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Abstract 

The aim of this paper is the study of the long-term behavior of population communities 

described by a class of discontinuous models known as Filippov systems. The analysis is carried 

out by performing the bifurcation analysis of the model with respect to two parameters. A 

relatively simple method, called the puzzle method, is proposed to construct the complete 

bifurcation diagram step-by-step. The method is illustrated through four examples concerning 

the exploitation and protection of interacting populations. 
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INTRODUCTION 

 

Most ecological models of the standard form 

 

))(()( txftx =& ,   nRx ∈  

 

are continuous, in the sense that the function f is continuous with respect to the n-dimensional 

state vector x. There are, however, important exceptions. For example, if individuals of one 

population are fitness-maximizers, it might be that their optimal strategy is to switch between 

alternative habitats or diets as soon as the density of some population becomes too high or too 

low (Charnov, 1976; Stephens and Krebs, 1986; Křivan, 1996; Křivan, 1997a, 1997b; Křivan 

and Sirot, 1997; Sirot and Křivan, 1997; Křivan, 1998; Boukal and Křivan, 1999; Genkai-Kato 

and Yamamura, 1999; Křivan and Sikder, 1999; Van Baalen et al., 2001; Dercole et al., 2003; 

Křivan, 2003; Křivan and Eisner, 2003; Křivan and Schmitz, 2003; Křivan and Diehl, 2005; 

Meza et al., 2005; Srinivasu and Gayatri, 2005; Dercole at al., 2006). Discontinuous models 

could also be used to mimic the evolution of exploited populations if harvesting is forbidden 

when the population is below a critical threshold (Dercole et al., 2003). This is actually the sense 

of the use of quotas in fisheries (Hilborn and Walters, 1992) and is common practice in timber 

production in exploited forests (Davis and Johnson, 1987; Fredericksen, 1998). Similar 

considerations hold if, in order to avoid human epidemics, a particular fishery is forced to 

temporarily stop its activity as soon as the concentration of a particular contaminant in the 

product raises above a prespecified threshold. 

In this paper we consider the simplest class of discontinuous systems, namely that of second-

order systems (n = 2), in which the discontinuity occurs on a curve Σ, called boundary, 

partitioning the two-dimensional state space into two open regions S1 and S2 in which the 

function f is smooth. The analysis of this class of discontinuous systems, called Filippov systems 

(Filippov, 1964; Filippov, 1988), is nontrivial since the vector x&  is not defined on Σ and has two 

different limit values, say f (1) and f (2), in S1 and S2. If the components of f (1)(x) and f (2)(x) 

transversal to Σ have the same sign, as in Fig. 1a, the orbit crosses the boundary Σ and has, at 

that point, a discontinuity in its tangent vector. On the contrary, if the transversal components of 

f (1)(x) and f (2)(x) are of opposite sign, i.e. if the two vector fields are “pushing” in opposite 

directions, as in Fig. 1b, the state of the system is forced to remain on the boundary and slide on 

it. Although, in principle, motions on the boundary could be defined in different ways, the only 

reasonable one is Filippov convex rule (Filippov, 1964; Filippov, 1988) that defines sliding 



 4

motions on Σ as specified in the next section. Thus, the state portrait of a Filippov system is 

composed of the sliding state portrait on Σ and of the standard state portraits in regions S1 and 

S2. Notice that Filippov systems can be irreversible, since the same point on Σ can be reached 

through two distinct paths (see Fig. 1b). 

Very often models are used to detect all qualitatively different asymptotic behaviors of a 

population community for all possible values of some demographic and/or environmental 

parameter. In other words, the final target is to produce a complete catalogue of long term 

behaviors. This is often done through the systematic analysis of a huge number of long 

simulations characterized by different initial conditions and parameter values. Although very 

popular, this approach is weak for two reasons. First, there is no guarantee that all possible 

asymptotic behaviors are detected because some of them might correspond to untested windows 

of initial conditions and/or parameter values. Second, and most important, the critical value of a 

parameter at which a change occurs in the asymptotic behavior of a dynamical system can not 

be obtained precisely through simulation. Indeed, these critical parameter values are nothing but 

the so-called bifurcations of the model (Arnold, 1982; Guckenheimer and Holmes, 1986) at 

which, by definition, there is a transition from stability to instability in some component of the 

system. Thus, when a parameter is close to its critical value the simulations must be so long for 

distinguishing a very weak stability from a very weak instability, that it becomes practically 

impossible to understand if the parameter is subcritical or supercritical. By contrast, numerical 

bifurcation analysis (Kuznetsov, 2004) does not suffer these limitations and is therefore the most 

appropriate tool for determining the complete catalogue of behaviors of a parameterized family 

of dynamical systems. Moreover, effective packages are nowadays available for the almost 

automatic bifurcation analysis of continuous dynamical systems with respect to two parameters. 

Unfortunately, the situation is not as simple for general Filippov systems which besides the 

standard bifurcations of continuous systems, can have very special bifurcations called sliding 

bifurcations (Feigin, 1994; di Bernardo et al., 1998a, b; di Bernardo et al., 1999; di Bernardo et 

al., 2001; di Bernardo et al., 2002; di Bernardo et al., 2003). However, all possible sliding 

bifurcations of second-order Filippov systems have recently been listed (Kuznetsov et al., 2003) 

using the classical approach of topological equivalence (Arnold, 1982). Consistently with this 

approach, all bifurcations (standard and sliding) can be interpreted as collisions among the 

standard and/or sliding trajectories composing a special set of trajectories, here called 

characteristic frame. The aim of this paper is to show that this characteristic frame is a powerful 

tool for detecting, through a method called puzzle method, the complete catalogue of the 

possible asymptotic behaviors of a Filippov system. 
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The paper is organized as follows. In the next section we briefly review second-order Filippov 

systems and their sliding bifurcations, and we define the characteristic frame. Then, we describe 

the puzzle method through the discussion of four ecological examples which are presented in the 

order of increasing difficulty: the first one can be studied analytically, while the others require 

the use of SlideCont (Dercole and Kuznetsov, 2004; Dercole and Kuznetsov, 2005), a package 

accompanying AUTO97 (Doedel and Kernévez 1986; Doedel et al. 1997) for the numerical 

bifurcation analysis of second-order Filippov systems. Almost all possible sliding bifurcations 

of second-order Filippov systems are involved in at least one of the examples. A final section 

summarizes the results and points out open problems. 

 

 

FILIPPOV SYSTEMS, SLIDING BIFURCATIONS AND 

CHARACTERISTIC FRAME 

 

In this section we consider generic second-order (i.e. 2Rx ∈ ) Filippov systems described by 

 

⎪⎩
⎪⎨⎧ ∈

∈=
2

)2(
1

)1(

          ),(

          ),(

Sxxf

Sxxf
x&  (1) 

 

where the regions S1 and S2 are separated by the discontinuity boundary Σ described by  

 

H(x) = 0 

 

where H is a smooth scalar function with nonvanishing gradient )(xH x  on Σ. 

Solutions of (1) can be constructed by concatenating standard solutions in S1,2 and sliding 

solutions on Σ obtained with the Filippov convex rule (Filippov, 1964; Filippov, 1988). First we 

define the crossing set Σc ⊂ Σ as the set of all points x ∈ Σ, where the two vectors )()( xf i  have 

nontrivial transversal components to Σ of the same sign. By definition, at these points the orbit 

of (1) crosses Σ, i.e. the orbit reaching x from Si concatenates with the orbit entering Sj, j ≠ i, 

from x. 
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Then, we define the sliding set Σs as the complement to Σc in Σ. The sliding set may contain 

singular sliding points at which either both vectors )()1( xf and )()2( xf  are tangent to Σ, or one 

of them vanishes while the other is tangent to Σ, or both vanish. 

The Filippov rule associates the following convex combination g(x) of the two vectors 

)()( xf i  to each nonsingular sliding point x ∈ Σs: 

 

)()(),(

)(),(

)()1()()(

)1()2(

)2(

)2()1(

xfxfxH

xfxH

xfxfxg

x

x

−=
−+=

λ
λλ

 (2) 

 

where ⋅⋅,  denotes the standard scalar product. As indicated in Fig. 2, g(x) is tangent to sliding 

segments of Σs. 

Thus, 

 

sxxgx Σ∈=           ),(&  (3) 

 

defines a scalar differential equation on Σs, which is smooth on one-dimensional sliding 

intervals of Σs. Solutions of this equation are called sliding solutions. 

An approximate way of solving system (1) brings to the notion of chattering solution, 

described in Fig. 3. In practice, an ε-tube is constructed around Σ and the orbit in S1 [S2] is 

extended also in S2 [S1] until it remains in the ε-tube. Very often these chattering solutions 

correspond closely to the real behavior of a system that should in principle strictly follow eqs. 

(1). For example, in on-off temperature control systems the heating should be on [off] when the 

temperature is below [above] the desired value, while in practice the heating system remains on 

[off] untill the temperature reaches a slightly higher [lower] value from below [above]. 

Obviously, for ε tending to zero chattering solutions tend toward sliding solutions. Moreover, if 

T1(ε) [T2(ε)] is the time needed by the chattering solution to cross the ε-tube coming from S1 

[S2], then the coefficient λ in (2) is the limit for ε tending to zero of the ratio )( 211 TTT + . 

In accordance with (Gatto et al., 1973), equilibria of (3), where the vectors )()( xf i  are 

transversal to Σs and anti-collinear, are called pseudo-equilibria of (1) (they are called quasi-

equilibria in (Filippov, 1988)). This implies that a pseudo-equilibrium P is an internal point of a 
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sliding segment. A nonsingular sliding point x ∈ Σs where 0)1( =f  is characterized by λ = 1 

and hence g = 0. Points of this kind and the analogous ones with 0)2( =f  (where λ = 0 and g = 

0) are called boundary equilibria. 

A sliding segment terminates either at a boundary equilibrium X, or at a point T (called 

tangent point) where the vectors )()( Tf i  are nonzero but one of them is tangent to Σ. 

A tangent point T with )1(f  tangent to Σ is said to be visible [invisible] if the orbit of 

)()1( xfx =&  starting at T belongs initially to S1 [S2], as shown in Fig. 4. A similar definition 

holds for the vector field )2(f . 

State portraits of Filippov systems can have multiple sliding segments and be rather complex. 

Figure 5 shows one example, characterized by 

• two sliding segments (T1T2 and T3T4) for a total of four tangent points (three visible and one 

not); 

• two standard equilibria (stable foci F1 and F2); 

• one unstable standard (i.e., non-sliding and non-crossing) limit cycle γ1 entirely contained in 

region S1; 

• three pseudo-equilibria (two pseudo-saddles PS1 and PS2, and one stable pseudo-node PN); 

• one stable sliding and crossing limit cycle γ2 (passing through points T1, A, and B); 

• four attractors (the two equilibria F1 and F2, the pseudo-equilibrium PN, and the sliding cycle 

γ2). 

The basin of attraction of each attractor is easily identifiable and can involve the stable 

manifolds of the pseudo-saddles. For example, the basin of attraction of the pseudo-node 

(shaded region in Fig. 5) is delimited by the stable manifolds of the two pseudo-saddles. 

Two Filippov systems of the form (1) are topologically equivalent if there is a 

homeomorphism h: R2 → R2 that maps the state portrait of one system onto the state portrait of 

the other, preserving orientation of the orbits. Notice that all sliding segments of one system are 

mapped onto sliding segments of the other. Moreover, we require that h maps the discontinuity 

boundary Σ of one system onto the discontinuity boundary of the other system. 

If a one-parameter family of Filippov systems is considered (i.e., )1(f , )2(f , and H depend 

also upon a parameter α ∈ R), we say that the system exhibits a bifurcation at α = α0 if by an 

arbitrarily small parameter perturbation we get a topologically nonequivalent system. 
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Of course, a Filippov system can have standard bifurcations, i.e. bifurcations not involving 

structural changes in the sliding segments. For example, in the case of Fig. 5, the standard cycle 

γ1 might shrink when the parameter α is increased and finally collide for α = α0 with the stable 

focus F1. This corresponds to a standard subcritical Hopf bifurcation (Kuznetsov, 2004). For α 

slightly greater than α0 the cycle γ1 does not exist anymore and the focus F1 is unstable. 

In order to point out which kind of degeneracies are needed to obtain not only standard 

bifurcations but also sliding bifurcations, i.e. bifurcations involving some structural change in 

the sliding segments, it is convenient to follow a geometric approach, which consists of 

detecting the structural changes generated by variations of the parameter α in a special set of 

trajectories, called characteristic frame. Such a frame is simply composed of 

• standard equilibria and non-sliding cycles, 

• sliding segments with their pseudo-equilibria and tangent points, 

• stable and unstable manifolds of standard saddles and standard manifolds of pseudo-

saddles, 

• trajectories entering S1 or S2 from tangent points. 

For example, the characteristic frame of the system described in Fig. 5 is the set of trajectories 

shown in Fig. 6. Notice that some of the trajectories emerging from tangent points return to a 

sliding segment in finite time (see points B and E in Fig. 6), while others do not (trajectory 

emerging from T2 in Fig. 6). 

The interest in the characteristic frame is motivated by the fact that all bifurcations 

correspond to collisions of the various trajectories composing the frame (Kuznetsov et al., 

2003). Thus, given the frame corresponding to a particular parameter setting it is very easy to 

identify by simple inspection all potential collisions that might occur for a perturbation of the 

parameters and interpret them in terms of qualitative changes of the state portrait of the system. 

For example, varying a parameter, the two tangent points T3 and T4 in Fig. 6 might get closer 

and closer and finally collide. This would correspond to the disappearance of a sliding segment 

in Fig. 5 which is, indeed, a sliding bifurcation. Another possibility is that points B and PS1 

collide for a particular value of the parameter. This would mark the disappearance of the sliding 

limit cycle γ2. In fact, just before the collision of B with PS1 the sliding cycle γ2 exists and has a 

very long period, because it passes very close to a pseudo-saddle (point PS1) where the sliding 

motion is very slow. But when the collision occurs the cycle is interrupted because the trajectory 

tending toward the pseudo-saddle can not pass through it. This bifurcation is the sliding version 

of the famous homoclinic bifurcation of standard systems (Kuznetsov, 2004) which is 
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characterized by the coincidence of the unstable and stable manifolds of a saddle. There are 

many other possible collisions in the characteristic frame that the reader might easily interpret in 

terms of structural changes of the state portrait in Fig. 5. 

Of course, codimension-2 bifurcations are also possible: they simply correspond to a double 

collision in the characteristic frame. For example, the three pseudo-equilibria PS1, PN, and PS2 

might collide for a specific value of the parameter, thus becoming a unique pseudo-saddle. This 

corresponds to the disappearance of one attractor (the pseudo-node PN) and is accompanied by 

the gradual shrinking of its basin of attraction (shaded region in Fig. 5). 

The complete list of all sliding bifurcations in second-order Filippov systems is so long that it 

cannot be presented here. The interested reader might refer to Kuznetsov et al. (2003), where all 

bifurcations are discussed in detail and the basic aspects of numerical bifurcation analysis are 

also given. As for the software, the most appropriate reference is Dercole and Kuznetsov (2005). 

 

 

THE PUZZLE METHOD AND FOUR EXAMPLES 

 

We propose in this section a method, called puzzle method, for the analysis of second-order 

Filippov systems. The method is based on the use of the characteristic frame (see previous 

section) and is proposed through the analysis of four ecological examples. The aim is to show 

that the puzzle method is strategically important for carrying out a complete bifurcation 

analysis. 

In each example there are two interconnected populations and only one of them is exploited, 

unless this is temporarily prohibited. The bifurcation analysis is performed with respect to the 

exploitation parameter but also with respect to a second control parameter interpreting the effort 

of protecting the populations. Thus, in principle, the obtained results could be used to find 

reasonable trade-off solutions between exploitation and protection in renewable resources 

management. 

The first example is very simple and could be discussed without explicitly pointing out the 

puzzle method, which is more formally identified when solving the second and third examples. 

The strategic value of the method is pointed out in the last example. 

 

Example 1 

Assume that x1 and x2 are the densities of young and adult individuals of the same population 

and that only adult individuals reproduce and can be harvested. If aging is density independent 
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and recruitment is increasing but saturating with density, the evolution of young individuals can 

be described by 

 

2

2
111  )( 

xc

x
bxdax +++−=&  (4) 

 

where a and d1 are aging and death rate of young individuals and b and c are parameters 

characterizing the recruitment function. If adult individuals are harvested at constant effort when 

their density is above a given threshold P, and not harvested in the opposite case, then their 

evolution is described by 

 

2212  xdaxx −=&  if x2 <  P (5) 

and 

2212  )( xqEdaxx +−=&  if x2 >  P (6) 

 

where d2 is adult death rate, q is catchability coefficient and E is harvesting effort. In the 

following, we assume that )( 12 dacdab +>  because this guarantees that the population can 

persist if not harvested (i.e., the equilibrium )0,0(),( 21 =xx  of (4,5) is unstable). 

System (4-6) is obviously a Filippov system where the boundary Σ and the regions S1 and S2 

are 

Σ = { }Pxxx =221 :),(  

S1 = { }Pxxx <221 :),(  

S2 = { }Pxxx >221 :),(  

and the state equations are (4,5) in region S1 and (4,6) in region S2. 

If the target is to analyze the behavior of the system for all possible values of the parameters 

(E, P), the first thing one can do is to find out if sliding is possible. For this, one must check if 

the components of vector x&  transversal to Σ (i.e. 2x&  evaluated for x2 = P with (5) and (6)) can 

be of opposite sign, i.e.  

 

( ) 0)()( 2121 <+−− PqEdaxPdax  

 

This inequality is always satisfied on the segment  
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P
a

qEd
xP

a

d +<< 2
1

2   x2 = P (7) 

 

which is therefore a sliding segment. Notice that in this case the sliding segment exists and is 

unique for all parameter values. This sliding segment and its two tangent points T1 = ( P
a

d2 , P) 

and T2 = ( P
a

qEd +2 , P) are therefore elements of the characteristic frame. Since cycles are not 

possible in this system (divergence is negative everywhere) the other possible elements of the 

characteristic frame are equilibria in S1 and S2, pseudo-equilibria, stable and unstable manifolds 

of saddles, and trajectories entering S1 or S2 from tangent points. Let us concentrate first on 

pseudo-equilibria, which are points on Σ where the vectors x&  computed with the state equations 

holding in S1 and S2 are anti-collinear. Since, in this case, 1x&  is the same in both regions, the 

pseudo-equilibria must be characterized by 1x&  = 0, i.e., if they exist, they are at the intersection 

of the sliding segment T1T2 with the null-isocline 1x&  = 0. From (4) it follows immediately that 

there is a unique pseudo-equilibrium whenever its x1-coordinate 

 

Pc

P

da

b
x ++=

1
1   (8) 

 

is in between the x1-coordinates of the tangent points T1 and T2. 

Figure 7 shows the sliding segment T1T2 on Σ, the null-isoclines 1x&  = 0 and 2x&  = 0, and the 

directions of the vector x&  in the various regions (i.e. the signs of 1x&  and 2x& ). The figure 

corresponds to parameter values (reported in the caption) for which the pseudo-equilibrium is 

present. The directions of the vector x&  in the various regions show that the pseudo-equilibrium 

is a stable pseudo-node (denoted by PN) and that points T1 and T2 are invisible tangent points 

(so that no trajectory enters S1 or S2 from them). In conclusion, the characteristic frame is simply 

the sliding segment with its two tangent points T1 and T2 and the pseudo-equilibrium PN. 

Small perturbations of any parameter (not only E and P) imply, generically, small 

perturbations of the three points T1, T2, and PN, so that by simply looking at the characteristic 

frame one can immediately identify two candidate bifurcations: the collision of PN with T1 and 

the collision of PN with T2. Moreover, from eqs. (7, 8) one can easily verify that both these 
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bifurcations are, indeed, possible and are characterized by the two following relationships 

among the parameters 

 

c
dad

ab
P −+=

21  )(
 (PN ≡ T1) (9) 

c
qEdad

ab
P −++=

)( )( 21

 (PN ≡ T2) (10) 

 

Notice that, at these bifurcations, the pseudo-equilibrium actually becomes a standard 

equilibrium because it is characterized by 1x& = 2x& = 0. The corresponding bifurcation curves in 

the parameter space (E, P) identify three regions 1, 2, and 3 as shown in Fig. 8. The two curves 

merge at a point of the P-axis which is a codimension-2 point (collision of T1, T2, and PN in the 

characteristic frame). The null-isoclines and the characteristic frame reported in Fig. 7 are those 

of region 2. 

In order to understand if we have found all bifurcations, we must iterate our process first by 

determining the characteristic frames in regions 1 and 3 and then by investigating them in order 

to see if they suggest new candidate bifurcations. In this case, the process is very simple. Figure 

9 shows the characteristic frames (and the null-isoclines) in regions 1 and 3, respectively. The 

frames are composed of the sliding segment T1T2 and of one trajectory entering in S1 or S2 from 

one of the tangent points (the visible one) and ending in the standard equilibrium X (intersection 

of the null-isoclines). Each one of these two characteristic frames suggests two bifurcations, 

namely the collision of the tangent points T1 and T2 and the collision of the equilibrium X with 

T2 (in Fig. 9a) or with T1 (in Fig. 9b). However, the first bifurcation is not possible, since the x1-

coordinate of T1 is always smaller than that of T2. By contrast, the second bifurcation is possible 

and when the collision occurs the characteristic frame is simply the sliding segment with an 

equilibrium on one of its two terminal points. But this corresponds exactly to the two 

bifurcations we have already obtained (see eqs. (9) and (10)), so that we can conclude that the 

diagram of Fig. 8 is actually complete. 

Bifurcation diagrams are usually presented together with the state portraits characterizing 

each region, so that the final product of a bifurcation study is a diagram of the kind shown in 

Fig. 10. Once this diagram has been obtained, one can easily compute various indicators of 

interest for each combination of the parameters. For example, in the present case one has 

explicit formulas for the values of 1x  and 2x  of the two populations at equilibrium (or at 

pseudo-equilibrium). In other words, the functions ),(1 PEx  and ),(2 PEx  are known in each 
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region of the parameter space and it is straightforward to verify that, as expected, 02,1 ≤∂∂ Ex  

and 02,1 ≥∂∂ Px . 

Before continuing with other examples, it is worth to remark that the model we have just 

discussed is extremely simple. Indeed, it has only one attractor and two bifurcations, which are 

both sliding bifurcations and can be determined analytically. 

In the other examples we will have more bifurcations (a mix of sliding and standard 

bifurcations), that will allow the reader to better perceive the strategic role of the characteristic 

frame. 

 

Example 2 

Assume that x1 and x2 are the densities of a logistic prey and a Holling type II predator 

described, in natural conditions, by the Rosenzweig-MacArthur model (Rosenzweig and 

MacArthur, 1963) 

 

⎥⎦
⎤⎢⎣

⎡ −+=
⎥⎦
⎤⎢⎣

⎡
+−−=

d
xb

x
caxx

xb

x
a

K

x
rxx

1

1
22

1

21
11 )1(

&

&

  (11) 

 

where r and K are net growth rate and carrying capacity of the prey, and a, b, c, and d are 

maximum predation rate, half saturation constant, efficiency, and death rate of the predator. In 

the following we assume 

 

dac >   (12) 

 

i.e., predator can grow when prey are abundant, and 

 

dac

dac
bK −

+>   (13) 

 

i.e., the attractor is a prey-predator limit cycle (May, 1972; Cheng, 1981; Wrzosek, 1990). 

Figure 11 shows the null-isoclines 1x& = 0 and 2x& = 0 (dashed lines) and the state portrait of 

system (11) when conditions (12) and (13) are satisfied (recall that condition (13) is satisfied 

when the predator vertical isocline is to the left of the vertex of the parabola 1x& = 0). The 
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characteristic frame is composed of three equilibria (two saddles and an unstable focus), the 

stable and unstable manifolds of the saddles, and a cycle. Now, assume that predator are 

harvested at constant effort E and that an alternative prey with constant density P is guaranteed 

to them in order to overcome critical periods of low abundance of the first prey. Moreover, 

assume that predator simply feed on the prey that maximizes their fitness 22 / xx&  (Kato and 

Yamamura, 1999). Thus, if the predator functional response is )( PbPa +′′  when feeding on P 

and c′  is the corresponding efficiency, the density *
1x  at which the predator is indifferent 

between its two sources of food is 
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Since we want to consider the case in which the threshold (14) is positive for any value of P, we 

assume 

 

acca ′′>   (15) 

 

i.e., x1 is more profitable than P when abundant. In conclusion, the system is a Filippov system 

described by 
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As already said, the parameters r, K, a, b, c, a′ , b′ , c′ , and d satisfy inequalities (12), (13), and 

(15). As far as the control parameters E and P are concerned, we add two more constraints. First 

we assume that predator cannot survive only on P, i.e. 



 15

 

dqE
Pb

P
ac +<+′′′   (18) 

 

and second we limit the analysis to the case in which the threshold *
1x  (see (14)) is lower than 

the prey carrying capacity K, i.e. 
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The points (E, P) satisfying (18, 19) belong to the four regions 1, 2, 3, and 4 in the left panel of 

Fig. 12. The boundaries of the four regions are bifurcation curves and the state portraits in each 

region are sketched in the smaller panels. We now show how we have produced these 

bifurcation curves step by step using the characteristic frame. 

First of all, it is worth checking if sliding is possible on the boundary Σ separating the two 

regions S1 and S2 of our Filippov system. Sliding is possible if the transversal components to Σ 

of x& , namely 1x&  evaluated for x1 = *
1x  with (16) and (17), can be of opposite sign, i.e. if 
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Since we have assumed that Kx <*
1  (see eq. (19)), we can conclude that sliding is always 

possible provided x2 is sufficiently large. More precisely, the sliding segment is identified by 
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with *
1x  as in (14). A comparison with eq. (11) shows that the sliding segment is actually the 

part of Σ above the prey isocline of system (11) (dashed parabola in Fig. 11). 

In order to start the analysis we must first determine the state portrait of system (16, 17) for a 

positive pair (E, P). Since we already know the state portrait for E = P = 0 (see Fig. 11) we can 

try to understand how this state portrait changes for very small perturbations of E and P. A 
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positive P will simply give rise to a positive threshold *
1x  and to a sliding segment parallel to the 

x2-axis and above the dashed parabola in Fig. 11. Thus, if P is very small, the sliding segment 

will be very close to the x2-axis. On the other hand, if E is very small, the cycle will be only 

slightly different from that in Fig. 11 so that, in conclusion, if both P and E are small the sliding 

segment and the cycle will not interfere, and the state portrait will be as in panel 2 of Fig. 12 

(this means that points sufficiently close to the origin in the left panel of Fig. 12 belong to 

region 2, though this is not visible at the scale of the figure). Of course, the boundaries of region 

2 must correspond to collisions within the characteristic frame which is composed of two 

saddles, their stable and unstable manifolds (not mentioned in the following), one unstable 

focus, one stable cycle, one sliding segment with its tangent point, and the trajectory entering S2 

from it and tending toward the limit cycle. The collisions that the structure of this characteristic 

frame suggests are only two. One is the standard Hopf bifurcation corresponding to the collision 

of the cycle with the unstable focus requiring that the cycle shrinks to a point as the parameters 

vary. The other is the so-called grazing bifurcation corresponding to the collision of the limit 

cycle with the sliding segment, which can only occur at the tangent point. The Hopf bifurcation 

occurs when the vertical predator isocline ( 2x& = 0) is passing trough the vertex of the prey 

isocline ( 1x& = 0), namely when condition (13) with the equality sign (Hopf condition for system 

(11)) holds with d replaced by (d+qE), i.e. when 
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By contrast, the grazing bifurcation cannot be determined explicitly, because the prey-predator 

cycle is not known in closed form. The bifurcation curve separating region 2 from region 1 in 

Fig. 12 must therefore be produced numerically. The most effective way of doing this is to look 

for all periodic solutions of any period τ of the two differential equations (17) (which holds in 

S2) passing through the tangent point ( *
1x , *x2 ) of the sliding segment (see eq. (20)). This 

corresponds to find all solutions of the following problem (known as two-boundary value 

problem) 
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which has 6 equations and 7 unknowns (E, P, τ, x1(0), x2(0), x1(τ), x2(τ)). A problem like this 

has, generically, a one-dimensional family of solutions because the difference between the 

number of unknowns and the number of equations is 1. The solutions can be represented as a 

curve in the seven-dimensional space of the unknowns and the projection of this curve onto the 

(E, P) space is the grazing bifurcation curve. In practice, the curve in the seven-dimensional 

space is produced through a numerical technique called “continuation” which, starting from a 

first point obtained through simulation, produces through classical prediction-correction 

algorithms a nearby point and then iterates (Kuznetsov, 2004, Chap. 10). Of course, all these 

computations must be carried out with some specialized software. SlideCont (Dercole and 

Kuznetsov, 2004; Dercole and Kuznetsov, 2005), which is the most effective software for 

numerical bifurcation analysis of Filippov systems, produces the grazing bifurcation curve of 

Fig. 12 in a few seconds. 

The bifurcations occurring on the boundaries of region 2 in Fig. 12 allows us to specify 

uniquely the state portraits of the system on the other side of the same boundaries. In fact, 

crossing the Hopf bifurcation curve by increasing the effort E one obtains a state portrait like 

that of region 2 but with the cycle and the unstable focus substituted by a stable focus. Similarly, 

crossing the grazing bifurcation curve by increasing P one must obtain a state portrait with a 

sliding cycle. 

In order to proceed, one must now look at the two new state portraits, identify the potential 

collisions that their characteristic frames suggest, and finally check if these collisions can really 

occur. Let us start with the state portrait in region 1, which has a characteristic frame composed 
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of two saddles, one unstable focus, a sliding segment with one tangent point from which a 

trajectory enters region S2 and returns to the sliding segment to form a sliding cycle. There are 

two possible collisions one can imagine in such a characteristic frame. One is the collision of the 

point of return on the sliding segment with the tangent point, but this is the grazing bifurcation 

we have already discussed. The other is the collision of the unstable focus with the tangent point 

which obviously involves the shrinking of the sliding cycle. This bifurcation is actually 

impossible inside the region of interest because if the tangent point would be an equilibrium, the 

predator, which is indifferent at that point between its two food sources, could persist by feeding 

only on P, thus contradicting one of the assumptions we have made (see eq. (18)). Actually, the 

bifurcation occurs when the parameters satisfy the relationship obtained by replacing the 

inequality sign in (18) with the equality sign. In other words, the corresponding bifurcation 

curve is the upper boundary of region 1. Notice that such a curve merges with the grazing (G) 

and the Hopf (H) bifurcation curves at a codimension-2 bifurcation point at which the three 

collisions occur at the same time. In conclusion, the analysis of the state portrait in region 1 does 

not suggest any new bifurcation. 

Finally, the characteristic frame of the state portrait in region 3 suggests three possible 

bifurcations. One is the Hopf bifurcation that we have already discussed (see eq. (21)), while the 

two others correspond to the collision of the stable focus with the tangent point or with the 

saddle on the prey axis. The first one again yields the upper boundary of region 3. By contrast, 

the collision of the focus with the saddle on the prey axis (called transcritical bifurcation) is a 

standard bifurcation in Rosenzweig-MacArthur models (Hsu et al., 1978). It can be explicitly 

determined by annihilating the predator growth rate in (17) for x1 = K, thus obtaining  
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In order to find out if we have detected all bifurcations in the region of interest, it remains to 

check if the structure of the characteristic frame of the state portrait in region 4 suggests any 

new potential collision among its elements. This is, indeed, the case, since in principle we could 

imagine a collision of the tangent point of the sliding segment with the equilibrium on the prey 

axis. However, this would imply that the threshold *
1x  coincides with the prey carrying capacity 

K, a condition that we have explicitly ruled out (see eq. (19)). We can therefore conclude that in 

the region of interest there are only three bifurcations: a grazing bifurcation of a limit cycle (G), 

a Hopf bifurcation (H), and a transcritical bifurcation (TC). Moreover, the boundaries of the 
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region of interest are themselves bifurcations involving the collision of standard equilibria 

(focus or saddle) with the tangent point of the sliding segment. 

It is worth noticing that the effectiveness of the method of analysis based on the characteristic 

frame is absolutely independent on the choice of the starting point. In the previous discussion 

we have decided to start from a point very close to the origin, i.e. from region 2. Then, from the 

analysis of the characteristic frame in such a region, we have discovered regions 1 and 3 and, 

finally, looking at the characteristic frame in region 3 we have discovered region 4. However, 

we could have started from any other point, for example, by producing through simulation the 

state portrait of the system for a pair (E, P) in region 3. Then, from the analysis of the 

corresponding characteristic frame we would have discovered the Hopf (H) and the transcitical 

(TC) bifurcation (i.e., regions 2 and 4) and, finally, from the analysis of the characteristic frame 

in region 2 we would have discovered the grazing bifurcation (G) and region 1. In other words, 

independently upon the starting point, the method proceeds iteratively by discovering new 

regions of the bifurcation diagram adjacent to the already discovered ones. In this sense it recalls 

the most common strategy used for completing a jigsaw puzzle and has been called for this 

reason “puzzle method”. 

Once the full bifurcation diagram is available one can draw general conclusions on the 

behavior of the system and on the impact of the control parameters. For example, in the present 

case one can observe that the density P of the alternative prey has absolutely no impact on the 

long term behavior of the system in regions 2, 3, and 4 because in those regions the attractor of 

the system is to the right of the boundary Σ where the dynamics are described by eq. (17) which 

does not depend on P. Thus, an increase of P which might be intuitively proposed to protect 

populations from risky situations (i.e. too low densities) is actually effective only in region 1 

where the attractor is a sliding cycle with minimum values of x1 and x2 increasing with P. 

 

Example 3 

Consider again a prey (x1) – predator (x2) assembly described, in the absence of exploitation, 

by the Rosenzweig-MacArthur model (11) and assume that predator can grow when prey are 

abundant (see condition (12)) and that the habitat is so rich to guarantee that the prey carrying 

capacity is above the threshold value (13). Under these conditions, the attractor is a limit cycle, 

as shown in Fig. 11. Moreover, assume that the predator population can be exploited at constant 

effort E (as in the previous example) and that in order to avoid risky conditions for the prey, a 

second habitat, less rich than the natural one, is made available to them where they are better 

protected from the attacks of the predator (Křivan, 1998). In order to keep the number of control 
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parameters at a minimum value we assume that in the poor but safe habitat the net growth rate 

of the prey, its carrying capacity and the maximum predation rate are reduced of the same factor 

P > 1. Thus, if  the criterion used by the prey in selecting the habitat is fitness maximization, the 

predator density *x2  at which prey are indifferent between the two habitats is characterized by 

the same 11 xx& , i.e. 
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which can be easily solved with respect to *x2 , thus giving  
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The straight line (23) is the boundary Σ separating the two regions S1 and S2 of the Filippov 

system described by 
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Notice that the boundary Σ is independent upon both control parameters E and P, while the 

dynamics depend only upon exploitation E in S1, but also upon P in S2. 

In order to find if sliding is possible on Σ, we must check if the transversal components to Σ 

of the vector x&  evaluated with (24) and (25) can be of opposite sign. This corresponds to detect 

the sign of ( )( )21 xrax && +−  evaluated with (24) and (25). Straightforward computations allow 

one to conclude that for any value of P > 1 there exists a sliding segment T1T2, that the motion 



 21

along this segment is from the right to the left, so that pseudo-equilibria cannot exist, and that 

the left tangent point (say T1) is always visible, while the right one (say T2) is invisible. All state 

portraits of Fig. 13 point out these properties. Moreover, the sliding segment T1T2 shrinks for P 

tending to 1 since sliding has no sense when the two habitats are the same. This means that the 

E-axis of Fig. 13 is a sliding bifurcation (collision of T1 and T2) corresponding to the 

disappearance of a sliding segment. 

In order to perform the bifurcation analysis of system (24, 25) we use the puzzle method 

starting from points close to the E-axis where we already know (see previous example with P = 

0) that there are two standard bifurcations, namely a Hopf bifurcation H (see eq. (21)) and a 

transcritical bifurcation TC (see eq. (22)). If P > 1 and E > ETC the state portrait is that of panel 1 

in Fig. 13 where all trajectories tend to point (K, 0) (predator extinction) and some of them slide 

on the segment T1T2. If P is increased and E remains constant, the trajectories below the 

boundary Σ do not vary and the tangent points of the sliding segments remain separated. Thus, 

the only bifurcation one can imagine by looking at the characteristic frame of panel 1 is the 

transcritical bifurcation after which the state portrait is like in panel 2. By contrast, the 

characteristic frame of panel 2 suggests three new bifurcations: collision of the standard focus 

with T1 or T2 and Hopf bifurcation. But the first two bifurcations cannot occur since no 

equilibrium can be on Σ where 1x&  is always strictly negative (the prey isocline is always below 

Σ and touches it at 01 =x , see eq. (23-25)). Thus, only the Hopf bifurcation is possible and the 

new characteristic frame in region 3 suggests only one new bifurcation, namely a grazing of the 

limit cycle at point T1 (grazing at point T2 is impossible because T2 is an invisible tangent point). 

Such a bifurcation, denoted by G in Fig. 13, can only be obtained numerically as discussed in 

the previous example. After this bifurcation the cycle becomes a sliding cycle as shown in panel 

4, and the corresponding characteristic frame suggests only one new bifurcation characterized 

by the collision of T2 with the point R of return on the sliding set Σs of the trajectory entering S1 

from T1. After this bifurcation (see panel 5) the sliding cycle has changed its topology because 

the sliding segment T2R is now outside the cycle and not inside, as in panel 4. The bifurcation 

separating region 4 from region 5, called buckling bifurcation (B) can be obtained through the 

solution of a two-boundary value problem imposing R = T2. Finally, the characteristic frame of 

panel 5 suggests only one possible bifurcation, namely the collision of the point of return R with 

the tangent point T1. After this bifurcation, the cycle is not sliding anymore but it crosses twice 

the boundary Σ: For this reason, both the cycle and the bifurcation are called crossing (C). Since 
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no other collision is possible in the characteristic frame of panel 6, we can conclude that the 

puzzle method has allowed us to obtain the complete bifurcation diagram of the system. 

 

Example 4 

Consider a prey (x1) – predator (x2) assembly and assume that the predator can be harvested 

when sufficiently abundant. The corresponding Filippov model is as follows: 
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It is easy to check that sliding is possible on Σ (the horizontal straight line x2 = P) and that the 

sliding segment can contain one or two pseudo-equilibria. The model looks quite similar to 

those described in Examples 1-3 but, in reality, it is much more complex. Indeed, in the previous 

examples, the bifurcations were only 2, 3, and 5, while they are now 28 as shown in the 

bifurcation diagram of Fig. 14, which is characterized by 32 regions. The state portraits in each 

region are not shown, but they can easily be imagined by looking at the characteristic frames 

sketched in Fig. 15. 

The diagrams of Fig. 14 and 15 have been obtained by systematically using the puzzle 

method. As repeatedly pointed out, one can start the analysis from any point in parameter space. 

Suppose we start from a particular point (E, P) and produce the state portrait through simulation, 

thus discovering the corresponding characteristic frame. If point (E, P) is, for example, in region 

13 of Fig. 14, the characteristic frame we discover is the one reported in panel 13 of Fig. 15. The 

potential collisions one can imagine within this characteristic frame are five. First, one can 

imagine a Hopf bifurcation of the standard cycle above Σ, i.e. the collision of a stable focus with 

a shrinking cycle. Indeed, this bifurcation is possible at the right boundary of region 13 in Fig. 

14 so that the characteristic frame in region 14 is the one sketched in Fig. 15. The second 

collision suggested by the characteristic frame 13 is the grazing of the standard cycle at the right 
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tangent point of the sliding segment. Also this collision is possible and the corresponding 

bifurcation curve, produced by solving a two-boundary value problem, is the boundary 

separating region 13 from region 12 where the characteristic frame is like in Fig. 15. A third 

possible bifurcation corresponds to the contemporary collision of the lower focus and the 

pseudo-saddle with the left tangent point of the sliding segment. Such a collision entrains the 

disappearance (through shrinking) of the sliding cycle below Σ, as shown by the characteristic 

frame 19 in Fig. 15. The fourth bifurcation is suggested by the possible collision of the pseudo-

saddle with the point of return on the sliding segment of the trajectory entering S1 from the left 

tangent point. Technically speaking, at this bifurcation the unstable manifold of the pseudo-

saddle coincides with its stable manifold and this is why this bifurcation has been called 

(Kuznetsov et al., 2003) sliding homoclinic to a pseudo-saddle. After this bifurcation, the 

sliding cycle does not exist anymore, as shown in panel 9 of Fig. 15. Finally, there is a fifth 

bifurcation that the characteristic frame 13 suggests, namely the grazing of the sliding cycle at 

the left tangent point of the sliding segment. After this bifurcation, the state portrait would 

contain two standard cycles, one entirely below and one entirely above the boundary Σ, i.e. one 

satisfying eqs. (26) and the other eqs. (27). But in a Rosenzweig-MacArthur model the 

maximum and minimum predator densities along the cycle must, respectively, be above and 

below the vertex of the prey isocline, as shown in Fig. 11. However, this isocline is the same in 

eqs. (26) and (27) so that two non-sliding cycles, one above and one below Σ, cannot exist. In 

other words, the fifth bifurcation suggested by the characteristic frame 13 cannot occur, so that, 

in conclusion, region 13 in Fig. 14 is delimited by four boundaries. At this point the puzzle 

method suggests to apply the same procedure to regions 9, 12, 14, and 19 and then iterate to the 

newly discovered adjacent regions and continue like so until the bifurcation diagram is 

completed. It is fair to say, however, that in practice the work does not always proceed as 

smoothly as it might be imagined from the present discussion. Serious obstacles might be found 

in the numerical computation of some bifurcation curves, as well as in the analysis of the 

possible collisions within some characteristic frame. For example, the derivation of the 

bifurcation diagram in Fig. 14 has involved two of us full time for about one month. 

This example is much more complex than the previous ones not only because it has more 

bifurcations but also for three other reasons. The first one, pointed out by Fig. 15, is that there 

can be multiple attractors. Indeed, for many parameter combinations (see regions 5, 12-15, 22-

25, 29, 31), the system has two attractors: at least one of them is a cycle and at least one of them 

involves sliding. This is a rather unexpected result because when the predator is not protected 

(i.e. when P = 0) the Rosenzweig-MacArthur model has a single attractor. This means that the 
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protection of an exploited population through an on-off harvesting strategy might give rise to 

long term dynamics depending upon initial conditions, or, saying the same thing in different 

words, it might transform a robust system into a system particularly sensitive to impulsive 

disturbances (which can force the state of the system to switch  from one basin of attraction to 

another). 

A second interesting feature of this example is that there are homoclinic bifurcations (see, 

e.g., the curve separating region 7 from region 8 and the already discussed transition from 

region 13 to region 9) which are associated with the disappearance of a cycle through the 

degeneration of its period, which becomes infinitely long when approaching the bifurcation. 

This phenomenon cannot be present in standard Rosenzweig-MacArthur models but has been 

proved to be possible in tritrophic food chain models (Kuznetsov et al., 1995; McCann and 

Yodzis, 1995; Kuznetsov and Rinaldi, 1996; De Feo and Rinaldi, 1998; Boer et al., 1999; 

Kuznetsov et al., 2001). This means that the introduction of an on-off harvesting strategy in a 

ditrophic food chain is as powerful as the introduction of a top-predator in producing very long 

cycles. 

Finally, a third important characteristic of this example is that there are catastrophic 

bifurcations, namely macroscopic transitions in state space due to microscopic variations of the 

parameters. This important phenomenon is clearly detectable from Fig. 14 and 15. For example, 

if point (E, P) is in region 5, but very close to the boundary with region 4, and the system is at 

the pseudo-node, a small increase of the threshold P will force the system to enter in region 4 

where the only attractor is a sliding cycle. Thus, a small variation in P generates a big surprise, 

namely a macroscopic transition from a pseudo-equilibrium to a radically different sliding cycle. 

Moreover, the surprise is even bigger if one notices that a slight increase of P, which should 

intuitively protect the predator population, actually gives rise to the opposite effect since the 

sliding cycle in region 4 is below the threshold x2 = P. 

 

 

CONCLUDING REMARKS 

 

We have summarized in this paper the main properties of Filippov systems (Filippov, 1964; 

Filippov, 1988) which are systems described by different ordinary differential equations in 

various regions of state space. The main characteristic of Filippov systems is that they can 

evolve by sliding along the boundaries separating the various regions. Such systems have 

already been used in ecology (Charnov, 1976; Stephens and Krebs, 1986; Křivan, 1996; Křivan, 
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1997a, 1997b; Křivan and Sirot, 1997; Sirot and Křivan, 1997; Křivan, 1998; Boukal and 

Křivan, 1999; Genkai-Kato and Yamamura, 1999; Křivan and Sikder, 1999; Van Baalen et al., 

2001; Dercole et al., 2003; Křivan, 2003; Křivan and Eisner, 2003; Křivan and Schmitz, 2003; 

Křivan and Diehl, 2005; Meza et al., 2005; Srinivasu and Gayatri, 2005; Dercole at al., 2006), in 

particular for describing cases in which individuals of one population are fitness-maximizers 

and therefore switch between alternative habitats or diets as soon as one population becomes too 

scarce or too abundant. The attention has been focused on bifurcations (Arnold, 1982), in 

particular on sliding bifurcations, but the analysis has been restricted to second order systems, 

i.e. systems with only two populations, because only for this case the theory of sliding 

bifurcations is complete (Kuznetsov et al., 2003). A general method, called “puzzle method” has 

been proposed for organizing the bifurcation analysis of the system. The method works for any 

kind of system but is particularly effective for the analysis of Filippov systems, where the 

bifurcations can be really many. The key idea of the method is to start from a particular point in 

parameter space and to extract from its state portrait, produced through simulation, a special set 

of trajectories, called characteristic frame, from which it is easy to detect, through simple 

inspection, all bifurcations that might potentially occur for relatively small parameter variations. 

Then, in a second phase, which very often requires the use of specialized software (Dercole and 

Kuznetsov, 2004; Dercole and Kuznetsov, 2005), one can find out which are the bifurcations 

that really occur in the system. A by-product of this analysis is a series of new characteristic 

frames of regions of parameter space close to the starting point. Then, the process is repeated for 

each one of these characteristic frames, and new characteristic frames characterizing adjacent 

regions are produced. Thus, provided the number of bifurcations is finite, the complete 

bifurcation diagram is produced step-by-step by expanding around already detected regions, i.e. 

around already composed pieces of the puzzle. 

Four ecological examples have been presented in order to illustrate the proposed method. 

They all deal with population communities which are at the same time exploited and protected. 

The bifurcation analysis is not always simple and in some cases (Example 4) the puzzle method 

turns out to be essential for producing a complete bifurcation diagram. Although this was not the 

target of the paper, the results obtained through the analysis of the four examples show that the 

introduction of on-off exploitation strategies can transform a simple system, like the 

Rosenzweig-MacArthur ditrophic food chain, into a very complex system with multiple 

attractors, homoclinic bifurcations and catastrophes. 

We hope that this paper can popularize Filippov systems among ecologists and that the 

puzzle method we have suggested will be used to analyze various models. A possible interesting 

application concerns the coevolution of prey-predator communities characterized by fast and 
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slow dynamics. In such a case, in fact, the coevolution of the two phenotypic traits (one for the 

prey and one for the predator) turns out to be described, under suitable assumptions, by a 

Filippov system, which has been mainly analyzed through simulation (Dercole et al., 2006). A 

complete bifurcation analysis of such a system seems to be possible through the systematic use 

of the puzzle method and could hopefully give interesting contributions to the theory of prey-

predator coevolution (Abrams, 2000). Many other applications are also possible, in particular in 

the field of renewable resources management. 

Of course in many, if not all, applications that one would naturally consider of interest, the 

number of populations involved is greater than 2. In these cases the puzzle method can still be 

used but there might be conceptual difficulties associated with the definition and interpretation 

of the characteristic frame. This is an important issue that we leave open with the hope it will 

attract the attention of mathematical biologists. 
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FIGURE CAPTIONS 

 

Fig. 1 On the boundary Σ the orbit is crossing (a) if the transversal components to Σ of f(1) and 

f(2) have the same sign, or sliding (b) if the transversal components of f(1) and f(2) are of 

opposite sign. 

 

Fig. 2 Filippov rule: the vector g(x) tangent to ΣS is a convex combination of f(1)(x) and f(2)(x). 

 

Fig. 3 Trajectories in S1 and S2 (a), and chattering solutions (b) in an ε-tube around Σ. 

 

Fig. 4 Visible (a) and invisible (b) tangent point. The thick orbit is a sliding orbit. 

 

Fig. 5 State portrait of a Filippov system with two sliding segments (T1T2 and T3T4), two 

standard equilibria (two stable foci F1 and F2), three pseudo-equilibria (two pseudo-

saddles PS1 and PS2 and a stable pseudo-node PN), and two limit cycles (one unstable 

and standard (γ1) and one stable and sliding-crossing (γ2 = T1ABT1)). The shaded region 

is the basin of attraction of the pseudo-node. 

 

Fig. 6 Characteristic frame of the system described in Fig. 5. 

 

Fig. 7 Null-isoclines 1x& = 0 and 2x& = 0, sliding segment T1T2 (with invisible tangent points) 

and pseudo-node PN of system (4-6) for the following parameter setting: a = c = d1 = 

d2 = q = E = 1, b = 3, P = 0.3. 

 

Fig. 8 Bifurcation curves of system (4-6) in the space (E, P) for the parameter setting 

specified in Fig. 7. 

 

Fig. 9 Null-isoclines, sliding segment T1T2 and standard equilibrium X for system (4-6) for 

two different pairs (E, P). (a): E = 0.2, P = 0.13, i.e. (E, P) is in region 1 of Fig. 8. (b): 

E = 0.5, P = 0.8, so that  (E, P) is in region 3 of Fig. 8. All other parameters are at their 

reference values (see caption of Fig. 7). The characteristic frames (solid lines) contain 

also a trajectory entering in S1 or S2 from the visible tangent point and ending in the 

standard equilibrium X. 
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Fig. 10 Complete bifurcation diagram of system (4-6) composed of bifurcation curves and state 

portraits characterizing each region of parameter space. 

 

Fig. 11 State portrait of the Rosenzweig-MacArthur system (11) for r = K = a = 1, b = 0.2, c = 

0.1, d = 0.06. The characteristic frame is composed of three equilibria (two saddles and 

an unstable focus) and one stable limit cycle. 

 

Fig. 12 Bifurcation diagram of model (16, 17) for the following parameter setting: r = q = 1, K 

= 1.5, a = a′ = 5/3, b = 2/3, c = 0.4, d = 0.1, b′ = 4/3, c′  = 0.3. Curves G, H, and TC are 

grazing, Hopf, and transcritical bifurcations, respectively. 

 

Fig. 13 Bifurcation diagram of model (24, 25) for the following parameter setting: r = 5, K = q 

= 1, a = 2, b = 0.4, c = 0.7, d = 0.1 (notice on the left panel that 1/P linearly scales from 

1 to 0 on the vertical axis). Curves  H and TC are Hopf and transcritical bifurcations 

given by (21) and (22). Curves G, B, and C are sliding bifurcations, known as grazing, 

buckling and crossing, respectively. 

 

Fig. 14 Bifurcation curves of model (26, 27) for the following parameter setting: r = K = c = q 

= 1, a = 0.3556, b = 1/3, d = 0.0444. The two grey regions are stretched and magnified 

in the two side panels. 

 

Fig. 15 Sketch of the characteristic frames in regions 1, 2, …, 32 of Fig. 14. 
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ẋ2 =0

S1

S2

ad
ul

t,
x

2

young, x1
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ẋ2 =0

S1

S2

T2

 
   (a)                                                                         (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 



 42

0 1
0

1

1

2

3

3

21

x1

x2

x1

x2

x1

x2

pr
ot

ec
tio

n,
P

exploitation, E  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 



 43

x2

0 K−b
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