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Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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ABSTRACT

Goal: Elucidating the role of the eco-evolutionary feedback loop in determining
evolutionarily stable life histories, with particular reference to the methodological status
of the optimisation procedures of classical evolutionary ecology.
Key assumptions: The fitness ρ of a type depends both on its strategy X and on the
environment E, ρ = ρ(X,E), where E comprises everything, biotic and abiotic, outside an
individual that may influence its population dynamically relevant behaviour. Through
the community dynamics this environment is determined (up to non-evolving external
drivers) by the resident stategy Xr: E =  Eattr(Xr).   
Procedures: Use the ideas developed in the companion paper (Metz et al. 2008) to rig
simply analysable, as they have an optimisation principle, eco-evolutionary scenarios to
explore the potential of the environmental feedback to influence evolutionary
predictions, and to see in what ways the predictions relate to the tools.
Results: Equipping the classical model for the evolution of maturation time with
various possible feedback loops leads to different optimisation principles as well as
qualitatively different predicted relations between the field values of adult mortality µA

and maturation time T. When E influences only T, the ESS, T*, decreases with µA. When
E influences either only juvenile mortality or only both juvenile and adult mortality in
equal measure, T* increases with µA. When E influences only the reproduction rate, T* is
independent of µA. When E influences only adult mortality, the environmental feedback
loop fixes adult mortality at a constant level so that there is no relationship between T*

and µA to speak of. These six cases are subject to three different optimisation principles.
There turns out to be no relation between optimisation principle and predicted features.

Conclusions: Even in cases where there happens to exist an optimisation principle, the
evolutionary outcomes can be largely determined by other aspects of the population
dynamical embedding. The existence of an optimisation principle is technically helpful,
biologically very restrictive and has in general no further biological relevance.
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1. Introduction

This paper and its companion Metz et al. (2008) were originally conceived as a single
manuscript. The reason for splitting that manuscript into two is that this way we hope to
prevent it from suffering the same fate as its predecessor Mylius & Diekmann (1995),
which is cited far more often for its description of tools for rigging eco-evolutionary
models so as to give them an optimisation principle, rather than for the equally
important message that models that have optimisation principles are exceptional, and
that rigging a model to have such a principle potentially excludes a plethora of
evolutionary phenomena, among which the persistence of any diversity (see appendix
A).

Optimisation principles may be restrictive, but as long as we keep those
restrictions in mind, it can help to rig a model to have one, as this makes for an easy
evolutionary analysis. More specifically, when the goal is demonstrating particular
phenomena as opposed to cataloguing potential ones, the rather severe restrictions
entailed by imposing an optimisation principle may do little harm.

If a community resides at a coevolutionarily steady strategy coalition, each of its
species also resides at an ESS for a community where only that species can evolve and
the others have their traits fixed at the ESS values. Similarly, when we concentrate on
but a few components of a vectorial trait that is sitting at an ESS, those components also
reside at an ESS for a model where we only allow those component traits to evolve
while all other component traits are kept fixed at the ESS values. Hence, as long as we
only consider uninvadability, concentrating on a subproblem can give us correct
insights, provided that the real system that we try to predict indeed has reached an
evolutionary endpoint. Only the attractivity of a subproblem may differ from that of the
problem as a whole. So, concentrating on a simpler subproblem that may allow an
optimisation principle need not lead to wrong results. It only severely limits one’s
scope.

The above argument no longer applies when we, as we will do below, aim at
comparing ESSes for different situations, for then additional traits that we implicitly
assume to be fixed may actually also vary evolutionarily for the systems that we have in
mind. Therefore additional justifications are needed.  Below we consider the evolution
of the age at maturation. The justification for restricting the attention to this trait on its
own can only be that it may be supposed to respond rather quickly relative to other
more deeply engrained life history characteristics, so that we may assume those other
characteristics to stay constant on the time scale that is implicit in our considerations.

Below we will explore the extent to which the nature of the environmental
feedback loop may influence life history predictions. We do not aim higher than
proving that there can be large effects. This limited aim makes it methodologically
sound to rig the model to have an optimisation principle. In all cases we assume that a
community with residents having trait value X relaxes to a point attractor, with
corresponding environment Eattr(X). In such environments the invasion fitness ρ reduces
to the intrinsic rate of natural increase r . In addition to the general procedure for
indirectly constructing an optimisation principle

 (i) if there exists a quantity φ( Eattr(X)) minimized by evolution then evolution
maximises

      ψ(X)  =  - φ(Eattr(X)), (1.1)

we use two direct optimisation principles that derive from special features of the life
history:
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(ii) whenever the environment makes itself felt only through an additional
death rate µ(E), acting equally on all individuals, evolution maximises
r(X,E0) for any fixed environment E0,

and

(iii) when the life history can be subdivided into a number of subsequent
stages, pre-reproductive ones, reproductive ones, and post-reproductive
ones (where we call a stage reproductive when reproduction is possible in
it or before as well as after it), then, if there is no overlap between the sets
of pre-reproductive stages affected by X and E, and the reproductive stages
are affected by at most one of those two variables, the average lifetime
offspring number can be expressed as, with EV the virgin environment,

  

R0(X,E)  =  φ(E) R0(X, EV), (1.2)

and evolution maximises R0(X,E0) for any fixed environment E0.

The companion paper (Metz et al. 2008) discusses on a general level the conditions for
the existence of evolutionary optimisation principles and their reduction to r- and R0-
maximisation, as well as the restrictions such an existence imposes on the ecological
theatre.

2.  Model description

As did Charnov (1993) and Mylius & Diekmann (1995), we consider the following
simple family of life histories: Juveniles die at a rate µJ and mature into adults at age T.
Adults die at a rate µA and reproduce at a rate b. E may in principle affect all these
parameters. Their values in the virgin environment EV we shall indicate with an
(additional) index V. The strategy parameter is the length of the juvenile period in the
virgin environment, TV. To keep the calculations as simple as possible we assume that
the adult reproduction rate b increases linearly with TV; in the virgin environment

b(TV,EV)  =  bV(TV)  =  max{0,TV-1}. (2.1)

In addition we (i) brashly assume that population dynamical equilibrium obtains, and
(ii) have the symbol E refer alternatively to a constant or to a constant function of time.

We combine this basic scenario with six alternative environmental feedback
rules (parameters for which nothing is specified are assumed always to take the value
for the virgin environment):

1.  E only equally and additively affects the juvenile and adult mortality rates,

µJ(E)  =  µJV + γ1(E),       µA(E)  =  µAV + γ1(E)      (2.2)

2.  E only additively affects the adult mortality rate,

µA(E)  =  µAV + γ2(E),  (2.3)

3.  E only multiplicatively affects the reproduction rate,

b T E
b T

E
( , )

( )

( )V
V V

3

=
θ

,      (2.4)
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4.  E only additively affects the age at maturation (without affecting the birth rate) in
such a manner that for a constant environment

T(E)  =  TV + γ4(E),  (2.5)

5.  E only multiplicatively affects the age at maturation (without affecting the birth rate),
in such a manner that for a constant environment

T(E)  =  θ5(E) TV, (2.6)

6.  E only additively affects the juvenile mortality rate,

µJ(E)  =  µJV + γ6(E).  (2.7)

For definiteness we assume that

   γi(E)  ≥  γi(EV) = 0  for  i = 1, 2, 4, 6,
and        (2.8)

θj(E)  ≥  θj(EV) = 1  for j = 3, 5.

3. Analysis

For fixed values of TV and E we can, directly from our initial model description, derive
the characteristic equation (for models of this ilk usually called Euler-Lotka equation)

b

r

r Te ( )− +

+
=

µ

µ

J

A

1, (3.1)

as well as an explicit expression for R0,

R
b T

0 =
−e µ

µ

J

A

.          (3.2)

Below we shall use a  *  to mark the value of a quantity at the ESS.
Feedback rule 1 makes our model fall under Rule (ii) from the introduction.

Therefore we can determine TV
*  by maximising r(·,EV). In appendix C we describe a

simple way to calculate the, unique, maximum.
Feedback rules 2 to 4 all lead to a formula for R0 which, although the biological

mechanism at first sight differs from that considered in rule (iii) from the introduction,
can be brought into the form (1.2) with

R T E
b T T

0 V V
V V

AV

JV V

,
( )e( ) =

−µ

µ
, (3.3)

and

case 2: φ µ
µ γ

( )
( )

E
E

=
+

AV

AV 2

,  (3.4)

case 3:     φ
θ

( )
( )

E
E

=
1

3

, (3.5)

case 4:    φ µ γ( ) e ( )E E= − JV 4 . (3.6)
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In Appendix B we show how to reinterpret the model formulation of these cases so that
they indeed fit Rule (iii) from the introduction. (Please note that our reinterpretations
there are no more than conceptual tricks and need not bear any relation to the real
mechanisms potentially underlying the chosen functional forms.)

Case 5 does not fall under the direct Rules (ii) or (iii) from the introduction.
However, it is easily seen from the interpretation that θ5(E) monotonically affects R0,
and that hence evolution minimises  θ5(Eattr(X)). Therefore we fall back on the general
procedure (i), with φ set equal to 1/θ5, i.e., we set

R T E
b TV V

AV

E T

0

5

1( , )
( )e ( )

V attr

JV attr V

= =
−µ θ

µ
, (3.7)

in order to calculate the optimisation principle ψ(TV) := -θ5(Eattr(TV)). It turns out that we
are lucky, and we end up with the explicit expression (after multiplying out the constant
factor µJV)

ψ
µ

( )
ln ( ) ln( )

T
b T

TV
V V AV

V

=
( ) −

.     (3.8)

The story for case 6 is exactly the same as for case 5, with -γ6 in the role of φ,
even to the extent that we end up with the same optimisation principle.

Remark: In principle, case 1 can be analysed by exactly the same procedure as cases 5
and 6, except that it is not possible to find an explicit expression for γ1(Eattr(TV)). And
rule (ii) from the introduction tells that anyway the resulting optimisation principle
would be monotonically related to r(·,EV).

Further details of the analysis may be found in appendix C.

4. Results

After the mathematics comes the interpretation problem. In the classic life history
models this is less of a problem, as it is assumed that on the time scale of our
measurements the life history parameters of individuals are constant, instead of being
potentially under environmental control. In the case of the present model we have to
distinguish two situations in which the measurements can be collected, called
“laboratory” and “field”. In the laboratory situation the environment is kept constant,
whereas in the field situation the environment adjusts itself such that

R0(TV
* ,E) = 1. (4.1)

For the feedback rules 1 to 6 the values of the life history parameters in the laboratory
situation differ from those in the virgin environment by at most either an additive or a
multiplicative factor. The field values are obtained by adjusting the virgin parameter
values, where appropriate, by γi(E) or θj(E) determined from (4.1).

We focus on field observables. Figure 1 shows the correlations obtaining
between T* and µA, for a fixed value of µJV, for each of the six feedback rules as they
operate in the field. Apparently different feedback rules can lead to radically different
patterns. Figure 2 differs from panel 1 of Figure 1 by whether we plot cases with
matching values of µJV (Figure 1) or matching values of µJ (Figure 2). The second
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picture corresponds to a protocol in which we select species, or populations, on the
basis of their equality of the observed value of µJ, the first picture to a protocol where
we select them for their a priori expected similarity with respect to µJV. Although
conceptually different, the two protocols induce similar predictions. In cases 2 to 6 the
predictions for the two protocols are even exactly the same. In cases 2 to 5 this is due to
the assumption that µJ = µJV, in case 6 to what appears to be just an algebraic quirk.

As a contrast we may consider the relations between TV
*  and µAV, with µJV fixed,

to give a feel for what may be expected for the relations between laboratory
observables. The plots for cases 1, 3 and 6 look like the corresponding panels in Figure
1, those for cases 2 and 4 like panel 3, and the plot for case 5 is equal to that for case 6.
Clearly there is a necessity to distinguish between field and laboratory observables as
the same evolutionary outcomes can look very different when expressed in either type
of observables.

Remark: Since the model is meant only as an illustration of principle, but probably
does not match any specific real situation in quantitative detail, we refrained from
including plots for all the different possible parameter combinations. Here is a
description of the remaining possibilities. The plots of T* against µJ, with µAV fixed, all
show a roughly hyperbolically decreasing relation, like in panel 4 of Figure 1. The plots
of TV

*  against µJV, with µAV fixed, show either a decreasing relation, in cases 1 to 4, or a
horizontal line in cases 5 and 6.

5.  Concluding remarks

The model, and more in particular Figure 1, shows how the details of the environmental
feedback loop can have a non-trivial influence on the predicted relationships between
life-history parameters. The qualitative nature of the relation between the age at
maturation in the field and the field adult mortality shows a clear relation with the
nature of the environmental feedback loop. However, no such relation can be seen with
the optimisation principles that the models happen to posses.

A secondary message is that any relations between field values of life history
parameters may be rather different from the ones we would get if we were to cut the
environmental feedback loop and measure the same parameters not in the field but in
organisms grown in the lab.

The overall methodological conclusion is that although optimisation principles
may come in handy for the analysis, they apparently have little biological meaning. In
addition the restrictions that have to be imposed to produce an optimisation principle i.a.
a priori exclude what may well be the most appealing feature of the evolutionary
process, its power to adaptively generate diversity.
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Appendix A: Evolutionary optimisation excludes diversity

Only in the absence of an optimisation principle it is possible for a community to
adaptively generate diversity at so-called branching points in the space of the trait
vectors by which we distinguish our types (Metz et al., 1996a; Geritz et al., 1998). The
results in Section 5 of the companion paper Metz et al. (2008) about the restricted nature
of the PIPs of models with an optimisation principle imply that any singular points are
necessarily either ESSes or both invadable and repelling, leaving no room for such
exotics as repelling ESSes or branching points. The ecological explanation of the latter
is that branching points require the possibility for the coexistence of two species in a so-
called protected “polymorphism”. In accordance with the general principle of
competitive exclusion (e.g. Levin, 1970; Meszéna et al., 2006) such coexistence is
impossible when locally the effective dimension of the environment is one, that is, if in
the neighbourhood of the prospective branching point there exists a function φ of the
environments E and a function β of the trait vectors X and the real numbers such that
sign ρ(X,E) = sign β(X,φ(E)), ρ(X,E) the invasion fitness of type X in the environment
E. In the companion paper we prove that, if we restrict the considered environments to
those environments Eattr(C) that can occur as community dynamical attractors for some
coalition of phenotypes C  =  { X1,… , Xk} such that  ρ(X,Eattr(C)) = 0 for all X ∈  C,  the
existence of such functions is implied by the existence of an optimisation principle.
More strongly, the functions φ and β are global and in addition β is monotone in its
second argument if and only if an optimisation principle exists. We refer to the full
combination of requirements as the environment acting in a monotone one-dimensional
manner.

To see that in the presence of an overarching optimisation principle generally no
diversity can remain unless genetic constraints prevent the optimal type from being
realized as a homozygote (assuming that we identify types that are equal in all their
population dynamical properties, or, equivalently, that differ only in some population
dynamically irrelevant markers), we can use an extension of the argument in Remark
3.1 from the companion paper. We first observe that the invasion fitness concept (Metz
et al, 1992; Rand et al. 1995; Metz, 2008) that underlies our considerations is so general
that it not only applies within but also among species as long as these are coupled
within a single (possibly even spatially distributed) community. To explore the
consequences of this generality we have to consider a trait space that is sufficiently
encompassing that it allows differentiating between species as well as between types
within a species. Now assume that an optimisation principle exists on that trait space.
We have already seen that such is the case if and only if the environment acts
effectively in a monotone one-dimensional manner. When on the way to an attractor no
species in finite time runs out of reproductives (see Example 3.1 in Gyllenberg et al.
(2003) for the reason for this proviso), necessarily out of a mixture of species and types
within species only the type with the lowest φ remains. For if such were not the case, in
the environment generated by the purported attractor, call it A, the type with the lowest
φ would start growing in numbers, which contradicts that A is an attractor. Remains the
rare possibility that more than one type globally minimises φ. Although this is possible
in principle, in practice it will be so rare that we can ignore it for all practical purposes.
In a more mathematical vein: almost any small perturbation of the modelling framework
(such as in nature are brought about by changes in ecological circumstances) will
remove the coincidence.
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Appendix B: Bringing cases 2 to 4 in line with rule (iii) from the introduction.

We can, by slightly reinterpreting the model formulation, make each of the cases 2 to 4
into a special case subsumed under rule (iii) from the introduction. This is done by
introducing a third stage which is either the only stage affected by E, and is not affected
by TV, or the only stage affected by TV, and is not affected by E. We shall consider the
cases in opposite order.

Case 4:  We split the juvenile period into a basic juvenile period of length TV, and a
subadult period of length γ4(E). 

Case 3:  We introduce an infinitesimally short nursery stage before the juvenile stage.
Adults reproduce according to bV(TV). Nursery survival is 1/θ3(E).

Case 2:  We again apply the nursery stage trick, except that we now assume that the
adult reproduction rate and nursery survival are

b b T
TM V V

V

= { }max ( ) ,   and   
b T

b
V V

M

( )
   respectively. (B.1)

Of course this trick only works for models with a maximum to the juvenile period, as
else (B.1) makes no sense. The unconstrained case then is covered through the use of a
limit argument.

Appendix C: Mathematical details of the analysis.

Case 1: We consider the maximisation of r defined by

g(r,TV)  =  1, (C.1)
with

  g r T
b T

r

r T

( , )
( )e ( )

V
V V

AV

JV V

=
+

− +µ

µ
. (C.2)

Implicit differentiation of (C.1) gives

∂
∂

∂
∂

= −
∂
∂

r

T

g

r

g

TV V

. (C.3)

From (C.2) we see immediately that g decreases in r. Therefore ∂g/∂r < 0. It is also easy
to see (i) that ∂g/∂TV < 0 for TV sufficiently large, and (ii) that the fact that bV(1) = 0,
and that bV increases in TV,  imply that ∂g/∂TV > 0 for TV = 1. Therefore r has at least
one maximum in (1,∞).

To calculate that maximum we set ∂r/∂TV = 0 in (C.3). This tells us that at TV =
TV

*

∂
∂

=
g

TV

0 .    (C.4)

By differentiating (C.2) for TV we find that

∂
∂

=
∂
∂

− +( )g

T

b

T

g

b
r g

V

V

V V
JVµ .     (C.5)
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Substitution of the resulting relation

r
b

T
+( ) = [ ]µJV

V

V

d ln

d
            (C.6)

in (C.1) with (C.2) gives

b T
b

T
T

b

TV V
V

V
V

V

V
AV( ) − [ ]







 = [ ] +exp

d ln

d

d ln

d
µ −−( )µJV          (C.7)

together with
d ln

d

b

T
V

V
JV AV

[ ] > −µ µ .          (C.8)

The next step is to substitute (2.1). This reduces (C.7) to

T
T

T TV
V

V V
AV JV−( ) −

−








 =

−
+ −( )1

1

1

1
exp µ µ .        (C.9)

The introduction of
y  :=  (TV-1)-1 (C.10)

lets us replace (C.9) by
y-1e-(1+y) - y  =  µAV - µJV. (C.11)

The left hand side of (C.11) decreases from ∞ at y = 0 to -∞ at y = ∞. We conclude that
r has a unique optimum TV

* , which can easily be determined from (C.11) with (C.10).
Formulas (C.10) and (C.11) moreover allow us immediately to plot the relation

between TV
*  and µA at fixed µJV as a parametric curve, with y as a parameter.

Cases 2 to 4: From  ∂R0/∂TV = 0  we find that

TV
*   =  1 + (µJV)

-1. (C.12)

Apparently TV
*  is independent of µAV. This is clearly brought out in panel 3 of Figure 1,

where the environmental feedback loop acts through the birth rate b. The decreasing
relation in panel 4 derives entirely from the effect of the environmental feedback loop
on T* = TV

* +γ4(E).  In panel 2 we see the effect of the environmental feedback loop
keeping µA constant, independent of µAV.

Cases 5 and 6: Setting  ∂ψ/∂TV = 0  leads to

T
T

TV
V

V
AV−( ) −

−








 =1

1
exp µ .    (C.13)

When TV increases from 1 to ∞ the left hand side of (C.13) increases from 0 to ∞.
Therefore (C.13) has a unique solution.

In case 5 we plot the relation between T* = θ5(E)TV
*  and µA as a parametric curve

with TV
*  as parameter. Although in case 6 the feedback loop influences µJ, it makes no

difference whether we keep µJV or µJ constant, as by (C.13) T* is independent of µJV.
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Legends to the figures

Figure 1: Correlations between the adult mortality rate µA and the duration of the
evolutionarily stable juvenile period T*, both “observed in the field”, for the six models
with alternative environmental feedback rules described in Section 2. The value of the
“physiological parameter” juvenile mortality in the virgin environment, µJV, was kept
fixed at µJV = 0.25.

The numbering of the panels refers to the feedback rules. The plotted field
observables are determined by a combination of the “physiological parameters” µAV (the
adult death rate in the virgin environment) and TV

*  (the ESS value of TV, the juvenile
period in the virgin environment), and the corresponding feedback rule. This amounts to
plotting TV

*  against µAV+γ1(Eattr(TV
* )) for model 1, TV

*  against µAV+γ2(Eattr(TV
* )) for model

2, TV
*  against µAV for model 3, TV

* +γ4(Eattr(TV
* )) against µ AV for model 4,

θ5(Eattr(TV
* ))TV

* against µAV for model 5,  and TV
*  against µAV for model 6.  For the

computational details we refer to the main text and Appendix C.
The, for all curves identical, upper limit of µA results from the fact that for

higher values of µAV no strategy can invade into the virgin environment. Such values of
µAV would lead in a, naive, calculation to γi(Eattr(TV

* )) < 0 (in models 1, 2, 4, or 6) or

θj(Eattr(TV
* )) < 1 (in models 3 or 5), i.e.,  values of  γi  or θj which were excluded a priori

in our model specification. In panel 1 the lower limit of µA results from the additional
mortality due to environmental feedback. In panel 2 we see that a feedback through the
adult mortality by necessity exactly compensates for any difference in the adult
mortality rate in the virgin environment.

The formulas indicate the optimisation principle satisfied by the set of models
delimited by the grey lines, the shading which kind of life history traits were supposed
to be affected by the environment. Note, that in order to use r or R0 as an optimisation
principle we have to decide on a reference environment. For definiteness we have
chosen the virgin one. However, any other environment would have done equally well.

Figure 2: Correlation between the adult mortality rate µA and the evolutionarily stable
duration of the juvenile period T*, both “observed in the field”, for feedback rule 1. The
difference with panel 1 of Figure 1 is that now the value of the observed juvenile
mortality µJ, instead of the “physiological” parameter µJV, was kept fixed at µJ = 0.5.
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