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Abstract

Periodic predator-prey dynamics in constantimnments are usually taken as indicative
of deterministic limit cycledlt is known, however, that deographic stochasticity in

finite populations can also give riseregular population cycles, even when the
corresponding deterministic models predistable equilibrium. Sgifically, such quasi-
cycles are expected in stochastic versmindgeterministic models exhibiting equilibrium
dynamics with weakly damped oscillatiofifie existence of quasi-cycles substantially
expands the scope for natural patterngesfodic population asllations caused by
ecological interactions, thereby complicatithe conclusive interpretation of such
patterns. Here we show how to distinguigtween quasi-cycles and noisy limit cycles
based on observing changing population sizgsedator-prey populians. We start by
confirming that both types of cycle can ocouthe individual-based version of a widely
used class of deterministic predator-prey model. We then show that it is feasible and
straightforward to accurately distinguish between the two tgpegcle through the
combined analysis of autocorrelations amarginal distributions of population sizes.
Finally, by confronting these ressiwith real ecological timeeries, we demonstrate that
by using our methods even short and impettient series allow quasi-cycles and limit

cycles to be distinguished reliably.



Introduction

Many natural populations exhibit cyclic fluctuations. Some well-known examples include
numerous species of mammals in the bareak of Eurasia and North America (Elton
1942, Turchin and Ellner 2000, Gilg et al. 20G8)lic outbreaks of feral house mice in
Australia (Korpimaki et al. 2004), Dungenesaltrcycles in the Pacific North America

(Higgins et al. 1997), and forest im$eycles (Liebhold and Kamata 2000).

Explaining the underlying mechanisms of patigin cycles is a central problem in

ecology and has preoccupied population ecstsgver since En’s classical work

(Elton 1924, Krebs 1985, Lindstrém et al. 20B&rryman 2002, Korpimaki et al. 2004).

Two different mechanisms are chief among the many hypotheses proposed to date for the
origin of population cycles: is widely acknowledged that such cycles can be generated
either by extrinsic environmental mechanissigch as periodic environmental regimes
(Grover et al. 2000, Korpiméki et al. 20@#)random environmental perturbations

(Nisbet and Gurney 1976), or by intrinsic eapt@l interactions, such as competition and
predation, that give rise to intrinsic ¢gcdynamics described Himit cycles (May 1974,

Gilg et al. 2003).

Over the years, a multitude of models hagerbformulated and explored with the goal of
determining conditions thahbance or inhibit poulation cycles. Most of these models
rely on the assumption that populations sizes are infinite, and hence implicitly on the
assumption that the effects of demographicisasticity are negligible for predator-prey

dynamics. It is known, however, that demagnic stochasticity arising from random



birth and death events in finite populations ganerate persistent large-amplitude cycles

if the corresponding deterministic model converges to its equilibrium through weakly
damped oscillations (Bartlett 1957, Renshaw 1991, Gurney and Nisbet 1998, McKane
and Newman 2005). The mechanism generating such quasi-cycles is distinct from other
proposed causes generating cyclic dynandesause quasi-cycles are expected to arise
whenever a continuous system exhibits alstidzus, which can already occur in linear
systems, they offer a simpler alternativestable limit cycles, which always require non-
linear population models. Thexistence of quasi-cyclesmplicates, however, the
interpretation of cycles observed in fingepulations, in partical when the underlying
ecological interactions can exhibit stable fasiwell as stable limit cycles, as is the case

in the models presented here.

The pattern of fluctuationa a population is intimatelinked to the deterministic
properties of the studied system. Consegyedifferentiating betwen quasi-cycles and
noisy limit cycles is important for identifyingausal relationshipsnd understanding how
ecological interactions regulate predator-gvepulations, as the strtwral prerequisites
(e.g. in terms of ecological mechanisms) fortthie types of cycle tentb differ. It is not
clear, however, how such a distinction can be achievprhutice, based on fluctuating
and inherently noisy time series. We aaltdr this question by first demonstrating the
existence of quasi-cycles in a stochastithbileath process derived from deterministic
models that exhibit both stabdguilibria and stable limit @fes. By analyzing noisy time
series of simulated predator-prey dynamidagis combination of two types of analysis

we show that it is feasible to accuratelgtiotiguish between quasi-cycles and noisy limit



cycles, even when using data from oahe of the species. Finally, by applying the
methods of analysis developed here to a nurabeeal time series of population sizes,
we show that our approach gives consistend useful results for ecological data

observed in nature.

Model

The model used here for illustration is bdhea Lotka-Volterra predator-prey dynamics
with density-dependent growth in the piayd a nonlinear Type-2ifictional response in
the predator (also referred to as Resenzweig-MacArthur predator-prey model,
Rosenzweig and MacArthur 1963, Kot 200ih) the absence of demographic

stochasticity, this model is determitiesand given by the following equations,

d_N:(b_d)N(1—%J— aN_p

dt 1+wN
(1)
drP ( aN j
—=P|cC -g|.
dt 1+wN

Here N and P are the densities of preyid predator, respectivellg, andd are the
intrinsic per capita birth and déatates of the prey (so thbt-d is the prey’s intrinsic

per capita growth rateX is the carrying capacity of the prey,is the predation
efficiency, ¢ is the conversion efficiency of thegalator (given by the average number of
predator offspring produced per consumed prey) @nsl the per capita death rate of the
predator. The paramet&r measures the degree of predator saturation. Wheg, the

rate of prey consumption by the predatordgialy increases as prelensity increases,

exhibiting a diminishing return bere eventually leveling off a&/w. The limit w=0



corresponds to a linear funatial response, allowing therumption rate to increase
indefinitely in proportion with prey dengitAll other parameterare assumed to be

positive.

It is well known that this modean possess three equilibil*, P* : one at which both
species are extinc{N" =0, P =0 ; pne at which the predator is extinct while the prey

is at its carrying capacitfN" = K, P =0 ;)and one at which thevo species coexist,

(N=—9  p_ c(b—d)(K(ca—gw)-g)
ca—gw’ K (ca— gw)?

) (Hastings 1998). Reasonable biological
assumptions ensure that thesfitwo equilibria are alwaysnstable, while the coexistence
equilibrium may or may not be locally stalfteee Kot 2001 for detailslf.the coexistence
equilibrium is locally stable, it can b@@aroached in one of two ways. Either the
equilibrium is a stable node, so that #pproach to the equilibrium occurs without
oscillations, or the equilibrium is a stalbbeus, so that the approach occurs through
damped oscillations. If the coexistence &htium is locally unstable, it can be an
unstable node, a saddle point or an unstalglesfdf, in the latter case, the functional
response is nonlineam(> 0), the trajectory converges a closed orbit around the
unstable focus, giving rise to a stable lioytle. Fig. 1 shows parameter regions of the
model resulting in any of the three alternatattractors enabling the coexistence of prey
and predator: stable node, stable foqus stable limit cycle. The frequency of

oscillations around the stalfleci and along the stable lingycles can be determined

analytically (see e.g. Bulmer 1994, iags 1998, or Kot 2001 for details).



To incorporate the effects of demograpsiochasticity on the population dynamics in
finite predator and prey popatlons, we formulated andlividual-based version of the

deterministic model in Equation (1) as a statitebirth-death proas. In the stochastic
model, birth and death events occur at prdistici rates derived from the deterministic

equations (1). Thus, birth eventstive prey population occur at a rag =bN , while

prey death occurs at a raig, = dN + b—d N? + a NP . HereN andP are not
K 1+wN

densities, but the actual (finite) numbergpody and predator individuals at any given

a
1+ wN

point in time. Similarly, preator birth occurs at ratB, =c NP, and predator

death at ratdD, = gP.

The dynamics of the stochastic model unfoldéodews. At any given point in time, with

current population siz& and P, the birth and death ratesaralculated as above, and

the next event occurring is chosenaamly according to the four probabilitie%“—,

D—EN % and% , whereE =B, + D, + B, + D;, is the total event rate. If the chosen

event is a prey birth\l is increased by 1, if it is a prey dedthis decreased by 1, with
analogous actions for the predator birth anatldevents. After an ewnt has occurred, all
birth and death rates are cd&ted anew, and the next event is chosen based on the new
rates. It is assumed that the time lapse betwtwo successive evemgdrawn from an
exponential distribution with meanBL,/whereE is the total current event rate. Thus,
whenE is high, little time passes between eventisereas time lapses become long when

E is low.



To explore the behavior ofeéhstochastic model we ran a large number of simulations
throughout parameter space, concentratitenaon on parameter combinations for
which the predator-prey dynamics are predidteconverge to aale node, a stable
focus, or a stable limit cycle. Specific parameter combinations for which results are
presented are indicated in Fig. 1. Unless mtise stated, all simulations were started at
equilibrium population sizesnd run for 10,000 time units. Population sizes were

censused in intervals of 1 time unit.

Results

Analysis of simulated time series

Extensive numerical simulations showed tivaen the underlying deterministic system
had a stable focus, demographktochasticity consistently gave rise to persistent and
periodic large-amplitude popuianh cycles (Fig. 2B). Since these so-called quasi-cycles
arise in parameter regions in which intenpopulations would instead converge to a

stable equilibrium, they are critically daa by the demographic stochasticity resulting
from the random birth and death event§inite populations. $nulations throughout the
parameter region in which the deterministic model exhibits a stable focus demonstrated
the ubiquity of quasi-cycles this region (results n@hown), thus confirming many
analogous earlier observations and predict{@astlett 1957, Niset and Gurney 1976,

Renshaw 1991, Gurney and Nisbet 1998Kkite and Newman 2005). Quasi-cycles, in



general, are expected wherethe convergence toward alsle focus is perturbed by

noise.

As anticipated, the stochastic model simggults in a noisy limit cycle throughout the
parameter region in which the underlying deteistic model converges to a stable limit
cycle (Fig. 2C). Finally, in parameter regiansvhich the deterministic model exhibited
a stable node, the stochastic model exéddfluctuations without any distinctive
oscillatory pattern (Fig. 2A). The presenand absence of periodic and persistent
population cycles in the focus and limit ayeckgime was confirmed by spectral analysis

(right column in Fig. 2).

To investigate how best to distinguish beem quasi-cycles and noisy limit cycles, below
we introduce two methods of time seriealgnis and apply them to the simulated
predator-prey dynamics described above. Thesanethods are based, respectively, on

evaluating the shapes of autocorre@atiunctions and marginal distributions.

Autocorrelation functions

A common technique for analyzing time seilig$o estimate their autocorrelation
function (ACF). Autocorrelations measuhe correlation, throughout a time series,
between fluctuations at varying time lagauf@ey and Nisbet 1998). In general, ACFs are

used to determine the characteristic timeesaalwhich a dynamical system “forgets” its



state through the impact cindom fluctuations. In partitar, if a system exhibits

population cycles, the ACF inherits theripdicity at the cycle’s frequency.

The ACF of the simulated predator-prey tisggies showed clear periodicity in the case
of quasi-cycles and noisy limit cycles (Fig.,88, while such periodicity was absent in
the case of noisy nodes (Fig. 3A). Althougdth quasi-cycles and noisy limit cycles
yielded a periodic ACF, thergere important qualitativdifferences between the ACF
signatures of these two types of oscitlati For quasi-cycles, the ACF showed low-
amplitude oscillations andrapid loss of phase informat, resulting in the strong
damping of ACF oscillations within the first few periods (Fig. 3B). For the noisy limit
cycles, the ACF oscillations were much mprenounced and were maintained at high
amplitude for many cycles, indicating the lon@gee. more accurate) phase memory that
the system exhibits in this dynamical regi(fey. 3C). Comparing the rate of decay in
the oscillations of the ACF from a largamber of time series exhibiting quasi-cycles
and noisy limit cycles consistently showed that for quasi-cycles a virtually complete loss

of periodicity in the autoorrelation occurred withijust a few cycle periods.

The decay rate of oscillatios the ACF can be estimateg quantifying the width of
the envelope of ACF oscillations at a tilag of one cycle period. The upper and lower
bounds of this envelope are defined, reipely, by the local peaks and troughs of a
periodic ACF. Since we are interested in thlative decay of oscillations in the ACF,
rather than in the absolute magnitudeéhaf autocorrelations, these upper and lower

bounds are determined from the normalized=Afor which the autocorrelation at time

10



lag O is scaled to 1 (Nisbet and Gurney 1982 ordinate of theecond peak in the

ACF (which follows the first peak at lag @cordinate 1) provides an estimate of the
envelope’s upper bound at a time lag of ongeperiod. Likewise, a linear interpolation
between the ACF’s first two troughs providesestimate of the envelope’s lower bound,
again at a time lag of one cycle period. @¥é&a thus approximate the lower bound of the
envelope of ACF oscillations at a time lagooie cycle period by the arithmetic mean of
ordinates at the ACF’s first two troughfn estimate of the amplitude of ACF
oscillations at a lag of one cycle periodhen given by halving the difference between

the oscillation envelope’s upperdalower bounds at this time lag.

Using this method to analyze the simulatiosutes clearly shows that, for both the prey
and the predator, the amplitude of ACF ostidhas after one cycle period remains above
0.05 in the case of noisy limit cycles, whereas this amplitude falls well below 0.05 in the
case of quasi-cycles (Fig. 3). i§hlefines a heuristic threskiahat can be used to as a
criterion for distinguishing between the ragidind slowly decaying oscillations in ACFs

resulting, respectively, fromuasi-cycles and limit cycles.

Marginal distributions

Multivariate time series can be assessed by analyzing the marginal distributions resulting
for each of the time series’ components. The joint distribution of predator and prey
population sizes is given by advdimensional histogram, inchting the frequencies with
which different combinations of prey andegator population sizes @aar (top row in Fig.

4). The corresponding marginal distributiongpady population size (shown) or predator

11



population size (not shown) are given by ommeahsional histograms (bottom row in Fig.

4).

It can be shown analytically that, for sufficiently low levels of noise, the joint distribution
of predator and prey population sizesa stochastic model whose underlying
deterministic dynamics has a stable equilitiris bivariate normal (Appendix V in May
1974, van Kampen 1981). The meah, of this distribution is close to the equilibrium

population sizes predicted from the deterntioismodel, and the standard deviation in

each component is proportional@ (May 1974, McKane and Newman 2005). Hence,

fluctuations measured relative tethopulation mean typically decreaselagN as the
mean population grows. This general resuftlies that the marginal distributions of

population size in each species are normal.

Likewise, it can be shown analytically that, for sufficiently low levels of noise, the joint
distribution of predator angrey population sizes in a stochastic model whose underlying
deterministic dynamics has a stable limit cytelees the shape of a crater ridge (Olarrea
and de la Rubia 1996). This general resufilies that the marginal distributions of
population sizes in each species are non-nornal possibly bimodaBy contrast, for

very high levels of noise, ¢hjoint distribution of predat and prey population sizes

along a noisy limit cycle becomes bivariate ndyraad, accordinglyalso the marginal

distributions of population size mach species become normal.

12



Extensive simulations of our stochastiegator-prey model confirm these predictions.
For parameter combinations exhibiting nomydes and quasi-cycles, both the joint
distribution and the marginal distributiongre normal (Fig. 4A,B). In contrast,
parameter combinations resulting in ndisyit cycles confirmed the prediction of a
crater ridge in the joint distribution, resallj in non-normal marginal distributions (Fig.
4C). Even with population sizes were as lowNis= P* = 300 (Fig. 4D), implying very

high levels of demographic stochasticitliye crater ridge was easily detected.

These observations suggest that joint madginal distributions may be used to
distinguish noisy limit cycles from either giaycles or noisy node particular, the
observation of significant non-normality in joidd marginal distributions is indicative
of underlying limit cycles, and sufficient foejecting a hypothesisf quasi-cycles. To
evaluate the practical feasibility of thismoach, we tested a large number of simulated

time series for normality. For this purpose we applied two test statistics: the Kolmogorov-

Smirnov test (KS) anthe D’Agostino-Pearsoik > test (K?).

Using the Kolmogorov-Smirnov (KS) test witihe Dallal-Wilkinson-Lilliefors correction

(Lilliefors 1967, Dallal and Wilkison 1986) and the Bgostino-PearsorK * test

(D’Agostino et al. 1990), the simulated and reablogical time series were assessed for

normality. Although theK? test of normality is considered superior to the KS test, the

latter is the more common of the two (@Astino et al. 1990). Here we included both

test statistics as examples afteong but rarely used statistis {) and a weak but

common statistic (KS). The KSstis were performed using th#ietest function in

13



MatLab (Statistics Toolbox version 3.0) and té tests were performed using the
DagosPtest function in MatLab (Trujillo-Ortizand Hernandez-Walls 2003). For both
statistics, we assumed a confidence levePef 005 and the null hypothesis that

samples were drawn from a normal distribution. To perform the normality tests on more
realistic data sizes and to ewale the consistency of thesteesults, each full time series
(10,000 time units long) was split into segmesftd00 time units. To remove the effects

of transients, the first nine segments waiszarded and the test®re performed on the

remaining 91 segments.

When applied to our stochastic predator-prey model, the results of the normality tests
(Table 1) were consistent with the preains summarized above. While a majority of
noisy nodes and quasi-cycles gave rise to marglistributions that were significantly
normal (75% of the noisy nodes and 91%haf quasi-cycles), the hypothesis of
normality could be rejected, at a confidence levelPaf0.05, for all data originating

from noisy limit cycles (Table 1). The reasohy the marginal distributions for some of
the noisy nodes and quasi-cycles did not conftr normality is due to the magnitude of
demographic noise (May 1974). Further sintiolas confirmed thatas the level of
demographic stochasticity decreases fordapppulations, the pportion of marginal

distributions correctly identified as being normal increases (results not shown).

Although the results in Table 1guest that tests of normality the prey’s time series are

more accurate than in the predator’s timeesef93% correctly ideified as normal in the

prey vs. 72% in the predator), the mechanisaisis for this pattern has to be determined

14



before it can be generalized outside the exindf the present model. As expected, the
K * test, widely acknowledged &ging stronger than the KS test, turns out to be more

accurate in identifying normality (90% wectly identified as normal in thi *test vs.

75% in the KS test).

Analysis of real ecological time series

To evaluate the usefulness of combining #malysis of autocorrelation functions and
marginal distributions for diinguishing between quasi-cysland noisy limit cycles, we
applied both approaches to three differtame series of natally observed population

sizes.

The time series we analyzed were Hudsoy Bampany fur count records of lynx-hare,
otter and wolverine. Ever since EItsn(1924) groundbreaking work on the population
dynamics of boreal mammals, fur counts sashrapping and sales records have been
widely used as indirect estimates datire population densis. Among the ecological
time series analyzed here, the hare, otter, and wolverine data sets consists of fur sales
records while the lynx time series consista@ombination of trapping and sales records.
Here we will refer to both types of records as fur counts or simply counts. Results of

these analyses are summarized in Table 2.

Lynx-haretime series. The classical Hudson Bay @pany lynx-hare time series

consists of fur counts from different regianfsCanada and has, over the years, been

15



extensively studied. The current interpretatiomhef lynx-hare cycles is that limit-cycle
dynamics are generating the population cy@esbs et al. 2001). Nisbet and Gurney
(1976), however, interpret thenx oscillations in terms ajuasi-cycles. Earlier work
(Moran 1953) had already established thatlynx-hare cycles are likely caused by

intrinsic ecologicalnteractions, as opposed to mere environmental forcing.

The time series we analyzed are obtainethfElton and Nicholson (1942) and consist of
the total count from all the trapping regionseTynx time series (FighA) consists of fur
counts from the years 1736-1907 spanning 173y@ath no missing years) and the hare
time series (Fig. 5A) consists of coufitsm the years 1788-1936 spanning 149 years
(with several blocks of missg years). The autocorrelatitumctions (Fig. 5B) exhibit

clear and persistent oscillatis with a cycle period opproximately 10 years, which is
maintained for well over five cycle periods (taeplitude of oscillation in the normalized
autocorrelation at a time lag of onecleyperiod is above 0.05). The marginal
distributions (Fig. 5C,D) are strongly skewtegvard high values ith the majority of
counts having low values, which is reflected by the rejection of normality by both test
statistics (Table 2). Hence, the resultsrrboth the autocorrelation functions and the
marginal distributions are consistent witheirpreting the observed @iations in terms

of a noisy limit cycle which is in contrat Nisbet and Gurney’s (1976) interpretation.

Otter time series. The otter time series was obtained from the Time Series Data Library

(Hyndman 2005) and spans 62 years ofchwnts between the years 1850-1911 (Fig.

6A). The autocorrelation function is non-peiimednd linearly decaying, a result that is

16



consistent only with interptiag the observed fluctuations iearms of a noisy node (Fig.
6B). This conclusion is supported by both wstistics identifyng the distribution of

abundances (Fig. 6C) as sifigantly normal (Table 2).

Wolverinetime series. The time series of wolverine abundances was obtained from the
Time Series Data Library (Hyndman 20@5)d spans 62 years (Fig. 7A). The
autocorrelation function possesseweak and rapidly decayiogcillations (Fig. 7B). In
particular, the amplitude of oscillations in the normalized autocorrelation function at a
time lag of one cycle period is below 0.08)ich is consistent with interpreting the
observed oscillations in terms of quasi-cgcl€his conclusion is supported by both test
statistics identifying the distribution abundances (Fig. 7C) as significantly normal

(Table 2).

Discussion

In this study we have tried to elucidate htmadistinguish between quasi-cycles and limit
cycles in finite predateprey populations. We addiged this question by first
investigating a stochastic birdeath model that, based onaaralysis of the underlying
deterministic predator-prey model, was préesticto exhibit both types of cycles. A large
number of stochastic simulations confirntbs prediction. We then considered which
methods of time series analysis wouldnb@st helpful for identifying the deterministic
dynamics underlying observed population cycles. Two particular methods, based on

autocorrelation functions and marginastdibutions, were singled out for closer

17



investigation. Application afhese methods to data obtained from our stochastic predator-
prey model, as well as from a number edirecological time series, demonstrated their
ability to differentiate betweethe two alternative origins giopulation cycles generated

by ecological interactions.

The existence of quasi-cycles has previobglgn demonstrated in models exhibiting
stable equilibria (Bartlett 1957, Nisbetd Gurney 1976, Renshaw 1991, Gurney and
Nisbet 1998, McKane and Newman 2005). Thetadies predicted that the existence of
guasi-cycles should generalize to any determnimodel that exhibits a stable focus and
is perturbed by noise. Our study confirmegé earlier predictions and extends the
previous analyses in two ways. First, generalized preceding theoretical studies to a
larger class of models thdéterministically can exhiblioth stable foci and stable limit
cycles. This extension provided us with afieai platform for investigating how, in a
constant environment, periodic and persistsietes in finite pedator-prey populations
can arise from two alternative mechanismken the deterministic skeleton of the
considered stochastic process predicts edlstable limit cycle or a stable equilibrium
approached through damped oscillations c8d¢cwe addressed the obvious question of
how one can distinguish between these ype$ of cycles. Here we have shown how
two complementary methods of time series ysialcan help to accurately identify the
appropriate deterministic skeleton of a ndigye series showing population cycles, even

when in a two-species dynamics only one of the time series is observed.
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Our recommended analysis of noisy predgirey time seriesonsists of two
complementary methods, based in turrtt@autocorrelatiorunction (ACF) and the
statistical analysis of the normality of threarginal distribution, each carried out on the
time series from one of the species at a tiow. of these two techniques, analysis of the
ACF showed the most promise as a firsthodtof choice. The advantage of this method
is that it is capable of diaguishing between all three typesstochastic behavior: noisy
nodes, quasi-cycles and noisy limit cyclescamtrast, analysis of the normality of the
marginal distribution is primarily useftbr accurately distinguishing quasi-cycles and
noisy nodes from noisy limit cycles. This makearginal distributions a recommendable

secondary target of analysis, particularlyhié interpretation of the ACF is inconclusive.

The first step in interpreting the ACF is to assess it for periodicity. While a periodic ACF
is consistent with population cycles (whicbuld either be quasi-cycles or noisy limit
cycles), a non-periodic ACF is only consisteiith a noisy node (Fig. 3A). The ACF of
the otter time series reveasch a non-periodic sequen€gég. 6B). If the ACF is

periodic, the next step is to assess the ang#iof the ACF’s oscillains and the rate at
which these decay with increasing time Iags difficult to quantify the distinction
between rapidly and slowly decaying ACF wath exploring more than a single model.
As a general rule of thumb, however, the hallkof rapidly decaying oscillations is loss
of periodicity within a few cycle periodsif 3B), while slowly decaying oscillations
maintain a high-amplitude periodic component for many cycle periods (Fig. 3C). Our
results show that slowly decaying oscithais can be identified by an oscillation

amplitude in the normalized ACF thatomeds 0.05 after one cycle period, whereas
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rapidly decaying oscillationsxgibit a substantially fastetecay of that oscillation
amplitude. Applying this criterion to the dogical time series clearly identifies the
oscillations in the lynx-hare ACF as sligvdecaying (Fig. 5B and Table 2), and as

rapidly decaying in the wolvernACF (Fig. 7B and Table 2).

The analysis of the marginal distributiozen be used to confirm the results obtained

from the ACF. More importantly, however, investigating the normality of marginal
distributions offers an alternative appch when an assessment of the ACF is
inconclusive. For example, if the decay rata @eriodic ACF is unclear, analysis of the
marginal distribution can help to decideetier observed population cycles are due to
guasi-cycles or limit cycles. If it is difficult to determine if there is a periodic component
in the ACF in the first place, analysistbke marginal distribution can only accurately
distinguish between a noisy limit cycle on the one hand (when normality is rejected) and
a guasi-cycle or noisy node on the other (when normality is accepted). When applying the
combined analysis of autocorrelation funao and marginal disbutions to the three
ecological time series westigated in this study, resuftsm the two alternative normality
test statistics were always consistent vietth other and with the conclusions drawn

from the ACF. The observed consistency may bode well for the conclusiveness of this

type of analysis when applied to other time series.

A third diagnostic tool that came useful when analyzing noisy time series is the power

spectrum (Platt and Denman 1975). Power speetr@al the frequency content of the

time series and can detect the presengebdic population cycle®asily identified by
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a peak in the spectrum. A limitation of povggrectra, and the reason this method is not
part of our recommended set of analyseg his that power speaet cannot distinguish
between quasi-cycles @amoisy limit cycles (compare Fig. 2B with 2C). A second,
practical limitation, which is especially important when analyzing real ecological data, is
that power spectra require sulvgially longer time series (i.eore data points) to detect
regular cycles than the ACF. Our numerigaalysis of power spectra indicated that a
minimum of 25 cycle periods is required fopower spectrum to detect oscillations
reliably (results not shown). The vast majoofyecological time series are therefore far

too short for power spectra to acately detect population cycles.

An important assumption when interpreting p@pioin cycles in tersof either quasi-
cycles or limit cycles is that the populatibeavironment is constd. Without additional
information, it is not possiblto eliminate th@ossibility that popution fluctuations
identified as quasi-cycles or noisy liraycles are actually driven by periodic
environmental regimes. For example, ettesugh our analysesedtified the lynx-hare
fluctuations as noisy limit cycles, whichpgports the current consensus (Krebs et al.
2001), possible effects of periodic externalialles cannot be ruled out. It has been
suggested, for example, that the intrinsic §rate cycles are intermittently synchronized
by climate cycles (Sinclair et al. 1993,dfs et al. 2001). The effects of episodic or
continuous external periodic forcing on itraycles and quasi-cycles are currently not
sufficiently well known. One could speculater example, whether dynamics akin to
limit cycles (identified as such by the ACRdathe marginal distribution) could result

from quasi-cycles modulate by an external periodic variable.
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In the real world, the environment is negenstant. Even in the absence of periodic
environmental regimes, real populations algvaxperience random perbations due to
the inherent uncertainty of environments. iWlhe quasi-cycles that we have analyzed
here are entirely driven by demograpsiicchasticity, it is well known that random
environmental perturbations also can geteegqaiasi-cycles (Nisbet and Gurney 1976).
We thus expect that our recommended analgsjually suitabléor distinguishing limit

cycles from quasi-cycles generatedragdom environmental perturbations.

The possibility for endogenous quasi-cycles considerably expands the scope for
population fluctuations caused by intrinsic kegical interactionssince quasi-cycles can
be expected whenever the underlying duteistic population model exhibits damped
oscillations toward an equilibrium. Ta@ain the causal basts population cycles, it

then becomes important to be able t&tidguish quasi-cycles from limit cycles. Our
results are promising in that they suggeat ystematically applying a set of simple
analyses to data from natural populations aecurately distinguish between quasi-cycles

and limit cycles.
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Tables

Table 1. Statistical tests of normalityf the marginal distributions of population sizes
using the Kolmogorov-Smirnov teahd the D’Agostino-Pearsdf? test (see main text
for details). The null hypothesis that the sample of populan sizes originates from a
normal distribution. The percentages givethia table indicate the fraction of marginal
distributions for which normality was sidiwant, out of 91 analyzed time series.

N" = P = 20,000 for the node and focus, aridl = P* =10,  Of the limit cycle.

KS K?
Deterministic Stochastic
behavior behavior Predator  Prey Predator Prey
Node Noisynode 36% 93% 73% 96%
Focus Quasi-cycle 84% 87% 96% 97%
Limit cycle Noisy limit cycle 0% 0% 0% 0%
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Table 2. Analysis of simulated and real timeries of population sizes. The table’s secton simulated time series summarizes the
predictions for three alternativ®existence regimes, based on the results pexbenFig. 3 and 4. The section on real tisegies

summarizes the analyses presented in3-tg.7. The density distributions wereafyzed for normality using the Kolmogorov-

Smirnov test and the D’Agostino-Pearsiiii test (see main text for details).

Marginal distribution
Time series Oscillations in ACF KS K? Stochastic behavior
- Node None Normal Noisy node
g Focus Rapidly decaying Normal Quasi-cycle
'Ug) Limit cycle Slowly decaying Non-Normal Noisy limit cycle
Lynx-hare Slowly decaying Non-N. Non-N. | Noisy limit cycle
g Otter None Normal Normal | Noisy node
; Wolverine Rapidly decaying | Normal Normal | Quasi-cycle
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Figures and figure legends

Figure 1. Pineda—Krch et al.
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Figure 1. Alternative coexistence gemes of the studied predator-prey dynamics. Points
A, B and C highlight parameter combinaticgisiated in each dhe three possible
coexistence regimes: stable node (A), stédides (B) and stable limit cycle (C). Note
that in the parameter region labeled “Saduabint” the predator and prey populations

cannot stably coexist. Parametets= 05 (ABC), y =1.2 (A), y =25 (B), y =3.5(C).
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Figure 2. Pineda-Krch et al.
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Figure 2. Time series (left column) and power spectra (right column) resulting from
simulated predator-prey dynamics in fingepulations. Prey-rated quantities are
depicted in black and predataglated quantities in gray. Passhow results for each of
the three alternative coexistence regimezblstnode (A), stable focus (B) and stable
limit cycle (C), with parameters chosen as ig.Hi. To aid the interpretation of time, note
that the unit of time equalselraverage lifespan of the preyd , in the absence of
predation @ =1 in all simulations). All power spectra are based on the full simulated

time series (10,000 time units) and weregnegted through fast Fourier transform.
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Figure 3. Autocorrelation functions resulting from simulated predator-prey dynamics in
finite populations. Prey-relategliantities are depicted in black and predator-related
guantities in gray. Panels show resultsdach of the threetarnative coexistence
regimes: stable node (A), stable focus (Bj atable limit cycle (C), with parameters
chosen as in Fig. 1. Note the different scale for the vegidalin (C). Dashed lines in

(B) and (C) indicate the predexl cycle period, with valueadicated in the top right
corner of these plots. The autocorrelationctions are normalized so as to assume

ordinate 1 at time lag 0.
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Figure 4. Pineda-Krch et al.
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Figure 4. Joint distributions of predator andegrpopulation sizes (tapw) and marginal
distributions of prey populain sizes (bottom row) resulting from simulated predator-
prey dynamics in finite populations. Calns show results for each of the three

alternative coexistence regimes: stable nodegtable focus (B) and stable limit cycle

regime (C and D), with parameters chosis in Fig. 1. Other parametel$: = P* = 1000

(ABC), N" = P" = 300 (D).
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Figure 5. Pineda-Krch et al.
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Figure5. Analysis of the lynx-hare time ges. (A) Time series (note lggscale on
vertical axis), (B) autocorretian functions of lynx and hayéC) marginal distribution of
lynx abundances relative to their mean, angr{iarginal distribution of hare abundances
relative to their mean. The dashed ling€Bi) indicates the appkimate period of the

population cyclesl/ f ~ 1@ears.
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Figure 6. Pineda-Krch et al.
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Figure 6. Analysis of the otter time series. (Alme series, (B) autocorrelation function,

(C) distribution ofrelative abundances.
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Figure 7. Pineda-Krch et al.
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Figure 7. Analysis of the wolverine time serig®\) Time series, (B) autocorrelation
function, and (C) distributionf relative abundances. The dadHine in (B) indicates the

approximate period of the population cycleésf ~  yHars.
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