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Foreword

Discounting is a key element of catastraptisk managemeniisperceptions of
discount rates result in inaded@a&valuations of risk management strategies, which in
turn may provoke catastrophes and significaniytgbute to increasg vulnerability of
the society. Therefore appdittons of the traditionaliscounting negatively affect

the outcome of catastrophic risk management.

This paper analyses the implication of poi@rcatastrophic events on the choice of
discounting. It provides fundaental insights in the natiof discounting that is
critically important for developing robustrategies for managing catastrophic risks.

It shows that any discounting with constantleclining rates can be linked to random
"stopping time" events, which define timernal discount-fdated horizons of
evaluations. Conversely, any random stoppimg horizon induces a discounting, in
particular, with the standard discount rates.

The expected duration of the stopping time horizon for discount rates obtained from
capital markets does not exceed a fewatles and, as such, these rates may
significantly underestimate the net bahef long-term decisions. The proposed
alternative undiscounted stopping time crdarallows to induce social discounting
focusing on arrival times of potential extremeents rather themorizons of market
interests. It depends also on feasildeidions and spatio-tgraral variability of
catastrophic losses.



Abstract

The goal of this paper is to specify and summarize assumptions and proofs for new
approaches to discounting proposed ingatastrophic risk management studies. The
main issue is concerned with justificationimfestments, which may turn into benefits
over long and uncertain time horizon. For example, how can we justify mitigation
efforts for expected 300-year flood that @atur also next yeamhe discounting is
supposed to impose time preferences tolvedtis issue, but this view may be
dramatically misleading. Wehow that any discounted infinite horizon sum of values
can be equivalently replaced by undiscourgigh of the same values with random
finite time horizon. The expected duratiohthis stopping timdorizon for standard
discount rates obtained from capital netskdoes not exceed a few decades and
therefore such rates maygsificantly underestimate the net benefits of long-term
decisions.

The alternative undiscounted random stoppimg criterion allowgo induce social
stopping time discounting focusing on arrival @snof potential extreme events rather
then horizons of market interests. In general, induced discount rates are conditional on
the degree of social commitment to mitigate risk. Random extreme events affect these
rates, which alter the optimal mitigatioficets that, in turn, change events. This
endogeneity of the induced discounting restrexact evaluations necessary for using
traditional deterministic methods and it calls for stochastic optimisation methods. The
paper provides insights ingmature of discounting thate critically important for
developing robust long-term risk management strategies.

Key words: Extreme events, stopping time, catastrophic stiskdiscounting,
investments, stochastic optimisation, risk measures.

JEL classification: C61, G22, E21.
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1. Introduction

The implication of uncertainties and risks for justifying long-term investments is a
controversial issue. How can we justifgvestments, which may possibly turn into
benefits over long and uncertain time horizamghe future? Thiss a key issue for
catastrophic risk managemeRbr example, how can we justify investments in climate
change mitigations, say, in flood defenssteyns to cope with foreseen extreme 1000-,
500-, 250-, and 100- floods? The lack of propealuations for dealing with extreme
events dramatically contributes to ieasing losses from humanade and natural
disasters [5]. The analysis of floods that occurred in the suroh®802 across central
Europe [18] shows that the potential aredisvulnerability to extreme floods have
multiplied as a consequence of failed development planning. Underestimation and
ignorance of low probability/high conseque events have led to the growth of
buildings and industrial land and sizablalue accumulation in flood prone areas
without proper attention being paid ftood mitigations. A challenge is that an
endogenously created catastropteay a 300-year flood, has never occurred before in a
given region. Therefore, purely adaptivelipies relying on historical observations
provide no awareness of the “unknown” rekhough, a 300-year flood may occur next
year. For example, the 2002 floods in AigstGermany and the Czech Republic were
classified (in different regions) as 100800-, 250-, and 100-year events [18].

! As a consequence of inappropriate policies.



A key issue is development of policies with proper long-term perspectives. The
traditional discounting is supposed to impose necessary time preferences, but this view
may be dramatically misleading. There argesal possibilities for choosing discount
rates (see, for example, the discussion in[23], [26], [31]). Tte traditional approach

is to use the rates obtained in capital retsk The geometric agxponential discount
factor d, = (1+r) " =~ NW < o™ (for small r) is usually connected with a

constant rater of returns from capital marketSince returns in capital markets are
linked to assets with a lifespan of a few decades, this choice may completely reduce the
impacts that investments have beyond ehegervals (Section 2). Another serious

problem [24], [20], [33] arisesdm the use of the expected valde and the discount

factor (L+ Er) " that implies additional significant redian of future values in contrast

to the expected discount fact@(l+r) ", snce EQ+r)"" >> (1+ Er)~'. These issues

are discussed in Sections 2 and 3.

An appropriate interest rate is especialiificult to define when decisions involve
time horizons beyond the interests of the curgemeration. If futte generations are
not present in the market, e.g., long-teenvironmental damages are not included in
production costs, the market interest ratks not reflect the preferences of future
generations. According to Arrow et al. [2] “tbeserved market rates of interest refer to
how individuals are willing tdrade off consumption overeh own life. These may or
may not bear close correspondence to howceesois willing to trade off consumption
across generations”.

Debates on proper discount rates fond-term problems have a long-standing
history [2], [31]. Ramsey [27] arguethat applying a positive discount rate to
discount values across generations is unathiCoopmans [21], contrary to Ramsey,
argued that zero discount rate would imply an unacceptably low level of current
consumption. The use of so-called socialcdunt rates produces two effects [2]. The
“prescriptive” apprach tends to generatelatively low discountates and thus favors
mitigation measures and the wellbeing of future generations. The “descriptive”
approach tends to generate higher discaatés and thus faverless spending on

mitigations and the wellbeing of the current generation.



The constant discount rateshanly limited justification [# [15], [26], [31]. As a
compromise between “prescriptive” and “degtive” approaches, Cline [6] argues for a
declining discount rate: 5% rfahe first 30 years, and 1.5% later. There have been
proposals for other schedules and attempjsstify the shape of proper decline. Papers
[24], [33] show thatuncertainty about produces a certainty-equivalent discount rate,
which will generally be decling with time. Weitzman [33proposed to model discount
rates by a number of exogenous time depensesarios. He argued for rates of 3
4% for the first 25 years, 2% for the n&& years, 1% for thperiod 75-300 years and
0 beyond 300 years. Newell and Pizer [24] analyzed the uncertainigtarfical interest
rates by using data on the US markate for long-term government bonds. They
proposed a different declining discounttergustified by arandom walk model.
Chichilinsky [4] proposed a new concept flong-term discounting with a declining
discount rate by attaching someight on the present arle future consumption. All
these papers aim to derive an appiap exogenous saidiscount rate.

Sections 2 and 3 develop a different approach for social discounting. It is shown that

any discounted sum, so-called peesent value (NPV) criteriory.° ,d,V;, of expected

valuesV, = Ev, for random variables (r.vy),, t = OL,..., d, = (L+r,)”", under constant
and declining discount rateg equals the average undiscounted (in the agreement with
Ramsey’s concerns) random suilY;_,v, with a random stopping time defined by
the given discountingd,. Therefore, discount rates cdre associated with the
occurrences of “stopping time” random evetdtermining a finite “internal” discount-
related horizon0, 7] . The expected duration af and its standard deviatiomm under
modest market interest ratef 3.5% is approximately 3@ears, which may have no
correspondence with expectedy,sa00-year extreme events andy 300. Conversely,

it is shown that any stopping time randawent induces a discounting. A set of
mutually exclusive stopping time randomeets, e.g., 1000-, 500-, 250-, and 100- year
floods, induces discounting with time-decliginliscount rates. This case corresponds

also to the discounting withincertain discount rates. In particular, a single stopping
time random event with the standard getms probability distribution induces the

standard discounting with constant discount randd, = (L+ ).



The effects of catastrophes on the stream of valyes= 01,..., differ from the

effects of market uncertainties. Sectionndicates that catastrophic events pose new
challenges. They often crteaso-called endogenous, unknogwith the lack and even
absence of adequate obseiwat) and interdependentsks, which may potentially
affect large territories and communities andtl@other hand, are dramatically affected
by risk management decisions. As a conseqgegecatastrophic risks generally make it
impossible to use traditional economic and insoeamodels [1], [4][7], [8], [10], [20].
Section 4 shows that the concept of undiscounted random stopping time criteria allows
to induce social discounting that focuses atvals of catastrophic events rather then
the lifetime of market productSince risk management decisions affect the occurrence
of disasters in time and space, the indudisdounting may depend on spatio-temporal
distributions of extreme events and fe&silets of decisionsThis endogeneity of
induced spatio-temporal disenting calls for the use of stochastic optimization

methods, which allow also to address thealality (Remark 2) of discounted criteria

by using quantiles of random value.f_,v, even for deterministic,,, ¢ =01....

Section 5 establishes connections of stoggime criteria with dynamic versions of
CVaR (Conditional Value-at-Risk) riskmeasures. Section 6 illustrates how
misperception of induced discounting prkee catastrophes. Section 7 provides

concluding remarks.

2. Standard and Induced Discounting

The choice of discount rate as a prewgllinterest rate within a time horizon of
existing financial markets is well established [22]. Uncertainties, especially related to
extreme events, challenge the possibilitynairkets to offer proper rates for longer time

horizons. The following simpl€roposition 1 andRemark 2 clarify the main concerns.

The traditional financial approaches [22] often use the so-called net present value
(NPV) criteria to justify investments. An insenent is defined as axpected cash flow

streamV,,V,,....V;, V; = Ev;, over a time horizol" <. Assume that is a constant

prevailing market interest rate, therteanative investments are compared by



V=Vy+dV,+..+d;V,, whered, =d', d=Q+r)", t=0,1,...T, is the discount
factor and)/” denotes NPV.

It is usually assumed that@ng-term investment activity Baan infinitely long time

horizon, i.e.,

= dV.. 1)
The stream of value$’, 1= 01,..., can represent an expected cash flow stream of a
long-term investment activity. In econongeowth models and integrated assessment

models [23], [25], [31] the valud’, represents utilityU(x") of an infinitely living

representative agent, or welfasé :Z au,(x;) of a society with representative

L Hl;
agentsi =1 n, utilities u,, consumptionst’ and welfare weights:,. Natural selection
theory treats (1) as Darwiniaitrfess [30], where discount factots are associated
with hazard rates of aanvironment (Example 2).

The infinite time horizon in (1) creates dfusion of truly long-term analysis.
Proposition 1 shows that iadt deterministic evaluation (1) accounts only for valldes
from a finite random horizon0,z] defined by a random stopping time with the

discount-related probability’[z > 7] = d, .

Proposition 1. Consider a discounted sum (1) with=d’, d = 1+r)™, > 0. Let
g=d, p=1-¢qg, and ¢ be a random variable witlthe geometric probability

distribution Pz =t]= pq', t = O1,.... Thend, = P[r >¢] and

S2odV, =37 o Plt 21V, =EYI_oV,. (2)

Conversely, for any stopping time with a geometric probability distribution

EY oV, =20dV, , d, =Plr21].

Proof. We have P[r>1] =37, pq* = pg' l—q) ™" =¢' =d, . Conversely,



EZzT:th = Z?ZOP [7 = t]zic:O Vi = -0 Pq IZZ:O Vy
= yro(Sr pat Y, = r0d v,

That is, any discounted detainistic sum (1) equals tothe average undiscounted
random sumztrzoV, of the same valueg, . In other words, the discount fatterd’
induces an ‘“internal’discount-related time horizofi0,z] with the geometrically

distributed 7. Conversely, any geometrically distributedand the criterionE}/_V,

induces the geometritiscounting in the sun}. 2 ,d,V, .

Remark 1 (Random stopping time horizon). \We can considef0,z] being a random

stopping time horizon associatesith the first occurrece of a “killing”, i.e., a

catastrophic stopping time event. Thelpability that this event occurs at 01,... is
p and pq' is the probability that thigvent occurs first time at, i.e., 7 has a

geometric probability distribution. Since =1-d, d = (+r)", then the expected
duration ofr, Ez =1/ p =1+1/r. Therefore, for the interest rate of 3.5%0+ 0.035,

the expected duration 87 ~ 30 years, i.e., this rate orients the policy analysis on an
expected 30-year time horizofThe standard deviatiom:\/glp, i.e., it equals

approximately 30 years. The bias in favottlod present in discounty with the rate of

3.5 percent is easily illustrated [26]. For a project with long-run benefits or costs, 1 Euro
of benefits or costs in yeab0, 100, and 200, has a présealue respectively of 0.18,
0.003, and practically O Euros. Definitely, this rate may have no correspondence to how
society has to deal with a 300-year floo&,,ia flood with the expected arrival time
equal to 300 years. Theredorin the risk management can be associated with the
arrival of potential catastrophic events rattiem with horizons ofmarket interests. The

induced social discounting/, = P[z>¢ In this case would have proper long-term

perspectives dependent on spatio-tempopaltterns of cataophes and risk
management decisions (see Proposi8oand Section 4). The discount ratecan be
viewed also as a killing (hazard) rat&9] which makes the life expectancy of an

otherwise infinitely living represeative agent or society equal fo-1/r years. Yet,



depending on a concrete situation, stopping timean be associated with the arrival

time of a reward.

Remark 2 (Variability of NPV). Disadvantages of this stard criterion (1) are well
known [22]. In particular, the NPV criticalldepends on the prevailing interest rate
which may not be easily defined in practite.addition, the NV does not reveal the
temporal variability of casHow streams. Twalternative streams may easily have the
same NPV despite the fact that in onetledm all the cash is clustered within a few
periods, but in another it is spread out evenly over time. This type of temporal
heterogeneity is critically important fatealing with catastrophic losses which occur
suddenly as a “spike” in time and space [8].

The criterionEY [V, , V, = Ev, has visible advantages. In particular, it allows to

address distributional aspects and robustteggies [11] by aayzing the random
variable z;on (even for deterministio; =7;), e.g., its quantiles defined as maximal

y = ys satisfying safety constraints

PIX_gvi2y]26.

Equivalently, ys maximizes the concave functiore¢sdiscussion in [11], p. 16)

y+6 Emax{o,x7_qv, — 1}
The optimal value of this function defmehe so-called CVaR (Conditional Value-at-

Risk) risk measure [29].

Therefore, if variables, depend on some decisions(as in Section 4), then the

maximization of function
F(x)+[y+8 TEmax{0,x7_qv, - 1}]

allows easy control of highlnonlinear (even for linear i function v,) the safety

constraints (quantiles gf7_,v; ) in an optimal manner defined by a functipigx) that

is adjusted to CVaR risk@asure (see also Section 5).

Remark 3 (Shock testing). The sensitivity of models w.r.t. “shocks” (extreme

scenarios, events, stresses)ften assessed by introducithgm into discounted criteria



[25], [31]. From Proposition 1 itollows that this may lead to serious miscalculations.
Let us consider criteriofil) with discount factors/, =d’, d = (L+r)™* and assume

that a “shock” arrives at a random time moment {01...} with probability
PlO=t=ny", y=1-7=0+p)" . Then the expected value
EX? odV, =32 od'y'V; =EX_ o'V, =EXM0EO) Y, where Plz=1]=pq' with
qg=d, p=1-q. Therefore, the stopping tinoé the “shocked” evaluatiorEZiOd’Vt

is defined by min(r,§). The discount rate of this evaluation is

A+7r) @+ p) t=@A+r+ p+rp)t ie., the shocked evaluation increases the

rate of the original disamting and, hence, the bias in favor of the present.

Example 1 (Catastrophic Risk Management). The implications of Proposition 1 for
long-term policy analysis araather straightforward. Leis consider some important
cases. It is realistic to assume [26] that tlash flow stream, typical for investment in a
new nuclear plant, has the following averdgne horizons. Withowt disaster the first
six years of the stream reflect the cadtgonstruction and commissioning followed by
40-years of operating life whehe plant is producing posigvcash flows and, finally, a
70-year period of expenditure on decomnaiesig. The flat discount rate of 5%, as
Remark 1 shows, orients the analysis on a 20-year time horizon. It is clear that a lower
discount rate places more weigint distant costs and benefiEor example, the explicit
treatment of a potential 200-yedrsaster would require &tast the discount rate of
0.5% instead of 5%. A related examplenigdastments in climate change mitigations to
cope with potential climate change related extreme events. Definitely, a rate of 3.5%, as
often used in integrated assessment mo@&ls ¢an easily illustratthat climate change
does not matter. A shock testing of thesedel® reduces even further their internal

stopping time horizon.

Example 2 (Darwinian fitness). Ramsey [27] had introducetiscounting, first of all,
as a mathematical device ensuring tlmmvergence of infinite horizon cumulative
values. Its various explanations sugpdr by empirical studies were proposed
afterwards suggesting that humans and alsrplace less weights on the future then on
the present (see discussion in [30]). A reasothat future rewards run more risk of

disappearing. Hence, they should be discedintvhere the discoumate is the hazard



rate. For example, evidence from selection experiments indicates the existence of a
trade-off between short-term and long-term fertility, i.e., the existence of life-history
strategy that discounts the future. In otlvards, natural seleicin puts a premium on
immediate reproductivity. Acconagly, an animakan be treated asrational optimizer
maximizing its Darwinian fitness, that can ta&en to be equivalent to maximizing the

expected number of offsprings a simple case, fitness is defined [30] then as integral
F = jgo m(t)s(t)dt , where m(t) is the expected rate of reproductive output at age
the animal survives to that age, as(@d)dr is the probability of surviving to age It is
highly unlikely that an animal is able kwarn discount factsr(probability density(z))

in order to maximize the Darwinian fithesBhe equivalent digbution free stopping
time criterion requires observatis of only lifetime intervals, which can be easily

used for adaptive adjustmertslife-history strategies.

3. Time Declining Discount Rates

This Section extendBroposition 1 to general time declinghdiscount rates. It also
shows that a time declining dmmt rate can be associatecgewith a set of mutually
exclusive geometrically digbuted extreme (stopping timeevents. This rate is
determined in a sense by the least probable event.

Let us consider now a streafirandom variables (r.vy)q,v; ,.affected by a set of
random events including potential catastrophic events. Formally, we can thinkas
a function v,(w ) defined on a probability spade, P} with the setQ of related
random events and the probability meas#reon Q. We assume that, does not
depend on the “future”, i.e., we assume th&X, P} is adapted to a sequence of
increasingo -algebras A, ¢ A, c ... (subsets of events frof®, which occur before
t=01...), such thaty, is measurable (defined on) w.rf4, . In what follows, all

random variables are assumed to be definedp®} .
Let o, = o(v4,...,v,) be theo -algebra generated by, ,...,v, . Consider a stopping

time 7, which we define as a r. v.€ {01,...}, such that evenfr <t}, ¢ = 01,... does

not depend on values ;,v,,,,..., .€., o

t+1l00 *



Proposition 2. Consider a discounted suﬁzodtlft , d, =@+r)", wherer, is an
increasing positive sequencg, = Ev,. Then there is a stopping time such that
Plr>t]=d, and
YrodV, =XroPle 2 t]Ev, = EX] ov, . (3)

Conversely, letz|v,| is uniformly bounded. Then, for any stopping time

EY ' wv,=>..dV,, d =Pr=t], where ¥, is conditional expectation:
Proof. Consider such any r. v, 7€ {01,...} that {rﬁt} does not dependent on

values  vg,...,V;_1 and Plr=tl=d, -d; 1, t=012,.... Clearly,

P[TZO]Zdo—dl+d1—d2+...:do =1, P[TZt]:dt, and

ZzodtVt = ZZOP[T >V,

Let now f, = Zizo‘/k . From the rearrangement known as the Kolmogorov-
Prohorov’s theorem it follows that
Ef, =" oE[f;ir=t]=37 03t _oElviir=t]=

=37 oElviit2k]=X7_oPle = k]V;,
whereV; = E[v; |z >k ]Jand E[v,; 4], denotes unconditional expectatiéfv,/,], I,

is the indicator function of eventt. The last assertion follows from the identity

{r>34 { r>t4}, i.e, from the independence dfr >4 on o, . The change in the
order of sums is possible dteethe uniform boundness @f|v, |.

Corollary. If vg,vq,... are independent r.v. ¢ >}, r = 012,..., does not depend
on vg,vq.....vs_1, thenV, in both cases of Proposition 2 is unconditional expectation

Vi=Ev,. If vg,vq,... are independent identically disuted r.v., then the Wald’s

identity follows from Proposition1.:

EY. ovi=EvoET.

10



Proof: 1t follows from the fdlowing rearrangements:

roPle 2 =Xy o X, Ple=t] =27 gtPl[r=t]=E7.

Example 3 (Expected catastrophic losses). Assume that a castrophic event may
occur atr = 012,... with probability p . It is usually defined as (d)- year event, say a
100-year flood. Definer as the arrival time of ¢éhfirst catastrophe and le} =0,
0<t<r-1, v, =L,, where L, is conditional expected $ses given that the event

occurs atr . Sincel, =0 only for ¢ = 7, then the expected (unconditional) losses at

are:
Ev, = pLg +qpl/l+q2pL2 +..= Z;’O:Oqth =2 oz 2t]V; , whereV; = pL,.

The nextProposition shows that a set of even gesincally distributed events can
induce discounting with time diaing discount rates. Let usssume that there is a set

of mutually exclusive events (semso Section 4) of “magnitudei =1,...,n. The

probability of scenaria is &, ZQ. =1 and, conditional on this scenario, the event
i=1

occurs for the first time at; with the probability Pz, =¢]1=p,q!, ¢, =1-p,,

t =01,.... Thus, the occurrence of eventsrais characterized by a mixed geometric

distribution Z:;lé’ipiqf . Let r be the arrival time of a first event. Then

d,=P[r>t]= Z;QP[T:‘ >¢]. Since P, >t)=pq' +pqg"t+..=q, then

i

evaluation (1) takes the form
V:Zszw d, :zeiq; . (4)
t=0 i=1

Equation (4) essentially mod#f the standard geometriscunting. Nevertheless, the

induced discount factorg, for larges tend to be defined by ¢hsmallest discount rate

of the least probable event. The followingposition is similar to the conclusion in
[33].

11



Proposition 3. Discount factord, = ZQiqf in (4) is determined for - « by the
i=1

standard geometric discount factgf associated with th least probable evenf ,

p, =minp;: dt/qlﬂ — 0 fort—>o.

Proof. d, = qlﬁ Z;@ili (#), where y, () = (qi /qlf)’. From p. <p,, p,=1-g,,
it follows thaty; (f) - 0, t »> o, for i #i" and .. (t) =1. Hence,d, /qli — 0+ for

t—> 0.

Remark 4 (Finite time horizon T). Propositions 1, 2, 3 hold true also for a finite time

horizon T <o after substituting probabilitie®[r =¢] and P[r >¢] by conditional

probabilitiesP[z =t |t <T] andP[r > ¢ |7z <T7].

Remark 5 (Distribution free approach). Propositions 1, 2 provide two alternative
approaches for discounting: standard discedintriterion of the left hand side of
equations (1), (2) with an exogenous discounting, or undiscounted criterion of the right
hand side withr defined by random arrival time of stopping time eveRtsposition 3
shows that the correspondi induced discountingd, = P[z >¢ tan be a complex
implicit function of spatio-temporal patterns efents. The next Section illustrates, that
7 may depend also on various decisions. Adisth make it rather difficult to evaluate
exact risk profilesP[z >¢] and exogenous discount factafs. Therefore, this would
require the use of the distribution-fresxdom stopping time criterion and STO methods

rather then the standardistribution-based discounted criterion and deterministic
optimization methods.

4. Endogenous Discounting

This Section summarizes typical matiions for developing spatio-temporal
catastrophic risk managemenbdels with rather naturakersions of the stopping time
concepts. A typical model may include oftthe following loop and the potential for

positive feedbacks, branching and disequilibrium:
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1. Stopping time induces discounting the form of dynamic risk profiles
d, =Pt >1];

2. The discounting affects tymal mitigation efforts; and

3. Mitigation efforts #ect the stopping timer, risk profiles P[r >¢] and the

discountingd, (return to point 1).

This means that the stopping time ciiar induces endogenous spatio-temporal

endogenous discounting.

Example 4 (Evaluation of a Flood Management Program). Consider a simple
version of the catastrophic flood management model developed for the Upper Tisza
river region [8]. The spatio-temporal stture of this model was motivated by the

following reasons.

Throughout the world, the loss from floods and other tumal disasters are mainly
absorbed by the immediatectims and their government$q]. The insurance industry
and its premium payers also absorb a parif catastrophic losses, but even in the
wealthy countries this share is relatively small. With increasing losses from floods,
governments are concerned wéhcalating costs for floogrevention, flood response,
compensation to victims, and public infrasture repair. Asa new policy, many
officials would like to incease the respondity of individuals and local governments
for flood risks and losses [28], but this possible only thnagh location-specific
analysis of risk exposures and potential lesske mutual inteepbendencies of these

losses, and the sensitivities of the &8 new risk management strategies.

This is a methodologicallghallenging task requiring d¢ast the development of
spatio-temporal catastrophe mtdg’], [8], [10], [32]. Although rich data usually exist
on aggregate levels, the sufficient location fpecata are not ailable, especially
data relevant to new policies. Moreoveratastrophes affect rige territories and
communities producing mutually dependelusses with analytically intractable
multidimensional probability distributions dependent also on various decisions. This
critically distingushes the arising problems from arglard risk management situations,
e.g., the well-known asset-lidity management. The standard methods, in particular,

the existing extreme event theory, aret mpplicable to ratinal management of
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catastrophic risks. The new GIS-based d¢etpbe models [8], [32] are needed to
simulate the occurrence of potential extie events and the samples of mutually

dependent catastrophic losses for which neeoy few historic observations exist.

In general, a catastrophe model represesetstindy region by grg] e.g., a relatively
small pilot Upper Tisza region is repeeged by 1500x1500 grids [8]. Depending on the
purpose of the study, these grids are aggeegatto a much smaller number of cells
(locations, compartments)=12,...,m . These cells may correspond to a collection of
households at a certain siteg@lection of grids wth similar land-use characteristics, or
an administrative district or grid with a segment of gas pipeline. The choice of cells
provides a desirable represdita of losses. Accordingly, cells are characterized by
their content, in general, not necessarilyrianetary units. Values can be measured in
real terms, without using aggregate dollar value. The cent of cells ischaracterized
by the wvulnerability curvescalculating random dargas to crops, buildings,
infrastructure, etc., under a simulated catastroptenario.

Catastrophic floods which are simulated bg ttatastrophe model, affect at random

different cells and produce nually dependent random Iossé§, j=1...m, from a

catastrophic event at time These losses can be modifieg various decisions. Some
of the decisions reduce lossasy a dike, whereas othespread them on a regional,

national, and international level, e.g., insurance contracts=l{x,,x,,...,x,) is the

vector of the decision variables, théh is a random functior’, (x) .

Flood occurrences in the region are niedeaccording to specified probabilistic
scenarios of catastrophic rainfalls and thkabdity of dikes. There are three dikes
allocated along the region’s river branch. Each of them may break after the occurrence
at a random time of a 100-, 150-, 500-, and 1Q@@x rainfall characterized by the so-
called up-stream discharge curves calcntptine amount of discharged water to the
river branch per unit of timén fact, the discharge curvepscale the information about
complex rainfall and run-off processes affected by land-use and land-transformation
policies. This brings considerable uncertaiimythe definition of a 1/p - year flood,

p =1/100, 1/150, 1/500, 1/1000. Therefore, a 1@aydischarge curve may represent,

in fact, a set of floods ith different frequencie® , say,1/150< p <1/100. In addition
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to the interval, th uncertainty aboup can be given by a priorstribution. Therefore, a
single discharge curve, in general, corresponds to a 4¢ipeyear floods, where is
characterized by a prior probability distributidgfor example, it can be characterized by

a finite number of probabilistic scenarigs,...,p, with prior probabilitiesé,,...,0, as

in Proposition 3.

The stopping time can be defined diffetgndepending on the purpose of the policy
analysis. A catastrophic flood our example occurs due toetbreak of one of the three
dikes. These events are considered as allytexclusive events, since the break of a
dike in the pilot region releases the “prasSwon other dikes. Therefore, the stopping
time 7 can be defined as the first time moment of a dike break. In this case, the

probability or induceddiscount factor d, = P[r >t ]is an implicit function ofz,
probabilities 6,, p;, i=1,...,n, and the probability of a kié break. The situation is

complicated further by the deterioration dikes in time and/or by inappropriate
maintenance of the flood protection systeme(slso Section 6),g, modifications to

the dikes, the removal of soroéthem, and building new retention areas and reservoirs.
Besides these structurdlecisions, the stopping time can be affected by other
decisions, e.g., land use policies. Accogiym depending on goalghe definition of
stopping timez can be further modified. For examapllet us assume that the region
[14] participates in the flood managemegmbgram through payments to a mutual
catastrophe fund, which has to supporticed protection system and compensates
losses to victims. To enforce the partatipn in the progranthe government provides
only partial coverages of losses. The stabuitythis program critically depends on the

insolvency of the fund that marequire a new definition of. Let g be a fixed
investment rate enabling tisepport of the system of dikes a certain safety level and
¢ be a random time of a first catastrophic flood. DenoteLﬁayrandom losses at
location j, j =1m, at times=¢ and by, the premium rate paid by locatioh to
the mutual catastrophe fund. Thes,accumulated risk reserve at tigigogether with

a fixed partial compensation of IosseyZLf. by the government is
J

R§=§§7zj+;(§L§—§q)jL§—ﬂ§, where 0<¢; <1, is the portion of losses
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compensated by the fund at locatign Let us also assumeaththe functioning of the

flood management program is considere dsng-term activity assuming that growth
and aging processes compensate each offtesn, the insolvency of the fund is
associated with the event:

X7, + T L -Xo,L; - pE <0. )
j j j

Inequality (5) defines extreme random eveaftected by various feasible decisions
x including components(;zj,(pj,;(,bj,,B,j:ﬂ). The likelihood of event (5)
determines the vulnerabilitpf the program. It is more natural now to define the
stopping timer as the first time when eve(d) occurs. In this case would depend on

all components of vectar and the induced discountingpuld focus on time horizons

associated with the occurrence of the event (5).

5. Dynamicrisk profilesand CVaR risk measure

The following Example 5 illustratethat the probability distributionsP[z >¢],
t=01,..., itself represent key safety characteristics of catastrophic risk management
programs. Induced discounting; = P[z>¢] then “controls” these risk profiles

implicitly through their contributions tadiscounted goals of programs. Another
possibility as this Section shows is to impose explicitly safety constraints of the type
Plr >1t] > y; for some safety levelg,, r = 01,.... In this case resulting robust strategies
would directly control the safety constraints.

Example 5 (Safety constraints). The occurrence of disastassoften associated with
the likelihood of some processes abruptly passing “vital” thresholds. This is a typical
situation for insurance, where the rislogess is defined by flows of premiums and
claims whereas thresholds are defined ibgolvency constraints [12]. A similar
situation arises in the control of enviroemal targets and in the design of disaster

management programs [7], [8], [10]ssume that there is a random procgssnd the
threshold is defined by a randop,. In spatial modeling,R, and p, can be large-

dimensional vectors reflecting the overall sito in different locations of a region. Let
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us define the stopping time as the first time moment when R, is below p,. By
introducing appropriate risknanagement decisions it is often possible to affeck,
and p, in order to ensure the safety constraiﬁ[ﬁt > p,]z y , for some safety level,
t=012,....

The use of this type safety constraints isather standard amach for coping with

risks in the insurance, finance, and nuclear industries. For example, the safety

regulations of nuclegplants assume that the violatioh safety constraints may occur

only once in10’ years, i.ey = 1-107". It is remarkable thahe use of stopping time
criterion as in the right-hand side of (2)sh&trong connections with the dynamic safety
constraints and dynamic versions of staticaBvrisk measures [29]. Let us illustrate
this by using the simplest version of climathange stabilization models discussed in
[12].

Assume that R, =Y _,x;,, where decision variablesx, >0, k=01...1,
t<T <. We can think ofx, as a CQ@ emission reduction (see also [ ]) at the
beginning of periodk. At time ¢ the target value on total emission reducti®n in
period¢ is given as a random variabje . It is assumed that the exact value of may
be revealed at a random period Pz >¢] =d,. The decision path = (xq, xy,...,x7)
has to be chosen ex-ante in pertod 0 to mitigate climate change impacts associated

with the caseR, < p,. Consider the loss function associated with emission mitigation

strategyx and givenr:
V(x)=EX]_olex; +b, max{0, p, — R, },_.], (6)

where deterministic coefficientg can be viewed as marginal costs, andas risk

factors.

This can be written (Example 3) as
V(x)= th:odt[Ctxt +b,Emax{0, p; — Zizoxk}] :

Assume thatV’(x) is a continuously differentiablinction, e.g., a component of

random vectorp = (pg, p1,....,or) has a continuous density function. Also, assume for
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now that there exists a positive optimal solutioﬁ:(xs,xi,...,x;), x;>0,

minimizing 7 (x) subject tox, >0, ¢ = 01,...,7. Then, from the optimality condition for

stochastic minimax problems (see discussiorj&l], p. 16) it follows that for = X,

Ve =c,—Xf_ bpPIE_gxs < pp]=0, 1=01...T.
From this it follows sequentially far=7,7 -1,...0,
PIYT oxp <prl=crlbp, PISL _oxp < pl=(c, —c;41) /by, t=01....T -1.(7)
Since Emax{0, p, - R} = Epd, sp —R,Plp, 2 R,], then from (7) it follows that

V(x) =Epb.1, >, Which can be viewed as a dynamic CVaR (Conditonal-Value-at-

Risk) risk measure. Equations (7) can beduso control dynamic risk profiles, say,
profiles with a given safety level as in Example 51—y =cy /by =(¢; —c¢;41) 1 by
t=01L...,T -1, by appropriate choicef risk factorsb, similar to stationary CVaR risk

measures. In this case the minimization ¢fd@ntrols safety constraints (7) with given

safety levely, i.e.,

P[Zzzoxk < pk] :1_7, t= 0,1,,T (8)

This is a remarkable resukiince the safety constrasntas a rule, are non-convex
and even discontinuous, whereas the mininopadbf function (6) is often a convex

problem for important practical cases.

Equations (7) are derived so far from the existence of the positive optimal solution

x . The following Proposition clarifies this assumption.

Proposition 4. The existence of positive optimal solution follows frem/d; <1,
(¢; —¢;41)1ld; <1, t=01..T-1, and the monotonicity of quantilesg,,

Bo < B <...< Pr defined by equations
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Proof. Indeed, the first requiment guarantees thatx6>0, Zf{=ox8>0'

t=12,...,T . From the second requirement it follows thgt+ x; > x,, i.e., x; >0, and

SO on.

Let us note that in general cases outlined in Example 5, pratess given by
stochastic equation®,,; —R, =g(t,x,), t=01...,T -1, where g(t,x,) is a random
function. In this casequations (7), (8) would havefarm of conditional expectation
rather then quantiles. It is even easy to seegforx,) = a,x,, where a, are random

variables. In rather general cases animization problem (6) can be solved by
distribution-free stochastic aptization methods proposed |[i], [8], [10], [13], i.e.,
methods which don’t use (in generaRact probability distributions.

Remark 6 (Robust decision). The stopping timer in model (6) is not associated
with the violation of safety constraint)(8n catastrophic risk management the model

(6) is usually considered as an auxiliary submodel. For example, if rapgoare
affected by a set of decisions with a cost functionF(y) , then the minimization of
function 7 (x)+ F(y) Yyields robust decision miniming total costs under safety

constraints (8) and a dynamic viersof the CVaR risk measure.

6. Intertemporal inconsistency.

The time consistency of discounting medhat the evaluation of an investment
project today {=0), will have the same discount factor as the evaluation of the same
project after any time intervdl0, 7] in the future. In other words, despite delayed
implementation of the project we alwaysuhd ourselves in the same environment.
Only geometric or exponential discounting,=d’ =™ =™ 1 =-Ind, defines

a homogeneous time consistent preference:
DAV, =Vo+dVy+.+d WV +d [V +dV

This is also connected wittihe geometric probabilitdistribution of the discount

related stopping time z in (2): if P[rzt]:d’, O0<d<1, then
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Plr=t]=d' —d"* = (1-d)d', t=01,.... In other words, theansistency is the direct
consequence of the well-known “memoryledeéature of geometric and exponential

probability distributions: for any>0, s >0,
Plr=t+s|r2t]=d"**(-d)/d" =d°* 1-d).

Hence, independently of waiting time, the probability of the stopping time

occurrence at+s is the same as at the initial time momesatO.

For other discount factors with time-dependent rates, their time inconsistency
requires appropriate adjustmemtf discount factors for pregts undertaken later rather
than earlier. The mispeeption of this inconsistey may provoke increasing
vulnerability and catastrophic losses. Let asnsider typicalscenarios of such
developments. Section 4 shows that theqadee perception of proper discounting is a
challenging task requiring models that allow the explicit evaluation of related risk
profiles. This Section, in fact, illustratébat the design of such models has to be
considered as a key mitigation measure to cope with increasing vulnerability.

A number of authors distguish between various typed so-called “imperfect
altruism” resulting in the lack of soci@ommitment to mitigate risks. For example,
there were alluded definitions of a majva sophisticated and a committed (ideal)
society. The main differences betweersh three societiesné how they provoke
catastrophes are summarized in [9] byngsa simplified flood management model
outlined in Section 4. This model has the fixed 100-year horizam which three
societies, the naive, the sophisticated, tiedcommitted, live and plan for coping with
the catastrophic losses thmaaly occur due to break of a dyke from 150-year flood with
time consistent geometric probability disttion. They are able to mitigate the
reliability of dikes and losses by paying fair premiums to the catastrophe fund. But,
depending on their perception of risk prddiler induced discoumtg, the results are

dramatically different.

The current generation dthe Naive Society is aware of a possible catastrophe. It
maximizes the (identical for all geneis) value function taking into account the
potential need to save for paying premiutdafortunately, it hag misleading view on
the catastrophe, namely, if the catastrophe i@t occurred in #later generation the

society believes that it will not occur within the current generation with the same
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probability. Thus, it relies on geometric probapildistribution and fails to take into

account the time inconsistency induced by insirgathe probability of a dike break due
to aging processes. Therefore, the tfigeneration of the society postpones the
implementation of decisions, i.e., the r&igociety puts also its preferences on

consumption as the first priority consumiaiga higher rate than it actually plans.

For the next generation the time is #hilf forward by 20 years, and the second
generation, similar to the first, plans lultes not implement saviragtions essential for
the catastrophe fund to function. The riskfples, time preferences, premiums, and the
actions are not adjusted towards the real escalating risks. In a similar way, behave the
next generations. The plamse never implemented arile view on a catastrophe

remains time invariant despite dramatic increase of risk.

The Sophisticated Society implies a correct understanding of the time-inconsistent
discounting induced by the detamting system of dikes. Btlis society, similar to the
naive planners, also evaluates present copsomto be much lgher than the future
one. This leads to postponing the decisiddge to these delayshe risk burden is
increasingly shifted to the next generation, calculated premiums become higher and
higher. If a catastrophe occursistsociety will also be ngirepared to @pe with losses

as catastrophe management is not functioning.

The “pathologies” of these societies cam explained by their misperception of

risks, and, the lack of committed actions.

The Committed Society is similar to that of the sopdticated society. In contrast
though, this society is able to implemeetisions because its calculations demonstrate
that the delays in actions may dramaticaffe@ individuals and th growth of societies
as a whole. Individuals could be betteribtheir consumption options were limited and
their choices constrained by anticipatingkd. As a direct consequence of the
committed actions, the premiums that the stycpays for coping with catastrophes in
100 years time are much lower thange of the sophisticated society.

7. Concluding Remarks

The proposed new approach to discaupis based on undiscounted stopping-time
criterion which is equivalerib the standard discountedterion in the case of market-
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related discount factors. eneral, the stopping time @iton induces the discounting
that depends on spatio-temporal patternsatdstrophes and various relevant decisions,

More formally, this paper deomstrates that discount factoes, ¢ = 01... can be
associated with the occurrence of atre&xe “stopping time” event at random time

with probability P[z >¢] =d,. Consequently, the fimite discounted sumzzodjf,,
V,=Ev,, is replaced by the urstiounted expectatiorty.7_,v, within the finite

interval [0,z] . The use of the stopping time criteridfd.7_,v, induces the standard

discounting in the case when is associated with the d&fime of market products. In

dealing with catastrophidsks, the stopping time can be associated with the arrival
time of potential catastrophic eveniEhe use of random criteriof!_,v, allows to
address the variability of valuationseevin the case of deterministic flovig, 7, ....

In this case, it is often important talstitute the expectedalue of random sum
>/_oV+ by its quantiles. Mitigation efforts affettte occurrence of extreme events and,

thus, they affect discounting, which inrtuaffects mitigations. This endogeneity of

discounting restricts @xt evaluations o/, and the consequent use of deterministic

methods and it calls for specific stochastic optimization methods.
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	The goal of this paper is to specify and summarize assumptions and proofs for new approaches to discounting proposed in our catastrophic risk management studies. The main issue is concerned with justification of investments, which may turn into benefits over long and uncertain time horizon. For example, how can we justify mitigation efforts for expected 300-year flood that can occur also next year. The discounting is supposed to impose time preferences to resolve this issue, but this view may be dramatically misleading. We show that any discounted infinite horizon sum of values can be equivalently replaced by undiscounted sum of the same values with random finite time horizon. The expected duration of this stopping time horizon for standard discount rates obtained from capital markets does not exceed a few decades and therefore such rates may significantly underestimate the net benefits of long-term decisions. 
	The alternative undiscounted random stopping time criterion allows to induce social stopping time discounting focusing on arrival times of potential extreme events rather then horizons of market interests. In general, induced discount rates are conditional on the degree of social commitment to mitigate risk. Random extreme events affect these rates, which alter the optimal mitigation efforts that, in turn, change events. This endogeneity of the induced discounting restricts exact evaluations necessary for using traditional deterministic methods and it calls for stochastic optimisation methods. The paper provides insights in the nature of discounting that are critically important for developing robust long-term risk management strategies. 
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