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Abstract 

 We characterized the association between climate and somatic growth in 125 North 

American populations of smallmouth bass, Micropterus dolomieu.  Using multivariate techniques 

(i.e., principal components and Procrustes analyses), we found an overall significant concordance 

between 8 climate variables (cloud cover, frost frequency, precipitation, mean air temperature, 

minimum air temperature, maximum air temperature, mean summer air temperature, and growing 

degree days above 10oC) and 4 growth variables (body length increments for ages 1 to 4).  

Bivariate linear regressions revealed that there was a significant positive relationship between air 

temperature variables and early growth while growth at later ages was generally less influenced 

by climate.  Given that the geographical range of smallmouth bass has been rapidly expanding 

over the past century, we also examined how the climate-growth relationships differed in 

populations that have been introduced outside the native distribution.  Analysis of residuals from 

the Procrustes test indicated that the concordance between climate and growth was likely higher 

for populations within the native range and lower for introduced populations.  Mechanisms that 

might generate this pattern include the possibility that the introduced populations have not had 

time to adapt to their new environments and the possibility that growth might respond atypically 

to the more extreme climates experienced outside the native range of the species.     

Keywords: growth; climate; temperature; Procrustes; principal components analysis; invasion; 

species range; multivariate statistics; Micropterus dolomieu. 
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Introduction 

 Intra-specific variation in life history traits appears ubiquitous for many fish species (Roff 

1992).  Given that life history parameters such as somatic growth and maturity schedule can 

influence population dynamics and act as indicators of over-exploitation (Shuter et al. 1998; 

Trippel 1995), it is important to understand the mechanisms involved in producing life history 

variability.  Temperature (Beamesderfer and North 1995), physical habitat characteristics (Shuter 

et al. 1998), and food supply (Chen and Harvey 1995) are factors identified as correlates of life 

history variation among fish populations, but their importance can vary depending on the spatial 

scale examined.  For example, local differences in food availability can influence life history 

variation between adjacent populations (Dunlop et al. 2005a) but climate often drives life history 

variability among populations spread across a large geographic area (Beamesderfer and North 

1995).   

For the present study, we examined the influence of climate on somatic growth variability 

in smallmouth bass, Micropterus dolomieu, populations spanning a wide geographical area.  

Within a species’ native range, somatic growth rates often vary intra-specifically along a 

latitudinal cline (e.g., Jensen et al. 2000; Lester et al. 2000) that is the result of an environmental 

response and (or) genetic adaptation to climate (Conover and Schultz 1995).  As distance from 

the center of a species distribution increases, populations tend to experience increasingly stressful 

climatic conditions and as a result, populations at the range boundaries often exist at their 

physiological limits (Brown et al. 1996; Parmesan et al. 2000).  When species are introduced 

outside of their native distribution, the physiological stress experienced at the range border might 

be further amplified and somatic growth might vary with climate in an atypical way.  It might 

also take time for introduced populations to adapt to the climate in the new environment.  
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Therefore, as one moves away from the center of a species natural distribution, and from the 

native to the introduced range, the associations between climate and growth should weaken and 

perhaps change altogether. 

Using the smallmouth bass as a study species, we assessed the following two hypotheses: 

(i) there is an association between climate and the somatic growth of populations that are 

distributed across a geographic area large enough to span a broad range in climate; (ii) the 

association between climate and somatic growth weakens at and beyond the boundaries of the 

species native distribution.  We chose the smallmouth bass because past studies have shown a 

link between somatic growth and climate in this species (Beamesderfer and North 1995) and the 

range of the species has been expanding rapidly over the past century (Robbins and MacCrimmon 

1974) and will likely continue to expand in the future with climate warming (Shuter and Post 

1990).  The smallmouth bass is a warm-water littoral predator native to central and eastern North 

America (Lee et al. 1980; Scott and Crossman 1973).  Beginning primarily in the 1800s, humans 

started introducing smallmouth bass in waterbodies throughout North America (and eventually 

throughout the world) to provide angling opportunities (Robbins and MacCrimmon 1974).  

Introductions were made by private citizens and by government agencies; the sources of these 

introductions were both natural and hatchery reared populations (Kerr and Lasenby 2000; 

Robbins and MacCrimmon 1974).  Further expansion of the smallmouth bass range has come 

through human activities including the release of fish from bait buckets (Litvak and Mandrak 

1993) and from the construction of waterways and canals (Crossman 1991).  Range expansion 

has also occurred by natural dispersal through the watershed both from native and introduced 

sources (Robbins and MacCrimmon 1974).  These introductions have had large and often 

negative impacts on native fish communities (Jackson 2002; Vander Zanden et al. 1999).  
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In our analysis of the association between climate and growth in the smallmouth bass, we 

focused on 8 climate variables (cloud cover, frost frequency, precipitation, mean air temperature, 

minimum air temperature, maximum air temperature, summer air temperature, growing degree 

days above 10oC) and 4 somatic growth variables (body length increment for ages 1 to 4).  A 

previous study by Beamesderfer and North (1995) examined the relationship between growth and 

several environmental variables in 409 North American populations of smallmouth bass; in that 

study, age at quality length (280 mm) was used as an index of growth and was positively related 

to latitude and negatively related to mean air temperature and degree days above 10oC 

(Beamesderfer and North 1995).  We expand on this work by performing multivariate analyses 

(principal components analysis and Procrustes randomization tests) of growth and climate data, 

by analyzing additional climate variables (i.e., precipitation, cloud cover), and by examining 

differences between native and introduced populations. 

 

Methods 

 We obtained data on North American populations of smallmouth bass from five sources: 

(i) population survey data collected by the Ontario Ministry of Natural Resources (OMNR); (ii) 

angler tournament data collected by the Nova Scotia Department of Agriculture and Fisheries; 

(iii) electrofishing data collected by the State of Connecticut Department of Environmental 

Protection (Jacobs and O’Donnell 1996); (iv) data published in Carlander (1977); (v) data 

published in the primary literature after 1975.   

Body length information and calcified aging tissues were collected from smallmouth bass 

populations in Ontario between 1982 and 2001 by the OMNR using three types of sampling 

programs: the Near Shore Community Index Netting (NSCIN) program, the Fall Walleye Index 
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Netting (FWIN) program, and angling programs.  The NSCIN program requires standardized trap 

nets to be placed in random locations around lakes during the late summer and early autumn 

(Lester et al. 1996).  Angling programs typically involve a creel survey where anglers are 

interviewed and their fish sampled (e.g., Shuter et al. 1987); this occurs most frequently in the 

summer and autumn.  Other samples were obtained from the FWIN program that occurs in the 

autumn and places bottom-set multimesh monofilament gill nets at random locations around lakes 

(Morgan 2002).   

 Body lengths were measured and scale samples collected from angler tournaments 

conducted on Nova Scotia populations in 1995-1998 and from electrofishing surveys conducted 

on Connecticut lakes, reservoirs, and streams in 1988-1995.  Nova Scotia tournaments were 

conducted between May and October and detailed information can be found in MacMillan et al. 

(2002).  Each location in the Connecticut electrofishing surveys was sampled one to four times 

using night electrofishing during April-June and October-November (Jacobs and O’Donnell 

1996).   

We obtained additional growth data on North American populations from Carlander’s 

Handbook of Freshwater Fishery Biology (1977).  We also searched the primary literature for 

smallmouth bass growth data published after 1975 (Table 1).  For many populations (> 54%), 

sampling years were pooled to provide representative sample sizes.  We also limited our analyses 

to populations with sample sizes greater than 30, however, 93% of populations had sample sizes 

greater than 50 and 70% had sample sizes greater than 100. 

Back-calculations 

Many sampling programs targeted adult members of the population and therefore we had 

to estimate lengths at younger ages from scale measurements.  The OMNR and Nova Scotia scale 

samples were treated using a common back-calculation procedure that we were able to validate 
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independently.  For each of our two most extensively studied populations (Provoking Lake and 

Opeongo Lake in Ontario, Canada), body length and scale radius measurements at capture were 

available for over 300 fish (N for Provoking = 315, N for Opeongo = 447) covering a broad range 

in body sizes (6 to 40 cm).  For each population, body size and scale radius closely (r2 >= 0.94) 

followed a single allometric relationship ( bradiusscaleaLLength )(, = ).  Despite the large 

differences in lifetime growth pattern between them (Dunlop et al. 2005a), both populations 

exhibited essentially identical body-scale relationships (Analysis of Covariance, F1,623 = 0.27, P = 

0.60), with exponent estimates (b values) equal to 0.755 (Opeongo) and 0.744 (Provoking), and 

95% confidence intervals (±0.019) that overlapped the confidence intervals for exponent 

estimates derived from 15 additional populations where length ranges were large enough (lengths 

ranged at least between 15 to 40 cm) to provide reasonable estimates of b (mean for 15 

populations = 0.751, SD = 0.031).  Given that 17 populations in total exhibited an exponent 

estimate essentially identical to the Opeongo-Provoking values (~0.75), we felt confident in using 

this estimate when back-calculating growth histories for our OMNR and Nova Scotia samples.  

We used the following equation to generate these estimates, 

75.0)/(* captureatradiusScaleageearlieratradiusScalecaptureatLageearlieratL =  and 

we validated the procedure using marked and recaptured adult smallmouth bass sampled over 5 

years on Provoking Lake and Opeongo Lake (sampling outlined in Dunlop et al. 2005a).  For 

each individual, we compared back-calculated length estimates derived from scale samples taken 

at re-capture events with actual lengths observed at earlier capture events and found no statistical 

difference between estimated and actual lengths (t-value = -0.33, df = 68, P = 0.74).  The 

percentage error (|estimated fork length – actual fork length|/actual fork length) of the estimates 

ranged from 0.03% to 24% and was below 5% for the majority (83%) of individuals.  Scale ages 
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were also validated in the Provoking Lake and Opeongo Lake smallmouth bass populations 

against ages obtained from opercula.   

Back-calculated lengths from scale measurements were available for all Connecticut 

populations (Jacobs and O’Donnell 1996).  We used back-calculated lengths where available 

from Carlander (1977) and from other published sources.  In addition, some populations were 

characterized using observed sizes at age.  Populations that lacked data on young age classes (i.e., 

due to a lack of sampling or back-calculation data) were not used in our analyses.  The Fraser-Lee 

back-calculation method (Carlander 1977; Francis 1990; Klumb et al. 1999) was used in the 

Connecticut study, the studies summarized in Carlander (1977), and in other published studies.  

To ensure that differences in back-calculation methodologies were not driving the results of our 

study, we repeated all of our subsequent statistical analyses using Fraser-Lee back-calculated 

lengths for the OMNR and Nova Scotia populations.  Since the results from both sets of analyses 

were nearly identical, we are confident that our findings are not the product of mixing back-

calculation methods.  The results we will discuss in detail are those derived using our validated 

back-calculation method for the OMNR and Nova Scotia populations and the published estimates 

of size at age provided in the original literature sources.  

Growth variables 

 Mean size (fork length) at age was estimated for each smallmouth bass population.  

Where necessary, we converted total length (TLEN) to fork length (FLEN) using the conversion 

(FLEN = TLEN• 1.04-1) published in Carlander (1977).  For populations where there was more 

than one source of data, mean size at age was averaged.  Given that size at a later age is not 

independent of size at earlier ages (e.g., size at age 2 = size at age 1 + growth), using consecutive 

size at age data directly in multivariate analyses might produce spurious results (Jackson 1997).  

Therefore, we used body length increments as variables in our study.  Length increments for ages 
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1 to 4 (estimated by subtracting mean size at age a-1 from mean size at age a) were used to avoid 

problems with missing data (some populations lacked data on ages above 5 and validity of age 

and back-calculation estimates likely becomes increasingly poor after age 5).  We therefore had 

estimates of four growth variables for each smallmouth bass population: length increment from 

age 1 to 2, age 2 to 3, age 3 to 4, and age 4 to 5. 

Climate variables  

We obtained information on climate from the CRU Global Climate Dataset available 

through the Intergovernmental Panel on Climate Change (IPCC), Data Distribution Centre  

(http://www.cru.uea.ac.uk/link).  These data consisted of 0.5º latitude by 0.5º longitude gridded 

mean monthly climatology information for the period 1961-1990.  The mean monthly data were 

based on interpolation of data collected by surface weather stations (number of stations ranged 

between 3615 and 19,800 depending on the climate variable) and are considered to be of high 

quality (New et al. 1999).  We obtained the mean monthly climate data for each smallmouth bass 

population using its geographical coordinates.  We averaged the mean monthly data to obtain 

annual estimates of cloud cover, ground frost frequency, precipitation, mean air temperature, 

minimum air temperature, and maximum air temperature; we also estimated summer mean air 

temperature and annual degree days above 10oC.  Monthly degree days above 10oC were 

determined by subtracting 10oC from each monthly mean temperature and then by multiplying by 

the total number of days in each month.  This was then summed for the entire year to estimate the 

annual degree days above 10oC.  We chose summer air temperature and degree days above 10 oC 

as additional climate variables in our study because they are related to length of the growing 

season for smallmouth bass and past research suggests that these variables and growing season 

length are important correlates of growth in this species (Beamesderfer and North 1995; Shuter 

and Post 1990). 
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Distribution map 

 We used the range map by Robbins and MacCrimmon (1974) to identify the native 

distribution of smallmouth bass in North America.  The range map was digitized and the 

smallmouth bass populations for which we had data were placed on the map according to their 

coordinates.  Populations that fell within the native range were classified as native and 

populations that fell outside of the native range were classified as introduced.  Using ArcGIS 

(Esri Inc. 2001, version 8.0), the centre of the native distribution was identified as the geographic 

centroid of a polygon with the polygon representing the outline of the native distribution.  The 

distance (in m) from the geographical center of the native distribution was estimated for each 

population.   

Statistical analyses 

 We obtained estimates of the growth and climate variables for 125 smallmouth bass 

populations (44 were native and 81 were introduced; Figure 1).  Degree days above 10oC were 

loge transformed for linearity in all subsequent analyses.  We performed simple linear regressions 

between the climate and growth variables and assessed statistical significance of relationships 

using Analysis of Variance (ANOVA).  To control for possible Type I errors with multiple tests, 

we adjusted significance levels using the Bonferroni correction (Quinn and Keough 2002).  The 

adjusted significance level, P < 0.00156, was estimated as 0.05 (the un-corrected P-value) 

divided by the total number of tests (32).   

Principal components analysis (PCA) was performed separately on the climate and 

growth data using a correlation matrix (Legendre and Legendre 1998).  A Procrustes analysis 

(Jackson 1995; Legendre and Legendre 1998) was run with the scores (standardized to a variance 

of 1) of the first two principal components for both the climate and growth PCAs as inputs.  We 

used the first two PCA components as inputs to the Procrustes analysis so that we could reduce 
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the multiple, often correlated variables down to two independent variables that explain most of 

the variation.   

A Procrustes test is used to analyze the concordance between two data sets (climate and 

growth in this case).  In a Procrustes analysis, one of the data configurations (i.e., the climate 

matrix) is rotated and scaled against a reference configuration (i.e., the growth matrix) until the 

residual sum-of-squares is minimized (Jackson 1995).  To evaluate the significance of the 

Procrustes rotation and the concordance between the climate and growth datasets, we used the 

Procrustes randomization test (PROTEST) developed by Jackson (1995).  The PROTEST is more 

powerful than the commonly used Mantel test and can assess the concordance between matrices 

for individual observations (Peres-Neto and Jackson 2001).  In a PROTEST, the m2 is a 

goodness-of-fit statistic that describes the association between data matrices; smaller values 

indicate a higher concordance (Jackson 1995).  The steps in a PROTEST are as follows: (i) 

estimate the observed m2 for two data sets (i.e., by minimizing the sum-of-square residuals); (ii) 

randomize the rows of one of the matrices and recalculate m2; (iii) repeat the first two steps 

numerous times to give a distribution of random m2 values (Jackson 1995).  The PROTEST 

counts the number of random m2 statistics that have a residual sum-of-squares smaller than or 

equal to the observed m2 and a P-value can be generated to test the observed m2 for significance 

(Jackson 1995).   

We performed a PROTEST using our growth data set as the reference configuration and 

we repeated the randomization step 9999 times to assess the significance of the m2 statistic 

(Jackson 1995).  Residual distances between matrices for each observation (observations are 

populations in this case) were calculated in order to identify the concordance between growth and 

climate for individual populations; larger residuals indicate poorer concordance (Jackson 1995; 

Peres-Neto and Jackson 2001).   
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We performed two analyses of PROTEST residuals.  First, to evaluate our prediction that 

introduced populations have lower concordance with climate, we tested for a statistical 

difference, using ANOVA, between introduced and native populations in the magnitude of 

PROTEST residuals (with residuals loge transformed for normality).  Second, we tested for a 

relationship between PROTEST residual and distance to the center of the native distribution (with 

both variables loge transformed for normality) in order to determine if the concordance between 

climate and growth deteriorates as distance from the center of the native distribution increases.   

Analyses of Ontario populations 

We chose the Ontario populations as a focus for further study because they were 

represented by a relatively large sample of both native and introduced populations and because 

they were sampled with similar methodologies (i.e., by the OMNR sampling programs).  We 

performed three analyses of the Ontario populations: (i) an ANOVA to compare the residuals of 

native and introduced populations; (ii) a regression of PROTEST residual on distance to the 

center of the native distribution; (iii) interpretation of Procrustes superimposition plots.  The 

Procrustes superimposition plot (Peres-Neto and Jackson 2001), where residual vectors from the 

PROTEST are plotted with the growth vectors from the PCA, was used to graphically interpret 

the relationship between variables and the magnitude and direction of PROTEST residuals.  In a 

Procrustes superimposition plot, the starting position of a residual vector represents the observed 

position of the population in the reference (i.e., growth) matrix and the arrow head (the apex of 

the residual vector) represents the position of the population in the rotated (i.e., climate) matrix 

after it has been configured; the length of each residual vector is the magnitude of the individual 

residual for a population (Peres-Neto and Jackson 2001).  By comparing Procrustes 

superimposition plots, we can determine if somatic growth in native and introduced Ontario 

populations differ systematically in their response to climate.   
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 To statistically compare the direction of residual vectors between native and introduced 

populations in Ontario, we divided populations into one of four quadrants depending on the 

direction of their residual vector.  Quadrant A was assigned to populations with residual vectors 

pointing towards a positive value on the first (i.e., x) and second (i.e., y) Procrustes axis, quadrant 

B was assigned to those pointing to a positive value on the first axis and a negative value on the 

second axis, quadrant C was given to those pointing to a negative value on the first and second 

axis, and quadrant D was assigned to those pointing to a negative value on the first axis and a 

positive value on the second axis.  Chi-square tests were done to determine if the direction of 

residual vectors among populations from native or introduced populations was different from 

random.   

 

Results   

 There was considerable variation among populations in somatic growth (Table 1).  Length 

increment for age 1 (i.e., growth from age 1 to 2) varied from 4.1 to 12.5 cm (mean ± SD = 6.8 ± 

1.4 cm); for age 2, it varied from 2.5 to 10.0 cm (mean ± SD = 5.9 ± 1.4 cm); for age 3, it varied 

from 1.0 to 8.2 cm (mean ± SD = 5.0 ± 1.3 cm); and for age 4, it varied from 1.8 to 8.0 cm (mean 

± SD = 4.2 ± 1.2 cm).    

 The bivariate regressions between climate and growth variables contained a lot of 

variation but some notable patterns were detected.  When we adjusted P-values using the 

Bonferroni correction, there was a significant (at P < 0.00156) positive relationship between 

growth at age 2 and all temperature variables, between growth at age 1 and summer air 

temperature, between growth at age 3 and summer air temperature, and between growth at age 3 

and growing degree days above 10oC (Table 2).  There was a significant (at P < 0.00156) 
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negative relationship between growth at age 2 and frost frequency (Table 2).  Cloud cover and 

precipitation did not vary significantly with any growth variable and there were no significant 

relationships between any climate variable and growth at age 4.   

 For the PCA of climate data, the first and second axes (principal components) explained 

76% and 16% of the variation respectively.  The first principal component contrasted frost 

frequency with temperature variables and the second component differentiated precipitation and 

cloud cover from the other variables (Figure 2).  The PCA scores of introduced populations were 

shifted slightly to the right of the native populations (Figure 2), indicating slightly colder 

temperatures in introduced populations.  There was an outlier from Pine Flat Lake in California 

where there were low levels of cloud cover and precipitation. 

 The first and second components of the growth PCA explained 49% and 28% of the 

variation.  The first principal component placed growth at all ages in the positive direction with 

little overall difference in magnitude and direction between variables (Figure 2).  The second 

component separated growth at early ages (1 and 2) from growth later in life (age 3 and 4; Figure 

2).  Introduced and native population PCA scores were scattered and showed no distinct pattern 

(Figure 2). 

Results of the PROTEST indicated a significant concordance between climate and growth 

(residual sum of squares = 1.54; m2 = 0.95; P = 0.003).  The largest residual (0.38) was for Pine 

Flat Lake in California (introduced) and the smallest residual (0.01) was for Skootamata Lake in 

Ontario (native).  In our first test of PROTEST residuals, the residuals of introduced populations 

were significantly larger than for native populations (F1,123 = 7.79; P = 0.006).  In our second test, 

we found a significant positive relationship between residual magnitude and distance to the center 

of the native distribution (F1,123 = 4.11; P = 0.04).    
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There was a contrast between the PROTEST residuals of introduced and native Ontario 

populations.  Introduced Ontario populations had significantly larger residuals (F1,40 = 22.91; P = 

0.00002) and there was a significant positive relationship between residual magnitude and 

distance to the center of the native distribution (F1,40 = 18.12; P = 0.00013; r2 = 0.32; Figure 3).  

The positive relationship in Figure 3 is apparently being driven by the introduced populations and 

analysis without the native populations substantially increases the amount of variance explained 

(F1,18 = 20.39; P = 0.0003; r2 = 0.54). 

The Procrustes superimposition plots indicated interesting contrasts between native and 

introduced Ontario populations (Figure 4).  The residual vectors had clumped apexes in both 

native and introduced populations but the clump for the native populations was located close to 

the origin while the clump for the introduced populations was located well above and to the left 

of the origin (Figure 4).  This indicated a similar within category (i.e., native or introduced) 

climate but a different between category climate.  This difference in climate between native and 

introduced populations was probably related to the more northern distribution of introduced 

relative to native populations in Ontario (Figure 1).  The orientation of native Ontario residual 

vectors was more varied than that of the introduced populations, which were generally oriented in 

directions opposite to those defined by the early growth vectors (Figure 4).  This indicated a 

varied growth response in native populations but generally faster observed growth in many of the 

introduced populations than was predicted by their climate characteristics.  Accordingly, the 

direction of residual vectors did not differ from random in native Ontario populations (Figure 4c; 

X2 = 3.09; df = 3; P = 0.38) but differed from random in introduced Ontario populations (Figure 

4d; X2 = 10.68; df = 3; P = 0.01).   
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Discussion 

 Climate contributed to variation in somatic growth among North American smallmouth 

bass populations; both the bivariate relationships between variables and the significant PROTEST 

supported this conclusion.  Of the climate variables, those related to air temperature had the 

strongest relationship with growth, and in particular, growth at young ages.  Warmer air 

temperatures result in generally higher thermal input to a waterbody and higher water 

temperatures (Matuszek and Shuter 1996).  Warmer water temperatures and longer growing 

seasons positively influence smallmouth bass growth and survival (King et al. 1999; Shuter et al. 

1980) which would explain the positive association between air temperature and growth we 

found in this study.  

 Smallmouth bass typically mature between ages 4 and 6 (Dunlop et al. 2005a) and thus, 

the influence of climate appeared stage-specific because it had a stronger relationship to growth 

at young, immature ages than typically mature ages.  For young age classes, the positive 

relationship between temperature and growth means that larger body sizes can be achieved in 

southern, warmer climates.  Larger body sizes at the end of the first growing season are 

associated with increased survival probabilities over the winter in smallmouth bass (Shuter et al. 

1980) and in a variety of other species (Garvey et al. 1998; Hurst and Conover 1998; Schultz et 

al. 1998).  In northern climates, temperatures are colder, growing seasons shorter, growth rates 

slower, and survival of young age classes limited; these relationships have likely been major 

drivers of the northern range limit in this species (Shuter and Post 1990).  Similar to what we 

observed for the smallmouth bass, a positive relationship between early growth and temperature 

has been found in other freshwater sport fish such as walleye, Sander vitreus (Lester et al. 2000), 

and bluegill, Lepomis macrochirus (Tomcko and Pierce 2001).  This relationship does not appear 
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universal, however, given that a recent study of yellow perch, Perca flavescens, found no 

association between temperature and growth in a survey of 72 Ontario populations (Purchase et 

al. 2005). 

Whereas climate was related to early growth, biotic factors might play a large role later in 

life.  In walleye S. vitreus, pre-maturation growth is influenced by air temperature (Lester et al. 

2000) while asymptotic length is related to population density (Sass et al. 2004).  In bluegill, L. 

macrochirus, the significant relationship between size at age and summer air temperature 

decreases with age whereas the relationship between size at age and lake size strengthens with 

age (Tomcko and Pierce 2001).  In climatically similar smallmouth bass populations from Nova 

Scotia (MacMillan et al. 2002) and Ontario (Dunlop et al. 2005a), small adult body sizes are 

found in lakes that lack other predatory fish species.  Another reason for more variation in the 

relation between climate and growth at older ages is that after maturation, energy is invested into 

reproduction (Lester et al. 2004).  The somatic growth patterns observed in a population will be 

influenced by the timing of maturation and how much energy is invested in reproduction (Lester 

et al. 2004).  As a result, the relation between climate and growth is weaker for typically mature 

age classes.  Therefore, instead of being primarily driven by climate, adult growth might be 

shaped more by biotic factors such as population density, food availability, fish community 

structure, and reproductive investment.  

Numerous studies have examined somatic growth rate variation along latitudinal clines 

(e.g., Beamesderfer and North 1995; Jensen et al. 2000) but none that we know of have examined 

how the relationship differs in introduced populations.  In our study, introduced populations had 

higher PROTEST residuals than native populations indicating less concordance between climate 

and growth.  Furthermore, higher residuals were observed in those populations furthest from the 

center of the native distribution.  There are several possible reasons for the pattern of larger 
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residuals in non-native populations.  First, some introduced populations might not have been 

established long enough to adapt to the climate in the new environment.  A few populations in 

Nova Scotia, for example, were introduced as recently as 10-25 years ago (MacMillan et al. 

2002).  Second, the climate (and possibly other environmental conditions) in those locations 

outside the native distribution might be more extreme and not within the climate-growth response 

range typically experienced by smallmouth bass.  Although there is a positive relationship 

between temperature and growth, for instance, there might be an upper limit to the growth, thus 

reducing or altering the response of growth to climate usually observed in native populations.  

Third, recently introduced populations might show fast somatic growth rates as their population 

expands into an environment with little intra-specific competition for food or other resources 

(e.g., Shuter and Ridgway 2002).  In this third case, before population equilibrium is reached, the 

linkage between somatic growth and climate would be quantitatively different from the linkages 

characteristic of native populations at equilibrium.  

The large Procrustes residuals of introduced populations were likely also the result of 

multiple population sources.  Due to the nature and breadth of smallmouth bass introductions, we 

could not identify the exact source or date of origin of each introduced population.  The large 

residuals do not imply that climate and growth are not related in introduced populations.  Climate 

is still expected to influence growth in introduced populations but the response is just weaker, 

more varied, or atypical of what is normally observed within the native distribution.  The multiple 

sources (hatcheries versus natural dispersal etc.), varied time since introduction (i.e., from 10 to 

200 years ago), the vast range (i.e., from East to West and North to South) over which 

populations have been introduced, and varied ecological conditions (i.e., food availability) have 

likely all contributed to the residual variation observed in introduced populations.  What our 

study shows is that climate-growth relationships are distinct between introduced and native 
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populations.  Future research could aim at pinpointing the forces that have shaped the differences 

in these relationships. 

The patterns we observed in the Ontario populations provide further evidence as to why 

the association between climate and growth was weakened in introduced populations.  The 

relationship between climate and growth weakened with increasing distance from the native 

distribution.  This might be because the climate becomes more severe in the north where the 

introductions have occurred and (or) because the range expansion has proceeded from south to 

north making those populations furthest north, the most recently introduced.  From the analysis of 

residual vector directions, we also found evidence that growth was faster than what climate 

typically predicted in the introduced Ontario populations.  Fast somatic growth might occur 

because population densities are low in recently introduced populations and not limited by 

resources.  Another possibility is that populations have adapted to the cold temperatures or short 

growing seasons in Ontario (the northern limit of the species’ range), by growing faster (or by 

increasing their capacity for growth), thus following the pattern demonstrated for Atlantic 

silversides, Menidia menidia (Yamahira and Conover 2002).  In this case, the fact that introduced 

Ontario populations occur in more northern latitudes than the native populations, might explain 

why we do not see the same pattern within the native range in Ontario.  Populations introduced to 

the south of the native range might initially show faster growth, like those introduced in northern 

Ontario, as they expand into their new environments.  However, once stabilized, those southern 

introduced populations might adapt to the warmer climatic conditions in ways that vary from that 

observed in the north.   

The bivariate relationships between climate and growth contained a large amount of 

unexplained variation (Table 2).  The poorer concordance between climate and growth exhibited 

by the introduced populations no doubt produced some of the variability.  Differences in the 
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year(s) of population sampling have likely also contributed to the variation.  In our study, the 

climate variables represented a 30 year mean whereas the growth variables were measured along 

a shorter time-scale (typically over 1-4 years).  However, the use of back-calculations and multi-

year sampling likely reduced much of the potential sampling-year effects because the growth 

histories of smallmouth bass of multiple ages, sampled over multiple years, were typically used to 

calculate the length increments for each population.  Therefore, the length increments for a 

population represented the growth pattern averaged over several cohorts and would be less 

influenced by short-term fluctuations in climate.  We also acknowledge that although significant 

steps were taken to reduce them (i.e., through validation), errors in aging and back-calculations 

might have contributed to the observed variation.     

Differences between the sampling years of introduced and native populations might have 

also contributed to the variation around bivariate relationships.  If introduced populations were 

usually sampled more recently than native populations, discrepancies between climate and 

growth in introduced populations might reflect recent trends in climate.  However, although 

introduced populations in our study were on average sampled in slightly more recent years (mean 

sampling year was 1987 for introduced and 1982 for native populations; but note that publication 

year was used for some populations for which sampling year was not available), in Ontario, 

residuals of introduced populations were larger than native populations even though their 

sampling year(s) did not differ (mean sampling year was 1995 for both introduced and native 

Ontario populations).  Therefore, although differences in the timeframe of sampling might have 

contributed to the variation, they do not appear to be driving the relationships observed.   

The use of air temperature rather than water temperature in our study might have also 

contributed to the observed variation.  Waterbodies of different sizes or types might have similar 

climates but different water temperatures (e.g., Oswald and Rouse 2004; Shuter et al. 1983).  
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However, this fact is less likely to have influenced patterns among lake populations because the 

smallmouth bass is largely a littoral species and water temperatures in the shallow littoral areas of 

lakes are not as sensitive to the size of the waterbody (e.g., Dunlop et al. 2005a; Shuter et al. 

1980; Shuter et al. 1983; Shuter et al. 1985).  We also want to point out that our study focused on 

climate and how its association with growth weakens in introduced populations.  We therefore 

did not explore many of the other variables that have likely contributed to the variation in growth.  

Variables found to contribute to growth variation in other freshwater species, and that might have 

similar effects in the smallmouth bass, include lake size (Purchase et al. 2005; Shuter et al. 1998), 

water clarity (Lester et al. 2000; Shuter et al. 1998; Tomcko and Pierce 2001), maximum lake 

depth (Tomcko and Pierce 2001), and food supply (Chen and Harvey 1995).   

Past studies of environmental-growth linkages among geographically diverse smallmouth 

bass populations (e.g., Beamesderfer and North 1995; Putman et al. 1995), although 

comprehensive, have relied on traditional regression and correlation statistics.  The multivariate 

test we used, PROTEST, was very useful in identifying patterns of concordance between climate 

and growth that otherwise would be difficult to detect.  Whereas many of our bivariate 

relationships were weak, the Procrustes test was highly significant.  Thus, although the 

relationship between individual growth and climate variables was often highly variable (with low 

r2 values), there was a strong overall association between climate and growth that could only be 

detected through an appropriate multivariate test such as Procrustes.   

In our analyses, we employed a Procrustes fit that minimized the residual sum-of-squares 

between the climate and growth matrices; this is the most traditional approach (Peres-Neto and 

Jackson 2001).  However, it is possible to use other methods for minimizing differences in 

Procrustes analysis, for example, the repeated-medians fit, a resistant-fit approach (e.g., Olden et 

al. 2001).  Just as is the case for non-parametric bivariate fits, resistant-fit Procrustes analysis 
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would be less influenced by outliers than the traditional least-squares fit (Siegel and Benson 

1982) and although the least-squares approach detected meaningful patterns in our analysis, 

future studies might benefit from considering other, less traditional Procrustes fits.     

The current study provides useful predictions of the impact of climate change on existing 

smallmouth bass populations and insights into the ways that newly introduced smallmouth bass 

populations might differ from long-established native populations.  Our results suggest that 

climate warming will lead to faster growth rates, most notably at young ages.  Juvenile growth is 

tightly linked to the timing of maturation (Dunlop et al. 2005b) and thus, climate change could 

have a significant impact on reproductive schedules through its impact on somatic growth.  

Furthermore, smallmouth bass introductions can have a large and negative impact on native fish 

communities (Jackson 2002; MacRae and Jackson 2001; Vander Zanden et al. 1999).  The 

distribution of smallmouth bass has been expanding throughout the world as a direct result of 

conscious human actions (Iguchi et al. 2004; Robbins and MacCrimmon 1974).  This range 

expansion will likely continue in the future and be facilitated by climate warming, particularly 

along the northern part of the range (Shuter and Post 1990) where some northerly range 

expansion has already been observed (Figure 1) since the Robbins and MacCrimmon (1974) map 

was made.  Our results suggest that as these populations invade new environments, they might 

exhibit considerable variation in life history characteristics depending on the origin of the initial 

colonists, the geographical location of the introduction, and the length of time since colonization.  

These differences could play a significant role in determining the impact of these invasions on 

native fish communities, and therefore, further research on the biological factors that shape these 

differences would be of direct practical use and, in addition, would provide valuable insight to 

our understanding of the basic biology of smallmouth bass. 
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Table 1.  Characteristics of 125 smallmouth bass, Micropterus dolomieu, populations.   

Length increment (cm) Waterbody Type Loc Category Source 

Age 1 Age 2 Age 3 Age 4 

Alexander Lake CT Introduced CT Electrofishing 5.8 5.8 3.6 2.1 

Aylesford Lake NS Introduced NS Tournament 6.2 4.4 4.3 4.8 

Balsam Lake ON Native OMNR 6.7 5.9 5.1 4.3 

Bantam Lake CT Introduced CT Electrofishing 4.1 4.9 5.9 3.8 

Barkhamsted Lake CT Introduced CT Electrofishing 7.8 8.7 6.2 4.0 

Bashan Lake CT Introduced CT Electrofishing 5.9 5.6 3.8 4.0 

Bennett River MD Introduced Carlander (1977) 7.6 6.6 1.0 2.2 

Bethany Lake CT Introduced CT Electrofishing 8.8 9.3 6.2 3.3 

Big Buffalo Creek River MO Native Reed and Rabeni (1989) 5.4 4.7 4.8 4.3 

Big Gull Lake ON Native OMNR 6.1 4.8 4.4 3.5 

Big Lake Lake ME Introduced Carlander (1977) 6.8 6.9 5.8 4.9 

Big Piney River MO Native Carlander (1977) 7.1 5.4 5.1 5.3 

Black Pond Lake CT Introduced CT Electrofishing 5.8 5.4 7.4 3.8 

Black River MO Native Carlander (1977) 8.6 7.6 6.3 5.9 

Black River Lake NS Introduced NS Tournament 7.0 4.2 3.2 3.7 

Boot Lake ON Introduced OMNR 6.7 4.5 3.6 4.3 

Buckhorn Lake ON Native OMNR 6.1 5.4 4.7 5.1 

Candlewood Lake CT Introduced CT Electrofishing 6.3 6.7 6.7 5.8 

Catoctin River MD Introduced Carlander (1977) 9.3 5.1 5.4 5.6 

Cedar Lake ON Introduced OMNR 7.1 5.2 4.1 3.3 
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Clarke Lake PA Native Carlander (1977) 8.8 8.3 4.6 2.7 

Clear Lake WI Introduced Marinac-Sanders and 
Coble (1981) 

4.9 4.1 5.3 5.5 

Clearwater River ID Introduced Carlander (1977) 5.7 4.9 4.6 2.7 

Cliff Lake ON Introduced OMNR 5.5 4.4 3.5 3.4 

Connecticut, central River CT Introduced CT Electrofishing 8.8 7.7 5.9 3.8 

Connecticut, north River CT Introduced CT Electrofishing 8.3 6.7 5.5 4.1 

Conowingo Pond River PA Introduced Heisey et al. (1980) 7.8 5.2 7.7 3.8 

Couchiching Lake ON Native OMNR 6.8 6.0 6.6 5.6 

Coventry Lake CT Introduced CT Electrofishing 6.3 5.7 5.7 3.8 

Crooked Pine Lake ON Introduced OMNR 6.5 6.6 7.3 5.5 

Crotch Lake ON Native OMNR 6.6 5.9 4.9 5.9 

Crystal Lake CT Introduced CT Electrofishing 4.3 7.2 6.6 5.8 

Dashwa Crow Lake ON Introduced OMNR 8.5 6.5 4.1 3.4 

Deep Creek Lake MD Introduced Carlander (1977) 7.6 8.7 7.0 5.1 

Des Moines River IA Native Carlander (1977) 10.6 6.6 4.1 4.6 

Dickey Lake ON Native OMNR 5.9 4.6 4.1 4.0 

Drag Lake ON Native OMNR 5.3 4.7 3.3 4.0 

Easton Lake CT Introduced CT Electrofishing 8.4 8.7 7.5 3.6 

Fall Creek Lake NY Introduced Carlander (1977) 5.5 3.0 3.1 2.0 

Fort Gibson Lake OK Native Carlander (1977) 7.3 6.0 5.2 2.6 

Galena River WI Native Forbes (1989) 6.1 4.9 8.1 2.5 

Gardner Lake CT Introduced CT Electrofishing 6.7 6.6 5.9 4.9 
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Gaspereau Lake NS Introduced NS Tournament 6.1 3.9 3.4 2.6 

Cayuga Lake NY Introduced Carlander (1977) 4.8 4.7 4.3 4.0 

George Lake NS Introduced NS Tournament 5.3 3.7 3.1 2.7 

Go Home Lake ON Native OMNR 6.5 5.5 5.5 4.1 

Gould Lake ON Native OMNR 8.0 10.0 7.0 4.3 

Grand Lake NS Introduced NS Tournament 5.9 4.3 3.6 3.1 

Highland Lake CT Introduced CT Electrofishing 6.6 6.0 4.9 4.2 

Housatonic Lake CT Introduced CT Electrofishing 6.5 4.3 3.9 5.7 

Idlewild Lake PA Introduced Carlander (1977) 8.7 7.6 7.3 5.4 

Jordan River IL Native Carlander (1977) 8.3 7.3 3.9 3.8 

Joseph Lake ON Native OMNR 4.5 4.6 4.4 4.7 

Kaministiquia  River ON Introduced Stephenson and Momot 
(1991) 

9.5 4.2 1.8 6.3 

Kashwakamak Lake ON Native OMNR 6.8 5.8 5.8 4.0 

Kennebec Lake ON Native OMNR 6.5 5.4 4.2 3.8 

Killams Lake NS Introduced NS Tournament 6.3 4.3 3.1 3.1 

Koshlong Lake ON Native OMNR 5.9 5.1 5.3 7.3 

Lake of the Woods Lake ON Introduced OMNR 7.8 4.9 3.9 3.7 

Lerome Lake ON Introduced OMNR 6.8 6.7 6.8 3.6 

Lillinonah Lake CT Introduced CT Electrofishing 7.3 5.8 5.4 5.6 

Little Gull Lake ON Introduced OMNR 8.0 6.6 5.9 5.0 

Little Miami River OH Native Carlander (1977) 7.3 7.1 5.3 4.3 

Little River Lake NS Introduced NS Tournament 6.2 4.4 3.7 3.8 
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Little River OK Native Carlander (1977) 7.8 5.0 4.3 4.7 

Little Vermillion Lake ON Introduced OMNR 5.8 3.4 3.7 3.3 

Loch Raven Lake MD Introduced Carlander (1977) 9.7 10.0 7.8 5.8 

Mansfield Hollow Lake CT Introduced CT Electrofishing 7.6 7.5 4.6 4.1 

Maquoketa River IA Native Paragamian (1984) in 
Weathers and Bain (1992)  

5.9 6.4 5.5 6.2 

Mashapaug Lake CT Introduced CT Electrofishing 6.1 5.3 4.7 4.3 

Massie River OH Native Carlander (1977) 6.6 6.9 5.5 4.0 

Middle Bolton Lake CT Introduced CT Electrofishing 6.3 5.1 4.1 3.4 

Milo Lake NS Introduced NS Tournament 6.6 5.8 4.2 3.0 

Muddy Run Pond River PA Introduced Heisey et al. (1980) 8.5 5.5 3.5 2.4 

Muscatatik River IN Native Carlander (1977) 4.1 4.9 4.1 6.2 

Nebish Lake WI Native Serns (1984) 5.8 6.2 4.9 5.4 

New River River VA Introduced Austen and Orth (1988) in 
Weathers and Bain (1992) 

6.6 5.8 4.3 2.8 

Nishin Lake ON Introduced OMNR 5.6 4.4 3.7 2.9 

Norris Lake TN Native Carlander (1977) 12.5 8.2 4.9 3.6 

North Eels Lake ON Native OMNR 5.8 5.4 4.0 4.1 

Nym Lake ON Introduced OMNR 6.4 5.5 5.6 6.0 

Oneida Lake NY Native Carlander (1977) 6.9 6.5 5.3 3.2 

Opeongo Lake ON Introduced OMNR; Dunlop et al. 2005a 4.8 4.2 4.4 4.8 

OPP Lake NS Introduced NS Tournament 8.2 5.8 4.3 4.3 

Panuke Lake NS Introduced NS Tournament 9.8 6.7 4.8 3.7 

Pats Creek River WI Native Forbes (1989) 7.8 6.8 4.9 4.1 
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Pefferlaw River ON Native Robbins and MacCrimmon 
(1977) 

6.5 6.1 5.1 4.3 

Pekagoning Lake ON Introduced OMNR 9.4 8.7 5.6 3.5 

Pickerel Lake ON Introduced OMNR 7.1 6.3 5.7 5.3 

Pine Flat Lake CA Introduced Carlander (1977) 8.1 8.7 5.3 4.6 

Pocotopaug Lake CT Introduced CT Electrofishing 5.6 7.0 7.3 5.9 

Porters Lake NS Introduced NS Tournament 7.5 5.8 4.7 3.8 

Potomac River MD Introduced Carlander (1977) 8.5 5.4 4.2 4.3 

Provoking Lake ON Introduced OMNR; Dunlop et al. 2005a 4.9 3.5 3.2 2.8 

Pseudo Lake ON Introduced OMNR 6.5 5.1 2.6 3.8 

Quabbin Lake MA Introduced Carlander (1977) 7.7 8.6 6.6 4.4 

Quinebaug Lake CT Introduced CT Electrofishing 6.8 7.5 6.0 1.8 

Rainbow Lake CT Introduced CT Electrofishing 7.3 8.8 7.3 4.0 

Red Cedar River WI Native Carlander (1977) 8.7 8.0 5.3 5.2 

Rice Lake ON Native OMNR 7.8 6.3 5.5 4.5 

Rosseau Lake ON Native OMNR 5.7 5.1 5.0 4.9 

Salmon River ID Introduced Carlander (1977) 5.3 4.1 3.9 2.7 

Salmon River Lake NS Introduced NS Tournament 9.2 6.6 4.6 2.9 

Salmon Trout Lake ON Native* OMNR 5.4 6.6 4.9 3.5 

Sandusky River OH Native Carlander (1977) 7.7 5.0 5.6 8.0 

Saugatuck Lake CT Introduced CT Electrofishing 6.3 6.7 4.5 3.8 

Shenipsit Lake CT Introduced CT Electrofishing 6.1 4.9 4.7 4.7 

Shoal Lake ON Introduced OMNR 6.8 5.0 4.8 4.2 
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Shoals Reach River AL Native Slipke et al. (1998); 
Weathers and Bain (1992) 

7.8 8.2 8.2 5.3 

Simcoe Lake ON Native OMNR 5.9 5.8 5.4 5.5 

Skootamata Lake ON Native OMNR 5.9 4.9 4.7 4.3 

Smoke Lake ON Introduced OMNR 5.1 4.7 4.7 4.4 

Snake River ID Introduced Carlander (1977) 5.9 5.9 3.4 2.5 

Spectacle Lake NS Introduced NS Tournament 6.5 6.1 4.7 3.3 

Stillwater River OH Native Carlander (1977) 6.1 7.8 6.8 5.9 

Tadenac Lake ON Native Carlander (1977) 6.9 2.5 3.9 5.9 

Terramuggus Lake CT Introduced CT Electrofishing 5.1 5.3 5.2 3.4 

Turkey River IA Native Carlander (1977) 6.1 6.8 5.1 4.7 

Twelve Mile Lake ON Native OMNR 7.0 7.0 4.9 5.4 

Wangum Lake CT Introduced CT Electrofishing 5.8 6.3 7.0 5.3 

Waramaug Lake CT Introduced CT Electrofishing 6.1 4.5 6.5 6.3 

West Hill Pond Lake CT Introduced CT Electrofishing 6.9 4.9 3.5 3.1 

West Thompson Lake CT Introduced CT Electrofishing 7.9 6.0 4.1 2.7 

Wyassup Lake CT Introduced CT Electrofishing 8.8 7.6 6.1 5.0 

Zoar  Lake CT Introduced CT Electrofishing 6.1 5.7 4.7 4.9 

*fell on the border of the native and introduced range and category is unsure 

‘River’ includes streams and creeks and ‘Lake’ includes reservoirs and ponds; Loc = state or 

province abbreviation; Source = Connecticut electrofishing survey (CT Electrofishing), Nova 

Scotia angling tournament (NS Tournament), Ontario Ministry of Natural Resources sampling 

program (OMNR), or published data (showing reference).   
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Table 2.  Statistics for bivariate linear regressions between growth and climate variables. 

Dependent variable  Independent variable  r2  P-value Intercept  Slope 

Age 1 growth Cloud cover 0.02 0.17 10.12 -0.052 

Age 1 growth Frost frequency 0.08 0.00 8.56 -0.013  

Age 1 growth Precipitation 0.01 0.35 6.34 0.018 

Age 1 growth Mean temperature 0.07 0.00 6.07 0.010 

Age 1 growth Minimum temperature 0.07 0.00 6.66 0.010 

Age 1 growth Maximum temperature 0.07 0.00 5.52 0.010 

Age 1 growth Summer temperature 0.09 0.00* 4.04 0.015 

Age 1 growth Ln(Degree days 10) 0.08 0.00 -1.99 0.952 

Age 2 growth Cloud cover 0.01 0.36 8.25 -0.037 

Age 2 growth Frost frequency 0.14 0.00* 8.33 -0.018 

Age 2 growth Precipitation 0.00 0.48 5.54 0.014 

Age 2 growth Mean temperature 0.13 0.00* 4.84 0.015 

Age 2 growth Minimum temperature 0.13 0.00* 5.67 0.015 

Age 2 growth Maximum temperature 0.12 0.00* 4.10 0.014 

Age 2 growth Summer temperature 0.14 0.00* 2.21 0.020 

Age 2 growth Ln(Degree days 10) 0.14 0.00* -6.92 1.385 

Age 3 growth Cloud cover 0.00 0.74 5.76 -0.012 

Age 3 growth Frost frequency 0.06 0.00 6.47 -0.011 

Age 3 growth Precipitation 0.00 0.52 4.66 0.012 

Age 3 growth Mean temperature 0.06 0.00 4.29 0.009 

Age 3 growth Minimum temperature 0.07 0.00 4.81 0.010 

Age 3 growth Maximum temperature 0.06 0.01 3.84 0.009 
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Age 3 growth Summer temperature 0.08 0.00* 2.42 0.014 

Age 3 growth Ln(Degree days 10) 0.09 0.00* -4.18 0.987 

Age 4 growth Cloud cover 0.01 0.34 6.17 -0.030 

Age 4 growth Frost frequency 0.00 0.92 4.29 -0.000 

Age 4 growth Precipitation 0.01 0.25 4.78 -0.019 

Age 4 growth Mean temperature 0.00 0.75 4.18 0.001 

Age 4 growth Minimum temperature 0.00 0.83 4.24 0.001 

Age 4 growth Maximum temperature 0.00 0.68 4.10 0.001 

Age 4 growth Summer temperature 0.01 0.28 3.48 0.004 

Age 4 growth Ln(Degree days 10) 0.01 0.26 1.49 0.296 

*significant P-value with the Bonferonni correction (at P < 0.00156). 
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Figure  1.  Locations of 125 sample smallmouth bass, Micropterus dolomieu, populations in 

North America.  The shaded area is the native range of smallmouth bass from Robbins and 

MacCrimmon (1974).  

Figure 2.  Results of the principal components analysis (PCA) of smallmouth bass, Micropterus 

dolomieu, climate and growth data.  (a) Variable scores (i.e., correlations) for the PCA of climate 

data.  (b) Variable scores for the PCA of growth data.  (c) Individual population scores for the 

PCA of climate data.  (d) Individual population scores for the PCA of growth data.  Closed 

circles are introduced populations and open triangles are native populations. 

Figure 3.  Relationship between PROTEST residuals and distance to the center of the native 

distribution for smallmouth bass, Micropterus dolomieu, populations in Ontario, Canada.  Closed 

circles are introduced populations and open triangles are native populations. 

Figure 4.  PROTEST residuals of smallmouth bass, Micropterus dolomieu, populations in 

Ontario, Canada.  (a) Procrustes superimposition plot for native populations.  Insert shows the 

growth vectors from the PCA (from top to bottom of insert are growth at age 4, age 3, age 2 and 

age 1).  (b) Procrustes superimposition plot for introduced populations.  (c) Frequency 

distribution of PROTEST residual vector direction for native populations.  Insert illustrates 

quadrant assignments (A, B, C, D) based on the direction of the residual vector.  (d) Frequency 

distribution of PROTEST residual vector direction for introduced populations.    
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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