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Abstract  

We propose a new analysis for the evolution of virulence of pathogen in a spatially 

structured host population where each site of a regular lattice is either occupied by a 

susceptible or by an infected, or is empty. We assume that reproduction by susceptible 

individuals occurs locally but infection by a contact of susceptible and infected hosts 

occurs either locally or globally with a certain proportion. We examine by combining 

Monte-Carlo simulation and adaptive dynamics approach, how the evolutionarily stable 

(ESS) virulence depends on the fraction of global infection/transmission and the 

trade-off between transmission and virulence in the model investigated by Boots and 

Sasaki (1999). Our analysis developed in this paper can successfully predicted the ESS 

virulence found in the previous papers, and reveals followings: [1] With a linear 

trade-off, as is reported by previous studies, there is an ESS virulence when the 

proportion of global infection is small. We newly find that, if we increase the proportion, 

the ESS disappears when the proportion exceeds a certain threshold value, and 

proportions just below the threshold, there are evolutionary bi-stabilities. [2] With a 

non-linear trade-off, there can be no monomorphic ESS; instead, the evolutionary 

competition between many parasite genotypes differing in their virulence gives rise to 
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an evolutionarily stable coalition of pathogen strains with markedly different virulence 

(dimorphic ESS virulence) with a middle proportion of global transmission. These 

analytical results well illustrate the results by Monte-Carlo simulations. Since 

coexistence and evolutionary bistability are not impossible in the model we investigate 

in this paper, these are apparently derived by the effect of spatial structure. (280 words) 

 

Key Words: model of epidemiology, spatially structured model, evolution of virulence, 

trade-off between virulence and transmission rate, adaptive dynamics, coexistence and 

evolutionary bistability. 
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Introduction 

 

What determines the level of virulence in nature has been one of the central topics in 

the theories on the evolution of pathogens. Conventional wisdom has it that parasites 

should evolve to be harmless to their hosts and hence nonzero virulence seen in nature 

is regarded as a maladaptation (see May and Anderson 1983 for references, [is this a 

proper ref to cite?]).  The heart of this idea was a group selection argument that the 

parasite should evolve for the benefit of the parasite species. Modern theory of the 

evolution of parasites is based more on individual selection (MK: repetition, removed).  

More specifically, with classical mean-field (homogeneous mixing) assumption and no 

co-infection or super-infection to an already infected host, the theory predict that either 

high or low virulence can evolve depending on the trade-off between virulence and 

transmission rate/recovery rate (May and Anderson 1983; Bremermann and Thieme 

1989) [-- Bremermann and Thieme is not the paper to be cited here -- it's on the 

maintenance of host polymorphism with many strains of parasite with matching allele 

model. -- Am I correct?].  R0 is the most important epidemiological measure that 

characterizes the ability of an infectious disease to spread in host population; defined as 
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the average number of secondary infections caused by an average infected host in a 

susceptible host population (see Anderson 1991)[--repeatition, maybe I should remove 

the earlier one… (MK: done)].  It depends on the rate of infection and the duration of 

the infectious period.  The infectious period is governed by the rate at which an 

infected individual either recovers or dies, and hence virulence, the increased death rate 

due to infection, affects R0.  Although there are a number of different definitions for 

‘virulence’ in the literature of infectious diseases, the increased death rate due to 

infection is defined as virulence in the context of evolutionary ecology and 

epidemiology.  This definition immediately leads to a general tendency that lower 

parasite virulence is selected for, if there is no trade-off, because reducing host death 

rate will increases the infectious period and hence does R0 (May and Anderson 1983; 

Bremermann and Thieme 1989)[-- again, should B & T be cited here?]. 

 

In order to maximise R0, evolution should maximise the transmission rate and minimise 

virulence and recovery (May and Anderson 1983; Bremermann and Thieme 1989).  

However it is doubtful that the disease behaviour is completely unconstrained, and we 



 6

therefore expect there to be a trade-off from the point of view of the parasite between 

transmission and virulence.  Higher transmission can only be ‘bought’ at the expense 

of higher virulence as the processes of producing of the necessary amounts of parasite 

transmission cause damage to the host (Mackinnon and Read 1999).   If transmission 

is increasingly costly in terms of virulence, models predict the evolution of a finite 

transmission rate and virulence, otherwise evolution will maximise transmission and 

virulence; in both cases maximising R0. This analysis is by no means always applicable 

to all circumstances.  For example, superinfection of parasites (Sasaki and Iwasa 

1991; Frank 1992; May and Nowak 1994; Nowak and May 1994) leads to a higher ESS 

virulence because the intra-host competition among strains favors a more virulent 

parasite than that maximizes the basic reproductive number. The virulence evolved in 

expanding population has also been shown to be larger than that in constant populations 

(Lenski and May 1995). 

 

General evolutionary theory assumes that the host population is completely mixed and 

that therefore any individual is as likely to infect any one individual as any another. The 
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assumption of homogeneous mixing in host populations ignores the fact that certain 

individuals are more likely to contact and therefore infect others.  The inclusion of 

such spatial/social structure into host-parasite models has shown that this more realistic 

assumption about the structure of host populations has dramatic implications to the 

evolution of the parasite. A successful approach to examining the role of the spatial 

structure of individual hosts is by using lattice models (also called probabilistic cellular 

automata PCA)(Sato, Matsuda et al. 1994; Rand, Keeling et al. 1995; Rhodes and 

Anderson 1996; Boots and Sasaki 1999; Haraguchi and Sasaki 2000).  This approach 

examines the fundamental spatial relationships of individuals within populations and 

uses biologically realistic and quantifiable parameters.    There is now a body of 

theoretical work that shows how important spatial structure is to the evolution of 

parasites (reviewed in Boots et al 2006).  For example, Haraguchi & Sasaki (2000) 

showed thatR0 is not maximized when spatial structure is considered because that 

parasite transmission rate is constrained. Boots & Sasaki (1999) included both local and 

global transmission and showed that the ES transmission rate reduced as infection 

became more local.   This effect on transmission is a result of a form of ‘self shading’ 
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where parasite strains with lower transmission rates gain an advantage in terms of an 

increased chance of susceptible individuals being next to infected ones and therefore 

available for infection.   

 

The current theory assumes either no trade-off between transmission and virulence or a 

linear relationship (Haraguchi & Sasaki 2000, Boots & Sasaki 1999).   In both cases, 

mean-field theory predicts the evolution of maximum transmission rate.   The spatial 

models show that local interactions can constrain the evolution of the transmission rate.  

Here we will extend the spatial evolutionary theory by examining how different 

assumptions concerning the trade-off between transmission and virulence affect the 

evolution of parasites in spatially structured populations.   In particular we will 

examine the role of spatial structure when there is a non-linear trade-off between 

transmission and virulence so that they would both be constrained without population 

structure.  We ask whether there are important effects of local interactions on parasites 

that are constrained by the trade-off between transmission and virulence.    

 

Another key result from the simple mean-field models that lead to the maximization of 
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R0 (Anderson & May 1993) is that coexistence among pathogens is not possible. This 

can be proved very easily. Assume that a resident strain (w) is in equilibrium. An 

invasion coefficient of mutant strain (m) is defined by a difference in the basic 

reproductive ratio defined as, 

  R0 = β
(α + γ + μ)

,      (1) 

where β , α , γ  and μ are transmission rate, virulence, recovery rate and natural 

mortality of the host respectively. Then the fitness of the rare mutant is defined as  

 sw (m) = R0(m) − R0(w)     (2) 

where R0(i) is a basic reproductive ratio of a strain i ( i ∈ { w,m} ).  A given singular 

point (w* ) satisfies, 

 
∂sw(w* )

∂m
= 0.      (3) 

The second order partial derivatives of Eq. (1) are, 

 
∂2sw (w* )

∂w2 = −∂2R0(w
* )

∂w2

⎡ 
⎣ ⎢ ⎤ 

⎦ ⎥ 
m= w= w*

    (4) 

and      

 
∂2sw (w* )

∂m2 = ∂2R0(w
* )

∂m2

⎡ 
⎣ ⎢ ⎤ 

⎦ ⎥ 
m= w= w*

 .    (5) 

Then following relationship is always satisfied in the completely mixed model. 
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∂2sw (w* )

∂m2 = −∂2sw (w* )

∂w2      (6) 

Geritz et al. (1997, 1998) showed that evolutionary branching occurs when 

∂2sw /∂m2 > ∂2sw /∂w2. Obviously, Eqs. (6) cannot satisfy the condition, implying that 

the evolutionary branching is impossible. The condition for the coexistence between 

two strains is ∂2sw /∂m2 > −∂2sw /∂w2, and this is also impossible; hence, coexistence is 

not possible.    

 

Our second purpose is to examine whether spatial structure and local interactions can 

lead to coexistence between parasite strains.    Boots and Sasaki (1999) showed that 

there were in theory the possibility of coexistence in the spatial model, but did not 

examine it in detail.  This paper will examine whether spatial structure leads to 

coexistence in detail.    

 

Previous theory has relied on Monte Carlo simulation of spatially explicit host-parasite 

models.  Here we use pair approximation techniques in addition to MonteCarlo 

simulation.   The advantage of approximation techniques is that they allow the rapid 
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analysis of the behaviour of the model, that can then be checked by simulation of the 

full system.  This approach has been successful in ecological host-parasite models 

(Sato et al. 1994, Haraguchi & Sasaki 2000, Boots and Sasaki 2000).  Pair 

approximations have however failed to predict the ES parasite transmission rates of 

completely local host-parasite models  (Boots et al 2006), but we show here how they 

can predict evolutionary outcomes well if there is some degree of global interactions.    

 

Modelling  

We, first, mathematically formulate the population dynamics of hosts changing in time, 

and then analyze evolutionary outcomes using an adaptive dynamics techniques. These 

results are compared to those by Monte-Carlo simulations which are mainly used in 

previous studies (e.g., Boots and Sasaki 1999). Followings are procedures of two 

methods.  

Mathematical formulation: pair densities 

We follow the model by Boots & Sasaki (1999) by considering a regular network of 

sites, each of which contains one of a single susceptible individual (S), an infected 
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individual (I) and empty (O). Susceptible individuals reproduce at a rate r into the 

nearest neighboring sites. They are infected by contact with an infected host at a rate β . 

Transmission can occurs both locally and globally. When the transmission occurs 

globally, a susceptible individual contacts an infected host which is chosen randomly 

from one of the sites in the lattice. When the transmission is local, it has a contact to the 

nearest neighboring cell. Global transmission occurs a certain proportion denoted by L 

(0 ≤ L ≤1). The natural death rate of individuals is d, and infected hosts have an 

increased mortality due to infection (virulence:α ). Infected individuals do not 

reproduce and they do not recover.  

 

The population dynamics on the lattice is described as, 

Ý P OO = 2[−r(1−θ)qS /OOPOO + (d + α I )PIO + dPSO ] , 

  

Ý P SO = r(1−θ)qS /OOPOO − dPSO + dPSS + (d + α I )PIS  

   −[r{θ + (1−θ)qS /OS} + βI {(1 − L)(1−θ)qI / SO + LρI )}] PSO , 
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Ý P SS = 2[r{θ + (1−θ)qS /OS} PSO − dPSS − βI {(1 − L)(1−θ)qI / SO + LρI )} PSO ] , 

  

Ý P IO = −r(1−θ)qS /OI PIO − (d + α I )PIO + (d + α I )PII + dPIS  

   +β I {(1 − L)(1−θ)qI / SO + LρI )} PSO , 

 

Ý P IS = −dPIS − (d + α I )PIS − βI [(1− L){θ + (1−θ)qI / SO} + LρI ]PSO  

   +r(1− θ)qS /OI PIO + βI [(1− L)(1−θ)qI / SS + LρI )]PSS , 

 

Ý P II = −2(d + α I )PII + 2βI [(1− L){θ + (1−θ)qI / SI } + LρI )]PIS .  (7) 

 

where Ýx  denotes a time derivative of x. The global density of infected host (ρI ) 

exactly changes in time as, 

 Ý ρ I = βI { LρS + (1− L)qS / I } − (α I + d)[ ]ρI .   (8) 

 

Definition of parameters and variables are in Table 1 and Table 2.  
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A mutant strain (J) can invade into a population at an endemic equilibrium with resident 

strain (I), if 

  λ(J | I) = 1

ρJ

dρJ

dt
= βJ { L ˆ ρ S + (1− L) ˆ q 0S / J } − (α J + d)>0,  (9) 

where βJ  and α J  are the transmission rate and virulence of the mutant. ˆ ρ S  denotes 

the global density of susceptible host at the equilibrium and ˆ q 0S / J  is the local density 

of susceptible host in the neighborhood of the mutant parasite at a “quasi equilibrium”. 

Recently, Boots et al. (2006) developed an analytical method to obtain the value of 

ˆ q 0S / J . We assumed that the conditional densities in the nearest neighborhood of a rare 

mutant strain change much faster than the global density of the resident strain. Those 

fast variables are approximately described as,  

 

Ý q O / J = (d + αJ )qJ / J + (d + α I )qI / J + dqS / J − r(1−θ)qS /OqO / J  

 +βJ [LρS (qO / S − qO / J ) − (1− L){( qO / J − (1−θ)qO / S}qS / J ] , 

 

Ý q S / J = −dqS / J + r(1−θ)qS /OqO / J − βJ (1− L)θqS / J  

 −βJ [LρS + (1− L)qS / J ]qS / J + βJ [LρS + (1− L)(1−θ)qS / J ]qS / S  
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 −β I [LρI + (1− L)(1− θ)qI / S ]qS / J , 

 

Ý q I / J = −(d + α I )qI / J − βJ [LρS + (1− L)qS / J ]qI / J  

 +βJ [LρS + (1− L)(1−θ)qS / J ]qI / S + β I [LρI + (1− L)(1− θ)qI / S ]qS / J , 

 

Ý q J / J = −(d + αJ )qJ / J + 2βJ (1− L)θqS / J − βJ [LρI + (1− L)qS / J ]qJ / J . (10) 

 

Note that variables without J are at the endemic equilibrium and are constant. We can 

solve Eq. 10 numerically to obtain the quasi equilibrium value of ˆ q 0S / J  and then 

calculate the invisibility of mutant strain from Eq. (9).  When we repeat the procedure 

for a various combination of resident and mutant parameters, we can draw pair wise 

invadability plots  (PIPs).  The PIP is a graphical representation of the evolutionary 

outcomes developed in the adaptive dynamical framework (Geritz et al 1997, 1998). In 

the following section, we will analyze the invadability of mutant strains by drawing 

PIPs with trade-offs between transmission rate and virulence. 
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Monte-Carlo simulations 

In the simulation, we consider a model where each site of the lattice is either empty, occupied 

by a susceptible, or occupied by an infected.  A 100×100 regular lattice with a periodic 

boundary is assumed so that each site has 4 nearest neighbors.  The state of the x-th site in the 

lattice at time t is denoted by σx(t)∈ {0, S, I}, where the state 0, S, and I indicate respectively 

that the site is empty, occupied by a susceptible, and occupied by an infected host. When we 

consider the evolution of parasites, we introduce the state Ij which indicates that the site is 

occupied by an individual that infected by the j-th strain of parasite. A continuous time Markov 

process was defined by specifying the transition probability of each site in a unit time interval. 

The state of the x-th site changes by 

(i) the mortality of a susceptible individual: 

S → 0, at rate d;  

(ii) the mortality of an infected individual: 

I → 0, at rate α+�;  

(iii) the reproduction of susceptible individuals: 
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0 → S, at rate r nx(S)/z;  

(iv) infection: 

S → I, at rate β nx(I)/z;  

where nx(σ) represents the number of sites with the state σ in the nearest neighbor of 

the x-th site, and z is the number of nearest neighbor sites (z=4 for a regular lattice).  

In order to draw PIPs by simulation, we first carry out a Monte-Carlo 

simulation with a monomorphic population.  After the host densities reach equilibrium, 

small numbers of the resident strains mutate. Then simulation is continued. After a 

sufficiently long time, if the mutant strains persist in the population, we defined that the 

invasion is successful.   

For the purposes of this paper we will consider that ESS values predicted by 

the simulation are actual value.  Since we use approximations to draw PIPs by analysis, 

we might expect that the analysis is less accurate than the simulations.  

 

Results 

At first, we assume the same linear trade-off relationship assumed in Boots and Sasaki 
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(1999) such that,  

β = 3α        (11) 

and examine how well pair approximations predict the outcome of the Monte-Carlo 

simulations. With the linear trade-off, the evolution always prefers higher virulence in 

well mixed populations (L=1.0); however, as is reported (Boots and Sasaki 1999; 

Haraguchi and Sasaki 2000), there is an evolutionary stable virulence when the 

population is spatially structured. Figure 1 shows three PIPs with L=0.0, 0.3 and 1.0. 

When L=1.0, the PIP predicts that mutant strains with larger virulence can always 

invade. However, with smaller proportions (L=0.0 and 0.3), PIPs show that there is an 

ESS virulence, which has been reported by previous studies. These results show that our 

analysis works very well when there is a trade-off.  

In this study, we examine a non-linear trade-off between transmission and 

virulence such that,  

 β = C log(α +1)      (12) 

where C is a constant. This monotonically increasing, but decelerating trade-off gives a 

finite ESS transmission value in completely mixed populations. Figure 2 depicts six 
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PIPs with different proportions of global transmission. Top three panels show PIPs by 

analysis, and bottom three panels show those by Monte-Carlo simulations. For the 

simulation, we take 20 replicates and number of invasion successions is shown in gray 

scale. Black indicates that mutants invade 20 times, and white indicates that mutants fail 

to invade 20 times. The two panels on the very right indicate the result when the 

proportion of global transmission is 1 (completely mixed model). A top panel is a result 

by analysis, and the bottom one is by simulations.  As is expected, there is an ESS 

virulence and with the parameter (see a caption of the figure for parameters), the ESS 

value is about 0.2. These two panels are almost identical because we do not consider 

spatial structure at all in the PIPs (and hence no pair-approximation).  

 

Two panels in the middle indicate the results with L=0.6. Both PIPs by analysis (top) 

and simulation (bottom) show that there is an ESS virulence, although predicted values 

are slightly different. The other two panels on the very left indicate the results with 

L=0.0. The two panels also show that there is an ESS virulence and the values are 

almost the same (i.e., the analytical method predicts the actual ESS well).  Boots et al. 



 20

(2006) showed that the analysis failed with completely local model without trade-off 

between virulence and transmission rate; however, if we assume a trade-off (regardless 

of linear or non-linear), the analysis predicts the ESS values well.  

 

In all cases in Figure 1 and 2, the ESS virulence is different depending on the proportion 

of global transmission (L). With the linear trade-off, ESS virulence is the smallest when 

L=0.0. When L=0.3, the ESS value is a bit higher, and it eventually becomes infinity 

when L=1.0. Contrary, with a non-linear trade-off (Fig. 3), the ESS values is the highest 

with L=0.6 and is smaller if we increase and decrease the proportion of global 

transmission.  

 

Coexistence – mutual invadability 

In this section we will examine the possibility of coexistence in the spatial model. In 

Figure 2, we produced a PIP with the proportion of the global transmission at 0.6 

(middle top in Fig. 2). We depict the invadability of mutant strain into a population at an 

endemic equilibrium with resident strain. We can then draw a PIP to examine the 
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invadability of resident strain into a population at an endemic equilibrium with the 

mutant strain. If there is an area where rare mutants and rare residents can invade each 

other, there will be the possibility of coexistence.  

 

Figure 3A illustrates a mutually invadable area when L=0.6 obtained analytically. There 

are three different regions. White indicates that the resident and mutant cannot invade 

each other. In this figure, this color is observed on the diagonal line, where the 

parameters of resident and mutant are exactly the same, i.e., the invasion condition (Eq. 

9) is exactly zero. Gray indicates that one strain can invade into the population, but the 

other cannot. Black area indicates that both strains can invade each other. In this area, 

the two strains can coexist.  

When we decrease L, the black area is reduced, and a new white area appears 

(Fig. 2B, L=0.3). In this white are, rare strains cannot invade into the population; hence, 

the system shows a bistability. Depending on the initial condition of the simulation, one 

of the strains dominates the population. The white area becomes larger when we 

decrease L more. When L=0, the area for coexistence completely disappears (Fig. 2C, 
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L=0.0), and hence the area for bistability become large.  

Figure 4 shows time series data of the densities of infected hosts resulted from 

Monte-Carlo simulation. We start the simulation with a population with monomorphic 

strain. After the transient period is over, we introduce a mutant strain which has a 

different virulence (the timing of mutant introduction is defined as time 0 in the figure). 

As is expected from the numerical analysis, two strains are maintained in the population 

indicating that these two strains coexist. A snapshot at the end of the simulation is in 

Figure 4.  

Boots & Sasaki (1999) showed that coexistence is possible when the 

following condition is satisfied.  

1

R0I

− (1− L)qS / I = 1

R0J

− (1− L)qS / J = LρS   (13) 

where R0I  and R0J  are basic reproductive ratio of resident and mutant strain 

respectively. We computed all values in Eq. 13 from Fig. 4 to confirm if the condition is 

satisfied or not. The results are in Table 3. 

Discussion 

We have shown coexistence of two pathogenic strains. These two strains are not 
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possible in the complete mixing model, but if we consider spatial structure, then 

coexistence becomes possible.  

 

The dependency of ESS virulence to the proportion of global transmission (L) is 

different in the two trade-offs. When the trade-off is linear, if we increase L, the ESS 

virulence goes up (see Fig. 1). When the trade-off is non-linear, the ESS virulence is the 

largest with middle L (L=0.6). The dependency of ESS virulence is different in the 

linear and non-linear trade-off.  

 

From the invasion condition, Eq. 9, if the virulence of resident and mutant strain is very 

close, a selection gradient is computed as,  

 D(α) = 1

R0
2

dR0

dα + (1− L)
dqS / I

dα .    (14) 

If D(α) is positive, a strain with larger virulence can invade. If it is negative, 

conversely, a strain with smaller virulence can invade. In the limit of L →1, the 

invasion condition is the same as that of well mixed model. If we consider the spatial 

structure (i.e., L<1), the probability of having susceptible individuals at the 
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neighborhood of infected individual (qS / I ) affects the direction of evolution.  

 When the trade-off is linear, R0 is a monotonically increasing function of α  

is always positive; hence, the first term in Eq. (14) always has an effect to increase 

virulence. Figure 6A shows the dependencies of dR0 /dα  anddqS / I /dα  as a function 

of α  when L=0. We computed dqS / I /dα  numerically using Eq. (7). It is a 

monotonically increasing function of α  and is always negative; therefore, the second 

term in Eq. (14) always has an effect to reduce virulence. The selection gradient is 

determined by the sum of these two terms, and if there is a α*  which satisfiesD(α * )=0, 

it can be an ESS virulence. D(α) is also shown in Fig. 6A (gray line). When virulence 

is increased, it is decreased and becomes 0, and here there is an ESS. This ESS 

virulence is evolutionarily stable because it changes its sign from positive to negative as 

virulence is increased. If we increase the virulence more, it is reduced for a while and 

then increased. In this case when L=0.0, D(α) asymptotically goes to 0, and never 

becomes positive again.  

 

D(α) with other proportion of global transmission (L) are shown in Figure 6B. As is 
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shown in Boots and Sasaki (1999), ESS virulence is increased with larger L. However, 

when L is beyond a certain threshold value (between 0.3 - 0.4), D(α) does not become 

negative for any α . This indicates that there is no ESS and evolution always prefers 

larger virulence.  

 

Between L=0.3 and 0.4, there is an evolutionary bistability. Figure 6C shows the 

selection gradient when L=0.35. The Selection gradient crosses the horizontal axis twice. 

These two points can be ESS, but left one (closed circle) is stable and the right one 

(open circle) is unstable; therefore, if evolution starts with larger value than the unstable 

ESS values, virulence goes toward infinity. If evolution starts with smaller value, it 

converges to the stable ESS value. Evolutionary bistability has been also found by 

Boots et al. (2004). Such an evolutionary scenario may exist more than we expect when 

we consider spatial structure.  

 

We must note here that the selection gradient, D(α), is very small when virulence is 

large.  This means that the selection pressure is weak; therefore, it may be difficult to 
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observe evolutionary of virulence cleary by Monte-Carlo simulations because of couple 

of agents which befog the weak selection, such as selection mutaiton balance and 

demographic stochastisity.  

 

If we apply the analysis when the link between transmission and virulence is non-linear 

trade (Eq. 11), we can predict the ESS virulence and we confirmed that ESS values are 

the largest with middle L. 

 

The effect of spatial structures has been widely studied recently; however, most studies 

are by Monte-Carlo simulations. Such previous results would be fully understood if we 

apply our analysis. One problem of our analysis is that we largely rely on the pair 

approximation, and hence the analysis becomes less accurate when the local interaction 

is very strong. The pair-approximation is good in our model in which we assume 

trade-offs among parameters; however, the goodness is not guaranteed in other models 

(see Boots et al. (2006) for a case of failure).  
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We have discussed coexistence and bistability in this paper. As we see in the 

introduction, neither of them is not possible in the completely mixed population. These 

phenomenon are purely attributed to the effect of the spatial structure. The most 

important parameter to understand the evolution in the spatially structured population is 

qS / I , the amount of susceptible individuals around an infected individual. This value is, 

obviously, not independent from the rate for reproduction. We can expect that the rate 

itself has some effects on the evolution of virulence. Throughout this paper, we assume 

the reproduction rate is a constant and reproduction is done completely locally. If we 

allow susceptible individuals to reproduce globally, there could be a different outcome 

on the evolution (Boots and Sasaki 2000). They found that global reproduction increase 

the ESS virulence. If we increase a reproduction rate, is virulence increased? Since the 

reproduction rate has been thought to be not an important parameter on the evolution of 

virulence in the completely mixed populations (with fixed total density), potential effect 

of the reproduction has not been well studied. This would be our future study.  
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Figure Legend 

Figure 1 Three PIPs drawn analytically with different proportions of global transmission. 

when L=1 (C), there is no ESS and strains with larger virulence always win (the 

principle of maximizing R0). When L=0.0 (A) and L=0.3 (B), PIPs predict that there is 

an ESS virulence. The ESS virulence is the smallest with L=0, and is the largest when 

L=1.0. Parameters: r=3, d=0.01, C=3. 

 

Figure 2 PIPs with non-linear trade-off. Top three panels show the PIP by analysis, and 

bottom three by simulations. In all cases, there is an ESS virulence. Generally, PIPs by 

analysis and simulations are similar; however, the discrepancy is the largest when L=0.6. 

When L=1.0, two PIPs are almost identical. ESS virulence is not monotonically 

increased as L is increased. It is the largest at L=0.6 in the figure. The effect of L on the 

ESS virulence is different from the one in Figure 1 where alpha is an increasing function 

of L. Parameters: r=5, d=0.01, C=15.  

 

Figure 3 Information of invadability. Black indicates mutually invadable (coexistence), 



 29

gray indicates that either one of the strains can invade but the other cannot, white 

indicates that both cannot invade each other (bistability). Parameters are in Figure 2.  

Figure 4. An example of coexistence. Gray line indicates the global density of mutant 

and black line indicates that of residents. Mutants are introduced at time 0. Virulence of 

residents is 0.8 and that for mutants is 0.22. Other parameters are in Fig. 2. A snapshot 

at the end of the simulation (time 3000) is in Figure 4. 

 

Figure 5. A snapshot at the end of the simulation in Figure 4. White, light gray, dark 

gray and black indicate a site occupied by a susceptible individual, an empty site, a site 

occupied by resident strain and by mutant strain respectively. Conditional probabilities, 

qS / I  and qS / J  are in Table 3.  

 

Figure 6 A: Dependencies of dqS / I /dα  (dashed line) and (dR0 /dα) /R0
2 (solid line) 

when L=0.1 with a linear trade-off. These are denoted by qS / I ' and R0' /R0
2 in the 

panel. It also shows a selection gradient (D (α): gray line). There is an ESS virulence 

where D (α) = 0. B: selection gradients with other L. When L=0.4, the ESS disappears. 
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C: selection gradient when L=0.35. D (α) becomes 0 twice.; hence it shows a bistability. 

A closed circle shows stable ESS and open circle does unstable ESS. Arrows on the 

panel indicates the direction of evolution. 

 

TABLES 

Table 1 

Variables. x,y,z ∈ {O,S,I,J} .  

Pxy  probability that a randomly chosen pair of nearest neighbor sites has state x-y 

ρx global density of x 

qx / y conditional probability that a randomly chosen y site has a x site at its nearest 

neighbor 

qx / yz  conditional probability that a randomly chosen y-z pair has a x site at its 

nearest neighbor. This variable is approximated by qx / y in our analysis 

(ordinal pair approximation ; Sato et al. 1994) 

 

Table 2  
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Parameters. x ∈ { I,J} 

βx  transmission rate of the strain x  

α x  virulence of the strain x 

r  reproduction rate 

d  natural death rate 

θ  1/z 

z  number of the nearest sites (= 4) 

L  proportion of global transmission  

 

Table 3 

Values in Eq. 13 computed from the snapshot in Figure 4.  

L qS / I  qS / J  ρS  
1

R0I

− (1− L)qS / I  
1

R0J

− (1− L)qS / J  

0.6 0.070 0.113 0.067 0.0490 0.0467 
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