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Abstract

There is emerging evidence that environmental degradation increases human mor-
tality. This paper provides a long-run consumer maximization model where popula-
tion growth is endogenous to emissions that are generated in production. There is a
trade-off between consumption and population growth; large consumption calls for
large production, thus leading to high environmental mortality and low population
growth. It may be optimal to end up with negative population growth implying that
demographic sustainability fails as consumption increases excessively. We provide
a theoretical model and suggest its calibrated version using European air pollution
data. Our exercise illustrates the functioning of the theoretical model and discusses
related methodological problems.
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Optimal Pollution and Optimal Population

Ulla Lehmijoki
Elena Rovenskaya

1 Introduction

There is emerging evidence of the adverse affects of environmental degradation on
human health as several branches of science have provided new results concerning
air pollution, climate change, salination of ground waters and pollution od oceans.
The reported air pollution, for example, increases both morbidity and mortality to a
marked degree. Many concerns deal with short-term political and financial questions
but the long-term concern is whether it is possible that environmental mortality will
increase so much that demographic sustainability comes under pressure?
Sustainable development has been intensely researched since the 1970s. This

research has concentrated on exhaustion of non-renewable and renewable resources
as well as on pollution, but has paid little attention to the questions of environmen-
tal mortality and population growth. Some papers have assumed that population
is constant, whereas others have suggested that population grows at a constant
rate. However the demographic fall – a necessary outcome of resource scarcity and
heavy pollution – has not been considered earlier in the framework of sustainable
growth. Actually the concept of sustainable growth itself needs redefinition to take
the demographic aspects into account. In this paper we give a long-run consumer
optimization model where population growth, through increases in mortality, is en-
dogenous to environmental degradation. We define demographic sustainability and
ask whether it should be taken seriously by discussing the European air pollution
mortality in the light of a calibrated version of the proposed model. Our emphasis
is on pollution but with some re-definition of concepts the results of our paper can
be applied to resource models as well.
In order to view decision process involving a long-time horizon effects as hu-

man’s health and economic development the apparatus of optimal growth theory
has been widely used over the past few decades. An overview of the history of the
optimal growth theory can be found, e.g., in Barro and Sala-I-Martin (1995). Neo-
classical growth theory allows to involve various environmental phenomena related
to economic development. The well-known DICE models, for example, have studied
the effects of climate change-caused damages to the economy (Nordhaus (1994)).
In this paper we are considering the negative impact of pollution on the economy
through population. We are looking for an optimal balance between the size of
population and welfare. For this purpose we use the technique of optimal control
theory (Pontryagin et al. (1962)).
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It is well known that a path which maximizes a consumer’s utility is not nec-
essarily sustainable. Earlier this question has been considered by Dasgupta and
Heal (1974 and 1979), Solow (1974), Stiglitz (1974), Krautkraemer (1985), Pezzey
and Withagen (1998), Valente (2004), Greiner (2007). Dasgupta and Heal (1974),
Pezzey and Withagen (1998), and Valente (2004) show, for example, that a typical
optimal consumption path initially raises and then falls, indicating that the current
generation pollutes or uses resources in excessive amounts. Hence, the consumption
rates decrease over time and “...the later generations ... suffer incredibly as a result
of the initial profligacy” (Dasgupta and Heal (1979)). We show, however, that a
model with endogenous mortality may generate a variety of outcomes, depending
upon the values of the parameters. Most importantly, if the steady state population
growth is negative and the demographic sustainability fails, then the optimal con-
sumption path keeps increasing. In this case, the future generations do not suffer
in the absence of consumption but rather because of greater number of premature
deaths.
To illustrate the features of our model and to discuss demographic sustainability,

we calibrate it with European air pollution data. Even though air pollution in Eu-
rope is rather low in global perspective, population growth in Europe is low as well,
so that a modest increase in environmental mortality may push population growth
below zero. Therefore, Europe serves as an interesting example of demographic
sustainability.
Calibration of a highly theoretical model is a demanding task for several reasons.

Because the number of parameters is usually large and each parameter needs its
own data, the overall data requirements are large. Further, the simplicity which is
necessary in theoretical models, limits the empirical aspects which can be considered
without depart too far from the ideas of the original model, the functioning of
which is usually also exemplified by the calibrated model. In this paper we seek
solutions for these problems by presenting alternative calibration strategies. The
data limitations are solved by focusing on fine particulate matters because data on
this pollutant is available, and also because particulate matters are considered as
the most detrimental to human health (WHO (2004a)). The first-shot calibrations
provided in this paper, however, should be considered as an methodological exercise
rather than as a final estimate for the demographic sustainability in Europe.
The paper is organized as follows: Section 2 reviews the recent evidence on

air pollution mortality. Section 3 introduces the model and its solution, Section 4
provides a calibrated version on the model and discusses its implications. Section 5
concentrates on sustainability at the European level. Section 6 discusses the results
and closes the paper. In Appendix one can find all technical details related to the
methodological background.

2 Air pollution mortality

There seems to be a consensus that air pollution is the greatest environmental risk to
the human health in industrial countries. Air pollution mortality was first reported
in the Meuse Valley, Belgium (1930) and London (1952), where smog took lives of 60
and 4000 people respectively (Nemery et al. (2001) and Logan (1953)). Air pollution
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consists of several components, of which particulate matter (PM) and ozone are the
most dangerous (WHO (2004a)). Air pollution raises mortality mainly through
an increase in respiratory and cardiovascular diseases and lung cancer (Samet et
al. (2000)), but an increase in skin cancer has also been reported (Brunekreef and
Holgate (2002)). All age groups are affected, but unborn, young children and the
elderly are the most vulnerable.
The Clean Air for Europe program (CAFE) and WHO have recently provided

a summary estimate for mortality caused by short-term exposure in Europe by col-
lecting 629 time-series studies and 160 individual or panel studies up to February
2003 (WHO (2004a)). In these studies, daily adult mortality was regressed against
daily changes in air pollution; the summary estimates indicate that there is a statis-
tically significant 0.6% increase in mortality for each 10μg/m3 increase in PM and
0.5% increase in mortality for each 10ppb increase in Ozone.
Pope et al. (2002) analyzed the effects of long-term PM exposure in the United

States in a study in which a questionnaire from 1982 provided data on sex, race,
smoking, alcohol consumption, so that controlling for alternative risk sources was
possible. The mortality data was collected until 1998 and regressed against local
pollution data to derive 4%, 6%, and 8% increases in all-cause, respiratory, and lung
cancer mortality respectively for each 10μg/m3 increase in PM . CAFE and WHO
applied these estimates to the European data, calculating that the short-term and
long-term exposures together were responsible for 370 000 premature deaths in 2000
(WHO (2004a)).
WHO has also provided a synthesis on air pollution and child mortality (WHO

(2004b)) that is based on several original studies. The conclusion is on a four-
level scale from “sufficient” to “no association”, showing that there is sufficient
evidence of an increase in child mortality, mainly due to PM exposure. Currie and
Neidell (2005) have estimated the infant mortality risk in California during the 1990s.
Several covariates were applied and fetal deaths were controlled for to exclude the
selection bias. The pollutants were particulate matter, ozone, carbon monoxide, and
nitrogen dioxide. Single pollutant models supplied significant estimates, but when
all four were included, only carbon monoxide was significant. Chay and Greenstone
(2003a and 2003b) have shown that the air quality improvement under the Clean
Air Act of 1970 in the United States saved more than 1,300 infants annually, and
that the 1981-82 recession that led to considerable decreases in PM concentrations
also had a positive effect on infant mortality.

3 The Model

In this paper we propose a model of economic growth which is extended by a neg-
ative feedback of growth and population via increasing pollution and its impact on
mortality. It is a one-sector model aimed at finding optimal consumption under the
idea that the society can invest in production of tangible capital goods depriving
itself from the consumption today in order to increase the consumption in future.
The society is guided by the objective to maximize both the size of the population
and the accumulated per capita consumption.



– 4 –

3.1 Environmental Constraints

We consider a model where mortality depends on pollution which may raise mortality
via either acute emissions or concentrated stocks. In this paper, we concentrate on
emissions since they can be easily incorporated into a one-sector model. Let L stand
for the size of the population, and n = L̇/L stand for the population growth rate,
that is the difference between fertility and mortality. Here and in what follows L̇
stands for the derivative of L with respect to the time variable; a similar notation
is used for other time-dependent quantities.
Since our emphasis is on mortality, we assume the population growth rate to

consist of two components: a constant basic rate, ν, and an additional mortality
associated with emissions. Thus n depends on the size of emissions, E, and we
define it as a demographic response function

n = n(E) : n(0) = ν > 0, n′(E) < 0 for all E > 0, (1)

indicating that under for zero level of emission the population growth rate is positive
and it decreases as the level of emissions grows. The population growth function
n = n(E) can adopt several types of functional expressions (Medows et al.(1972)).
Line A in Figure 1 argues that mortality steadily increases as emission increases.
Line B refers to a threshold in mortality regard to emission; with approaching this
threshold the acute increase in mortality via human resilience decreases. Several
subsequent thresholds may exist. Line C refers to an ever increasing sensitivity of
mortality indicating that, ultimately, the population collapses as its growth rate goes
to minus infinity. The theoretic model below allows all variants, but the numerical
analysis presented in Section 4 concentrates on line A. Figure 1 also shows a critical
emission level, Ē, for line A. Once emission reach this critical level, population
starts to decrease.

0

C

B
A

E

n(E)

Figure 1: Population growth as a function of emission, Meadows et al.1972.

Normalizing dividing by the initial population size and redenoting we get

L(t) = exp

∫ t

0

n (E (τ )) dτ ; (2)

here are in what follows t stands for the time variable; the initial time is set to be
zero.
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3.2 Economic Constraints

We assume that the productive capital K is the only input, and the production
output Y is given by a production function of a standard Cobb-Douglas form

Y = F (K) = Kα

where the positive parameter α < 1 is the elasticity of the output with respect to
capital.
We consider one-sector economy in which a part C of the output Y is consumed

and the rest of the output, Y −C is invested. Then the productive capital accumu-
lates according to

K̇ = Kα − C − δK, K(0) = K0, (3)

where δ > 0 refers to depreciation and K0 is a given positive initial value for capital.
From (3) one can easily get the result of the following Lemma which is important
for further analysis.

Lemma 1 For all consumption strategies C(t) such that 0 ≤ C(t) ≤ Kα(t) the
corresponding capital trajectories K(t) are bounded; namely, 0 ≤ K(t) ≤ K̃, where
K̃ = δ1/(α−1).

Both consumption and production may generate emissions. Cars pollute when
used for driving but magazines pollute when the paper is produced. We assume that
all emissions are born in production and that the ratio of emissions to production
is constant.1 Therefore, the emissions E become

E = φY = φKα. (4)

3.3 Utility

Consider an infinitely living central planner who wants to maximize the Benthamian
societal utility defined to be a product of per capita consumption, u(·), and the
number of people, L, in which u(·) adopts the CIES formula

u(C/L) =
(C/L)1−θ

1− θ
, θ �= 1.2 (5)

Here the elasticity of the marginal utility, θ > 0, acts as a measure of the social
valuation of different levels of consumption reflecting the extend to which the society
is willing to reduce the welfare of high-income generations in order to improve the
welfare of low-income generations. Such an approach to choosing the goal function
of the society is often used in modeling environmental-economical processes (see,

1Several authors argue that the relation of emissions to per capita output adopts the shape of an

inverted U . The paper can be generalized to follow this Environmental-Kuznets-Curve hypothesis
by assuming φ decreases as output increases.



– 6 –

for example, Nordhaus (1994)). Given a discount factor ρ > 0, the central planner
chooses consumption C(t) so as to maximize a utility index

U =

∫ ∞

0

u(C(t)/L(t)) · L(t) · e−ρt dt

=

∫ ∞

0

C(t)1−θ

1− θ
· e−

∫
t

0
[ρ−θn(E(τ ))]dτ dt (6)

subject to the economical constraints (3), (4); the last equality in (6) follows from
(5) and (2).
To keep the objective functional bounded, we introduce the following assumption.

Assumption 1 For any emission trajectory E(t) > 0 which may occur while func-
tioning the economy, it holds that

ρ− θn(E(t)) ≥ w > 0,

where w is a positive constant.

Let us notice that in a view of (1) Assumption 1 holds for sure if

ρ − θν ≥ w.

3.4 Problem formulation

Note that in his intertemporal choice, the central planner faces a trade-off between
consumption and population growth. If consumption is too large emissions are too
large too, which leads to high environmental mortality and low societal utility. On
the other hand, if consumption is too low, environmental mortality is low, which
is favorable, but in this case low consumption curbs the utility. Hence, optimal
consumption refers to an optimal emission regime and, in the long run, to an op-
timal population growth rate. Thus the central planner accepts some degree of
environmental mortality as an exchange for higher consumption.
A summarizing optimal control problem is:

maximizeC(·) U =

∫ ∞

0

C(t)1−θ

1− θ
e−
∫
t

0
{ρ−θn(E(τ ))}dτ dt,

subject to: E(t) = φK(t)α,

K̇(t) = K(t)α − C(t)− δK(t), K(0) = K0,

0 < C(t) ≤ K(t)α. (7)

3.5 Equilibrium Analysis

The fact that the discount factor Δ(t) =
∫ t

0
{ρ− θn(E(τ ))}dτ in (6) is not constant

provides a difficulty for analysis of the problem (7). To eliminate this difficulty we
apply a virtual time technique (see Uzawa (1968)). Thanks to Assumption 1 Δ(t)
has the following properties:
(i) Δ(0) = 0,
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(ii) Δ(∞) =∞,
(iii) Δ(t) is monotonically increasing with Δ̇(t) = ρ − n(E(t)) > 0.
Properties (i) – (iii) imply that Δ(t) satisfies the regularity conditions suggested

by Uzawa (1968) and thus can be used as an alternative independent variable (a
virtual time) Therefore we set

C = C(Δ), K = K(Δ), E = E(Δ).

Furthermore,

dt =
dΔ(t)

ρ− θn(E(t))
=

dΔ

ρ− θn(E(Δ))
. (8)

Applying (8) to (3) and (6), we turn problem (7) into the following one:

maximizeC(·) U =

∫ ∞

0

C1−θ(∆)

(1− θ)(ρ− θn(E(Δ)))
e−∆dΔ,

subject to: E = φKα,

K̊ =
dK

dΔ
=
Kα −C − δK

ρ− θn(E)
, K(0) = K0,

0 < C(Δ) ≤ Kα(Δ). (9)

Problem (9) equivalent to problem (7) is an infinite time horizon optimal control
problem with mixed constraints on the state and control variables. The basic control-
theoretic technique – the Pontryagin maximum principle – was originally developed
for problems with finite time horizons (Pontryagin et al (1962)). It is known that
for problems with infinite time horizon the necessary optimality conditions may not
be valid (e.g., Aseev and Kryazhimsky (2004), (2007)). The latter work suggest a
justified version of the Pontryagin maximum principle for optimal control problems
with infinite time horizons. In Appendix A we discuss in detail an application of this
technique to problem (9). The principle scheme is the following. First we rewrite
problem (9) in a standard form with controls lying in a compact set. Namely, we
introduce a lower bound for consumption assuming C ≥ ǫY instead of C > 0;
where ǫ > 0 is a small parameter (a modified formulation of problem (9) is given in
(13)). Then we make sure that this problem satisfies to the conditions (A1) – (A7)
sufficient for the validity of the infinite-horizon Pontryagin maximum principle for
problems with infinite time horizon which are suggested in Aseev and Kryazhimsky
(2007). In this manner we provide a formal basis for the use of the maximum
principle. Based on that, we write out the necessary conditions for optimality, (14)
– (18). We state (see Statements 4, 5) that the extreme consumption strategies C(t)
which touch the bounds for their admissible values, i.e. such that C(t) = ǫKα(t) or
C(t) = Kα(t) for some t > 0, cannot be optimal in problem (7). Based on that in
our further analysis we concentrate only on consumption paths lying entirely inside
the admissible interval. The Hamiltonian system supplying the optimal paths for
problem (7) has a form

Ċ

C
=
1

θ

{

θn′φαKα−1

ρ− θn(φKα)

(

θC

1− θ
+Kα − δK

)

+
[(

αKα−1 − δ
)

− (ρ− θn(φKα))
]

}

,

(10)

K̇ = Kα −C − δK, (11)
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the zero curves for its vector field are given by

Ċ

C
= 0⇔ C =

θ − 1

θ

{

Kα − δK +
ρ − θn(φKα)

θn′(φKα)φαKα−1
[(

αKα−1 − δ
)

− (ρ− θn(φKα))
]

}

,

K̇ = 0⇔ C = Kα − δK.

The curve K̇ = 0 depicted on the (K,C) plane is strictly concave, reaches its
maximum at K̂ = (α/δ)1/(1−α) and hits the vertical axis at K = 0 and at K̃ =
δ1/(α−1) (Figure 2). The shape of the curve Ċ/C = 0 depends on the value of θ. Hall
(1988) has argued that empirical elasticities tend to be large, therefore we assume
θ > 1. The following lemma provides a sufficient condition for the existence of an
interior steady state for system (10), (11).

Lemma 2 Let Assumption 1 be satisfied. Then the system (10), (11). has at least
one steady state (K∗, C∗), where K∗ > 0, C∗ > 0 and K∗ < K̃) = δ1/(α−1).

Proof. LetK = 0. For a point (K,C) on the curve K̇ = 0 we haveC = Kα−δK = 0
and for a point (K,C) on the curve Ċ = 0 we have

C =
θ − 1

θ

ρ− θn(0)

θn′(0)φ
< 0

due to (1) and Assumption 1.
Let K = K̃. For a point (K,C) on the curve K̇ = 0 we have C = 0 and for a

point (K,C) on the curve Ċ = 0 we have

C =
θ − 1

θ

ρ− θn(φKα)

θn′(φKα)φαK̃α−1

[(

αK̃α−1 − δ
)

− (ρ− θn(φKα))
]

> 0.

Indeed, ρ− θn(φKα) > 0 by Assumption 1 and a slope of the curve C = Kα − δK
in negative K = K̃ (the latter fact leads to a negative value of the derivative, i.e.,
αK̃α−1 − δ).
Hence, the curve Ċ/C = 0 lies below the curve K̇ = 0 for K = 0 and above it for

K = K̃. Since both curves are continuous, curve Ċ/C = 0 intersects curve K̇ = 0
at some point (K∗, C∗), where K∗ > 0, C∗ > 0 and K∗ < K̃.

In what follows, we consider problem (7) under the following assumption.

Assumption 2 The Hamiltonian system (10) – (11) has a single steady state
(K∗, C∗) and

K0 ≤ K
∗ ≤ K̂

where K̂ is the maximum point for Kα − δK.

A standard local stability analysis carried out in Appendix B shows that the
steady state (K∗, C∗) is a saddle and stable saddle paths approach it from the
South-West and North-East (Fig. 2). Typically, saddle paths solve optimal control
problems with infinite horizons. Therefore we claim the following:
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K

C

K* K
~

.

C/C=0

.
K=0

.

Figure 2: The phase diagram of the model.

Statement 1 The stable saddle path (K(t), C(t)) of the Hamiltonian system (10) –
(11) such that K(0) = K0 is uniquely defined and solves the optimal control problem
(7).

The formal validation of Statement 1 is discussed in Appendix C.

4 Calibrated Model

In this section we illustrate the use of Statement 1 for a calibrated version of the
model. Table 4 provides the functional forms and the calibrated benchmark values
for the model’s parameters. The functions and some values are standard3. For
example, Barro and Sala-i-Martin (1995), argue that the elasticity of the output
with respect to capital in Cobb-Douglas production function Y = Kα, the discount
factor, the elasticity of marginal utility, and the rate of depreciation should be close
to α = 0.7, ρ = 0.05, θ = 3, and δ = 0.05, respectively (these values are given in
Table 4). A more complete formula for the production function would be Y = AKα,
where A refers to the level of technology. However, because this level greatly varies
across countries, it is hard to give any general estimate for A. In this paper, we only
provide results (growth rates and normalized time paths), which are independent
of the value of A. One can also think that the formula Y = Kα, applied here, is
identical to Y = AKα with normalization A = 1.
To evaluate the value for the emission rate φ we make use of the fact that air

pollution is the most acute environmental killer in industrial countries and fine par-
ticulates PM2.5 are its most dangerous component (WHO (2004a)). Therefore, we
alleviate our data requirements by working with the PM2.5 data in this exercise. We
regress the PM2.5 emissions (tons) against the GDP data (in thousand international
dollars) from 25 European countries in the year 2000 to derive estimate φ = 0.11208
kt per each trillion USD of the GDP. The data on the GDP comes from Heston et

3In advance we emphasize the fact that for the parameter values given in Table 4 all technical

assumptions made both earlier and in the subsequent text are not violated which justifies the formal

validity of the results presented in this section. We discuss issues related to those assumptions in

Appendix D.
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Y = Kα Cobb-Douglas production function

α = 0.7 Elasticity of output with respect to capital

ρ = 0.05 1/year Discount factor

u(C) = C1−θ

1−θ
CIES utility function

θ = 3 The elasticity of marginal utility

δ = 0.05 1/year Depreciation rate

E = φY Emission

φ = 0.112086 kt/tril USD Emission rate

n(E) = ν − βE Demographic response function

ν = 0.0049 1/year Basic population growth rate

β = 0.00038072211 kt Benchmark environmental mortality

Table 1: The functional forms and calibrated values for the parameters.

al. (2006) and that on emissions comes from the RAINS database (Atmospheric
Pollution Program, IIASA).
Consider the demographic response function n = n(E) discussed in Section 3.1

and depicted in Figure 1. Figure 1 shows that several alternatives to describe n =
n(E) are possible, each telling us a particular story about pollution and population
growth. The medical studies discussed above (Samet et al. (2000), Brunekreef and
Holgate (2002), Pope et al. (2002), Currie and Neidell (2005), Chay and Greenstone
(2003a and 2003b), WHO (2004a and 2004b)) assume that the relationship between
pollution and mortality is linear and we keep this assumption here. Hence we set

n = n (E) = ν − βE = ν − βφY = ν − βφKα, (12)

where ν = n(0) > 0 and β > 0. This formula corresponds to curve A in Figure
1. To calibrate ν we calculate the aggregate population for 25 European countries
for the years 1950 – 2004 and find that the average annual population growth rate
in Europe has been 0.49%. Naturally, air pollution has already some effect on this
number but given the long time span of the data, we can assume that this effect
is negligibly small. Therefore, we attribute the value ν = 0.0049 per year as the
autonomous population growth rate in equation (12).
In our model, we theoretize in terms of environmental mortality, thus the value of

the mortality parameter β in (12) is of special interest for us. In this section we give a
rough calibration for it and carry out the sensitivity analysis of the optimal behavior
of the economy to its value assuming that β varies in a neibourhood of a benchmark

value β0. Note that (12) implies that if the capital stock equals K̄ =
(

ν
βφ

)1/α

,

then the population size is stabilized. On the other hand, equations (12) and (12)
imply that the steady-state capital K∗ can take several values depending upon the
parameters’ values. Therefore, we find three types three types of the steady state
dynamics are possible:

(i) if K∗ > K̄, then n∗ > 0;
(ii) if K∗ = K̄, then n∗ = 0;
(iii) if K∗ < K̄, then n∗ < 0,
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denoting by n∗ a steady population growth rate (i.e., n∗ = n(E∗), E∗ = φK∗α). Both
K∗ and K̄ depend on β. We calculate the benchmark value β = β0 = 0.00038072211
such that K∗(β0) = K̄(β0) implying the stable population in the steady state. Be-
cause environmental mortality increases together with β, any value for β which is
either higher or lower than the benchmark value β0 leads to a either a negative or a
positive population growth in the steady state. 4

To calculate the time paths for variables, we apply the time elimination method,
in which the stable saddle path is calculated by taking the steady state (K∗, C∗)
as a starting point and continuing the phase trajectory of the Hamiltonian system
(10) – (11) until reaching K = K0. We assume zero initial conditions for phase
variables aiming at calculating entire optimal trajectories and identify the year 2000
as the initial time moment (see Figure 2). Since the slope of the saddle path in
the K,C−space is given as dC/dK = Ċ/K̇, the time paths for capital, emission,
population, and consumption – K(t), E(t), L(t), C(t) – are calculated by applying
(2) – (4). For details of the time elimination method, see Mulligan and Sala-i-Martin
(1991).
Let us illustrate the role of β providing sensitivity analysis of the optimal re-

spond of the economy to varying it. Figure 3 shows the time paths for the popula-
tion growth rate n(t) and population size L(t) for the benchmark value β = β0 =
0.00038072211 (the central path) and for its values perturbed for ±0.0000025 and
±0.00005. The five time paths show that for β = β0, population size first increases
and then levels-off, whereas it keeps increasing or decreasing for the perturbed values
β < β0 or β > β0 respectively. Thus Figure 3 shows that the demographic role of β
is qualitative and critical in a sense that the mode of population growth changes if β
is perturbed. However, β has only quantitative effect on other features of the model.
For example the steady state values for capital, K∗, and consumption, C∗, decrease
if β increases, indicating that a right tendency would be to accumulate and consume
less because higher economic activity would lead to demographic losses. But once
we standardize all the steady states to unity, the optimal time paths for capital,
K(t), and consumption, C(t), show almost no variation responding to changes in
β, as depicted in Figure 4. The constant character of of capital K∗ and consump-
tion C∗ in the steady state implies that the growth rate of the per capita numbers
k = K/L and c = C/L react to the steady state population growth rate, being
respectively negative, zero, or positive if this rate is respectively positive, zero or
negative as is depicted in Figure 5. Therefore, the central planner faces a trade-off
between population and per capita consumption since it is impossible to keep them
both increasing.

5 Demographic Sustainability

In 1987, the Brundtland Comission defined sustainable development as a develop-
ment that “meets the needs of the present without compromising the ability of future
generations to meet their own needs” (WCED (1987)). This traditional definition
refers to non-decreasing consumption or non-decreasing utility, concepts that are

4Programming was performed by using Mathematica 5.2. The program is available from the

authors on request.
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Figure 3: The time paths for the population growth rate n(t) and population size
L(t) normalized by the initial value L0 for the benchmark value β0 = 0.00038072211
(the central path) and for its values perturbed for ±0.0000025 and ±0.00005.
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Figure 4: The time paths for capital K(t) and consumption C(t) for the bench-
mark value β0 = 0.00038072211 (the central path) and for its values perturbed for
±0.0000025 and ±0.00005.
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Figure 5: The time paths for per capita capital k(t) and consumption k(t) normalizes
on the benchmark steady-state values k∗ and c∗ respectively for the benchmark value
β0 = 0.00038072211 (the central path) and for its values perturbed for ±0.0000025
and ±0.00005.
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also used by most economists (for a review, see Pezzey (1992)). The traditional
definition above concentrates on intergenerational equity but pays no attention to
the demographic aspect (Lehmijoki (2006)). Figure 5 shows, however, that rising
consumption paths lead to ever-decreasing population, a situation that can hardly
be considered as sustainable even if the requirement of intergenerational equity is
satisfied. Therefore, we define demographic sustainability here as follows:

Definition 1 A path is demographically sustainable if population is non-decreasing.

This definition claims that a path leading to decreasing population growth can
not be demographically sustainable. In a steady state, the situation is particularly
simple because the steady state consumption C∗ is constant. The steady state per
capita consumption c∗ = C∗/L∗ grows at the rate −n = −L̇/L and the single steady
state keeping both intergenerational equity and demographic sustainability is that
at which the population growth rate is zero.5

The model suggested here can end up with several outcomes depending upon the
values of the parameters. The steady state population growth rate may be negative,
implying that the size of the population steadily decreases and, ultimately, goes
to zero. In some cases, however, it is optimal to increase consumption to such
an extend that demographic sustainability fails. The conflict between demographic
sustainability and optimality is particularly striking, because it implies that mankind
may go to a deliberate extinction, at least asymptotically.
Should we take demographic sustainability seriously? Can it fail in some ob-

servable economies or only in some theoretical cases? It seems possible that envi-
ronmental degradation can endanger demographic sustainability if it is serious or
unexpected, as has been discussed in some recent scenarios of climate change (IPPC
(2007)). But demographic sustainability can also fail if population growth is al-
ready at a very low level, as it is the case in Europe, where a modest increase in air
pollution can increase mortality enough to push population growth below zero.
To see whether Europe is following a demographically sustainable path, we cal-

ibrate the environmental mortality for the European data to see how the obtained
value for β compares with the benchmark value β = β0. To this end, note that all
mortality estimates discussed in the introduction of this paper are partial in nature,
and refer usually to a single pollutant without giving any estimate for pollution in
general. Therefore, in this simple exercise we concentrate on one pollutant alone,
namely on fine particulate matters PM2.5 suggested as most detrimental to human
health (WHO (2004a)).
Another difficulty arises because the medical estimates reported in Introduction

give mortality numbers in terms of concentrations of pollutants, but not in terms
of their emissions as required in (12). Although concentrations have their origins
in emissions, the association between these two is not clearly understood yet as

5This result is not generic. It follows from the simplicity of our model; if technical progress

were included, then the steady state per capita consumption and population could grow together.

Moreover, it is possible that complicated models exhibit more complicated off-steady state behavior

than that observed here because it is possible that population temporarily decreases but then

ultimately levels-off. Because the economy approaches the steady state, we concentrate on steady

state situations in this paper.
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local weather conditions dictate this association to a great extend (Amann et al.
(2007)). We apply two alternative calibration strategies to overcome this difficulty.
In the first, we try to change emissions to concentrations. Although we do not know
exactly, how emissions turn to concentrations in the nature, we can estimate their
average association by regressing the observed concentrations against the observed
emissions. Suitable data is available in Amann et al (2007), reporting the local
PM2.5 emissions and PM2.5 concentrations for 470 European cities in 2000. The
derived OLS estimate shows that an increase of emissions by one kilo increases its
annual mean concentration for 0.00000135μg/m3 . On the other hand, Pope et al.
(2002) have estimated that that there is an 0.006 increase in mortality for each unit
(in μg/m3) increase in the PM2.5 concentration.6 Multiplying these numbers, we
end up with an estimate β = 0.81239E − 8 which, however, is in magnitude smaller
than the calculated benchmark value β0 = 0.00038072211.
Several factors increase this basic estimate. First, we have concentrated on

one pollutant only, but mortality effects for other pollutants have been reported
too (WHO (2004a)). Kappos et al. (2004) suggest that the magnitude of PM10
emissions is approximately one and a half times more than the magnitude of PM2.5.
Assuming that concentration of PM10 emissions follow the same pattern as that

of PM2.5 emissions,7 and given the approximately same mortality response, the
estimated β can be approximately 1.5 times greater.
Second, it is possible that mortality reacts to peak concentration values rather

than to annual averages, reported in Amann et al. (2007). Third, the population
in cities may be distributed in such a way that the greatest densities appear in
areas which are the most heavily polluted, e.g., by traffic emissions. But even if all
these effects are taken into account, the estimate for β seems to hardly reach the
benchmark value β = β0.
Now we turn to an alternative estimation strategy in which we bypass the

concentration-emission link by connecting mortality directly to emissions. CAFE
and WHO have reported that, at the European level the number of premature
deaths due to air pollution was as large as 370, 000 in th eyear 2000, implying that
for the 25 European countries, this number was 230, 680 (WHO (2004a)). Given
that the annual total PM2.5 emission for this area was 1, 744, 000000 kilos (Amann
et al. (2007)), the equation (12) implies the estimate β = 0.00013227. This esti-
mate is much bigger than the previous one but still well below the benchmark value
β0 = 0.00038072211. Note, however, that this calibration strategy also suffers from
being based on PM2.5 emissions alone. If we correct this estimate upwards in the
same way as we corrected the previous one, its value already approaches the critical
value β0.
The big difference between the estimated values for β shows that it is necessary

to develop both data and estimation methods to increase the reliability of estimates.
Estimation of theoretical models is particularly demanding because the number of
parameters may be large. Since each parameter needs its own data, the overall
data limitations may be serious. In this paper we have solved these limitations

6Equivalently, an 0.06 increase in mortality for each 10µg/m3 increase in PM2.5, see the Intro-
duction of this paper.
7To our knowledge, emission-concentration data is not available for PM10.
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by focusing on fine particulate matters PM2.5, because for this pollutant we can
find data on the emissions, the emission-concentration data, and the concentration-
mortality data, all of which are necessary to follow the first estimation strategy. The
data limitations in the second estimation strategy are less severe because it bypasses
the concentrations by connecting the mortality numbers directly to emissions. But
challenges appear here as well because emissions should be considered as aggregates.
Therefore, the first-shot calibrations provided in this paper should be considered
as methodological exercises rather than as final answers about the demographic
sustainability in Europe.

6 Conclusions

This paper provides an infinite-horizon consumer maximization model with popu-
lation growth endogenous to emissions that are generated in production. There is
a trade-off between consumption and population growth because high consumption
calls for high production, which leads to high environmental mortality. The model
developed here may end up with positive, zero, or negative population growth rate.
If population growth is positive, then the optimal path for per capita consumption
initially raises but then falls leading ultimately to very low consumption rates. But
if population growth is negative, then consumption keeps raising implying that peo-
ple live in greater and greater affluence but pay for this by increasing numbers of
premature deaths.
To illustrate the results of the theoretical model, we provide a calibrated version

of it. This calibration shows that European countries proceed on a demographically
sustainable path. However, more reliable calibration methods and more reliable
data are needed to narrow the gap between several estimates for air pollution data.
Therefore, the first-shot calibration provided in this paper should be considered as a
methodological exercise. Furthermore, the model itself can be developed in several
ways. Above all, it does not contain technical progress which is an essential element
in modern production and also in environmental mortality, which may decrease due
to such progress in the future. The economy also typically contains both polluting
and cleaning industries, whose share is important in evaluating total emissions.
Hence, a multi-sector approach should be a step toward more realistic models.
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A Appendix: Pontryagin Maximum Principle

Here we discuss a way to solve problem (9) that can be attributed to the class of
optimal control problems with infinite time horizons and mixed constraints. We
consider c = Kα/C ∈ (0, 1] as a new control variable. Let us note that zero con-
sumption brings the value of the utility U minus infinity. Obviously such a strategy
cannot be optimal. in order to make the utility bounded we set c = c(Δ) ∈ [ǫ, 1],
where ǫ > 0 is a small parameter. Then problem (9) takes the form

maximizec(·) U =

∫ ∞

0

K(Δ)α(1−θ)
c(Δ)1−θ

(1− θ)(ρ− θn(E(Δ)))
e−∆dΔ,

subject to: E(Δ) = φKα(Δ),

K̊(Δ) =
(1− c(Δ))K(Δ)α − δK(Δ)

ρ− θn(E(Δ))
, K(0) = K0,

c(Δ) ∈ [ǫ, 1]. (13)

In further consideration we accept the following assumption on the population
growth rate:

Assumption 3 For all E > 0 which appear while functioning the economy

n′(E) ≥ −r0, where r0 > 0.

Aiming at providing necessary conditions of optimality for problem (13) we ad-
dress to Theorem 10.1 and Corollary 10.3 in Aseev and Kryazhimsky (2007), which
require a few formal assumptions. Let us rewrite these assumptions in terms of
problem (13) and make sure that they are satisfied. Based on Lemma 1 we get
(A1) there exists M = Const ≥ 0 such that

K[(1− c)Kα − δK]

ρ− θn(E(K))
≤M(1 +K2) for all c ∈ [ǫ, 1], K ∈ [0, K̃];

(A2) for each K ∈ [0, K̃] the control-dependent term in the state equation for
K, i.e., the function

c �→
(1− c)Kα − δK

ρ − θn(E)

is affine;
(A3) for each K ∈ [0, K̃] the integrand in the utility, i.e., the function

c �→ Kα(1−θ)
c1−θ

(1− θ)(ρ− θn(E))

is concave;
(A4) there exist positive-valued functions μ(·) and w(·) such that μ(Δ) → 0,

w(Δ) → 0 as Δ → 0, and for any admissible pair (K, c) in problem (13) it holds
that

e−∆ max
c∈[ǫ,1]

K(Δ)α(1−θ)
c1−θ

(1− θ)(ρ− θn(E(Δ)))
≤ μ(Δ) for all Δ > 0,

∫ ∞

T

e−∆K(Δ)α(1−θ)
c(Δ)1−θ

(1− θ)(ρ− θn(E(Δ)))
≤ w(T ) for all T > 0;
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(A5) for every admissible pair (K, c) one has

∂

∂K

(

e−∆K(Δ)α(1−θ)
c(Δ)1−θ

(1− θ)(ρ− θn(E(Δ)))

)

> 0 for all Δ ≥ 0;

(A6) there exists a c0 ∈ [ǫ, 1] such that the corresponding initial velocity of K

K̇0 =
(1− c0)Kα0 − δK0
ρ− θn(E(K0))

is positive;
(A7) for the optimal admissible pair (K∗, c∗) it holds that

(1− c∗(Δ))K∗(Δ)α − δK∗(Δ)

ρ− θn(E(K∗(Δ)))
≥ a0 > 0 for a.a. Δ ≥ Δ0,

with some Δ0 > 0.

Lemma 3 Let Assumptions 1 and 2 hold. Then problem (13) satisfies to assump-
tions (A1) – (A6).

Proof. The validity of Assumptions (A1) and (A4) obviously follows from Lemma 1.
The “linear-convex” structure of problem (13) with respect to control (Assumptions
(A2) and (A3)) is stated directly. We also state directly that directly that the
utility’s integrand grows, i.e., Assumption (A5) holds; here we use the fact that the
population growth rate decreases as capital grows.
By Assumption 2 K0 lies on the increasing branch of curve C = Kα − δK.

Using Assumption 1 and letting ǫ > 0 be sufficiently small, for c0 = ǫ we get
(1− c0)Kα0 − δK0 > 0 and hence (A6) is satisfied.

To satisfy (A7) we introduce the following assumption:

Assumption 4 The optimal capital grows.

Now having made ourselves sure about Assumptions (A1) – (A7) write the nec-
essary conditions of optimality for the problem (13). Let λ = λ(Δ) be an adjoint
variable. Then the Hamiltonian becomes

H(K, c, λ) =
1

ρ − θn(E)

(

Kα(1−θ)c1−θ

1− θ
+ λ((1− c)Kα − δK)

)

. (14)

The dynamics of the adjoined variable is given by

λ̊ = −
∂H

∂K
+ λ

or

λ̊ = −
θαφn′Kα−1

(ρ− θn)2
H(K, c, λ) +

1

ρ − θn

(

αc1−θKα(1−θ)−1 + λ(α(1− c)Kα−1 − δ)
)

.

(15)
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The last equation together with

K̊ =
(1− c)Kα − δK

ρ− θn
(16)

forms the Hamiltonian system for problem (13). The function c �→ H(K, c, λ) is
convex and approaches its maximum if

∂H

∂c
=

1

ρ− θn
(c−θKα(1−θ) − λKα) = 0 ⇐⇒ c−θ = λKαθ.

Recalling that admissible controls lie in the interval [ǫ, 1], the condition of maximality
of the Hamiltonian becomes
(i) if λ < K−αθ then c ≡ 1;
(ii) if λ > ǫ−θK−αθ then c ≡ ǫ;
(iii) otherwise c = λ−1/θK−α.

The transversality condition are

e∆λ(Δ)→ 0 as Δ→∞ (17)

and besides

λ(Δ) > 0 for all Δ ≥ 0. (18)

In accordance with the Theorem 10.1 and the Corollary 10.3 in Aseev and Kryazhim-
sky (2007) the equations (14) – (18) together with the maximality conditions (i) –
(iii) supply the solution of the problem (13). Let us analyze the behavior of the
Hamilton system (15), (16) in three zones corresponding to optimality conditions
(i) – (iii). The Figure 6 illustrates these zones on the phase plane of variables λ and
K.

K

l

zone 1

zone 2

zone 3

Figure 6: Zones 1-3 on the K-λ plane, corresponding to different maximizators of
the Hamiltonian.

Zone 1: c ≡ 1.
The Hamiltonian system (15), (16) becomes

λ̊ = −
θαφn′Kα−1

(ρ− θn)2

(

Kα(1−θ)

1− θ
− δKλ

)

−
1

ρ− θn

(

αKα(1−θ)−1 − δλ
)

+ λ (19)

K̊ = −
δK

ρ− θn
< 0. (20)
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Lemma 4 Let Assumptions 3 and 4 hold, and the initial capital K0 satisfy to

K1−α0 ≥
αr

(δ + r)ρ
. (21)

Then trajectories starting from the zone 1 violate the condition (18) and that is why
cannot be optimal for the problem (13).

Proof.

Let us estimate the derivative λ̊. Note first that from (20) it follows that in the
zone 1 consumption decreases and hence K ≤ K0. From this fact and (19) under
assumptions of the Statement we have

λ̊ ≤ λ

(

δ

ρ − θn(E)
+ 1

)

−
αK

α(1−θ)−1
0

ρ− θn(E)
.

Since the expression in the round brackets is positive and in the zone 1 λ < K−αθ ≤
K−αθ0

λ̊ ≤ K−αθ0

(

δ

ρ− θn(E)
+ 1

)

−
αKα(1−θ)−10

ρ − θn(E)
= K−αθ0

(

δ

ρ− θn(E)
+ 1−

αKα−10

ρ − θn(E)

)

.

The last inequality together with the Assumption 3 and (21) lead to

λ̊ ≤ K−αθ0

(

δ

r
+ 1−

αKα−10

ρ

)

< 0.

Consequently in the considered zone 1 λ̊ < 0 and K̊ < 0. It can be shown that λ
approach zero for the finite time which violate condition (18).

Zone 2: c ≡ ǫ. The Hamiltonian system (15), (16) becomes

λ̊ = −
θαφn′Kα−1

(ρ − θn)2

(

Kα(1−θ)ǫ1−θ

1− θ
+ λ((1− ǫ)Kα − δK)

)

−
1

ρ− θn(E)

(

αǫ1−θKα(1−θ)−1 + λ(α(1− ǫ)Kα−1 − δ)
)

+ λ (22)

K̊ =
(1− ǫ)Kα − δK

ρ− θn
. (23)

Lemma 5 Let Assumptions 3 and 4 hold, and the initial capital K0 satisfy to

K1−α0 ≥
α

ρ+ δ
, (24)

and besides let

(ρ+ δ)θαφmax
E
|n′(E)|(1− α) > ρ2. (25)

Then the trajectories starting from the zone 2 violate transversality condition (17)
and cannot be optimal for problem (13).
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Proof. From (22) we have

λ̊ = λ

(

1−
α(1− ǫ)Kα−1 − δ

ρ − θn
−
θαφn′Kα−1[(1− ǫ)Kα − δK]

(ρ− θn)2

)

−
αǫ1−θKα(1−θ)−1

ρ − θn
−
θαφn′Kα−1Kα(1−θ)ǫ1−θ

1− θ
.

Let us estimate the multiplier appearing at λ in the right side of the last equation.
Taking into account (24), Assumption 3 and Lemma 1 we get

1−
α(1− ǫ)Kα−1 − δ

ρ− θn
−
θαφn′Kα−1[(1− ǫ)Kα − δK]

(ρ− θn)2
≥ 1−

α(1− ǫ)Kα−10 − δ

ρ
> 0.

The last inequality implies that λ increases exponentially. Let us show that it
increases with a rate greater then unit. In order to that we should prove that

α(1− ǫ)Kα−1 − δ

ρ− θn
< −
θαφn′Kα−1[(1− ǫ)Kα − δK]

(ρ− θn)2

or

α(1− ǫ)Kα−1 − δ <
θαφ|n′|Kα−1[(1− ǫ)Kα − δK]

ρ− θn
(26)

The right side of (26) is always positive whereas the left side takes the positive value
along the increasing branch of the curve (1 − ǫ)Kα−1 − δK and the negative value
on the decreasing branch. In the latter case inequality (26) holds automatically.
It can be easily shown that condition (25) guarantees (26) in the case positive
(1− ǫ)Kα−1 − δK. Thus λ increases exponentially with the rate greater then 1 and
hence λe−∆ → ∞ which violate (17). It means that the paths starting in the zone
2 lie entirely there and cannot be optimal.

Zone 3: c = λ−1/θK−α. It follows from above that controls optimal for problem
(13) do not touch the bounds of its admissible values lying strictly inside the interval
[ǫ, 1] whereas the corresponding trajectories of K and λ lie necesseraly in the zone 3.
Which means that in our further analysis we consider only this case without special
stress on that in formulas and figures. The Hamiltonian system turns into

λ̊ = −
θαφn′(E)Kα−1

(ρ− θn(E))2

(

θ

1− θ
λ1−1/θ + λ(Kα − δK)

)

−
1

ρ− θn(E)
λ(αKα−1 − δ) + λ

(27)

K̊ =
Kα − δK − λ−1/θ

ρ− θn(E)
. (28)

Or in terms of c equation (27) turns into

c̊

c
=

1

ρ− θn(E)

(

αφn′(E)Kα−1

ρ− θn(E)

Kα − δ(1− θ)K

1− θ
+
1

θ
(αKα−1 − δ)−

1

θ
(ρ− θn(E))

+αδ − (1− c)Kα
(

θ

1− θ
+
α

K

))

(29)

Further analysis (the existence of a steady state, its local stability and optimality)
is done in real time t; so we rewrite equations (28), (29) by applying (8).
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B Appendix: Local Stability of the Steady State

Lemma 6 The steady state is a saddle.

Proof. Let us write K̇ = ϕ(K,C) and Ċ/C = ψ(K,C). The Jacobian of the model
is

J =

[

ϕK ϕC
ψK ψC

]

.

As evaluated around the steady state, its elements become

ϕK = αKα−1 − δ,

ϕC = −1,

ψK =
1

θ

{

d [θn′φαKα−1/(ρ− θn)]

dK

(

θC

1− θ
+Kα − δK

)

+
θn′φαKα−1

ρ − θn

(

αKα−1 − δ
)

+α (α− 1)Kα−2 − θn′
}

,

ψC =
1

1− θ

θn′φαKα−1

ρ− θn

Because ψK contains the undefined second derivative of n(E), we write

DET J = ϕK · ψC − ψK · ϕC

=

[(

−
ϕK
ϕC

)

−

(

−
ψK
ψC

)]

(−ϕC) · ψC.

The expression (−ϕC) ·ψC =
1
1−θ

θn′φαKα−1

ρ−θn
is positive. The expression in the square

brackets is the difference in the slopes of the phase lines K̇ = 0 and Ċ/C = 0. In the
steady state, the Ċ/C = 0−line hits the K̇ = 0−line from below and this expression
is negative, implying DET J < 0. Therefore, the steady state is a saddle.

The dynamics outside the steady state is the following: because ϕC = −1, the
capital stock increases (decreases) below (above) the K̇ = 0−line. The behavior of

consumption is given by ψC =
1
1−θ

θn′φαKα−1

ρ−θn
> 0. Therefore, consumption increases

(decreases) above (below) the Ċ = 0−line. Hence, the stable saddle paths approach
the steady state from the South-West and North-East (see Figure 2).

C Appendix: Optimality of the Saddle Paths

Lemma 7 Let Assumptions 1 and 2 be satisfied. Then the stable saddle paths are
the single optimal paths for problem (7).

Proof. To demonstrate that the stable saddle paths dominate all other candidates
for optimal paths, consider the transversality condition written in real time

lim
t→∞
λ(t)e−∆(t) = 0.
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A stable saddle path leading to an interior steady state by definition satisfies to

lim
t→∞
K(t) = K∗ ∈ (0,∞) and lim

t→∞
C(t) = C∗ ∈ (0,∞).

The first order conditions, the transversality condition turns into

lim
t→∞
C(t)−θe−∆(t) = 0.

Since from the property (ii) of the function Δ(·) it holds that limt→∞ e−∆(t) = 0, we
state that any stable path satisfies to the transversality condition.

K

C

K* K
~

.

C/C=0

.
K=0

.

A

B

Figure 7: Optimal paths.

The candidate paths which lie in the South-East (see Figure 7) cannot be optimal
since Assumption 2 doesn’t hold for them. Consider the candidate paths which lie
in the North-West. In this area Ċ > 0 and consumption increases unless it touches
the upper limit Kα. It was shown (see Lemma 4 of Appendix A) that such paths
cannot be optimal. Therefore, the stable saddle paths are the single optimal paths.

D Appendix: Assumptions

Analyzing we see that all the theory and calculations presented in this paper has
been carried out under a number of assumptions. The reason for introducing them
was rather technical. Here we summarize them, discuss their compatibility and
physical meaning.
Assumption 1 guarantees the boundedness of the integral utility which is a neces-

sary condition of the correctness of the formulation of any optimal control problem.
Here it turns into the constraint on population growth rate values, namely, we treat
it not to exceed some level during functioning the economy. What will happen oth-
erwise? Exponentially growing term e−

∫
t

0
{ρ−θn(E(τ ))}dτ will lead instantenous utility

to minus infinity – hence such trajectories can not be optimal.
Then we reinforce Assumption 1 moving to the Assumption 3. It strengthens

the upper limit for population growth rate values and besides prohibit it to decrease
too fast. In this paper we consider the linear respond of population growth rate to
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emissions (curve A at Figure 1) so Assumption 3 turns into the constraint on β and
steady capital K∗ (see the item (a1) below).
In order to prove the fact that the optimal path doesn’t touch the extreme con-

sumption modes we introduced two constraints on the initial capitalK0 in Lemmas 4
and 5. Both conditions (21) and (2) can be replaced by a weaker sufficient condition
K1−α0 ≥ α/ρ which we keep as a next assumption.
Besides Statement 5 requires condition (25) which supplements the lower con-

straint on the derivative n′(E) made in Assumption 3 by an upper constraint. Due
to r0 is an arbitrary finite number this bilateral constraints is correct.
Finally we come to assumptions concerning the optimal path (Assumptions 2 and

4) which tell that the optimal capital grows such that asymptotically it achieves its

steady value not greater then (α/δ)
1

1−α .
Summarizing we come to the following number of assumptions:
(a1) there exist such γ0, γ1 and γ2 that for all E appearing while functioning the

economy n(E) ≤ γ0, γ1 ≤ n′(E) ≤ γ2;
(a2) K1−α0 ≥ α/ρ;
(a3) the optimal capital grows such that asymptotically it achieves its steady

value not greater then (α/δ)
1

1−α .
For the illustrative numerical calculations we present in this paper conditions

(a1) – (a3) are satisfied which confirms non-contradictiveness of them.


