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Continued research on the model revealed a computational mistake in the
numerical results reported in the original IR, published in August 2008. We have
subsequently rerun all simulations with the corrected model version and have
also extended the time horizon of our simulations to 500 (instead of the original
300) time steps. This current version includes revised graphics reporting on the
new simulations. Changes are mostly minor and do not affect the discussion
and conclusions of the original paper.
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Technologies as Agents of Chage: A Simulation Model of the
Evolving Complexity of the Global Energy System

Tieju Ma 2 Arnulf Grubler *3, Nebojsa Nakicenovit® and W. Brian Arthur **

1. Introduction

How does technological complexity arise? Befaliscussing where thigaper can be
situated within the literature on technologi complexity, we first red a working
definition of complexity in this contexBy technological complexity wanderstand a
system that is characterized by a large number of constituent comptiregrgsrtray a
high degree of interdegmdence (functioa interconnections, or interactions).
Complexification by this definition is a simultaneous increase hoth system
components and their interdependence (interomships) within a giversystem. This
leads to emergent properties that can lead to alternative developmenivigthtlimilar
or even identical initial conditions.

Technological complexity can apply both itadividual artifacts("machines”, ranging
from tools, to automobiles, all the way op the space shuttle), asdan apply to
combinations of technologicalrtifacts that themselves form technologystems. It is
the later concept of technological systems corripyethat is at the core of this paper.
We present an agent-based simulationdehothat emulatesthe evolution of
technological complexification in a stgéd model of the global energyssgm.

Analytical inroads into technological complexification are comparatifely and can
be classified into two broad categorietescriptive, and (simulationinodel based
analyses.

As regards the evolution of complexity ioidividual artifacts important insights have
been provided by both research streams:rqese, e.g. the work of Saviotti, 1996, or
Frenken et al, 1999, that analyzedhe evolution of tedinological variety and
complexity of aircrafts and helicopteradasimulation modebased analyses, e.g. the
work of Arthur and Polak, 2@ and their modeof the evolution of logical circuits,
which provided an importantspiration for our moel.

! International Institute for Applied Systems Analysis, Laxenburg, Austria.

% East China University of Science and Technology, Shanghai, China.

® School of Forestry and Environmental Studies Yale University, New Haven, USA.
* Vienna University of Technology, Austria.

® Intelligent Systems Lab, Palo Alto Research Center, Palo Alto, USA.



Concerning the issue of complexification otientechnological systenthere is a rich
tradition in the historicalqualitative description of t#h evolution oftechnological
systems (e.g. the work of Hughes, 1983l a&®86, on the evolutioof electricity

networks with the introduain of concepts of "seamless vgg to desche complexity
comprising technological as well as soaald institutional dimensiohsConversely,
the (simulation) modeling strategy in the analysis of the completidicaf entire

technological systems has not been taken up in the literature. A passiblgtion is a
pioneering early study by Frankel, 1955, thatwever was nofollowed by further
model-based analytical studies. Hence oterast to explore a simulatianodel based
strategy in the analysis tfe evolution of complexitgf technological sstems.

The choice of the case studytime area energy systeragolution wasbased on prior
work of the authors, providing hopefully sonmesights into the hisricd evolution of
energy systems (e.g. Grubler, 1998 and 2004)raok importantly als resulting in
stylized model formulations and numerichdta inputs for our simulatis drawing on
the rich tradition of "bottom-up” energy stgms models used to déwe long-term
energy and climate change scenarios (e.g. Ria&li, 2007). Our case sty application

is also justified by the glicy relevarre of a more thorough understanding of the
evolution of energy systems that are a nwntributor to greenhouse gas emissions and
hence human-ingted climate change (IPC@Q07) and the interest in understanding
better the systems aspects of major technolbgtuéts, such as thones that will be
required for climate stabilization.

1.1. Model Context

The context of our simulation model & "resource transforrtian ard distribution
system" in which technological componef(itsonversion technologs") link available
(primary) resources (fossil and renewablergies) to societal demds (for energy
services such as mobility, illuminati, etc.). The critical link betweeamsourcesand
demandss provided by a combinan of (interlinked) technologies that are defined at
the level ofconversion facilitiege.g. power plants or endaiglevices such as cars, and
that are the customary system boundanytfe definition of energy technologies in
"bottom-up"” energy system models; cf. $8aer and Strubegget994). Conversion
facilities (or "primary technologies" in our model) foemergy chains(Figure 1), that
either operate in "standale" mode or (over time) arincreasingly rniterconnected,
resulting in technological complexification.

2 As will be discussed later, this choice of the level of aggregation for the definition of
technologies has not only advantages (like structural similarity and hence comparability and
analogues to conventional energy system models) but also drawbacks. The choice of a
resource processing system linking primary resources to final demands through technological
combinations forming energy chains in our model and study implies also a dominance of linear
structures and combinations in our technological system that are a far cry away from the
complexity of real-world or simulated systems (e.g. the ones modeled by Arthur and Polak,
2006).



An energy system consisting of various gyechains forms a networkithi available
resources at the input side and energwises at the output séd Alternative
technological combinations or chains gaovide the same energy se®s, and hence
they compete, i.e. are subject to an (ecdnpselection environment in our model, as
in the real world.
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Figure 1. An energy chain for satisfying the demand for illuminatio

The emergence of new component technologgesvell as their &-)canbination e.g.

into new energy chains is essentialbpnceptualized via a randowalk model

(reflecting the unpredictability, often serepitly, of technological innoation) subject
however to resource constmgs and economic incentives. In our modes, assume that
the rate of emergence of new technologesl new technological cdmmations is a
function of available (financial and humarapital) resorces that can "generate
innovations, modeled simply in proportiortglito the size ofthe ecoomy and the
resulting demand for energy services. Ala® assume that econoniitcentives can
trigger innovation, e.g. risingnergy prices would resulb a higherpropensity for

innovation and hence higher probabilitiyemergence of new techngies.

In other words, we assume that the larger a system (in termseojyeservices
demanded), the larger the propensity to innowatk the larger the rate emergence of
new technologies and the possibilities fiew (re-)combinations wddi be. Higher
energy prices add an additional incentivintrease the dynamics of thnsocess.

Once in existence, new technologies or combinations cannot sundeénitively.
Either technologies are not retainedcenintegrated into existingor emerging
technological combinations (chaiis)or they emerge “"prematurely'hé cannot be
integrated into any available technologi@mbinations. For the foren case, the
concept of "seldon environment” (inspir by the work of evolutionary economists,
e.g. Dosi, 1982) is key. We adopt in our miaale essentially economic interpretation of
the selection environment governing the suaviof technologies or theoombinations
comprising both endogenous (e.g. the evolutbriechnological proess efficiencies
and costs) as well as external factors (echange in relative pres through taxes that
reflect environmental and other extertial) that alter the conefitiveness of
alternative technological combinations andde over time change theaution of our
technological system.

The selection environment for technologies characterized by several features,
reflecting a number of "styed facts” emerging from the literature (e.g. Dosi, 2000).

% Consider the example of the Stirling engine that despite being known for almost 200 years and
demonstrated as feasible (functional toy kits are available on the market) has to date not been
integrated into existing energy systems.



First, not only the technologal "landscape™ bualso the characteristiasf individual
technologies are dynamic. Second, the cdEle environment is chacterized by
persistent uncertainty (in both exogenoasd endogenous variab)e Third, the
selection criteria have an important economic dimension, i.e. among#iterchoices,
the cheaper technological combinations {ekgaproviding a giverservicedemand will
prevail over time. Decisions operate hoeewnder uncertainty andit imperfect
knowledge and localized "le@ng”, i.e. a given exience of a (functional)
technological combination with certain agomic attributes (e.g. sts) creates a
propensity for adoption that evolves howewatly gradually as a rekuof localized
learning and its ultimate spillover into the ensgestem. This is in contra® traditional
deterministic "bottom up" and "top dowe'hergy (and economy) mddethat assume
perfect foresight and thus instantaneadispdion of new technologies acdmbinations
universally. Finally, supply and demandoar model co-evolve. While athe one hand,
energy service demands are assumed tovsn grepresented by an exogenous scenario
in our model simulations), new technologi combinations can also create new
demands. An example is the emergence eftatity, first introduceddr substituting
town gas as source of illumination and dsently finding new @plications, e.g. in
communication (telephone) or mobility (street cars).

We reflect the above "stylized" characteristics of the selection envirdaropennumber
of (simplified) model assumptions and farations. The dynamics of tecologies are
assumed to be governed by uncertain inéngageturns to adoption,d. the more a
technology is tried, the higher ipgobability that it actuallymproves, mdeled here via
a learning-by-doing (learning curve) formiida that is however treatess uncertain.
Localized learning is represented by a kingpadbabilistic model represtation of the
adoption process in which new infornmati on technology charactdics (e.g. their
costs) takes time to percolate withinsgstem and the propensityrfadoption is
assumed to inversely proportional to readizdeployment levels. Thesassumptions
imply that recent technologies with highiywcertain characteristics arstnall market
volume will be adopted only very cautiousyyelding the classical slow ka-off pattern
characteristic of technological diffusion (Gtar, 1991). V¢ also use a variable in the
model that represents innovatiimpatience: modeled via atention tine" variable for
newly emerging technologies that cannbé integrated immedidie into new
technological combinations but nonethel&gay around” for a whilawdting potential
integration into the technology systemavidently, with high innovatn impatience
(short retention time), many new technoésy emerge, but subsequgntlisappear
before they ca be integratethto new technology combinations.

The key research question in this paper is to understand how a (stylized and highly
simplified) energy system bootstraps amblees. To that purpose we develop a new
model for simulating technological complexifiaatithat is used to generate alternative
"histories" (and futures) of the evolutiar the global energy system. We perform a
large number of simulations (200) and tteeralyze the simulation runs for differences,
coherent patterns and erging properties, characterizing technological
complexification.



A patrticularly novel feature of our agent bdseodel is that it #rats tehnologies, or
their constituent components, as "agemsiile preserving innovatiomnd economic
drivers as main component$ the evolutionaryalgorithm underlying a&ontinued (re-
)combination of technologies resulting in@mergence and subsequernganic” build-

up of novel systems struzes, punctuatedy Schumpeterian "gales of creative
destruction" (Schumpeter, 1942) resultingrfr the emergence of new technologies and
of new technological combinations.

2. The Model

2.1. Main Characteristics of the Model

In our model, energy technologies, the techgmal constituents of @usystem (our
"agents"), are defined at thevés of a facility/plantor a device that transfms resources
or energy flows following both the tradition attivity or process anais (Ayres and
Kneese 1969) as well as that of "foot-up” energy models (e.gMessner and
Strubegger, 1994). Technologikave characteristics, deéd by their reource/energy
inputs, outputsresulting effciency, and associated em@ss, and costs (for sake of
simplicity we use levelized costs, i.e. do ddferentiate between capitahd operating
costs of technologies). It ihese characteristics of tlhechnologies thagovern their
long-term survival under the selection enwmeent of our technology stem (and not
their mere existence).

Energy chains arknked energy technologies dh connect primary resoees or energy
sources/forms to the energy service demasfdsonsumers. Energy cina are either
new combinations of primary energy tectowes or re-combinationef previously
existing components (groups of technologies or entire chains). Tleeptoof energy
chains is central to the technological systaodeled here: It reflects bothe necessary
supporting "front-" (upstream) and "back-er{dbwnstream) of indidud technologies
(e.g. the electricity supply chains necesdarynake a light bullshine).Conversely, it
also implies a certain dominance of dar" combinations of energy technologies,
characteristic for systems at our chosewel of aggregabin, but that ray not
necessarily be the case whmodeling other technological stgms (e.gthe electronic
circuits studied by Arthuand Polak, 2006). We contendaththese largely "linear"
systems structures emerging from our modalusations are first of all the result of our
chosen level of aggregation (energy facisijiebut further studies and o extensions
will be needed to corroborate this hypothésis.

An energy systenis a system consisting of ansemble of energyhains that can
satisfy a specified bundle efergy services linking primgirenergy with combinations

* We plan to relax the simplifying assumptions underpinning our definition of technologies in
future modeling studies. E.g. instead of defining a "technology" at the level of a physical
plant/facility converting resources or energy carriers (e.g. a coal fired power plant generating
electricity), one could also define the technologies of our system at the level of component
technologies (e.g. a boiler, steam turbine, and generator, for our coal power plant example),
yielding more complex system structures. Lack of suitable data underpinning our simulations
have precluded this extension to date.



of technologies to satisfy final human seevdemands. (A description and graphical
overview is given in Section 2.2 below. Marical details are given in Appendix B.)

In our model, new energy chains are constadifiem components thatreviously exist;
and in turn these new chains offer themesslas possible comparte — luilding blocks
— for the construction of further new chains this sense, energghains build
themselves out of themselves changing tiorphology of previouslyxésting energy
systems. The evolution of an energy systemltimately driven by finahuman service
demands and by the demands created by newgerechnologies/chainkor example,
demand for mobility pulls the developmenttafnsportation technologiesuch as cars;
and cars generate a market for gasoline, and the demand for gasblinetiver pull
the development of technologies such teensport and retail infrasictures, ol
refineries, oil extaction, and so on. We alsonsider the fact #t some final human
demands are triggered by the availabilitynefv technologies, foexanple, it is after
computers became available that demafats some of the serviceprovided by
computers developed.

The emergence of new energy technologies or combinations in the form of new energy
chains is a stochastic process, wherea$uttieer existence of existing oewly formed
technological combinations (chains) governed by an evdiwnary algorithm of
"survival of the fittest” legely based on economic criteri@osts include both intrinsic
characteristics of technologi@sitial values as well agossible changes over time, i.e.
costs can fall as a function ofcreasing returns to adoptiorgs well asexternal costs
(represented in our simple model throughcarbon tax to reflect iohate change
externalities). The simulation model is délsed in more detail inthe following
paragraphs.

Consider a following analogy: Energy technoésgare cards on a tabledatinal human
service demands are cards on a board ab@vtabe. Existing tebnologies and chains
can be viewed as face-up cards on thbletathere are also pential future
technologies/chains (faamdwn technology "wildcards")which are not available
currently. From time to time, some face-down cards will turn over acohfe existing
technologies (at random draw). We start simulations from dew exsting energy
technologies (not energy chains) and savenergy service demandsflecting the
historical situation before trenset of the Industrial Revolution.

In each year (represented by a simulatsdep), a certain number dtiraws” and
“‘combinations” will be carried out. Herelraws mean the introdttion of new
technologies. At each draw, with a certpnobability, a futurdechnology is randomly
selected and becomes an existing oNew combinationsemerge when existing
technologies or entire chains are melded together to form new chains. For each attempt
of combination, the model randomly selecty &mo energy technologies and/or chains
from the table to see whether they dam linked — by linking the output of one
technology (chain) to the inpof another technology (chainlf.they can be linked, the
model checks whether the technological coratiam(s) can satisfy at least one kind of
energy service demand. If a technologynbination can satisfy an energy service
demand, that combination is added as 'tegS to the portfolio of technological
combinations/chains characterizing the energyesy at a particular point in time of our



simulations (i.e. it is added to the "tabbes an existing technology comhtion/chain).

In case a new technological combination/cla@ates a new demand {aif a range of
pre-specified p@ntial demand categorieshje new demand is retained as well (i.e.
added to the "board").

The number of draws and combinationsemch year is responsito the two most
pertinent variables affectingechnological changeavailable resourceffinancial and
human capital) and prices. Thus, as tlze sif the economy gravapproxmated by the
growth of energy service demands in our nipde prices increase rapyd the search
for new technologies will be higher than small-size economy/low price scenarios.
Thus, the number of "innovation drawsihd of technologicakombinations is a
combined function of size of the systemdaenergy prices [see Eq. {1@ Appendix
Al

As the simulation progresseay given final energy sexé demand cdd be satisfied
by several viable energy chains. A viablaichis defined her@as a ombination of
technologies that can link primary energgaerces with finahuman service demands.
For a newly formed viable chain, we assume a small market stmmmatier how
expensive it may be. This reflects our interpretation of the historgattnological
innovation that is governed IBxpectationge.g. of future costeductios, or market
viability under possible external coratits, e.g. carbon taxes in our case)

The cost of technologies and their conabion into energy chainare treated as
dynamic due to technological learning and tese depletion. We alsoonsider in a
stylized fashion that demand quantities inteveith prices (reflected in #hcosts of our
technology chains), adoptingetltoncept of income and pei elasticity ®demand into
our simulation model [see Eq. (4) in Appendix A]. These threechbassumptions
governing the relative economics @chnologcal combinations and the dynamics of
the technology portfolios of evolving energy systems, reflect our interpretation of the
most salient economic drivers in theng-term evolution of energgystems (see
Nakicenovic et al., 2000; Grubleret al., 1999): resource discoveryna depletion,
dynamic costs of energy technologies duguiacertain) increasg retuns to adoption
(uncertain "learning" effects), and in tufreir feedback on energy servidemands (via
price elasticity in addition to income elasticity).

The next issue is to address the nature of the genetic algorithnsittingites the
survival and competition among alternative technology combinatiaie&lsatisfying
particular service demands. We assuthat relative costsggovern the long-term
"survival of the fittest” technologies. Aeach step, if one viable chain is cheaper
(considering both internal as well as extefleavironmental externality] costs) than the
weighted average cost of all viable chasasisfying the energy service demand [see EqQ.

(5) in Appendix A], its sharevill increase, where the degree of market share gain is
assumed to be proportionalttee respective cost differees. The bigger the difference

(i.e. compared to the average costs), the bigger the market share increase will be. The
share of chains more expensive than the weighted average will decrease as well. The
mathematical expression of the dynamics of mimaarket shares is given by Eq. (5 to 7)

in Appendix A.



For the dynamics of final service demandsum model, we assumed firgh exogenous
rate of increase for the aggregate economy that yields increases nmeiacal hence
(with an assumed income elasticity) an exames increase in service denus. Energy
service demands are also influenced by tieegdor satisfying them, whitis calculated

by the weighted average cost of viablaidls satisfying a padular energy service
demand. Changes in pricesarislate into changes iservice demads via price
elasticities. Each final energy servicendnd is recalculated with the assumed price
elasticities at every simulation step. Thus final energy servicelemands are
determined both exogenously and endogenously in our model.

As concerns resource depletion, we simgiguamne the cost of extractingrpary energy
resources increases with cumulative extomct We draw on theguantifications of

cumulative resource extraction costnas of Rogner (1997) foour model

parameterization. Of course, things couldrbere complex in reality: & new energy
resources are discovered, or resourceaetitim costs are lowetdedue to technological
change (which is not modeled here), eximactcosts could well be ostant or even
decrease over time, as opposed to theeasing trends due to resce depletion
suggested by our simple model.

Finally, costs of technologies or of techogical combinations/chainge considered
dynamic in the simulations reped here. Again this reflectair interpretdon of one of
the most important "stylized facts" in thestarical evolution oenergy sgtems (Fisher,
1974, Grubleret al, 1999). We assume the existence of learnirigcesf for new
primary energy technologies, which means costs can decreake cumulative
experience (technology deployment or adoptid®@chnological learmg is a classical
example of increasing returns (see hamt 1983 and 1989). Howeveechnological
learning is also highly wertain, evidenced by both emrcal (e.g. se IIASA-WEC,
1995 and Nakicenoviet al, 1998) as well as modefi studies (@tsevskyi and
Nakicenovic, 2000; Grubler and Gritsevskyi, 2002). In our model,assume that
potential future learning rates of nechnologies & random values around mean
expected values (with lognormal distrilauts) following Grubler and Gritsevskyi
(2002).

Appendix A summarizes the mathematical egsions and numericales of above
genetic algorithm governing competition ands@ing growth, survival, rad decline of
technological combinations/chainsanr simple simulation model.

2.2. The Reference Energy System

For our simulabns, we use a hypotheticalpglified, but to a certain degree realistic
representation of the global energy systam it has evolvedince the Industrial
Revolution. The constituents (technologies)the energy system are represented by
customary engineering and economic variables that are treated as dynamic in the

® This explains the pattern of drastically reduced service demands in some of the simulations
reported below as a function of increasing costs (e.g. due to resource depletion and under
absence of potential learning [i.e. cost lowering effects] of new technological
combinations/chains).



simulations. A schematic overview is givenFigure 2 depicting the reference energy
system at step 300 of our simulations.
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Figure 2. An overview of the simplified reference energy systete model
simulations. Squares denote energy resources, energy carriersnpeogye service
demands (always shown in white colorEllipses represent pnary energy
technologies, the basic constituents of thedel that combine intalternative energy
chains. The technology color codes indecahe level of depyment of various
technologies ranging from large (redyery small (either emengg embryonic
technologies or technologies being phased out, yellowgdionologies ot used at all
(white). Arrows indicate the direction ohkages, whereas the extent akhge is given
as numerical values of the correspondieigergy flows. For high resation pictures
and dynamic simulations seép://www.iiasa.ac.at/Research/TNT/WEHBES 08/

Our simplified energy system is composd#db?2 primary energyechnologes which are
stored in a “technology bdseat the beginning of thesimulations. The 62 primary
technologies are classified into three groufise first group consists of 5 very basic
technologies -- biomass extraction, biomaaggport and distribution, biomass burning
for providing illumination, biomass furnacésr providing heat, and (biomass [feed]
fuelled) horses that provide mobility. Technologies in this group are all available at the
beginning of the simulation, as representing itiain energy technologies extant before
the onset of the Industrial Revolution. The second group consists of 49 "traditional”
technologies related to thapplication of fossil fuelsand also hydropower. They



become available randomly after our sintigia starts, with 0.01 pbability (at each
step) that one of them is drawn out froime “technology (knowledge)alse”. The third
group of technologies consists of 8 so-called "advanced" technologiesastgdrogen
fuel cells. They are assumed to startbBcome available randomlfter some 130
simulation steps, also with 0.01 probabilityat one of them is drawaut from the
“technology base”. Finally, we also deployetboncept of "backstop" tkeaologies, i.e.
technologies that are assumedetast and can be taken "offetlshelf" incase they are
needed (especially to assumefeasible model solution). The existence"lohckstop”
technologies is an optional feature in ourdal; simulations can be germed with or
without the availability of*backstops” (see Section 3 below). All the technologies,
except resource extracting technologies, are assumed to exhibit untartenological
learningeffects, i.e. a technology’s costll decrease with its cumulative output.

Our simplified energy system is in addition defined by the followingérgy service
demands

e illumination (light);

» specific services provided by devicesnsoming eleticity or hydrogen (in

addition to other energy services)g. telecommunication (E/H2 Ser);

* heat;

* mobility and/or mechanical energy (Mech);

* industry feedstocks, i.e. energyedsfor non-energy purposes (Non-F).

Simulations start initially for the fouenergy service demand cateigsr excluding
E/H2, with the latter onlyemerging once correspondingpgly technobgies become
available.

At the resource side, we consid9 kinds of natural resoulebiomass, coal, oil, gas,
uranium, hydro, wind, solar, and deuteriulWe assume the first 5 resources are
depleteable, which means their extraction costs will increase (giimulative)
extraction; hydro and wind atecated as renewable, withadepletion efiects but with
upper limits on their annual supply potentialjascand deuterium areonsidered as
backstop resources, without any depletiore@s or upper limitations on their annual
potentials.

Figure 2 shows the energy system at thearadsimulation, with th 9 resources at the
left side and the left-bottom, the 5 energywsees at the right side, andet 62 primary
technologies forming a network to link egegrservices to remirces. Details and
numerical parameters of the simplified enesggtem and of our modehi be found in
Appendix B.

®As modeling simplification we simply assume that historically new technologies, when they
emerge are a factor 3 higher compared to the period of their maximum use and exhibit a mean
learning rate of 10% per doubling of cumulative output. For the 8 current advanced technologies
we assume a mean learning rate of 30% and initial cost estimates are derived from the scenario
literature (Nakicenovic et al., 2000). All learning rates are treated as uncertain. Cost of
extraction technologies are assumed to be determined soley by resource depletion and are
modeled after the data given in Rogner, 1997.
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3. Model Simulations

For exploring the evolution of the energy yst we first run 200 basesmsimulations
with base-line parameter values as specifiedppendix B. We runach simulation for
500 (time) steps (akin to yedysWe then perform additional sensitivity runs, altering
model assumptions to explditeeir influence on the evdion of the energ system.

We report below some persistent patterns rahdist fatures ("stories") that emerge in
our model simulations and that characterize the long-tegmolution and
complexification of the stylized gbal energysystem of our model.

3.1. Bifurcation, Lock-in, and Path Dependence

One of the most intriguing findings from osimulations is the degres chance and
serendipity characterizing the evolution obfir simulated techihagy system. With
identical initial conditions, identical suite pbtential technologies thaaie emerge (be
discovered), and identicéechnological andeconomic characteristics of technologies
and drivers (e.g. service demands), nonetbetberent system's strtures emerge
across the simulations. Alternative historied &utures unfold in diffenet simulations,
providing numerical illustrationfor both counterfactual histical thoudnt experiments
and alternative future scenarios.

Given identical initial conditions, the energystem self-organizes tm alternative
different structures, evolves ("locks-in") inddternative different directits that persist.
This feature of bifurcation, path-dependeac®l emergent propertiesasresult of the
randomness of the innovation process co with a random walk model of
increasing returns tadaptionis a dynamic behavior that to our knowledge has not been
described in any energy model to date. Biete of art describes such bifurcations
usually by varying exogenous assumpti@awoss different simulations (scenarios),
while in our case differences emerge endogsly with idenital assumptions and
initial conditions. Figure 3 provides an illustration of this bifurcation and path-
dependence showing the results from twaowsations (Sim159 and Sim53) at identical
time steps (1, 20, and 59).

" Readers wishing to position our simulations in "real”, historical time should consider the
present anyway between simulation time step 100 to 120 in our "simulated, virtual" years of the
evolution of the global energy system.

® The full results of all 200 simulation runs over 500 time steps can be accessed at
http://www.iiasa.ac.at/Research/TNT/WEB/ABES 08/
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Simulation ID = 24 (Sim24).

Step=1 Step = 20 Step=50

Simulation ID = 50 (Sim50).

Step=1 Step = 20 Step=50

Figure 3. Alternative struct@s of the energy systemobBing in two illustrative
simulations: Sim24 versus Sim50 for threeetisteps. Red ellipses demaechnologies
in actual use.

Since the two simulations stawith identical initial condions, the stictures of the
energy system at step 1 are identical as Wwakjcally describing an erggrsystem as it
prevailed before the advent of the IndistRevolution. With the randoramergence of
new technologies and a selection environimararacterized by wertanty, localized
learning and (uncertain) incrgag returns to adoption, availa technolgies as well as
their deployment levels are radicatlifferent. For instance at time step Gas bio(gas
from biomass) are available in SiBB while not available in Sim53, v Oil ppl (oil
power plant) andsas ppl(gas power plant) are available in Sim53 wimtg available

in Sim159. At step 50, although available tedbgies in the two simulatins are almost
the same (eceptoil lam [oil lamp]), oil fur [oil furnace for heating] an®il eng [oll
engines for motive power] which are still ratailable in Sim159, #hstructures of the
energy system in the two simulations anetheless quite different. Bim159, the
energy system relies on coaldabiomass; while in Sim53)esides coahnd biomass,
(natural) gas and (nuclear) uranium are alsed, and various electricity generating
technologies are applied to gese electricity from coal, gas, biomass, uranium, and
hydro with electricity beings usdéd power end-use devices suchEdsc HP (Electric
air-condition).

Figure 4 plots the dynamics of resource exioacfrom time step 5@o step 160 for our
two illustrative simulations Sim159 and Sim53. In Sim53, nuclear dominates from
around time step 70 to around 110; in $&9, over the same period, coal dominates

12



initially, with the system switching to diversified resourceportfolio relying on
nuclear, gas and coal.
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Figure 4. Dynamics of resource extraction (in KWyr) in two simulations: Sim24 versus
Sim50 over time steps 50 to 160.
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Over the very long-term (300 simulation yeaits¢ energy system invably shifts to

solar or deuterium (or both) due to depleteffects for fossil resourcemd limits on

the harnessing of the conventional reneMaresources wind and hyd (Figure 5).

Technologies relying on deuterium or sold@usion or solar power lants) can be
considered as the long-run "backstop"” tecbgigs of the energy systeim the sense
that even when all other resources are etepl the energy system cakways rely on
those technologies. Figure 5 is an exampi “path-dependence” of thmodel — with

the exactly same initialization, Sim159 ends witbo&ar-dominatedwhile Sim53 ends
with deuterium-dominatednergy system, albeit at different levels oforese use and
energy service demands. This indicates a paite which the long-ternevolution of

energy systems, both in terms of reseuuse (and the correspamgl environmental
externalities, such as carbon emissions) well as energy (servica)jemands are
technologically constructedndicating the importance ¢échnology as gicy leverage

in coming to grips with the negative eriimental consequences of glbbaange.

Many other simulations end with a combination of baeliterium and solar-dominated
technologies. As such, the hypothesized (Haefebd., 1981) emergence o5blfus”as
ultimate long-term "winner" in a resour@®nstrained global energy system appears
corroborated by our simulations.

¥ 1012 Sim189 " 1012 Sim53
12 T T T T T 12 : T .
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£ 10| ——oil E 10t ——qil
i Gas i Gas
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Figure 5. Long-term bifurcation of the energy system into reliance on alternative
“backstop” technologies solar or fusion (exti@on rates in kWyr): Sim159 (left) versus
Sim53 (right) over time steps 160 to 3@ panel) and distribution of long-run
extraction rates for solar(left) and fusionefaterium, right) acrosall 200 simulations
(bottom panel).
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Readers might object to above conclusionstioa importance of histiwal or future
alternativecontingenciesi.e. the powerful effects of st random eventthat can "tilt"
the system into persistent, alternativeeditons (and thereby permarignéxclude the
possibility of some futures). However, otgsults rather suggest theportance of
human agency (intentionality and choidge)the long-run evolution ofechnological
systems that even if represented as being random in the model, nosddrelatself to
policy intervention in the real world. gine Thomas Edison (anchany of his
contemporaries like Nikola Tesla) never ¢xi5 or alternativelythat ke would have
been instead a contemporary of James Watiuld we expect the ergy system of
today in its current configuration? Our résundicate not. Perhaps theost important
lesson to draw from our simulations is tpetential of policy interveiions that can
trigger long-run bifurcationgn large technological systems such asrgyenurturing
the emergence of alternatives and influegdhe selection environment through policy
signals (cf. the discussion of the influence of a carbon tax below), teat measured
at the scale of the system at stake, might appear minor "pertadyatiout could
nonetheless provoke lasting longrtebifurcation effects.

An important conclusion from our model silations is that ramaim pertubations over
short periods of time have little long-lasyi effects. For instance, incra@ag randomly
enormously the rate of emergence of new technologies for a limitedl périone (e.g.
through an RD effort of the size of the Adw Project), is unlikg} to trigger long-term
bifurcations in energy systemsRroviding incentives for an incremental increase in the
propensity to innovate acrogbe entire technologal "landscape”, coupled with
consistentsignals to change theconomic incentives preNiag in the technological
selection environment (e.g. through carbon taxesjht result in dastic system
transformations.

3.2. Complexification versus technological "denudation™

Starting initially with only 5primary technologies, the stiture of theenergy system
becomes invariably more complex in alinsilations, as new technolieg appear and
become integrated into the system by reime combinations with existintechnologies
and chains as well as competing with each otHewever, while complexification is a
powerful tendency, the simulations revealvasl that complexification cannot unfold
indefinitely, nor that it ioreordained. Technologicalsgms complexification eenges
as a consequence of both the characiesigfoverning technology dynaes as well as
that of the selection environment. Maaad more complex in terms ¢oéchnology is
therefore not a safe bet to usehistorical as well as prospective studiests global
energy system without a careful consatem of both the endogenous and exogenous
environment under which technological complexity evolves.

°In a sensitivity analysis we increased the probability of emergence of a subset of new
technologies (i.e. of group 2, that represent current technologies [the largest number of
technologies in our model], i.e. excluding pre-industrial as well as advanced future technologies)
by a factor of 5. Nonetheless, despite this simulated "innovation frenzy" the impact on
technological complexity remains very small, cf. Figure 6 below.
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As measure of complexity, we simply use the notionvable energy chains

characterizing an energy system. A viablainlmeans a full energy clmawhich starts

from extracting resource and satisfiesiral energy service demand.h&h a viable

chain has a market share above 0.1%, it is considered to be iMsisggregate

measure of complexity, we simply considee tiumber of viable energyhains in use

and that characterize different energy systawer time. Given that wieave run 200

simulations it is necessary to summarize their diversity simpleraggregates. To that
end Figure 6 below summarizes our simulagian terms of tb aveage over 200

simulations. (For a full display dfeterogeneity see Figure 7 below).

An invariable pattern emerging from our siamions is that of a "coplexity peak".
Whereas initially technological complexity iarms of number of emngy chains in use
increases, it reaches a peak around tirap 460, and declines thereaft Increasing
complexity is the result of recursive comdtions of technologies, whesas decreasing
complexity is the result dtock-out” effects of technologis or Schumpetian “creative
destruction”. Newly formed wble chains with advanced technologiesreasingly
squeeze out existing viable chains that are progressively looseig ébonomic
competitive edge due to resource depletion. Since in our simulatiersyskem does
not have an infinite suite of new technolegjithat can be introducedtea some time
(i.,e. around step 150), tesological “lock-out” effectsstart to doinate over
recombinatory (complexification) effectsThe end result is a drastidecline in
technological complexity. After some 400 tirsieps (or years), the level complexity
of the energy system in our model is badkere it started at the onsdttbe Industrial
Revolution. Evidently this resuttould to a certain degree ba artifact ofour modeling
protocol (innovations can only randomlyppear out of a pool fopre-defined
technologies that ultimately becomes exhaustBdj there is also a dper reason as
well: resource depletiorWith the onset of depletion effts (increasingesource costs),
increasingly fossil fuel technologies and gyechains, that have traditially provided
for much of technological variety and colexity in the enegyy landscape become
"locked out" and the syams relies increasinglon the two major "backstop” resources:
solfus (solar and fusion) and the correspmd key conversion technologies for
electricity and for liquiduels (hydroga). The signiftantly higher (in fact thaighesj
complexity of the model simulations withoavailable backstop technologies (Figure 6)
reconfirms this notion. This increasingpgmdence of a few key techogles over the
very long-term was hypothesized as easyl956 by Harrison Brown, wireferred to it
as"technological denudation.”

3.3. Increasing returns and crowding out

Another interesting finding &m our simulations is that complexity and increasing
returns to adoption are to artan degree at odds with eaother. In order to analyze
this effect we have performed a sensitiatyalysis of 200 additional simulations with a
drastically lowered mearearning rate parametéf. In the "low learning" case,

1% the baseline simulations we have assumed mean learning rates of 10% for existing, and of
30% for the 8 advanced technologies. In the "low learning" simulations we assume mean
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technological complexity of the energy systenboth higher in absolutierms as well

as exhibiting a substantiglllater peak (at time step90, as opposetb 150 in the
baseline simulation) before eventually aésdering the pathwatpwardstechnological
denudation as a result of resource deplettogure 7 shows the full ralis of all 200
simulations for both the baselinadathe lowlearning case. The calculated averages are
reproduced in Figure 6 to allow easier camgon with other model sensitivity runs on
the evolution of technological complexity.

The effects of increasing return ("leargl) phenomena on the ecanigs of large
technological systems are well establishediamgbrtant in our simukions as well (see
Figure 8). However, the effects of increasing returns on energy systempegity and
variety need also attention. On one hasdidently the economic dmefits of an
increased reliance on a few key technologies ¢xhibit increasing retusnto adoption
are substantial (a factor of more than 1@®ur simulations, cf. Figur8 below), and
the corresponding lower level of technologicamplexity could also d&ave some risk
benefits as well (lower vulnerability talisruptions of interconnéons between
technologies and energy chaindpwever, lower complexitalso meaness variety in
the system and thus increased vulnerabilitycase of a sudden change in external
conditions or the selection environment. It remains an open researtiomgaéow to
weigh the respective economic benefits of increasing returns withotinesponding
disadvantages of less conxity and variety due to th increasing'lock out" of
alternative technologies and teichnological combinations.

Even with a stylized and sirtifled model, we nonetheles$fer a final doservation that
may be useful in directing future researttio the historical evolign of energy
systems. In our baseline simulations heveassumed a mean learning rate of 10% (per
doubling of cumulative output). Combined with our assumed rate obegopee of new
technologies and the resulting propensity new combinations toemerge, our
simulations suggest both many alternatde/elopment pathways armbmparatively
little pre-mature technological lock-in (at least in the firdd ¥Bars of ousimulations),
which is in stark contrasp the historical record.

This contrast between the model simulasi@f many possible developmt paths and
the history of energy systems “lock-in"nids itself to two possiblenierpretations.
Either, history is indeed an almost randoealization of manypotenial alternative
histories that could havenfolded under a different combination simall random
events. Or, alternatively, thedhorical record of technologicélock-in" (first in a coal
dominated steam economy in the 19th centand then an oil dominated internal
combustion/electricity dominated one in thel)(tuggests that historidplour baseline
model assumptions do not hold. Either the oditappearance of innovatis is far more
discontinuous and clustd than suggestad the smoothly growing trajectory of our
model simulations, or the mean learnindgerdi.e. extent of increasing returns to
adoption) is significantly lgher than the 10% assumed here for the technologies
characteristic of the 19thnd 20th century global energystem. Or, the historical

learning rates of 1% and 3% respectively. As mentioned above, learning rates are treated as
uncertain, however we have not varied the uncertainty surrounding learning rates in this
sensitivity analysis, just the mean.
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record is a result of a otbination of both phenomena,hypothesis which we suggest
as worth exploring further in future studies.
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Figure 6. Complexification of the simuldteglobal energy system (@age of 200
simulations each) as a function of varyingaracteristics of @chnologcal evolution
and of the selection environment. The scenarios shown include: bassirhulation
(with parameters set as given in Appendi and B), lower learningates (smaller
increasing returns to adoption), changingethate of emergence of neechnologies
(low and high introduction rates), reducifimnovation patience" (i.ehe retention rate
of new technologies in thestgm to allow for emergingew combinations) parameter
from 500 years (base line) to 20 and 5 yemrspectively, and finally, exclusion of
“backstop” technologies. The biggest impawxt technological complexity results from
varying the "innovation patmece” parameter, followed by learning rates, and the
availability of backstops. Conversely,etimpact of varying the rate by which
innovations emerge (i.e. are randomly drawaut of a pre-defined "pool” of potential
technology-knowledge base) is comparatively limited.
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3.4. Innovation impatience, recharge, and "forgetting by not doing”

One of the key variables in our (re-)camdtorial evolutionary model of energy
technologies and systems is the assumpthat once a technologg discovered,
knowledge about it will perdisand hence this technologyg availablefor new (re-
)combinations into the technological landseajuasi indefinitely. Therare, however,
reasons to challenge this assumption. Fesiglently even givenhe exstence of new
technological knowledge by someone somewhdzes not mean it isvailable to be
integrated into the techragical landscape by someone else at anotlatitm. Given
however the higlteevel of aggregation of our simulation model, we cannot meaningfully
address this issue of actor and spatialrbgeneity here. However, we can look at the
impacts of relaxing our assumption dhe "innovation reteion time" in the
technological system.

The historical record of technologies provides many examplesthe entire
disappearance of technologesng with the associatdshowledge for tkir production
and use. The famous Sheffield (crucib&gel, whose manufacturingcsets were so
well guardedhat the technology actually newvdiffused outside # original innovation
center (Tweedale, 1986), no longer existd the tacit knowledge of itgg@duction is no
longer available’* Thus the corollary of "leamg-by-doing" midit indeed be
"forgetting-by-not-doing" (an adage alwited to the technology ecansst Gerhard
Rosegger [1991]).

Exploring the effects of "f@etting-by-not-doing" is straigforward in ar model. We

simply vary the "retention time" of newlgmerging techologies in the system from
quasi infinite (500 time steps) down ®0 and 5 time steps respeely, again

performing 200 simulations, whose averagessarmmarized in Figure &ove. For an
empirical interpretation of our "retention &h variable, consider thease of laser,
where several decades passed before an agipétation (i.e. an integtion into the

existingtechnology system) of thisisatific breakthrough was found.

Reducing the innovation "patience" (time) Bosimulation time stepgyears) has an
indeed drastic impact on lowering technologicamplexity. Too littletime is left to
allow for technologies to combine, chaitts be integrated, for bootapping of the
system in general. The end result is an alreasite lack of evolution otie system and
an extremely low level of complexity. Everonsidering a retention time of 20 time
steps (years) that would otherwise bmnsidered generous, we noreddss observe
reduced complexity levels of about one tbufand with higher energy siems costs as
well). The conclusion from our simulationstes highlight the impdance of innovation
"patience" preserving technol@gi innovation diversity muclhike biological diversity,
as diversity is the ultimate resourceorfr which new combinations and changing
practices can be built. Evidently importardde-offs are involved: the extra (current)

1 Another example of “lost" technology is Tang San Cai, Tri-color Glazed Pottery, a gem of
ancient Chinese art, which reached its peak during the Tang Dynasty (618-907), in order to
entirely disappear under the Song Dynasty (960-1279), cf. see Wang and Zhang (2006).
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costs of preserving technologidadiversity (innovation patienca)eed tobe contrasted
with (unknown) future benefits from darger innovation “gene” pool that nurtures
technological change.

Finally, we have also examined the implications of lowering rareiasing the
innovation rate, i.e. the rate at whicmdam new technologies appeand become
available as potential new building blocks for an ever evolving engygiem. In a
sensitivity analysis we have lowered amtreased the introduci (or rather the
random sampling) rate of net@chnologies to 10 percent 200 percenof that of the
baseline simulation and again carried out Z2@@utations for each of thievo scenarios.
The effect is noticeable in Figure 6 abpwdbeit asymmetrically. @te counter-
intuitively, lowering the mnovation rate has a biggempact on technological
complexity, than increasing it, but in both caseis less drastic thathe effect of
lowering the innovation retewtn time. If this pattern wuld indeed b generic for
technological systems, it would suggestquite stark policy conclim. From an
evolutionary perspective of technological cdexty, it is far less impoent how much
resources are used as input to the intiomaprocess (that producéet continuous
"recharge" of innovations assumed as an exoge variablan our model) -- provided
that it ismaintainedlInstead, far more important is &ssure innovatiofpatience”, i.e.
avoiding knowledge depreciation or forgetiiby-not-doing for exteredl periods of
time in order to increase the chances that selutions can ultimately bembined into
new system components and integedainto the technological landscape.

Perhaps, the most drastic model experimmmttechnological recharge to conduct
sensitivity analyses on the implications o tlnavailability of our combed long-term
energy systems backstop technologies untle collective name "solfus". As
progressive resource depletion sets in, gn@rices soar, which in turaccelerate the
rate of introduction of new technologies asfccombinations at kst tenporarily. From

all simulations performed, this resource domised system without |lgaterm viable
alternatives (the backstops) turns outb® the most complex in theegium term
(reaching a complexity peak some 50 time steps after the baselinatgnmuiand at
more than twice its level (cf. Figure 6 abovEhis increasing complexitis simply due

to the absence of "lock-out" effects tife backstop technologies as well as the
enormous energy price increasassociated with progregsiresource depletion. Our
simulations illustrate a basfeature of technological invation: Even embracing an
induced innovation perspective, in whignnovativeness responds to economic and
policy signals, this potential responsaly materializes in case eiarn innovation
"recharge" replenishes the pool of potentedhnological solutions. Irhé absence of
innovation recharge, induced innovation triggarfrantic search, but &h cannot find
new solutions as these have not been generated previously.

12 Using the popular (even if imperfect) metaphor of the "valley of death" of technological
innovation our findings suggest that R&D expenditures are less important than keeping the
outputs of the innovation process "alive" to allow for emerging new combinations. As the above
metaphor suggests, nurturing a technological "baby" (innovation through R&D) might be quite
useless if later on it is left to peril in the valley of death where the innovation does not find any
commercial applications.
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3.5. Gales of Creative Destruction

In symmetry to the recursive combinations of new technologies inteenevgy chains
that characterize the growtomponent of technological ewtion, thee is also death
that does not strike onlyndividual technologies, but entimmbinatios or chains as
well. As increasing returns to adoption favaw technological combitians, these in
turn will "squeeze out" existing combinans. Like technologicalgrowth, also
technological death is charadzed by non-linear, avalanckeéects. Ths "fading out"

of technological combinations represents the Schumpeterian "gdlesreative

destruction” in our simulation model. $&the number of new tecHngies that can
eventually emerge is finite in our modeléechnology system, at m@ point in time
"gales of creative destruction” will babe more prevalent #m the technological
growth components that lead tincreasing “conversion deepeg’ ** and

complexification. The end result is a deciegcomplexity of échnologcal systems.

Figure 9 summarizes all 200 simulations $&tyowing the total nunds of primary
technologies in use as well as the total nunabéechmlogies exiting the system, killed
by competition of newer technologies aeghnological combirteons. Like energing
technological combinations and systems clexification that comen spurts, also
exiting technologies exhibit discbimuous rates and clustering, igales of creative
destruction albeit for different reasons different periods in time.

Prior to simulation time step 150, increasing death rates of techeslogrror the
ascent of more competitive technologicaimimnations, whose competi¢ advantages
evolve non-linearly due to increasing retirAfter about simulation timstep 150, the
mortality of technologies anaf technological combinatioris increasigly determined
by resource depletion effects in additioninaovation éects, butagain technological
"exit" proceeds discontinuously much likéentry". This clusering effect of
technological "exits" is best visible for individual simulations (shown for simulation run
150 at the bottom panel of Figure 9, as theganel summarizeslaechnological exits
of our 200 simulations). These clusterineets in technology exit emerge from the
twin evolutionary drivers modeled exptig here: (determirstic) technological
interdependence, as well as (unae) increasing teirns to adoption.

13 Conversion deepening refers to the increasing lengthening of energy chains, which is one of
the two components of technological complexification (in addition to the emergence of ever
larger number of energy chains).
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Figure 9. Number of technologies squeezed out versus number of technologies in use,
total number of primary technologies ineuand exiting the system, totaled over 200
simulations (top panel). Thdiscontinuous nater of technology death is illustrated on

the bottom panel for an illustrative simulatiof®m36) showing the number of primary
technologies exiting the energy system as the simulation time stepegstoNote in
particular the "clustering” of the exit dechnologies at time step 1@®00, and 250-

270: Gales of creative destruction.

3.6. Methusalem technologies

The above discussion of technological rabty and "exits" should ot lead to the
conclusion that thelifetime" of technologiesn our system is short. Rather our model
simulations indicate the contrary ¢kire 10). When analyzing the cumulative
distribution of the number of simulation s$#pears technologies stay active in the
system almost all technologies exhibit a quite surprising degree of longevity. For the
base case simulations with hegHearning rates, 80%f all primary technologies stay in

the system for more than 50 years (simulation time steps), and in the low learning rate
simulations with their significantly highervels of technological complexity, around
95% of primary technologies stay in the gystfor more than 50 years. By allowing
market share growth rates be as large as possible amother 200 simulations, we
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found that still around 70% of ¢htechnologies stay in thegystem formore than 50
yeas.

1
=
= 08 §
[y
v
S 06 .
N
= 04 .
=z Base line
€0z Lows learning -
S High market share growth
|:| T T |
200 250 300
1 T T T
- I
E DB n o PRI |
E -
ED.E- _"_:-" - .
= 0.4 -""},"- '__J.-f
g ' base line
S0z O i e o learning i
I e o high market share growth
|:| | | | T T 1
0 50 100 150 200 250 300

Life time

Figure 10. Active life of primary technologigSumulative probability distribution for
base line with high learningates, sensitivity runs wi low learnng rates, and
sensitivity runs without liftation on market share growtbf new tehnologies and
technological combinations (i.e. on instantaneous "flip-ove®)mmarydistributions
are for all primary technologies for 200 sitations each for the three starios.

These results suggest thaicera technology is introducedianthe energ system, it is

mog likely that it will stay there for dong period of time which adds an important
element of technological émtia slowing down radical systems transformations. Our
results are in conformity with the characteristic rates of global energy systems
transformations that typically take 7 decadesto a century to fully unfold (Marchetti

and Nakicenovic, 1979, Grublat al., 1999). Accelerated rates of radical systems
changes and transformation beydmstorical experience appetius only possible if an
explicit policy mechanism of Schumpeteridgales of creative destruction” can be
found.
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3.7. Environmental uncertainty: Carbon emissions and uncertain carbon-
taxes influencing the technological selection environment

Of all environmental exterfiies, energy-related carbon &sions areecognized as a
major source of past as well as future climate change (IPCC, 2007;eRelh 2007).
As carbon emissions are endogenously calcuiatedr simple model wélustrate both
their uncertainty as well as their (untzén) response to environmntah regulation
(modeled here via an uncertaiarbon tax). Carbon emissions are thedpob of levels
of primary energy use times the carbon intgnsftprimary energy. As lesls of energy
use are very different acrosar 200 simulatins, we focuvelow on an analysis of the
carbon intensity of primary energy as mostcsuct variable illustrating the different
degrees of environmental climate change reigies associated with the altetiva
energy systems emerging fraur evolutionary model.

As in our previous simulation results,ethuncertainty, even given adtical initial
conditions as well as potential suite of pamy technologies availablés substantial
(Figure 11) as a result of altmtive evolutionary combinatins of energ technologies
and chains. When comparing our results wiistorical studies that havdescribed a
slow, but steady "decarbonizati' of global energy systesn(i.e. a deming carbon
intensity, cf. Grubler and Ncenovic, 1996) readers amdvised tobe cautious:
Following standard practice, we have moddiemmass energies as "carbneutral” in
our base-line simulations here, an assumption that sdithe warranted from a
historical perspective. Including bi@ss carbon emissions increases our carbon
intensity across all simulations (right panel in Figure 11) and showssetpat trends
toward "decarbonization" as the energwptsyn evolves. The mean ‘@ebonization”
rate of the average of our 200 simulatioratiseund 0.3 percent pente step (year), in
line with the historical record vem including biomass carbon emissions.

Next we analyze the impact of adding a carbon tax. We assume that tsucis phased

in after simulation tne step 50 at a range of initial starting values, in order to increase
thereafter at an average rate2 percent/year, roughly in Enwith the nean growth of
energy demand across our simulations. Figurdld&rates the impaadf varying the
carbon tax from initial levels of 10, 20, 5000, and 200 $/tC respectively (while
always retaining the assumption of a 2%/yr growth rate in the tax levetymes as no
surprise that the resulting carbon intensityoof energy system is the lower, thigher

Is the assumed carbon tax.

What is less intuitive, is that the gemepattern of initially increasm peaking and
ultimately declining carbon intensity is unaffedtby the different talevels, although
peak levels as well as petikning are responsive (i.e. oacat lower levels and earlier)
to increasing carbon taxedpparently, the systems advantages of fossil fuel
technologies substituting traditional biomass*{ised technologies (in terms of energy

!4 Biomass emissions are by accounting convention not included in our base line calculations of
the carbon intensity -- hence the initially rising carbon intensities in Figures 11 (left panel) and
in Figure 12.
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services rendered, efficiencies and cost® so prevalent as to only be gradually
influenced by a carbon tax, even at high levels.
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Figure 11. Carbon intensity of primary ewggr (in tons elemental carbon per kWyr
primary energy) in the 200 base line slations considering bionss as "carbon
neutral" (left panel) and in 200 simulations including the,@@ission fom biomass in
the corresponding carbon intensity of tlemergy system (right pale mean and
min/max of 200 simulations each. The color scheme denotes therfoygat each
carbon intensity level across the simulations.

Our simulations suggest that even pricingemvironmental externalities in form of a
carbon tax as early as in the 19th century @adt have essentially changed the course
of the take-off of the Industrial Revolutiowhich appears primarilgs technologically
driven, i.e. by the creation of new technological combinations enabling new energy
services and/or vastly improved efficiencies and costs of delivering traditional energy
services as a result of technology impreats and increasing return phenomena.
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This conclusion on the technoleogi "pre-ordainment” of thieng-term &olution of the
energy system is corroborated by our sirtiataresults on the influencd a carbon tax
on the aggregate level of complexity of glebal energy systerand thecorresponding
distribution of technologicallifetimes”, i.e. years techiagies remain in active use
(Figure 13).
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Figure 12. Carbon intensities (mean across 20fQulations respectively, in tC/kWyr,
assuming carbon neutrality for biomass) versus alternative carbon taxes (in $/tC),
starting at various initial carbon ta levels (ICT at 10, 50, 100, and 200 $/tC
respectively) at time step 50 andrieasing with 2%/year thereafter.
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plotted as a density function of 200 simwas,upper panel) for the two scenarios. Note
in particular only the gradual shift even inetltase of a rather extreme carbon tax level.

Even when changing the economics of thediele environment of teclmogies in our
evolutionary model of the global energystem (via a carbon taxjts long-term
characteristics in term of complexity antelspans of technologies remmanonetheless
largely unchanged. This result is less sisipg considering that théundamental
systems dynamics of technological evolatiencompass many morenginsions and
variables beyond influencing the econos of technology adomin. Rates of
emergence of new technologies (innovatiol®sidence” time ofrinovations to allow
for an ultimate "discovery" of technologl linkages and hencéntegration of
innovations into large technical systemsyedl as the natural rhythms t#chnological
obsolescence and "gales oéative destruction” remain as fundamenligkers. Unless
clear linkages between economic environtakmolides (such as taxes) and these
fundamental drivers of the rg-term eolution of technological systems can be
established, it appears diffitcuto argue fo the sufficiency of such measures in
triggering much needed largeade technological transitions.

4. Summary and Conclusion

In this paper we have developed an adgersed simulation model tfie evolution of a
large and complex technological systemngsthe example of energPur research
objective was to improve ownderstanding on how su@ complex gstem evolves
from "within", bootstrapping itself, evolag into ever higher level®f systems
complexity.

A distinguishing and novdkature of our model ithat our "agents" artechnologies,
while the model preserves innovation andremmic drivers as main cqunents of the
evolutionary algorithm underlgg a continued re-combitian of tedinologies that
result in an "organic" build-up ofnovel systems structures,unctuated by
Schumpeterian "gales of creative destruction”.

Technologies in our model emerge, combic@npete, and ultiately dsappear from
the technological landscape under a contimnaof interactingdrivers: innovation
emergence and retention timetire system;wlutionary endogenousaits in changing
technological characteristics (most notablgemain increasing retas © adoption) as
well as in the morphology of the techagical landscape summartzehere under
"complexification”; and finally the evolutio of the selection envirorent, governing
technological competition and ultimate heological senescencénteractions with
demand, as well as due to exogenous consdraunth as resource depletion, or carbon
taxes. Despite its stylized nature amdhny simplifications, our model nonetheless
provides a number amportant insights.

One of the most intriguing findings from osimulations is the degree of chance and

serendipity characterizing the evolution ofir simulated techmagy system. With
identical initial conditions, identical suite pbtential technologies that can emerge (be
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discovered), and identical technological awbnomic characteristicd technologies
and drivers (e.g. technology costs, enesgyvice demands), nonelbss different
system's structures emerge across the simulations. Alternative Bishmde futures
unfold in different simulations providing ample illustrations of patpbesglence and
technological "lock-in". Thideature of bifurcation and pattependencas a result of
the stochastic nature of the owvation pra@ess combined with @ndom walk model of
increasing returns to adoptica dynamic behavior that to our knowledge has not been
described in any energy model to date.

Another insight provided by our model simiidas is that despst héerogeneity in
alternative development pathways, the systemharacterized by a persistent pattern
towards increasing complexity. However, while complexificatian a powerful
tendency, the simulations reveal as welittltomplexification does aither unfold
indefinitely, nor that it is prordained, as levetsf complexity respond tohanges in the
evolutionary environment governing techogy selection, competitionnd survival or
exit. An invariable pattern emerging froour simulations is that o& "complexity
peak”. Whereas initially techrajical complexity in termsf number ofenergy chains

in use increases, it reaches a peak aroune step 150, in order tdedine thereafter.
Increasing complexity is the result @cursive combinations of technologies, whereas
decreasing complexity is the result of ‘keout” effects of technologiegia "crowding
out" due to increasing returns of newer competing tdolgies. Longrun resource
depletion ultimately leads wrastically reduced system'smaplexity or totechnological
"denudation" as Harrison Brown has called it.

A powerful mechanism in our model thatfluences technologicatomplexity is
increasing returns to adopti (technological learng), that however calead to both
complexification and/or simplification dependion the timing and systenstructure in
our model simulations. Generally, increasmeturns tend to lower systasncomplexity
as certairtechnological combinations forgdead, out-competing altetives that then
gradually disappear. System's complexitgd® therefore to baigher in sinulations
that assume low increasingtuens. Our model results thissiggest a ertain tension
between the desirable effects of increaseigirns (e.g. drasticalllowered costs) and
potential negative effects, such as lowetechnological diversitghat mght increase
the wvulnerability of the systems to external shocks or changes in the selection
environment.

In both complexification as well as simpti&tion of technology systems, develagm
pathways are far from gradual and smod&merging technological cammations and
systems complexification come in spurtand exiting technologiegxhibit also
discontinuous rates with chesing and avalanche effects: Schumpate "gales of
creative destruction”.

In terms of the evolution of systems ngplexity our simulation results suggest
asymmetrical, non-linear responses to a) varyhe rate of emergence of innovations
and b) their rate of the retention in the system to allow for the emergence of new
technological combinations. Lowering thovation introduction & below base-line
values drastically lowers systems complexity; whereas increasing the introduction rates
drastically above base line values has @nfyradual effect. Conveely, the single most
important variable for system complexity ar model is "innovatin patience”, i.e. the
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time new innovations remain in the system (evernt yet integrated intwiable energy
chains) and during which new combinations earerge. The evolution @fur system in
terms of complexity responds stodramécally to a loweringof this innovation
“residence" (or innovatn "patience") time.

The policy implications of above findingseainteresting, as extendinguch of the
current debate on technology policy in Bmate constrained worldAn important
conclusion from our model simulationstisat random perturbations ovenort periods
of time have little long-lastg effects. Even increasingstgmatically inovation efforts
above a critical baseline innovation "redmr (R&D) level, e.g. througln additional
R&D effort of the size of the Apollo Bject, is unlikely totrigger long-term
bifurcations in energy systems. Instead our simulations suggest amarehcritical
role for innovation “"patience" thapreserves imovation diversity. Sustainedand
cumulative R&D efforts appear to be morepontant than shorter-terigspurts even if
very high. Much like in biology, technologicdlversity is the ultimateresource from
which new combinations and aiging practices can be built.

Our simulations have also revealed a ssipg longevity of individual tdmnologies and
of technological combinations. Its mainfluencing variablesare tte degrees of
increasing returns to adoption (that acceletatewding out" of technologigsas well

as accelerated rates of markgnetration (i.e. removing the effect®rh localized
learning und persistent uncenty that lead only to cdious and gradal adoption of
new technologies in our modgl 70% to 95% of all technologies irsai stay in the
system for more than 50 years acrosssalhsitivity analyses perfoed. This is a
theoretical corroboration of thebserved slow turnover ratesenergy syems (Grubler
et al, 1999) that exceed well over 5 decadiscelerated rates afadical systems
changes beyond historical experience apfiaas possible less frothe "cradle" end of
the technology life cycle (innovation rates and increasing returnsthérrfrom the
"grave"” end, i.e. thexit of technologies from the system. From the pestpe of this
modeling exercise, accelerated systemssfaamation would onlybe posible if an

explicit policy mechanism of Schumpeteridgales of creative destttion" can be
found.

Finally, with respect to environmental isspear simulations provide fdwo important
conclusions. First, in all simulations there is a powerful ¢eng towards
"decarbonization”, i.e. a decrease in the cathtensity of energy systesithat emerge
entirely endogeously in our model withoutexternal constraints. Evidently, both
absolute emissions as well as emissionngitees are highly urertain, reflecting the
multitude of alternative pathways and technological combinationsergng from
different simulations. Pricing in enviroramtal externalities (through amon tax) has
an important effect on emissions and carbon intessibut only a gradual effect on
systems complexity and longevity of techogibs. Thus, it appears difficult to argue
that economic policy signals alone will resuita drastic transformation of the energy
technology landscape.

> This is the most significant difference in the technology dynamics between our model when

compared to deterministic models that display instantaneous technological "turn-overs" (usually
moderated by exogenous market penetration constraints in the models).
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Our simulation modeling resulisdicate both importat areas of future search as well
as the need to enlarge the environmental policy "tool kit" in a climatreamed world

in the direction of targetetbchnology measures both at tleeadle” aswell as at the
"grave” of technological life cycles. Howo trigger accelerated innovation efforts,
increased innovation "patienceds well as speedier retment of old,but long-lived
capital vintages and infrastructsreand how to weigh costs and benefits of such
technology measures might indeed the moatlehging, but also most fruitful, avenues
for technologyresearch in a warming world.
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Appendix A — Main Mathematical Formulations of the Model

Suppose arenergy chain(i.e. a combination of [conversion] technologies enablindirt
primary resources to demands for energy services) is composed poimary energy
technologieqdefined here in analogy to activity/processalysis at the level of an industrial
plant [facility]). We number the technologies from the end to the beginning of an energy chain
as 1, 2, ..n. The cost of the chain can be calculated as Eq. (1)

=Y (c +ge). @
=T ] eff,
j=1

wheret denotes théi me step of the simulati@, denotes the total cost of the chain for
producing oe unit output at step, effj denotes the(energy input-output) efficiency of

technoloy |, Cf denotes the iellized cost of technologyat stefd, ¢ denotes the carbon tax

per enission (US$/ct), andy denotes the emission of technologyor producing each unit
output (tC/KWyr).

Cost are dynamic in our model via increasing returns to adoption, i.e. technological learning,
that are calculated at the primary technology lewel then aggregated to chénels according

to Eqg. (1). A primary technology’s learning rate (cost reduclicmsodeled as a function of its
cumulative output. With technological learning effects, a technology’s levellized cost will
decrease with an increase of cumulative outpechnological learning rates are treated as
uncertain, with random values around a meanmasduearning rate of 10% (f  or old) and 30%
(for new technologies) respectively, with uncettiais characterized by lognoatdistributions.

Thus a technology’s levellized cost at tithec', can be calulate d as Eq. (2)

Clt _ qo(l—it )*b. (w)’ )
whereh(a)) is a random value witlw deroting an element from a probalii space that is
characerized by a lognormal distributioﬁ,bi(‘”) is the progress ratiol( 2% is the learning

rate) of technology, c,O is the initial cost of technology, and I_it is the curnlative installed
output of technology at stept, and

=>01, (3)

where Iij is the installed output of technologyat stepj . In our model, technology outputs at

a certain time step depend on the evolutdbrenergy service demands. It is possible that a
technology is deployed as a component in sawdifferent energy chains for satisfying final

energy service demandtﬁi in this case is the supf output capcities required inach chain at
step j .
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For the dynamics of the final energy servilsamands, we assumed an exogarioareasing rate
for the economy, say, income, with each demeaiggory having a fixed inate elasticity. A
demand is also influenced by the price/coststtisfying it. According to the definition of price
elasticity, it is easy to get Eq. (4) which describes the dynamics of energy service demands.

t+1 _ t (1—Qp) it+1+(1+ qp)pit
di - (:I'+ a )dl (1+ qp)pitJrl + (1_ qp)plt (4)

Wheredit and di”ldenote the demand for engrg servicat stept andt + 1, respectively; p,t

and pit+1 are energy servide's prices att andt+1 , respectively;e; is an exogenous

increasing rat of the demand for energgervicei , ande® is price elasticity of denmal for

energy service . With Eq. (4), the dynamics of demands are partly exogerand paly
endogenous in our model.

The price for satisfying a final energgrsice demand is calculated by weighted average cost of
viable chains which can provide the energyiserrequired (we ignore mark-ups and profits in
our simple model). Suppose at steghere ae h viable chains for satisfyingethand, and

s} (j = l---h) is the share of each chain at ste@nd C} is the cost of chairj, then the
price of energy service is calculated as E¢5 )

h
p=>scl. (5)
j=1
Chain | ’s share before normalization in the next sﬁ?ﬁ is calculated according to Eq (6)

t_C’F
é}”:s{ﬂmax{r,p' - ’}] (-1<7<0). (6)

P

The reason why is introduced in Eq. (6) is to prevent negative market shares. With Eq. (5) and
Eq. (6), he growth/decrease of a viable atiaimarket share is not only governed by the
difference between its cost and the weighted aeetagt (the price variable in our model), but
also governed by its current market sharessits current share is used as a weight for
calculating the price in Eq (5). With Eq. (5) d&d. (6), the sum of all viable chains’ shares for

a demand should be more or less than one. liti@uldhere could be new formed viable chains
which will get an initially small market share. 8@ need to normalize viable chains as in Eq.

()

at+1

hs]— (for existingviablechaing
at+1 hr
st = kZ; e (j=2---,h+h) 7
1= é: , j=1---,h+ ()
- (for newformedviablechaing
Z"Hl_i_ hrg
k=1
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where h' denotes the number of new formed viable chains,&i&la small number assigned to
a new formed viable chain which thus wilive an initial small market share ypnl

Since every chain’s share is always normalizedsiiim of all viable chains nmiaat shares for a
demand equals 1 (i.e. 100%), so we can not set the exgerw ower limit on the change of
relative market shares. But we can adjastto control the market share dynamics, e.g.
7 =-0.9 allows for bigger market share gains per simulation stepzhar0.1.

In our simulations, we assume resource depletienthe cost of extracting res ources increases
with cumulative extraction. For resouricéts extration cost at timd is calculaed as Eq. (8)

R =px 2.718E% , (8)

where £ and y; are model parameterg#, is the initial extraction cost of technologgnd y,

governs the speed of increase of technoltggxtraction cos.tEt is the cumulative extraction
of resourca by stept, and

E=YEl, ©

where E/ denotes the extraction of resouree timet .

The number of drawing and ctmations of technologies/chains at each step is a combined
function of the size of the economy and the resulting demand for energy services, treated as
exogenous in our model, and also a functad energy prices (which are emgknous in our

model. For the illustrative simulations reported here we simply assume that energy service
demands grow at an annual rate of 2%, roughlinmwith the long-term global growth rate in

final energy demand.

Ms
s
=,
N—

N' = Min| 2500Q &=L —

'[‘

(10)

INNGE;
fie]
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©
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where ¢ is a model parameteclit and p,‘denote demand and price of energwmeri at time t,

and dio and pi0 denote demand and price of energy servatetime 0, andn derotes the nutoer

of various final energy service demands. 2500€oissidered sufficiently larg®r the nuner

of draws. If we do not add this uppkmit, the N' might be very big slowing down the
simulation beyond practical limits.

At each draw, the probability of success is assumed to éich means at each draw, the

probability of the emergence of a new technology (radgom out from the “technology base”
until the “technology base” is empty)/s. Any new technologies or combinations will stay in

the system for potential fumér comination or use fok time steps (which is a parameter used
to represent innovation [im-]patience in our model).
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Appendix B — The Reference Energy System

Table 1 giveghe details of the 62 primary energy technologies in our singlgiebal energy
system. The “Input ID” and “Ouput ID” are denoted by codes whose detaftathation can

be found in Table 2. “Efficiency” denotes the ratio of output per unit inputst’Gtenotes the
levellized cost assumed for a technology for generating a unit “OutpQO2“Emission”
denotes the CO2 emitted when generating a ‘@ittput”. (Values in paretheses refer to
biomass CO2 emissions as occurring at the poishefgy conversion, btihatare balanced by

CO2 uptake fronbiomass growth if produced sastably. In the default model simulations we
simply assume the carbon neutrality of biomass over all simulation time steps, but equally
document the model simulations for not assuming carbon neutral biomassshiengresulting

from deforestation].)

The 62 primary technologies are classified into three groups. “Group ID” ie Takenotes the
group they belong to. “Group” assignment also roughly determines whechaology will
become available. “LBD” denotes the technological learning effect. If LBDtke®, there is no
learning effect (and the only dynamic cost infloerare resource depletion etf&¢ if LBD = 1,
then the technology has a relatively low learnirtg (enean of 10%); and if LB = 2, then the
technology has a high learning rgteean of30% cost decline per doubling of cumulative
output). The costs of extraction technologies are governed by the resopiettodefunction
(Eq. 8 in Appendix A) with different parametesilues shown in Table 3. Forcteologies with
learning potential (LBD = 1 or 2), their initialVellized cost are assumed te B times larger
than the levellized costs shown in Table 1.

Table 2 gives the details of energy forms. Energy forms are clustered intosBle-4eesource,
primary, secondary, final and useful enerffiyesource” means natural resowgcand “useful”
describes the final energy service demands expressbd useful energy levéllhe reason why

we distinguif additional three levels is that fihre same energy form energy vectors are treated
differently in the model and thus need specigsidnations. For example, thedes “0 37, “1

3", “2 4", “3 5" denote — the same energy currenayas But “0 3” denotes thgas available in
nature, “1 3” denotes the gas extracted frortuma “2 4" denotes the gaavailable at the
locations for further processing; and “3 5"ndgées the gas transported anlocations for
providing the final energy services, for examples garesidential housing thaan be used for
heating purposes.

For a new circular energghain, e.g. from hydram (H2) to electricity and then from electricity
again back to produce H2 (here H2 and eletyriare modeled at the sanievel, i.e. the
secondary energy level), we set its share to 0, because of the intrinsemsabsiconomic
penalty associated with the incurred conversimses when compared to simpler linear ihai

(In real technology systems obviously, such uac chains and their additial conversion
losses are entirelylgusible. Consider for inahce the case where hydrogeauld be used for
electricity storage. We plan faclude such circular chains and the need for energy storage in
future extensions of our model.)

Table 3 summarizes the values of parameters related to the demand for energy services (Eq. 4),
resource depletion (Eg. 8), and number of technology draws and combinations (Eqg. 10) used in
our base case model simulation and Tabkudhmarized our assumptions on upper resource
extraction limits for renewable resources. Finallgble 5 summarizes other salient parameters
used for the reported here.
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Table 1. Definition of the 62 priamy enertgchnologies in the reference energy system.

CO;,
Inp Levellizd Emissions
ut |Output Cost Group
ID| Name Description ID ID Efficiency | (US$/kWyr) [(tC/kWyr)| ID |LBD
1 |Coal extr |Coal extraction or 21 1 30 0 0 0
2 (Oilexr |(Crude) oil extradton 02 12 1 40 0 0 0
3 |Gas extr | Natural gasteac ohn 03 24 1 45 0 C 0
4 |Bio exr |Biomassexraction | 04 26 1 10 0 0 0
5 |Ura extr | Uranium extraction| 0527 1 2.5 0 0 0
6 |Oil refi  |Crude oil refiing 120 23 0.95 37 0.82 2 1
7 |Gas bio | Gas from biomass |26 24 0.75 32 8 (0.580) 2 1
8 |[Eth bb  |Ethanol frombiomass 26 25 0.56 62 (0.489 2 1
9 [Met coal | Methanol fromo la |21 22 0.65 547 0.403 2 i
10|Gas oal |Gas from coal 21 24 0.75 397 0.461 2 1
11|Met gas | Methanol fromas 214 22 0.7 319 0.041 2 1
12|Coal pl |Coal power phnt 21 28 0.38 62 0.84 2 1
13|Coal 2 |H2 from coal 21 29 0.7 512 om 2 1
14|0il pd  |Oil power plant 23 28 0.4 375 0.81 2 1
15/Gas pl  |Gas power plant 24 28 0.45 366 08p 2 1
16|Gas & H2 from g as 24 29 0.8 227 0.82 2 1
17\Bio pl |Biomass paverpant 26 28 0.33 591 (0.942) 2 1
18|Bio 2 H2 from biomass 26 29 0.7 422 (0.942) 2 1
19/Nuc ppl | Nuclear powepla tn| 27 28 0.33 1013 0 2 1
H2 from nuckar
20|Nuc 2  |power 27| 29 0.7 1153 0 3 1
21|Sol ppl | Solar power plant g8 28 0.4 4338 0 3 1
22|Sol H2 | H2 from solar 08 29 0.6 1496 0 3 2
23|Wind ppl | Wind power plant 06 28 0.4 3850 0 P 1
24|Hydr ppl | Hydro power plant | 0|7 2 8 0.4 886 0 P 1
H2 power pl. (fuel
25|FC cell) 29 28 0.7 2346 0 3 p.

' Emission factors in parenthesis refer to biomass whose emissions can be considered either
as carbon neutral (i.e. zero) or be included alongside fossil fuel emissions (values) in the model.
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CO,

Inp Levellized Eemissions

ut |Output Cost Group
ID| Name Decripti on ID| ID Efficiency | (US$kWy r) [(tC/kWyr )| ID [LBD
26(Nuc fus | Nuclear fusion 0928 0.4 4338 0 3
27|Elec 2 |H2 from electricity | 28 29 0.95 172 0 2 1
28|Coaltd |Coal T&D" 21 31 0.95 60 0 2 |1
29|Mettd  |Methanol T&D 22 32 0.98 60 0 2 1
30|Oilp td  |Qil products T&D 23 33 0.98 60 0 2 1
31l|Gasd |Gas T&D 24 35 0.72 122 0 2 1
32|Eth t/d Ethanol T&D 25 36 0.98 60 0 2
33|Bio td Biomass T&D 26/ 37 1 20 0 1 0
34|Elec fd |Electricity T&D 28§ 34 0.85 38 0 2 1
35/H2 t/d H2 T&D 29 38 @35 152 0 2 1
36/0il lan  |Oil lamp 33 41 0.05 30 0.81 2 1
37|Gas len  |Gas lamp 3b 41 0.05 30 0.82 2 1
38|Coal lam | Coal illumination 3141 0.01 60 0.814 2
39|Bio lan |Biomass illuminaton 37 41 0.02 2 (0.942) 1 0
40|Bulb Electric light bulb 34 41 0.05 403 0 2
41|Coal fur | Coal furnace (heat) 3143 0.50 30 0.814 P
42|0il fur  |Oil furnace (heat) 33 43 0.75 30 06 3t P
43|Gas fu  |Gas furnace(h eat) 35 43 0.75 30 08p 2 1

Biomas furnace
44/Bio fu  |(hea) 37| 43 0.1 10 (0942)| 1| 0
45/H2 fu H2 furnace (kat) 38 43 1 120 0 2 1
46|Ele Heat | Electricheat (direct) 3|4 43 1 30 0 2
47\Elec P |Electricheatpump | 34 43 3 602 0 2 1
48|Ste eng | Steam engine 31 44 0.1 2422 0.814 2
49|0il eng | Oil engine 383 44 0.1 7785 0.631 2
50|Gas eng | Gas engine B5 4/4 0.1 7785 0.482 2
Draft animals

51|Animal  |(transp.) 37| 44 0.04 10000 | (0.942 1
52|Elec eng | Electric engine 34 44 1 4830 0 2

" T&D: Transport and distribution
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CO,
Inp Levellized Eemissions
ut |Output Cost Group
ID| Name Description ID| ID Efficiency | (US$kWy r) [(tC/kWyr )| ID [LBD
53|FC H2 engine (fuel cell)| 38 44 1 4830 0 3
enagy services from
electricity
b54|Elec v |(e.g. IT) 34| 42 1 885 0 2 2
energy servies from
55|H2 de@ |H2 (e.g. IT) 38| 42 1 3885 0 3 2
56|Coal i [Coal for fe edsock 31 45 0.7 3 (0.814 2
57|0il nf Oil for feedstck 33 45 1 3 (0.631) 2 1
58/Gas i |Gas for feedstock 35 45 1 3 (0.482) 2 1
Methanolfor
59|Metrf  [feedstock 32| 45 1 3 (0.549) 2 1
60|Eth nf Ethanol for feedstocl8 (6 45 1 3 (0.549) 2
61/H2 nf H2 for feedstock 3|18 45 1 3 0 2
62|Deu H2 | H2 from deuterium| 09 29 0.6 1496 0 3
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Table 2. Energy forms/flows/currencies of the model.

ID| Name Label | Level ID Name Label | Level

0 1|Coal al Resurce 2 8 Hectricity Elec Secondary

0 2|Crudeoil Q R esurce 29 Hdrogen H2 Secondary

0 3|Gas @s R esurce 311 Coal Coal Final

0 4|Biomas Bio Resource 3 2M ethao | Meth | Final

0 5|Uranium Uan Resurce 3 B Gil Prodwets| OilP Final

0 6(Wind Wind | Resourceé 34| IEctricity Elec Final

0 7|Hydro H/dro |Resurce 3b5Gas Gas Final

0 8|Solar Blar |R esurce 3|6 Ehanol E tha Final

1 2|Crude oil | Qil Primary 3|7 iBmass Bio Final

2 1|Coal ©al Secondaty | 3 8 Hydrogen H2 Final

2 2| Methaol Meth | Secondaty | 4|1 ight ight | Useful
E/H2

2 3|0il Products QP Secondary |4 2|E /2 ServiceSer Useful

2 4|Gas Gas Secondary| 4 3 Heat Hea Useful

2 5|Ethanol Etha Secondary| 4 4 Mechanical Megh  Useful

2 6|Biomass Bio Secondary| 4\®n-Fuel Non-f  |Useful

2 7|Nuclear fue] Nu-f Secondary
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Table 3. Parametealues of energy serviciemarnls, resource depletion, and number of

technology drawsnd combinations.

Paameters relateda demand for energy sergein Eq. 4

Service demands d? (initial demand)| &, (@nnual growth rate) e’ (price elastity)
(useful energy (KWyr)
Light 10* 4% 0.2
Ele/h2 Service 5x10° 4% 0.2
(at emergence)
Heat 46x108 2% 0.5
Mechanical 2x10’ 3% 0.3
Non-Fuel 35x10° 3% 0.3

Parameters related to rescer  pldgion, in Eqg. 8 in Appendix A

Resources b, (initial extraction cogt g, (speed of cost increase)
Coal 16.97 10°
Crude oil 50 1.2 10
Gas 80 15 10
Biomass 8 3 10
Uranium 100 g8 10

Parameters related to numbededws and combinations, in Eq. 10

£=66.7

Resource extraction costs are estimated based on Rogner (1997).

Table 4. Assumed upper limits on the anrus® of biom ass, hydro, and wind.

renewable resources Upper limit on annual use (kWyr)
Biomass 26x10%Y
Hydro 36x10°
wind 95x10°
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Table 5. Other model parameter values used in base line simulations

Design parameters values
t Eq. (6) (limit on market share change ) -0.1
x Eq.(7) (initial share of a new technology) | 0.0001
m (probability of a successful draw) 0.01

k (retention time of a technology/chain)

k > 300time steps
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