ρ ψ
( , ) ( )

( )
X E L p L

X s

n
= + +





1 . (4.14)

The fact that 1+( )ψ ( ) ( )X s
n t  increases in ψ, independent of n(t), implies that

L X s
n1+( )ψ ( )  and therefore ρ(X,E) increases whenever ψ(X) increases. Since ψ  is an

optimisation principle, by Proposition 3.3 our model allows a pessimisation principle φ.
However, determining φ is a different matter. L(p) can be determined by taking the
average over time or equivalently over the stationary probability distribution of p(t).

Similarly L 1+( )ψ ( ) ( )X s
n t  can be calculated from the stationary probability distribution

of n(t). Hence the set of relevant evolutionary environments corresponds to a one-
parameter family of probability distributions on the positive half-line of potential
population densities, with scalar parameter ψ. Given such a distribution E, φ(E) has to
be determined by solving (with the scalar dummy variable ν in the position of n(t))

 ln {d } ( )1 0
0

++
−−





++ ==
∞∞

∫∫
φ
ν

νs
E L p . (4.15)

When the p(t), t ∈ R, are independent, it is possible to write down an integral equation,
parametrised with ψ(X), that should be satisfied by the distributions Eattr(X). However,
this equation does not appear to be analytically tractable. For general dependent p(t) we
cannot even write down an equation for E. E can only be determined by simulating the
population development and recording the relative frequencies with which the various
population densities are visited. This complicatedness of the recipe for calculating φ
makes it rather unhelpful.

We primarily put example 4.2 in as a warning. Taken on face value it might suggest that
Propositions 3.1 to 3.4 are for all practical purposes useless. This is not the case. First of
all there are lots of examples where the recipes for going forth and back between a ψ
and a φ are much nicer. Although such examples in principle are but a small minority
among all possible cases, they actually crop up rather frequently among the models that
we humans tend to devise. Even more important is that on an abstract level Propositions
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3.1 to 3.4 establish a firm ground for further developments such as the ones in the
following sections.

Example 4.3: Consider the population dynamical equations

n t a f E t n ti i i

bi( ) ( ) ( )+ = ( )( )1 ,    i = 0, …, k,

with (4.16)
E(t) = [c0n0(t)+…+cknk(t)],

all ai, bi, and ci  > 0, and f decreasing from 1 to 0 for E increasing from 0 to ∞.
With the choice

f(E(t)) = [1 + E(t)]-1,      (4.17)

and k = 0, this model becomes the model launched into fashion by i.a. Hassell, Lawton
& May (1976) as a touchstone for the appearance of chaotic fluctuations in single
species population dynamics.

The trait vector appearing in (4.16) is

X = (a,b,c).           (4.18)

The parameters a, 1/b, and c can be interpreted in individual-based terms as respectively
the per capita reproduction in a boom environment, the ability to cope with a bust
environment, and the per capita impingement on the common environment.

From (4.16) we find

ρ(X,E)  =  L[a [f(E)]b]  =  ln[a] + b φ(E), (4.19)
with

φ(E)  =  L[f(E)].  (4.20)

From ρ(X,Eattr(X)) = 0 we deduce that

φ(Eattr(X))  =  - b-1 ln[a],        (4.21)

We conclude that evolution maximises

 ψ ( ) :
ln[ ]

X
a

b
= .   (4.22)

In accordance with Propositions 3.3 and 3.4 we can define the functions α  and β
occurring in the definitions of monotone one-dimensional action, as

α(ψ(X),E) := ψ(X) + φ(E)  =:  β(X,φ(E)).  (4.23)

Please observe that
      ρ(X,E)  =  b(ψ(X) + φ(E)) (4.24)

showing that α and β  are indeed sign equivalent to ρ, but not equal to ρ as was the case
in the previous example. It can even be proved that for ρ given by (4.19) it is impossible
to find pairs α and ψ, or β and φ, for which such an equality holds good.
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5. A quick and not too dirty practical test

In addition to being of general philosophical relevance in their own right (since they
show what exceptional conditions have to be fulfilled for an extremisation principle to
exist), the criteria from Propositions 3.1 and 3.2 can be used as tools for deriving more
practical criteria for special model families, or for answering general questions for more
constrained scenarios like when evolution will maximise r  or R0 (c.f. Section 6).
However, deriving more concrete criteria may still ask for considerable mathematical
ingenuity. Hence, it is of interest in addition to have a quick practical test to see whether
a particular eco-evolutionary model might satisfy an optimisation principle.

Whenever the types can be parameterised with a continuous one-dimensional
trait x, the presence or absence of an optimisation principle may be judged from the
shape of the so-called Pairwise Invasibility Plots (Metz et al. 1996a; Geritz et al. 1998;
the idea originated with Matsuda,1995, and independently with Van Tienderen & De
Jong, 1996). PIPs are plots, with a one-dimensional x in the position of X and y in that
of Y, of the sign structure of the invasion fitness function sX(Y) := ρ(Y,Eattr(X)); see
Figure 1. The existence of an optimisation principle is equivalent to

               s XX1 2( )  ><   0                ⇔           s XX2 1( )   ><   0,                           (5.1)

as counterpart of

       ψ(X2) >< ψ(X1)           ⇔               ψ(X1)  >< ψ(X2),

together with

                       s XX1 2( ) >< 0         &    s XX2 3( ) >< 0         ⇒ s XX1 3( )>< 
0,    (5.2)

as counterpart of

   ψ(X2) >< ψ(X1)   &       ψ(X3) >< ψ(X2)  ⇒         ψ(X3) >< ψ(X1).

For one-dimensional X the anti-symmetry condition (5.1) is equivalent to skew
symmetry of the PIP, i.e., flipping the PIP over the main diagonal only exchanges the +
and – signs; see Figure 1. The transitivity condition (5.2) moreover has as consequence
that any trait values xi and xj for which ψ(xi) = ψ(xj) are equivalent. Hence, vertically
above these trait values there should be the same alternation of plusses and minuses.
Moreover, thanks to the skew symmetry of the PIP, the same pattern should show up,
with plusses and minuses swapped, in the horizontal direction to the right of each of
these trait values. The result is that any isolas of the non-diagonal zero-contour curve
(corresponding to local maxima of the optimisation principle that are exceeded by its
global maximum) have counterparts in wiggles in any other non-diagonal zero-contour
curves that span the same range of trait values, either horizontally or vertically (see
Figure 1). A representative sample of configurations is depicted in Figure 2. Whenever
the PIPs of a particular eco-evolutionary model look like the ones in that figure, this can
be considered as indicative for the existence of an optimisation principle.

In the case of higher dimensional continuous traits, an eco-evolutionary model
supports an optimisation principle if and only if all possible one-dimensional submodels
with trait spaces defined by curves {X(x) | x ∈  R}, support an optimisation principle.
Hence a good guess can be made whether a model with a higher dimensional trait space
supports an optimisation principle through the consideration of a representative sample
of one-dimensional submodels.
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Some other criteria derived from Proposition 3.2 for the (non-)existence of an
optimisation principle applicable to higher dimensional trait spaces are discussed in
Dieckmann & Metz (2006; section 4 and Appendix A).

6.  When does evolution maximise r or R0?

In this section we consider the optimisation principles of classical life history theory, to
wit r- and R0- maximisation, and thereby provide the larger context for the examples in
Mylius & Diekmann (1995). Since r and R0 are only defined for constant environments
we shall from now on (i) assume that population dynamical equilibrium obtains, and (ii)
have the symbol E refer alternatively to a potential condition of the environment at a
particular time, or to constant functions of time having that condition of the
environment as value.

For constant environments

ρ(X,E)  =  r(X,E).   (6.1)

Moreover,

r(X,E)    ><    0           if  and only if         R0(X,E)   ><  1 ,    (6.2)

allowing the replacement of ρ(X,E) in the recipes of Sections 2 and 3 by  ln[R0(X,E)].
(See e.g. Roughgarden, 1979, Charlesworth, 1994, Metz & Diekmann, 1986.)

Incidentally, although the usual definitions of r and R0 are predicated upon all
individuals being born equal, they can readily be extended to cater for variable birth
states and spatial heterogeneity. The only proviso is that E should be constant in time.
(See e.g. Diekmann et al., 1990, Jagers, 1991, 2001, Kawecki & Stearns, 1993,
Kozlowski, 1993, Diekmann & Metz, 1994.)

Below E0 denotes some a priori chosen fixed value of E.
The following proposition is an immediate corollary of Proposition 3.1.

Proposition 6.1: r (X,E0), or R0(X,E0), is an optimisation principle for, and only for,
combinations of life histories and ecological embedding, such that there exists a
function α increasing in its first argument  such that

sign r(X,E)  =  sign α(r(X, E0),Ε),    (6.3)
or

sign ln[R0(X,E)]  =  sign α(ln[R0(X, E0)],E) (6.4)

respectively.

Remark 6.1: The result from Proposition 3.4 allows us to replace the characterisations
from Proposition 6.1 by the characterisation that there should exist a function φ of E to
the real numbers such that

sign r(X,E)  =  sign [r(X, E0)+φ(Ε)],       (6.5)
or

sign ln[R0(X,E)]  =  sign [ln[R0(X, E0)]+φ(E)]  (6.6)

respectively. This characterisation may in theory be equivalent to the characterisation
from Proposition 6.1, but in practice it is less useful as φ rarely pops up as an explicit
formula, whereas it is usually fairly easy to spot the α occurring in the characterisation
from Proposition 6.1.
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In the epidemiological literature examples abound where R0(X,EV) is an
optimisation principle, with EV the virgin (i.e., disease free) environment. When no E0 is
specified, as is often the case in the life history literature, this entails the implicit
assumption that every E0 will do. Below we introduce the terminology to make this
explicit and then show shat such situations are characterised by identities that do not
involve the sign function.

Remark 6.2: A convention of logic is that when a statement is not explicitly indicated
as pertaining to a specific individual case, or subset of cases, it should be interpreted as

pertaining to all possible cases. This convention is itself but a formalisation of the

human habit of interpreting open statements like “raven are black” as meaning that all

raven are black and not as some raven being black, or raven being black only under

certain circumstances.

Definitions: We shall say that evolution just maximises r , or R0, whenever r(X,E0),
respectively R0(X,E0), is an optimisation principle for every choice of E0.

Proposition 6.2: Evolution just maximises r , o r  R0, if and only if it deals with
combinations of life histories and ecological embedding such that is possible to write

r(X,E)  =  α(r(X, E0),E),  (6.7)
or

R0(X,E)  =  exp[α(ln[R0(X, E0)],E)]          (6.8)

respectively, with α increasing in its first argument, and E0 fixed.

The particular choice of E0 in (6.7) and (6.8) is arbitrary as these formulas imply that
formulas of a similar form result when we change to another value of E0.

A proof of Proposition 6.2 can be found in the Appendix.

Example 6.1: Whenever the environment makes itself felt only through an additional
death rate µ(E), acting equally on all individuals, r(X,E) can be expressed as

r(X,E)  =  r(X,EV) - µ(E), (6.9)

EV the virgin environment. Therefore evolution within those confines just maximises r.

Example 6.2: In this example we generalise the classic finding (e.g. De Jong et al.,
1987; Charnov, 1993) that if all density dependence is due to nursery competition, we
may use R0 optimisation for determining the ESSes for any post-nursery traits.

Let the life history consist of a number of subsequent stages. Call a stage
reproductive if reproduction is possible during, or before as well as after that stage, and
all preceding stages pre-reproductive.  If there is no overlap between the sets of pre-
reproductive stages affected by, respectively, X and E and the reproductive stages are
affected by at most one of those two variables, the average lifetime offspring production
can be expressed as

R0(X,E)  =  φ(E) R0(X, EV), (6.10)

EV the virgin environment. Therefore evolution within those confines just maximises R0.
We refer to the companion paper Metz et al. (2008) for some contrived examples

that show that scenarios where the trait and the environment act in well separated
groups of life stages are not the only ones where the ESS can be calculated by just
maximising R0. Although we expect the former scenarios to be the only ones leading to
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R0 optimisation that come with a clear direct mechanistic basis, we have not yet been
able to formalise the necessary concepts sufficiently for this statement to become
(dis)provable. Hence we only showcase the above ideas as example instead of a
proposition.

7.  Concluding remarks

The main relevance of our propositions is that they rigorously show that on an abstract
level the suite of simple examples 4.1 to 4.3 are representative of all population
dynamical scenarios allowing an evolutionary extremisation principle. Such scenarios
only differ in the, unfortunately sometimes quite horrible, technical details of the
calculations.

Our propositions also show that having an extremisation principle really is a
rather special property.

In the intuitively obvious case we can point to an intermediate scalar quantity
which when increased, increases fitness in all relevant environments. As it turns out, the
environments that matter are those stationary environments that can potentially be
generated by the family of communities under consideration as reactions to particular
values of the trait vector. A technical elaboration moreover shows that the initial
requirement can be weakened by replacing the word “fitness” by the phrase “some
quantity that is sign-equivalent with fitness”. This technical variant we have dubbed
“monotone one-dimensional action” of the trait vector (or strategy parameters, if your
leaning is ecological instead of taxonomical).

The other, slightly less obvious, scenario, is that the environment acts in a
monotone one-dimensional manner (in the aforementioned technical sense). We have
proved that these two cases are effectively only one case, and, what is more, the only
case allowing an evolutionary extremisation principle. Proposition 3.4 tells moreover
that in that case the trait vector and the environment by necessity act not only in a
monotone one-dimensional manner but also, in a certain technical sense, independently.

It is our conviction that it is only our own, unwitting or deliberate, moulding of
evolutionary scenarios that leads to the frequent occurrence of extremisation principles
in the life history models studied in the literature. For more complicated feedback rules
shortcuts in the form of an optimisation principle do not exist!

There is an abundance of papers in the literature dealing with models in which
the environment acts higher dimensionally. One interesting aspect of such models is that
they may allow for evolutionary diversification, which cannot occur with effectively
one-dimensional environments. A good assortment of references may be found on the
website http://mathstat.helsinki.fi/~kisdi/ad.htm kept up by Éva Kisdi. These models are
generally not so much geared to analysing the effect of the effective dimensionality per
se, as well as to showcasing particular biological phenomena. At the foundational side
the next step should be to develop concepts and tools for systematically cataloguing the
possible scenarios when there is not one but two essential scalar components of
environmental action. Some first contributions to such an analysis can be found in
Meszéna (1999) and Heino et al. (1997).

The cases where evolution just maximises r  or R0 are still considerably more
rare. First of all the community should generate only constant environments. Secondly
the dependencies of r or R0 on the trait vector in these different environments should be
monotonically related.
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In conclusion, the choice of a single optimisation criterion, be it R0 or r or still
something else, entails very special assumptions about the nature of the environmental
feedback loop. The current literature consistently underemphasises this aspect.
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Appendix: Theorems underlying the statements in Sections 3 and 6.

In the main text we presented our propositions in an order which seemed natural in view
of their interpretation and/or application. The order in which these results are naturally
deducible is rather different. Therefore we make a fresh start. The propositions of the
main text should be seen primarily as a convenient summary of the results from the
arguments below.

Convention: Whenever we refer to r  or R0 we implicitly restrict ourselves to
community dynamical scenarios for which Eattr(X) is time-constant for all relevant X.
Otherwise we only require E to be ergodic (and realisable as Eattr(X) for some X). The
virgin environment will be denoted as EV.

The following four theorems and corollaries are trivial. The crux is in the questions that
follow them.

Theorem A.1: If there exist functions ψ of X, and α of ψ and E, to the real numbers,
with α increasing in ψ, such that

sign ρ(X,E) =  sign α(ψ(X),E)  (A.1)

then evolution maximises ψ(X)  (or equivalently α(ψ(X),E) for any fixed E).

Theorem A.2 (universal Verelendungs principle): If there exist functions φ of E, and β
of X and φ, to the real numbers, with β increasing in φ, such that

sign ρ(X,E)   =  sign β(X,φ(E)) (A.2)

then evolution minimises φ(Eattr(X))  (or equivalently β(Y,φ( Eattr(X))) for any Y).

Corollary A.3: If we can write r(X,E) in the form

r(X,E)  =  α(ψ(X),E),     (A.3)

with α  increasing in ψ, then evolution maximises  r(X,EV)  (and, more generally,
r(X,E0) for any fixed E0).

Corollary A.4: If we can write R0(X,E) in the form

R0(X,E)  =  exp[α(ψ(X),E)],  (A.4)

with α  increasing in ψ, then evolution maximises R0(X,EV)  (and, more generally,
R0(X,E0) for any fixed E0).

Questions:
1. Is there any relation between Theorems A.1 and A.2?
2. Can Theorems A.1 and A.2 be made into "if and only if" statements, e.g. by requiring

that the extremisation principle should hold independent of whatever choice we may
still make for a constraint on X?

3. Is this also possible for Corollaries A.3 and A.4?
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Theorem A.5 (answer to question 1): The assumptions of both Theorems A.1 and A.2
are equivalent to: There exist functions φ of E, and ψ of X to the real numbers, such that

sign ρ(X,E)  =  sign [ψ(X)+φ(E)]. (A.5)

Proof: Assumption 1:  Define the function φ of E to the real numbers by α(-φ(E),E) = 0.
Then

       sign ρ(X,E)  = sign α(ψ(X),E)  =  sign [ψ(X)+φ(E)]. (A.6)

Therefore the assumption of Theorem A.1 implies the assumption made above. The
converse implication follows by taking  α(ψ,E) = ψ   + φ(E).
Assumption 2:  Let ψ(X) := -φ(Eattr(X)). As β(X,φ(Eattr(X))) = 0

 sign ρ(X,E)  = sign β(X,φ(E)) = sign[φ(E)-φ(Eattr(X))] =  sign[φ(E)+ψ(X)].    (A.7)

Therefore the assumption of Theorem A.2 implies the assumption made above. The
converse implication is obvious.

Apparently we may without loss of essential information replace α(ψ,E) by
ψ+φ(E) respectively β(X,φ) by ψ(X)+φ, with φ respectively ψ defined above.

Remark A.1: The use of the sign function in (A.5) is essential and the reasoning
underlying Theorem A.5 does not extend to Corollaries A.3 and A.4: From r(X,E) =
α(ψ(X),E) we cannot even conclude that there exist functions φ' of E and ψ' of X such
that r(X,E) = ψ'(X)+φ'(E). Neither can we conclude from R0(X,E) = exp[α(ψ(X),E)] that
there exists functions φ' of E and ψ' of X  such that R0(X,E) = exp[ψ'(X)+φ'(E)].

The next lemma is again trivial. However, it forms a natural introduction to the
somewhat unexpected, though on second thought equally trivial, Theorem A.7.

Lemma A.6: If we require that we can determine the ESS under any possible constraint
by maximising a function ψ of X, then

sign[ψ(X1)-ψ(X2)]  =  sign ρ(X1, Eattr(X2))   (A.8)

Proof: Put as a constraint that X is restricted to {X1, X2} and just check the identity for
all values that the left hand sign might have.

Theorem A.7 (first part of the answer to question 2):  
(1) If there exists a function ψ of X to the real numbers such that we can determine the
ESS value(s) of X (whenever such values exist) by maximising ψ, independent of any
choice that we may still make for a constraint on X, then there exists a function φ of E
such that (A.5) applies.
(2) If there exists a function φ of E to the real numbers such that we can determine the
ESS value of X by minimising φ(Eattr(X)), independent of any choice that we may still
make for a constraint on X, then there exists a function ψ of X such that (A.5) applies.

Proof: In case (1) we define φ by φ(Eattr(X)) := -ψ(X). In case (2) we define ψ(X) :=
-φ(Eattr(X)). To derive (A.5) consider all possible constraints of the type X∈ { X1,X2} and
use Lemma A.6. This gives (A.5) for all E that can be written as Eattr(X). To extend the
result to the remaining E use that (2.3) implies that

- if the trait acts monotonically as well as one dimensionally

ψ(X1) = ψ(X2)  whenever there exists a C such that  X1, X2 ∈  C, (A.9)
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as well as

- if the environment acts monotonically as well as one dimensionally

  for all Xi ∈  C                φ(Eattr(Xi)) = φ(Eattr(C)).  
(A.10)

Just for completeness we give a result about the degree of uniqueness of the
functions φ and ψ.

Theorem A.8:
(1) If we require that we can determine the ESS under any possible constraint by
maximising a function ψ  of X then this function is uniquely determined up to an
increasing transformation. 
(2) If we require that that we can determine the ESS under any possible constraint by
minimising a function φ of E ∈  Eattr(X) then this function is uniquely determined up to
an increasing transformation.
(3) The functions φ respectively ψ are uniquely determined by their counterparts.

Proof: (1) Consider two different functions ψ1 and ψ2 that both allow determining the
ESS under any constraint, then by Lemma 6

sign[ψ1(X1)-ψ 1(X2)]  =  sign ρ(X1, Eattr(X2))  = sign[ψ2(X1)-ψ 2(X2)].           (A.11)

Hence

ψ1(X1)  >< ψ 1(X2)       iff   ψ2(X1)  ><  ψ 2(X2)           (A.12)

(3) Consider again all constraints where X is restricted to {X1, X2}. Maximising ψ(X) or
minimising φ(Eattr(X)) will only predict the right ESS for these constraints if
sign[ψ(Xi)+φ(Eattr(Xj))] = sign ρ(Xi, Eattr(Xj)) for all values of i and j.  Uniqueness of φ
given ψ respectively ψ given φ follows from the fact that sign[ψ(X)+φ(Eattr(X))]  should
be 0.
(2) follows from (1) and (3).

Apparently any optimisation principle ψ automatically carries a pessimisation
principle φ in its wake, and vice versa.

Corollary A.9 (last part of the answer to question 2): We may replace the opening "if"s
of Theorems A.1 and A.2 by "iff"s.

Proof: Choose α(ψ(X),E) := ψ(X)+φ(E) =: β(X,φ(E)).

Corollary A.10 (first part of the answer to question 3): 
(1) If we can determine the ESS value of X by maximising r(X,E0) for some special
value E0 of E, independent of any choice that we may still make for a constraint on X,
then there exists a function φ of E such that

sign[r(X,E0)+φ(E)]   =  sign r(X,E).      (A.13)

(2) If we can determine the ESS value of X by maximising R0(X,E0) for some special
value E0 of E, independent of any choice that we may still make for a constraint on X,
then there exists a function φ of E such that

sign[ln[R0(X,E0)]+φ(E)]   =   sign ln[R0(X,E)]. (A.14)



- 26 -

To get any representation of r(X,E) or R0(X,E) itself we need to make a stronger
assumption about the sense in which evolution maximises r respectively R0:

Theorem A.11 (last part of the answer to question 3):
(1)  If the maximisation principle from Corollary A.10 (1) holds good for all possible
choices of  E0, then it is possible to write

r(X,E)  =  α(ψ(X),E), (A.15)

with α increasing in its first argument and ψ(X) = r(X,E0) for some, arbitrary but fixed,
E0.
(2)  If the maximisation principle from Corollary A.10 (2) holds good for all possible
choices of  E0, then it is possible to write

R0(X,E)  =  exp[β(ψ(X),E)],     (A.16)

with β increasing in its first argument and ψ(X) = ln[R0(X,E0)] for some, arbitrary but
fixed,  E0.

Proof: The maximisation of, say, γ(X,E), E fixed, can only lead to the same solution as
the maximisation of γ(X,E0) for all possible constraints if γ(X,E0) and γ(X,E), considered
as functions of X, are related by an increasing function: γ(X,E) = f(γ(X,E0),E,γ), where
the last argument is at this stage only notational. For any given E (and γ) this function f
is necessarily unique. (To prove this, copy the idea of the proof of Lemma A.6.) In
cases (1) and (2) we define α(ψ,E) := f(ψ,E,r) respectively β(ψ,E) := ln[f(ψ,E,R0)].
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Legends to the figures

Figure 1: The pictorial counterpart in a PIP of the skew symmetry and  transitivity
conditions (5.1) and (5.2). The PIP does not change when it is flipped over the diagonal
and blank areas are shaded and vice versa. The trait values x1 to x4 are all equivalent, in
the sense that ψ(x4) = ψ(x3) = ψ(x2) = ψ(x1). The transitivity condition then implies that
vertically above each of these trait values there should be the same alternation of plusses
and minuses. Moreover, due to the skew symmetry of the PIP, the same pattern should
show up, with plusses and minuses swapped, in the horizontal direction to the right of
each of these trait values. The combined effect all such equivalences is a characteristic
relation between any isolas and wiggles of the remaining zero contours.

Figure 2:  Possible optimization principles (upper rows; horizontal axes: adaptive trait,
vertical axes: quantity optimized by evolution), together with their corresponding
Pairwise Invasibility Plots (lower rows; horizontal axes: resident trait, vertical axes:
mutant trait). This figure appeared as Fig. 5 in Dieckmann & Metz (2006).
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