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Abstract

Energy flow is a primary organizing principle in ecological systems, and therefore
various aspects of this have been proposed as ecological goal functions [8, 5]. One such
goal function considers that the integral utility (direct + indirect) will tend to be positive
in well-developed systems [3, 4, 10]. In this research, we investigate several basic network
structures to determine the specific relationship types between compartments and identify
those structures that lead to greater quantitative and qualitative utility. This research
contributes to the overall discipline of ecological network analysis.
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Exploring Simple Structural Configurations for Optimal

Network Mutualism

Galina Lobanova (galo4ka1985@list.ru)

Brian D. Fath (bfath@towson.edu)

1 Introduction

Ecologists have long been concerned about the relations between organisms in an ecolog-
ical food web. The web itself represents the active and passive (if flows to detritus are
included) energy transfers in the ecosystem, which together comprise a richly connected
network. First, energy enters a system from the external environment (for example, solar
radiation, energy of ocean, river inputs, organic matter, etc.). The system compartments
transfer energy between each other. The initial energy input diminishes after each step
until all energy has been dissipated back to the external environment. When the system
inputs and outputs are balanced, the steady-state total energy throughflow is constant.
Using the foundations of ecological network analysis, Patten [9, 10] introduced utility
analysis, which considers the quantitative and qualitative relations between systems com-
partments. Network utility analysis uses the net flow between compartments normalized
by the total system throughflow of one of the compartments to determine the direct and
indirect relations in the network [9, 10]. If an energy flow transaction originates from
compartment j to compartment i, then the relation j to i is characterized as negative re-
lation, from j ’s perspective, and the relation i to j as positive result on i. Two ecological
goal functions based on network utility analysis can be considered, one accounting for the
quantity of utility (synergism – see [3]) and the other the utility quality (mutualism) as
measured by the number of positive or negative relations. For example, the second mea-
sure is a ratio between the overall number of positive relations and the number negative
relations in the system. In other words it takes into account the sign of the relation only.
It has been shown that synergism always occurs [4], therefore quantitative positive utility
is always greater than negative utility. However, mutualism occurrence depends on the
flow configurations and values [2].

The goal of this research is to:

• study possible network configurations that exhibit various goal function values under
constraints on the ecosystems’ structure and

• describe configurations on which the qualitative goal function takes its maximal
value (optimal configurations).

The present paper contributes to IIASA’s cross-program feasibility study, The Fragility
of Critical Infrastructures and also to the Network on Environmental Applications devel-
oped within IIASA’s DYN Program.

5



2 Model and Method

Patten [9, 10] was the first to introduce ecological network utility analysis. An ecosystem’s
network model is described by the direct flow matrix, F, that includes all flows between
the compartments inside the system but does not include the relations between compart-
ments and the environment. We call a direct relation the interaction proceeding directly
between two compartments. We denote flows between compartments via fij (oriented
from columns to rows such that fij is the flow from j to i), where fij ≥ 0 for all
j, i = 1, . . . , n. Flows with zero indexes, f0j and fi0 are ones to and from the external
environment correspondingly. If fij = 0 then there is no flow from j to i.

Total flow into each compartment is given by Ti =
∑n

j=0 fij. Analogously, total flow
out of each compartment is given by Ti =

∑n

j=0 fji. At steady state they are equal
and we get a single throughflow value Ti. Network utility analysis is based on the net
flows between compartments normalized by the compartmental throughflow such that
dij =

fij−fji

Ti
(j, i = 1 . . . n). Normalization gives us a net flow matrix D = D(F ).

In addition to the direct relations, the numerous pathways in the network lead to many
indirect relations as well. Indirect relations are interactions that do not proceed directly
between two components. Therefore, the indirect relations between compartments are
determined by the entire ecological network organization. We investigate both direct and
indirect ecological relations.

We can identify indirect utilities associated with path sequences of length m by cal-
culating Dm. The length of the path sequence is equal in value to the power of D. An
integral utility matrix, which describes the contribution of all direct and indirect relations,
could be found by summing all powers of D. Therefore, U is an integral utility matrix
because its elements represent the total non-dimensional utility associated with transac-
tions of the same order expressed between the compartments by powers of D [9, 10].
An analytic representation of U is

U =
∑

∞

m=0 Dm.

Let us introduce a class Φ of admissible direct flow matrix F. Let us give a set of
conditions defining the class Φ.

(i) Structural stationarity condition: this condition treats the number of compartments
and direct flow signs in the matrix F to be constant.

(ii) Flow stationarity condition: for all

F = (fij) ∈ Φ

Ti =
∑n

j=0 fij =
∑n

j=0 fji i = 1, . . . , n.

(iii) Convergence condition: it holds that

U(F ) =
∑

∞

m=0 D(F )m = (I − D(F ))−1.

The above infinite power series converges if and only if all eigenvalues of D are
strictly less than one in magnitude [9]. Therefore, we treat the convergence condition
as follows: for all

F ∈ Φ

maxk=1...n |λk(F )| < 1,

where λ1(F ), . . . , λk(F ) are all the eigenvalues of D.
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The class, Φ, of admissible matrices is described. Here and what follows we consider
direct flow matrix F from class Φ.

Let us introduce function J(·) defined on Φ by letting:

J(F ) =
S+(F )

S−(F )
;

here

S+(F ) =
∑

i,j max(sign(uij(F )), 0),

S−(F ) =
∑

i,j(−min(sign(uij(F )), 0)).

Thus S+(F ) is the number of all positive relations, and S−(F ) is that of all negative
relations in matrix U(F ).

Thus, J(F ) characterizes the ratio between the numbers of all positive and all nega-
tive relations. In networks given by flow matrix F consider as a goal function related to
the network mutualism in the ecosystem. When J(F ) > 1 mutualism occurs, indicating
that the system overall has more positive relations than negative ones. Keep in mind that
this ratio for the direct sign matrices is always 1 (number of positive relations equals
number of negative relations).

2.1 Optimization and Classification

Optimization problem

We aim to find a matrix F ∈ Φ, for which the goal function J(F ) takes the greatest
value:

J(F ) → max

F ∈ Φ.

Classification problem

We aim to divide all matrices from class Φ into level subclasses, Φ1, . . . , Φm, so
that each subclass contains matrices which have the same value of the goal function. For
all

F1 ∈ Φj, F2 ∈ Φk (j, k = 1, ...,m)

j = k J(F1) = J(F2)

j 6= k J(F1) 6= J(F2).

For finite networks the number of values taken by the goal function values is finite.

3 Three-component ecological models

Example 1: a consequent interaction

First, we consider a three-component chain (Fig. 1).
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Fig. 1. Sequential chain.

Let us describe class Φ of admissible flow matrix F. The direct flow matrix F for
this network is

F =




0 0 0
f21 0 0
0 f32 0


 , (1)

where due to (ii) the total throughflows for each component are

T1 = f10 = f21 + f01, T2 = f21 = f32 + f02, T3 = f32 = f03.

Structural constraints (i) on elements of the matrix F are:

0 < f21 < f10, 0 < f32 < f21. (2)

The direct utility flow matrix D corresponding to the given matrix F (1) is

D = D(F ) =




0 −f21

T1
0

f21

T2
0 −f32

T2

0 f32

T3
0


 =




0 −f21

f10
0

1 0 −f32

f21

0 1 0


 .

Let

a = f21

f10
, b = f32

f21
.

Then (2) turn into a, b ∈ (0, 1), and we get

D =




0 −a 0
1 0 −b
0 1 0


 , signD =




0 − 0
+ 0 −
0 + 0


 .

In order to find an integral utility matrix U = U(F ) we construct a characteristic
polynomial for the matrix D = D(F ) and estimate magnitude of its eigenvalues. Namely,
we have

det(U − λI) = det




−λ −a 0
1 −λ −b
0 1 −λ


 = 0,

hence,

λ3 + λ(a + b) = 0, λ1 = 0, λ2 = i
√

a + b, λ3 = −i
√

a + b.

Due to (iii): ∣∣∣∣
f21

f10

+
f32

f21

∣∣∣∣ < 1. (3)

Constraints (2), (3) describe a class Φ of matrices F of form (1).

Theorem 1. For all matrixes F (1), which satisfy conditions (2), (3), it holds that

J(F ) =
7

2
.
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Proof. Let us construct an integral utility matrix U = U(F ). Due to (3) :

U =
∑

∞

m=0 Dm = (I − D)−1.

We have (I −D)−1 =
̂(I − D)

det(I − D)
, where ̂(I − D) is the adjoint matrix to the matrix

(I − D).

Then

det(I − D) = 1 + a + b, ̂(I − D) =




1 + b −a ab
1 1 −b
1 1 1 + a


 .

Thus

U =
1

(1 + a + b)




1 + b −a ab
1 1 −b
1 1 1 + a


 , signU =




+ − +
+ + −
+ + +


 , J(F ) =

S+(F )

S
−
(F )

=
7

2
.

⋄ The theorem is proved.

Remark 1. A comparison of sign(D) and sign(U) shows that influence the relation
of each component to itself and all relations that are neutral in the original flow matrix
become positive in the integral utility matrix U :

signD =




0 − 0
+ 0 −
0 + 0


 , signU =




+ − +
+ + −
+ + +


 .

Example 2: a parallel interaction (competition for a single prey)

In this example we consider a model with two predators feeding on a common prey
(Fig. 2).

Fig. 2. Competition for a single prey

The direct flow matrix F for a given network is

F =




0 0 0
f21 0 0
f31 0 0


 , (4)
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where due to (ii) the total throughflows for each component are

T1 = f10 = f21 + f01 + f31, T2 = f21 = f02, T3 = f31 = f03.

Structural constraint (i) on elements of the matrix F is:

0 < f21 + f31 < f10. (5)

The direct utility flow matrix D corresponding to the matrix F (4) is

D = D(F ) =




0 −f21

T1
−f31

T1
f21

T2
0 0

f31

T3
0 0


 =




0 −f21

f10
−f31

f10

1 0 0
1 0 0


 .

Let

a = f21

f10
, b = f31

f10
.

Then structural constraint (5) turns into a, b, (a + b) ∈ (0, 1).

Hence,

D =




0 −a −b
1 0 0
1 0 0


 , signD =




0 − −
+ 0 0
+ 0 0


 .

A characteristic polynomial for this matrix D = D(F ) is

det(U − λI) = det




−λ −a −b
1 −λ 0
1 0 −λ


 = 0.

Therefore,

λ3 + λ(a + b) = 0, λ1 = 0, λ2 =
√

a + b, λ3 = −
√

a + b.

Due to (5) we have that condition (iii) is satisfied for all admissible a, b.

Constraint (5) describes a class Φ of matrices F of form (4).

Theorem 2. For all matrixes F (4), which satisfy condition (5), it holds that

J(F ) =
5

4
.

Proof. Let us construct an integral utility matrix U = U(F ). We have

det(I − D) = 1 + a + b, ̂(I − D) =




1 −a −b
1 1 + b −b
1 −a 1 + a


 .

Thus

U =
1

(1 + a + b)




1 −a −b
1 1 + b −b
1 −a 1 + a


 , signU =




+ − −
+ + −
+ − +


 , J(F ) =

S+(F )

S−(F )
=

5

4
.

⋄ The theorem is proved.

Remark 2. In the above example a comparison of sign(D) and sign(U) shows the self-
relations of the components and all initially neutral relations become positive, whereas
competition between two predators for one prey remains negative in the integral utility
matrix U. Therefore, the value of the goal function is smaller than that in Example 1.

signD =




0 − −
+ 0 0
0 0 0


 , signU =




+ − −
+ + −
+ − +


 .
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Example 3: a parallel interaction (apparent competition)

Here we consider a model with one predator feeding on two prey (Fig. 3).

Fig. 3. Apparent competition.

The direct flow matrix F is

F =




0 0 0
0 0 0

f31 f32 0


 , (6)

where due to (ii) the total throughflows are

T1 = f10 = f31 + f01, T2 = f20 = f32 + f02, T = f31 + f32 = f03.

Structural constraints (i) on elements of the matrix F are:

0 < f31 < f10, 0 < f32 < f20. (7)

The direct utility flow matrix D corresponding to the matrix F (6) is

D = D(F ) =




0 0 −f31

T1

0 0 −f32

T2
f31

T3

f32

T3
0


 =




0 0 −f31

f10

0 0 −f32

f20
f31

f31+f32

f32

f31+f32
0


 .

Let

a = f31

f10
, b = f32

f20
, c = f31

f31+f32
, 1 − c = f32

f31+f32
.

Then structural constraints (7) turn into a, b, c ∈ (0, 1). Then

D =




0 0 −a
0 0 −b
c 1 − c 0


 , signD =




0 0 −
0 0 −
+ + 0


 .

A characteristic polynomial for D = D(F ) is

det(U − λI) = det




−λ 0 −a
0 −λ −b
c 1 − c −λ


 = 0.
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Hence

λ3 + λ(b − a) = 0 λ1 = 0, λ2 = i
√

ca + b(1 − c), λ3 = −i
√

ca + b(1 − c).

Let us prove, that ca + b(1 − c) < 1, or equivalently:

f31
2

f10(f31 + f32)
+

f32

f20

· f32

(f31 + f32)
< 1, ⇒ f20f31

2 + f10f32
2 < f10f20(f31 + f32), ⇒

f31f20(f31 − f10) + f10f32(f32 − f20) < 0,

{
f31 − f10 < 0
f32 − f20 < 0

.

Due to (7) the latter inequality is true. Therefore (iii) is satisfied for all admissible a, b.

Constraint (7) describes a class Φ of matrices F of form (6).

Theorem 3. For all matrixes F (6), which satisfy condition (7), it holds that

J(F ) =
5

4
.

Proof. Let us construct an integral utility matrix U = U(F ). We have

det(I − D) = 1 + ca − b(c − 1) > 0, ̂(I − D) =




1 − b(c − 1) a(1 − c) −a
−cb 1 + ac −b
c 1 − c 1


 .

Thus

U =
1

(1 + ca − b(c − 1))




1 − b(c − 1) a(1 − c) −a
−cb 1 + ac −b
c 1 − c 1


 , signU =




+ − −
− + −
+ + +


 ,

J(F ) =
S+(F )

S−(F )
=

5

4
.

⋄ The theorem is proved.

Remark 3. This example differs from Example 2 by the type of competition only. As a
consequence, the value of the goal function is equal to that in Example 2.

signD =




0 − −
+ 0 0
0 0 0


 , signU =




+ − −
+ + −
+ − +


 .

Example 4: a complex interaction

A network’s compartments can interact in both consecutive and parallel ways. Let us
consider an example of such interaction for a three-compartment model (Fig. 4).
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Fig. 4. Complex interaction.

The direct flow matrix F for this structure is

F =




0 0 0
f21 0 0
f31 f32 0


 , (8)

where due to (ii) the total throughflows are

T1 = f10 = f21 + f31 + f01, T2 = f21 = f02 + f32, T3 = f31 + f32 = f03.

Structural constraints (i) are:

0 < f21 + f31 < f10, 0 < f32 < f21. (9)

The direct utility flow matrix D corresponding to the matrix F (8) is

D = D(F ) =




0 −f21

T1
−f31

T1
f21

T2
0 −f32

T2
f31

T3

f32

T3
0


 =




0 −f21

f10
−f31

f10

1 0 −f32

f21
f31

f31+f32

f32

f31+f32
0


 .

Let

a = f21

f10
, b = f31

f10
, c = f32

f21
, d = f31

f31+f32
, (1 − d) = f32

f31+f32
.

Structural constraints (9) turn into a, b, c, d, (a + b) ∈ (0, 1). Then

D =




0 −a −b
1 0 −c
d 1 − d 0


 , signD =




0 − −
+ 0 −
+ + 0


 .

A characteristic polynomial for D = D(F ) is

det(U − λI) = det




−λ −a −b
1 −λ −c
d 1 − d −λ


 = 0.

Hence
λ3 + λ(a + c(1 − d) + bd) − acd + b(1 − d) = 0. (10)

Let us note, that

f31 = bf10, f32 = cf21, therefore, a =
f32/c

f31/b
=

f32

f31

b

c
,

f32

f31

=
ac

b
.

Thus we come to

13



d =
f31

f31 + f32

=
1

1 + f32/f31

=
1

1 + ac/b
=

b

+
¯
ac

and 1 − d =
ac

b + ac
. (11)

Applying (11) to (10) we get

λ3 + λ

(
a + c

ac

b + ac
+ b

b

b + ac

)
− ac

b

b + ac
+ b

ac

b + ac
= 0

or

λ3 + λ

(
a +

ac2 + b2

b + ac

)
= 0, λ1 = 0, λ2 = i

√
a +

ac2 + b2

b + ac
, λ3 = −i

√
a +

c2 + b2

b + ac
.

Condition (9) leads to

a, b, c, (a + b), a +
ac2 + b2

b + ac
< 1. (12)

Remark 4. The set of parameters a, b, c that satisfy (12) is nonempty. Indeed, for all
b, c ∈ (0, 1) and small enough a > 0 we have

a, a + b ∈ (0, 1) and a +
ac2 + b2

b + ac
≈ 0 +

0 · c2 + b2

b + 0 · c = b ∈ (0, 1).

However, not all a, b, c that satisfy a, b, c, (a+b) ∈ (0, 1) satisfy a+
ac2 + b2

b + ac
∈ (0, 1).

Indeed let us take b close to 0 and a close to 1. Then

a +
ac2 + b2

b + ac
≈ 1 +

1 · c2 + 0

0 + 1 · c = 1 + c > 1 for all c ∈ (0, 1).

Constraints (12) describe a class Φ of matrices F (8). Let us prove a theorem resolving
the optimization and classification problems for models of given class.

Theorem 4. The class Φ of matrices F of form (8), that satisfy the conditions (12)
in the union of three non-intersecting subclasses. All matrices in each subclass have the
same value of the goal function. Namely,

J(F ) =





7

2
if c > b, ac > b,

5

4
if c < b, ac > b,

2 if c > b, ac < b,

where

a =
f21

f10

, b =
f31

f10

, c =
f32

f21

.

Proof. As earlier, we construct an integral utility matrix U = U(F ) . We have

(I − D) =




1 a b
−1 1 c
−d d − 1 1


 = 0, det(I − D) = (1 − a)(1 − cd) + b + c > 0,

̂(I − D) =




1 − c(d − 1) b(d − 1) − a ac − b
1 − cb 1 + bd −c − b

1 1 − d(1 + a) 1 + a


 ,

14



therefore,

U = U(F ) =
1

(1 − a)(1 − cd) + b + c




1 − c(d − 1) b(d − 1) − a ac − b
1 − cb 1 + bd −c − b

1 1 − d(1 + a) 1 + a


 ,

signU =




+ − ?
+ + −
+ ? +


 .

The signs of elements u13 and u32 are not certain yet. The sign of u13 is defined
by the sign of (ac − b). The sign of u32 is defined by the sign of

1 − d(1 + a) = 1 − b(1 + a)

b + ac
=

a(c − b)

b + ac

that is the sign of (c − b).

Four cases are possible:

1)

{
c > b
ac > b

if u13 > 0, u32 > 0,

2)

{
c < b
ac < b

if u13 < 0, u32 < 0,

3)

{
c > b
ac < b

if u13 < 0, u32 > 0,

4)

{
c < b
ac > b

if u13 > 0, u32 < 0.

It is clear that one can find (a, b, c) from the set described by (12) for which cases
1), 2) and 3) hold. System 4) is obviously not compatible.

⋄ Theorem is proved.

Remark 5. Let us compare the net flow matrix D and the integral utility matrix
U = U(F ) in cases 1, 2 and 3.

In case 1, consecutive interaction prevails:

signD(F ) =




0 − −
+ 0 −
+ + 0


 , signU(F ) =




+ − +
+ + −
+ + +


 .

In case 2, parallel interaction prevails:

signD(F ) =




0 − −
+ 0 −
+ + 0


 , signU(F ) =




+ − −
+ + −
+ − +


 .

Case 3 describes a system state in which all relations are equal:

signD(F ) =




0 − −
+ 0 −
+ + 0


 , signU(F ) =




+ − −
+ + −
+ + +


 .
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We see that the goal function J takes its maximum value when consecutive interac-
tion prevails in the system. Thus, consecutive interaction is preferable from the viewpoint
of the goal function J.

Figure 5 illustrates these qualitative conclusions about the structure of the system
at which different values of the goal function J are realized. Three areas in three-

dimensional space where the axes correspond to x =
f21

f10

, y =
f31

f10

, x =
f32

f21

.

Fig. 5. The domains three-compartment complex.

Three areas colored in red, blue, and green correspond to areas described in Theorem
4. Namely, the red central area corresponds to systems with value of goal function equal
2. The blue area corresponds to systems with the goal function value equal to 7/2 and
the green equal to 5/4. Supposing that the probability of a system to exhibit concrete
values is proportional to the volume of the corresponding area, we can notice that position
with J(F ) = 7/2 (blue) is the most probable position for the system, and position with
J(F ) = 5/4 (green) is the least probable. Therefore, the highest mutualism value is most
likely to occur and the lowest, the least likely to occur.

Example 5: a cyclic interaction

Let us consider an example of an interaction for a three-compartment cyclic model
assuming each compartment receives an inflow from the system and produces an outflow
to the system (Fig. 6).

Fig. 6. Cyclic interaction.
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Remark 6. First, let us consider the case where f10 = 0 (Fig. 7).

Fig. 7. Cyclic interaction without the outflow f10 .

The direct flow matrix F for this network is

F =




0 0 f13

f21 0 0
0 f32 0


 , (13)

where due to (ii) the total throughflow for each component are

T1 = f10 + f13 = f21, T2 = f21 = f32 + f02, T3 = f32 = f13 + f03.

Structural constraints (i) on elements of the matrix F are:

0 < f21 < f10, 0 < f32 < f21, 0 < f13 < f32. (14)

The direct utility flow matrix D corresponding to the given matrix F (13) is

D = D(F ) =




0 −f21

T1

f13

T1
f21

T2
0 −f32

T2

−f13

T3

f32

T3
0


 =




0 −1 f13

f21

1 0 −f32

f21

−f13

f32
1 0


 .

Let

a = f32

f21
, b = f13

f32
.

Then the structural constraints (14) become a, b ∈ (0, 1). Then

D =




0 −1 ab
1 0 −a
−b 1 0


 .

A characteristic polynomial for this matrix D = D(F ) is

det(U − λI) = λ(λ2 + ab2 + a + 1)

and hence eigenvalues become,

λ1 = 0, λ2 = i
√

ab2 + a + 1, λ3 = −i
√

ab2 + a + 1.

As ab2 +a+1 > 1 then for model with structure (13) and constraints (14) the condition
(iii) is never satisfied. Thus, assumption is inappropriate, and we come back to the case
where f01 > 0 (Fig. 6).
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The direct flow matrix F is

F =




0 0 f13

f21 0 0
0 f32 0


 , (15)

where due to (ii) the total throughflows

T1 = f10 + f13 = f21 + f01, T2 = f21 = f32 + f02, T3 = f32 = f13 + f03.

Structural constraints (i) on elements of the matrix F are:

0 < f21 < f10, 0 < f32 < f21, 0 < f13 < f32. (16)

The direct utility flow matrix D corresponding to the given matrix F (15) is

D = D(F ) =




0 −f21

T1

f13

T1
f21

T2
0 −f32

T2

−f13

T3

f32

T3
0


 =




0 − f21

f01+f21

f13

f01+f21

1 0 −f32

f21

−f13

f32
1 0


 .

Let

a = f32

f21
, b = f13

f32
, c = f21

f01+f21
, d = f13

f01+f21
.

Then the structural constraints (16) turn into a, b, c, d ∈ (0, 1). Seeing that

ab =
d

c
=

f31

f21

, we concluded that d = abc. Then

D =




0 −c abc
1 0 −a
−b 1 0


 , signD =




0 − +
+ 0 −
− + 0


 .

A characteristic polynomial for D = D(F ) is

det(D − λI) = λ(λ2 + ab2c + a + c) = 0.

Hence,

λ1 = 0, λ2 = i
√

ab2c + a + c, λ3 = −i
√

ab2c + a + c.

Coming back to our initial notations, we write a condition guaranteeing (iii) as follows:

∣∣∣∣
f 2

13

f32(f21 + f01)
+

f32

f21

+
f21

f21 + f01

∣∣∣∣ < 1. (17)

Remark 7. Let us show that there exist networks whose flow matrices F satisfy (17).
Let us consider the case of constant compartments’ efficiency. In other words let us assume
that each compartment transports a constant fraction of its inflow, p ∈ (0, 1), to the
next compartment. Then we have

f21

f21 + f01

=
f32

f21

=
f13

f32

= p.

In this case (17) turns into p4 + 2p − 1 < 0. Let us notice that y(p) = p4 + 2p − 1
increases on the interval (0,1), y(0) = −1 < 0, y(1) = 2 > 0. Hence, there exists a
p̂ ∈ (0, 1) such that for all p ∈ (0, p̂) (17) holds.

Constraints (16), (17) describe a class Φ of matrices F of form (15).
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Theorem 5. Let the class Φ of admissible matrices F of form (15) be defined by (16),
(17). Then for all F ∈ Φ

J(F ) =
7

2
.

Proof. As earlier, we construct an integral utility matrix U = U(F ). We have

det(I − D) = 1 + a + c + ab2c > 0, ̂(I − D) =




1 + a abc − c abc + ac
1 + ab 1 + ab2c abc − a
1 − b 1 + cb 1 + c


 .

Consequently,

U =
1

(1 + a + c + ab2cb)




1 + a abc − c abc + ac
1 + ab 1 + ab2c abc − a
1 − b 1 + cb 1 + c


 , signU =




+ − +
+ + −
+ + +


 ,

J(F ) =
S+(F )

S−(F )
=

7

2
.

⋄ The theorem is proved.

Remark 8. Let us compare the net flow matrix D and the integral utility matrix U.
We see that the link that completes the cycle (a flow from X3 to X1) and represents
competition in matrix D, turns into mutualism in matrix U. Note that the value of
the goal function J is the same as in the case of consequent interaction (Example 1 ).

signD =




0 − +
+ 0 −
− + 0


 , signU =




+ − +
+ + −
+ + +


 .

4 Ecological models with arbitrary number of com-

ponents

Example 6: consecutive n-component chains

Earlier we showed that for three-compartment systems a chain assuming consecutive
interactions only provides a maximal value to the goal function.

Let us consider a system with an arbitrary number of n compartments (n ≥ 3), in
which all interactions are consecutive (see Fig. 8).

Fig. 8. Consecutive interaction in an n-component chain.
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The direct flow matrix F for this network is:

F =




0 0 0 . . . 0
f21 0 0 . . . 0
0 f32 0 . . . . . .
. . . . . . . . . . . . 0
0 0 . . . fn,(n−1) 0




. (18)

Due to (ii) the total throughflows are:

T1 = f10, . . . , Tn = fn,(n−1).

Structural constraints (i) are:

0 < f21 < f10, . . . , 0 < fn,(n−1) < f(n−1),(n−2). (19)

The direct utility flow matrix D corresponding to the given matrix F (18) is

D =




0 −f21

T1
0 . . . 0

f21

T2
0 −f32

T2
. . . 0

0 f32

T3
0 . . . . . .

. . . . . . . . . . . . −fn,(n−1)

Tn−1

0 0 . . .
fn,(n−1)

Tn
0




=




0 −f21

T1
0 . . . 0

1 0 −f32

T2
. . . 0

0 1 0 . . . . . .

. . . . . . . . . . . . −fn,(n−1)

T(n−1)

0 0 . . . 1 0




.

Let

ai =
f(i+1),i

Ti
, (i = 1, . . . , n − 1).

Then structural constraints (19) turn into ai ∈ (0, 1) (i = 1, . . . , n − 1). We have

D =




0 −a1 0 . . . 0
1 0 −a2 . . . 0
0 1 0 . . . . . .
. . . . . . . . . . . . −an−1

0 0 . . . 1 0




.

Assumption 1. Convergence conditions for infinite chains have been explored in [1] with
the conclusion that for equal transfer ratios less than 0.25, convergence is met. We assume
that the convergence condition is satisfied for the direct flow matrix (18). Constraints (19)
and the assumption describe a class of matrices (18).

Our result for systems under consideration is the following.

Theorem 6. For all matrixes F (18), which satisfy to the conditions (19) and the
Assumption, it holds that

J(F ) =





3 if n is even,

3n2 + 1

n2 − 1
if n is odd.

Proof. First, let us prove a lemma.
Lemma 1. Let ai ∈ (0, 1) (i = 1, . . . , n − 1). Then for any n × n matrix of the form

An =




0 a1 0 . . . 0
−1 0 a2 . . . 0
0 −1 0 . . . . . .
. . . . . . . . . . . . an−1

0 0 . . . −1 0



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it holds that

Dn = det An > 1.

Proof. Let us prove by induction that for any n we have an increasing sequence of
determinants

Dn > Dn−1 > · · · > D1 = 1.

First, we prove this for n = 2. From direct calculations we get

D1 = 1, D2 = 1 + a1 = D1 + a1. As a1 ∈ (0, 1) we have D2 > D1.

Now let the statement of Lemma 1 hold for some n = k,

Dk > Dk−1 > . . . > D1.

We will show that it holds for n = k + 1. The next recursive equation holds [6]:

Dk+1 = Dk + akDk−1, k ≥ 3.

By assumption 1 ak ∈ (0, 1). Thus we get

Dk+1 > Dk > . . . > D1 = 1.

⋄ Lemma is proved.

Proof of Theorem 6. By assumption

U =
∑

∞

m=0 Dm = (I − D)−1.

We have

I − D =




1 a1 0 . . . 0
−1 1 a2 . . . 0
0 −1 1 . . . . . .

. . . . . . . . . . . . an−1

0 0 . . . −1 1




, (20)

(I − D)−1 =
̂(I − D)

det(I − D)
,

where ̂(I − D) is the adjoint matrix to the matrix (I − D) [6].

It follows from the Lemma 1, det(I −D) > 1 . Hence the latter determinant does not
influence the signs of the elements of the integral utility matrix U. Therefore, to prove

the theorem it is sufficient to specify the signs of the elements of the matrix ̂(I − D) .
We have

̂(I − D) =




̂(I − D)11
̂(I − D)21 . . . ̂(I − D)n1

̂(I − D)12
̂(I − D)22 . . . ̂(I − D)n2

. . . . . . . . . . . .
̂(I − D)1n

̂(I − D)2n . . . ̂(I − D)nn




where ̂(I − D)ij is the algebraic complement to the elements (I − D)ji of the matrix
(I − D).

We divide the rest of the proof in three parts.

1. Let us find the signs of the diagonal elements ̂(I − D)ii (i = 1, . . . , n). By direct
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calculations from (20) we get that for any i = 1, . . . , n

̂(I − D)ii = det

(
Ai−1 0

0 An−i

)
= det Ai−1 · det An−i, det A0 = 1

where

Ai−1 =




1 a1 0 . . . 0
−1 1 a2 . . . 0
0 −1 1 . . . . . .

. . . . . . . . . . . . ai−2

0 0 . . . −1 1




, An−i =




1 ai+1 0 . . . 0
−1 1 ai+2 . . . 0
0 −1 1 . . . . . .

. . . . . . . . . . . . an−1

0 0 . . . −1 1




.

According to Lemma 1 det Ai−1 > 0, det An−i > 0, and hence, ̂(I − D)ii > 0
(i = 1, . . . , n).

2. Let us find the signs of the elements ̂(I − D)ij (i < j, i = 1, . . . , n, j = 2, . . . , n−1).
Located below the main diagonal by direct calculations we get that for every i < j

̂(I − D)ij = det Ai−1 · det An−j, det A0 = 1,

where Ai−1, An−j are given by (20). By lemma 1 det Ai−1 > 0, det An−j > 0, there-

fore, ̂(I − D)ij > 0 (i < j, i = 1, . . . , n, j = 2, . . . , n − 1).

3. Let us find the signs of the elements located above the main diagonal ̂(I − D)ij

(i > j, i = 2, . . . , n − 1, j = 1, . . . , n). By direct calculations we get that for
every i > j

̂(I − D)ij = (−1)i+j · ∏i−1
k=j ak · det Aj−1 · det An−i, det A0 = 1,

The inclusion ak ∈ (0, 1) and Lemma 1 imply that det Aj−1 > 0, det An−i > 0.
Therefore,

∏i−1
k=j ak · det Aj−1 · det An−i > 0. Thus every element of either the matrix

̂(I − D) or the matrix U which is located above the main diagonal, is positive if i + j
is even, and is negative if i + j is odd.

Consequently,

if n is even, then:

signU =




+ − + . . . − + −
+ + − . . . + − +
+ + + . . . − + −
. . . . . . . . . . . . . . . . . . . . .
+ + + . . . + + +




,

and if n is odd, then:

signU =




+ − + . . . + − +
+ + − . . . − + −
+ + + . . . + − +
. . . . . . . . . . . . . . . . . . . . .
+ + + . . . + + +




.

In both cases above the main diagonal the “sub-diagonals” consisting of minuses alternate
with the “sub-diagonals” consisting of pluses. A difference between these two cases consists
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in the following for an even n the element of the top is a minus, and for an odd n it is a
plus.

Thus,

if n is even, then:

S−(F ) = 1 + 3 + 5 + . . . + (n − 1)︸ ︷︷ ︸
n
2

=
1 + (n − 1)

2
· n

2
=

n2

4
,

S+(F ) = n2 − S
−
(F ) =

3n2

4
, J(F ) = 3;

if n is odd,then:

S
−
(F ) = 2 + 4 + 6 + . . . + (n − 1)︸ ︷︷ ︸

(n−1)
2

=
2 + (n − 1)

2
· (n − 1)

2
=

n2 − 1

4
,

S+(F ) =
3n2 + 1

4
, J(F ) =

3n2 + 1

n2 − 1
.

⋄ The theorem is proved.

Remark 9. Therefore for infinite chains with consecutive interactions the integral flow
matrix can be constructed for an arbitrary number of compartments. We see that any
compartment of a network distant from the first element at an even length of the chain gets
a plus in the integral flow matrix, i.e. this element interacts with the first one positively.
On the other hand, an element distant from the first one at an odd distant is negatively
related to the latter. Example 1 illustrates this statement for n = 3.

Remark 10. One can prove that the value of the goal function tends to 3 (from above)
as the length of the chain tends to infinity:

lim
n→∞

J(F ) = 3.

Example 7: parallel interaction in n–component networks

As a second n–compartment example let us consider a system (n ≥ 3), in which one
component, Xn, acts as a sink for flows coming from all other components (Xn is a
top-down controller) (Fig. 9). All components, except for the consumer Xn compete for
a common resource. The logic suggested in section 3, implies that this structure is worst
for maximizing the goal function. It is natural to assume that in the considered case the
value of the goal function should approach zero as n increases to infinity. Let us prove
it.
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Fig. 9. Parallel interaction in an n-component network with one predator.

Introduce the relevant class Φ of admissible matrices F. The direct flow matrix is

F =




0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0

fn,1 fn,2 . . . fn,(n−1) 0




, (21)

where due to (ii) the throughflows for each component are:

T1 = f10 = fn1 + f01, . . . , Tn−1 = f(n−1),0 = fn,(n−1) + f0,(n−1), Tn = f0n =
n−1∑

i=1

fni.

Structural constraints (i) on elements of F are the following:

0 < fn1 < f10, . . . , 0 < fn,(n−1) < f(n−1),0. (22)

The direct utility flow matrix D corresponding to F (21) has the form

D =




0 0 . . . 0 −fn1

T1

0 0 . . . 0 −fn2

T2

. . . . . . . . . . . . . . .

0 0 . . . 0 −fn,(n−1)

T(n−1)

fn1

Tn

fn2

Tn
. . .

fn,(n−1)

Tn
0




=




0 0 . . . 0 −fn1

f10

0 0 . . . 0 −fn2

f20

. . . . . . . . . . . . . . .

0 0 . . . 0 −fn,(n−1)

f(n−1),0

fn1∑n−1
i=1 fni

fn2∑n−1
i=1 fni

. . .
fn,(n−1)
∑n−1

i=1 fni
0




.

Let

ai = fni

Ti
, bi = fni

Tn
(i = 1, . . . , n − 1).

Then the structural constraints (22) become ai, bi ∈ (0, 1) (i = 1, . . . , n), and we have
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D =




0 0 . . . 0 −a1

0 0 . . . 0 −a2

. . . . . . . . . . . . . . .
0 0 . . . 0 −an−1

b1 b2 . . . bn−1 0




, singD =




0 0 . . . 0 −
0 0 . . . 0 −
. . . . . . . . . . . . . . .
0 0 . . . 0 −
+ + . . . + 0




.

Lemma 2. For all matrices F of the form (21) satisfying (22) condition (iii) holds.

Proof. We construct the characteristic polynomial for the direct utility flow matrix D
and estimate the magnitude of its eigenvalues. We have

det(D − λI) =

∣∣∣∣∣∣∣∣∣∣

−λ 0 . . . 0 −a1

0 −λ . . . 0 −a2

. . . . . . . . . . . . . . .
0 0 . . . −λ −an−1

b1 b2 . . . bn−1 −λ

∣∣∣∣∣∣∣∣∣∣

.

Multiplying the first row by
b1

λ
, the second row by

b2

λ
etc, and adding all the rows to

the row n row (which does not change the determinant), we get

det(D − λI) =

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 . . . 0 −a1

0 −λ . . . 0 −a2

. . . . . . . . . . . . . . .
0 0 . . . −λ −an−1

0 0 . . . 0 −λ − 1

λ

∑n−1
i=1 aibi

∣∣∣∣∣∣∣∣∣∣∣

.

The characteristic equation det(D − λI) = 0 turns into

λn−2
(
λ2 +

∑n−1
i=1 aibi

)
= 0.

We see that

λ1 = λ2 = . . . = λn−2 = 0, λn−1 = i
√∑n−1

i=1 aibi, λn = −i
√∑n−1

i=1 aibi.

Let us prove that
∑n−1

i=1 aibi < 1 which is equivalent to:
∑n−1

i=1

fni

Ti

fni

Tn

< 1 or

f2
n1

f10(fn1 + · · · + fn,(n−1))
+ · · · +

f 2
n,(n−1)

f(n−1),0(fn1 + · · · + fn,(n−1))
< 1.

Multiplying both parts of the last inequality by f10 . . . f(n−1),0(fn1 + · · · + fn,(n−1)) > 0,
we get

f2
n1 . . . f(n−1),0 + · · · + f2

n,(n−1)f10 . . . f(n−2),0 < f10 . . . f(n−1),0

(
fn1 + · · · + fn,(n−1)

)
⇔

fn1 . . . f(n−1),0(fn1 − f10) + · · · + fn,(n−1)f10 . . . f(n−2),0(fn,(n−1) − f(n−1),0) < 0.

Due to (22) the multipliers in the brackets are negative, and hence
∑n−1

i=1 aibi < 1.

⋄ Lemma 2 is proved.

Thus constraints (22) describe a class Φ of admissible matrices F of form (21). The
main result of this section is the following.

Theorem 7. For all matrices F of form (21) whose elements satisfy conditions (22), it
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holds that

J(F ) =
2n − 1

(n − 1)2
.

Proof. For finding elements of the integral utility matrix we use formula U = (I −D)−1

and apply the following algorithm described [6]. We build the tended matrix [(I − D)|I]
and transform its rows so that the matrix I−D turns into a unitary matrix I, whereas
the inverse matrix replaces (I − D)−1. Then the tended matrix is transformed into

[(I − D)|I] =




1 . . . 0 a1

0 . . . 0 a2

. . . . . . . . . . . .
0 . . . 1 an−1

−b1 . . . −bn−1 1

∣∣∣∣∣∣∣∣∣∣

1 . . . 0 0
0 . . . 0 0
. . . . . . . . . . . .
0 . . . 1 0
0 . . . 0 1




.

Multiplying the first row by b1, the second row by b2, and so on, adding rows 1 through
n+1 to row n, and then dividing row n by 1 +

∑n−1
i=1 aibi, we get

[(I − D)|I] =

=




1 . . . 0 a1

0 . . . 0 a2

. . . . . . . . . . . .
0 . . . 1 an−1

0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 0 0
0 . . . 0 0

. . . . . . . . . . . .
0 . . . 1 0
b1

(1 +
∑n−1

i=1 aibi)
. . .

bn−1

(1 +
∑n−1

i=1 aibi)

1

(1 +
∑n−1

i=1 aibi)




.

Now we multiply the row n by (−an−1), add it to row (n-1), multiply row n by (−an−2)
and add it to row (n-2) and so on, and finally multiply row n by (−a1) and add it to
row 1. We get

[(I − D)|I] =

=




1 . . . 0 0
0 . . . 0 0

. . . . . . . . . . . .
0 . . . 1 0
0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − b1a1

(1 +
∑n−1

i=1 aibi)
. . . − bn−1a1

(1 +
∑n−1

i=1 aibi)
− a1

(1 +
∑n−1

i=1 aibi)

− b1a2

(1 +
∑n−1

i=1 aibi)
. . . − bn−1a2

(1 +
∑n−1

i=1 aibi)
− a2

(1 +
∑n−1

i=1 aibi)
. . . . . . . . . . . .

− b1an−1

(1 +
∑n−1

i=1 aibi)
. . . 1 − bn−1an−1

(1 +
∑n−1

i=1 aibi)
− an−1

(1 +
∑n−1

i=1 aibi)
b1

(1 +
∑n−1

i=1 aibi)
. . .

bn−1

(1 +
∑n−1

i=1 aibi)

1

(1 +
∑n−1

i=1 aibi)




.

Thus,
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U = (I−D)−1 =




1 − b1a1

(1 +
∑n−1

i=1 aibi)
. . . − bn−1a1

(1 +
∑n−1

i=1 aibi)
− a1

(1 +
∑n−1

i=1 aibi)

− b1a2

(1 +
∑n−1

i=1 aibi)
. . . − bn−1a2

(1 +
∑n−1

i=1 aibi)
− a2

(1 +
∑n−1

i=1 aibi)
. . . . . . . . . . . .

− b1an−1

(1 +
∑n−1

i=1 aibi)
. . . 1 − bn−1an−1

(1 +
∑n−1

i=1 aibi)
− an−1

(1 +
∑n−1

i=1 aibi)
b1

(1 +
∑n−1

i=1 aibi)
. . .

bn−1

(1 +
∑n−1

i=1 aibi)

1

(1 +
∑n−1

i=1 aibi)




.

Since ai, bi ∈ (0, 1) (i = 1, . . . , n − 1) and
∑n−1

i=1 aibi < 1, we have

signU =




+ − . . . − −
− + . . . − −
. . . . . . . . . . . . . . .
− − . . . + −
+ + . . . + +




.

Finally, S+(F ) = 2n − 1, S−(F ) = n2 − (2n − 1) = (n − 1)2, J(F ) =
2n − 1

(n − 1)2
.

⋄ The theorem is proved.

Remark 11. We have shown that indeed for the given case the following asymptotic
result takes place:

lim
n→∞

J(F ) = 0.

Remark 12. Our previous analysis of three-component systems shows that a type of
competition does not influence the value of goal function (is robust to the type of com-
petition). Accordingly a result similar to (Theorem 7) holds true for networks in which
one component is preyed upon by all other components (Fig. 10). We omit the exact
formulation.

Fig. 10. Parallel interaction in an n-component network with one source.
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Example 8: cyclic interaction in n-component networks

As a third ”infinite” network example let us consider a system with arbitrary number n
of components (n ≥ 3) in which all the components form a cycle (Fig. 11). Let us recall
that considering three-component networks we get the following result: the goal function
J takes the same value, 7/2, for the consequent chain and a cycle of n components (see
Remark 8). It may lead to the conclusion that adding one additional link to close the
cycle does not change the value of the goal function. But in this section we show that
generally it does not hold - as the number of system’s components increases the value of
J for a cyclic network tends to infinity. Let us demonstrate this fact.

Fig. 11. Cyclic interaction in an n-component chain.

The direct flow matrix F is

F =




0 0 . . . 0 f1,n

f21 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . fn,(n−1) 0




, (23)

where due to (ii) the total throughflow at each component are

T1 = f21 + f01 = f1n + f10,

Ti = fi,(i−1) = f0i + f(i+1),i (i = 2, . . . , n − 1),

Tn = fn,(n−1) = f1n + f0n.

The structural constraints (i) on elements of the matrix F are

0 < f21 < f10 + f1n, f(i+1),i < fi,(i−1) (i = 2, . . . , n − 1), f1n < fn,(n−1) (24)

The net flow matrix D corresponding to the given matrix F (23) is
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D =




0 −f21

T1

. . . 0
f1n

T1
f21

T2

0 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 0 −fn,(n−1)

Tn−1

−f1n

Tn

0 . . .
fn,(n−1)

Tn

0




=




0 −f21

T1

. . . 0
f1n

T1

1 0 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . 0 −fn,(n−1)

Tn−1

−f1n

Tn

0 . . . 1 0




Let

aij =
fji

Ti
(i = 1, . . . , n − 1, j = 2, . . . , n), a1n = f1n

T1
, an1 = f1n

Tn
,

Then the structural constraints (24) become aij ∈ (0, 1) (i, j = 1, . . . , n). Then

D =




0 −a12 . . . 0 a1n

1 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 −a(n−1),n

−an1 0 . . . 1 0




, signD =




0 − . . . 0 +
+ 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 −
− 0 . . . + 0




.

Assumption 2. We assume that for all matrices F of form (23) satisfying (24) condi-
tion (iii) holds.

Thus constraints (24) together with Assumption 2 describe a class Φ of admissible
matrices F of form (23). An analysis of particular cyclic networks of dimensions 3, 4, etc.
shows that regardless of the number of components in a network integral utility matrix U
consists of pluses only except for its “above-diagonal diagonal” elements. We summarize
it as a conjecture.

Conjecture 1. For all matrices F of form (23) whose elements satisfy (24) and As-
sumption 2, it holds that

J(F ) =
n2 − n + 1

n − 1
,

Remark 13. Conjecture 1 implies that the integral utility matrix has the form

signU =




+ − + . . . + + +
+ + − . . . + + +
. . . . . . . . . . . . . . . . . . . . .
+ + + . . . + + −
+ + + . . . + + +




.

We see that the link that completes the cycle in the network (a flow from Xn to X1)
and represents competition in matrix D turns into mutualism in matrix U and all
initially neutral relations become positive. Thus, it turns out that for all compartments
it is favorable to be included in consecutive interaction if there is a cycle in the network.

5 Conclusions

In this research, we found analytical solutions for the network utility goal function under
several structural configurations. For example, the three compartment food chain always
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resulted in a mutualism ratio of 7/2, and two three-compartment competition models had
a ratio of 5/4. In a more complex interaction (Example 4 ) the mutualism ratio is not
constant but depends on the parameter values governing flow between the components.
Interestingly though, in this example, the solution that exhibited the highest mutualism
ratio was the one that had the highest probability of occurring and the lowest ratio the
lowest probability.

Furthermore, certain structural configurations result in greater number of positive
relationship types than others, which leads one to ask if there is an optimal structure
that maximizes the network mutualism ratio. In the last three examples, all dealing with
arbitrarily long chains, it was found that the mutualism ratio converges to a value of 3
as n increases and the network with one source and infinite predators converges to a
mutualism ratio of zero, meaning that this is not a favorable configuration. Before one
can conclude that it is the most unfavorable it would be necessary to show that it converges
more rapidly than any other configuration. The most interesting case is the infinite cycle
(Example 8 ) since here the mutualism ratio diverges without bound as the number of
component in the cycle increase. It is also interesting to note that each component has
a positive relation with every other one in the network except the one that is directly
feeding on it. This indicates that components benefit greatly by inserting themselves in
a cyclic process because they are mutualists with all the other components except one.
This result documenting the beneficial nature of cycles is consistent with the work done on
cycles and auto-catalysis as a organizing ecosystem principle [8, 11]. This also supports the
observation that systems tend to self-organize into these network structures. Ecologically,
auto-catalytic cycles with 3 components have been observed, but there may be other
factors limiting the development of longer auto-catalytic cycles such as energy limitations
or stability, even though they would gain greater network mutualism.

While real ecosystem webs are much more complex than the examples here, these ex-
amples represent decompositions of these larger systems into smaller manageable subunits.
Analytic solutions of more complex structures are not possible, but the methodology to
determine the relationship types and number of beneficial relations can be applied numer-
ically to any system. Further studies of empirical systems are needed to assess the overall
trend of network mutualism and whether they are “preferred” configurations in nature,
but this research clearly shows that some structures have more beneficial relations than
others. The question “Does nature tend to self-organize into structures that exhibit high
levels of network mutualism?” is an interesting one that requires additional research.
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