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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 125

EEP

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Abstract

This paper is about the emergence of technological variety arising from market interaction and technological

innovation. Existing products in the market compete with innovative ones resulting in a slow and contin-

uous evolution of the underlying technological characteristics of successful products. When technological

evolution reaches an equilibrium, it can either be an ESS (Evolutionary Stable Strategy), where marginally

innovative products do not penetrate the market, or a branching point, where new products coexist along

with established ones. Thus, technological branching can give rise to product variety. In the paper we first

introduce Adaptive Dynamics (AD), a recently proposed theory of evolutionary processes, aiming at mod-

elling various features of technological change. Then, a first application of AD in economics is presented

and discussed in detail. The limitations of the AD approach,as well as some promising further applications

in economics and social sciences, are briefly discussed at the concluding section.

Key words: adaptive dynamics, market dynamics, innovation dynamics,characteristic trait, technological
branching, technological variety
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1 Introduction

Technological change is a major driver of economic development (Burda & Wyplosz, 1997; Harberger,

1998). New growth theory has claimed the understanding of the implications of technological advancement

for economic policy making mainly focusing on efficiency gains (see, for instance, Romer, 1990; Gross-

man & Helpman, 1991; Aghion & Howitt, 1992; Kortum, 1997; Peretto, 1998; Segerstrom, 1998; Young,

1998). One of the fundamental empirical trends in economic development is the trend toward growing va-

riety. Although some, like Schumpeter (1912), realised early on that variety in consumer goods is “one of

the fundamental impulses that set and keep the capitalist engine in motion”, relatively little attention has

traditionally been devoted to the systematic exploration of the nature of diversity in economics.

Diversity is variously argued to be a major factor in the fostering of innovation and growth, an important

strategy for hedging against intractable uncertainty and ignorance, the principal means to mitigate the effects

of “lock-in” under increasing returns and a potentially effective response to some fundamental problems of

social choice. Grübler (1998) argues that technological diversity is both a means and a result of economic

development. Saviotti (1996), a crucial contribution on the subject, establishes two explicit hypotheses

linking variety to economic development: (1) The growth in variety is a necessary requirement for long-term

economic development; (2) variety growth, leading to new sectors, and productivity growth in pre-existing

sectors, are complementary and not independent aspects of economic development. Stirling (1998), who

provides an excellent literature review on diversity in theeconomy, concludes that the concept of diversity

(and especially technological diversity) is of considerable general significance in economics.

It is the purpose of this paper to propose a rigorous modelling framework describing the interaction

of technology with its social and physical environment leading to technological diversity. In our opinion

Adaptive Dynamics(AD), a general theory of evolutionary processes (Dieckmann & Law, 1996; Metzet al.,

1996; Geritzet al., 1997, 1998), offers tools to explicitly study the process of technological change and its

interaction with the market process. Viewed through the lenses of AD technological change is mainly based

on a large number of small intentional or spontaneous innovations, recombinations and rearrangements of

technological and economic characteristic traits. Firms compete in terms of the efficiency with which they

produce or by changing products and processes. Efficiency gains as well as changes in products or processes

are measured by “characteristic traits”. When a new technological variant enters the market, it is subjected

to severe selection by customers and other agents such as banks, courts of appeal, democratic votes, and
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so on. Under these circumstances and a few other technical assumptions discussed in the next section, AD

predicts the following series of facts that one can often observe in real economies, at least at a stylised level.

1. Technological innovations are either rejected or win thecompetition with established products, thus

becoming the new predominant type. A small variation of the technological characteristic traits is

associated to each invasion and substitution event. The result is a slow and smooth evolution of the

traits.

2. Evolution can slow down and approach an equilibrium, but it can also tend toward a cyclic or chaotic

regime (Khibnik & Kondrashov, 1997). Moreover, it is not said that all evolutionary paths tend

toward the same attractor: in other words, the long term implications of the innovation process can

strongly depend upon the innovation paths followed in the past. Finally, technological change can

also transform particular products which in the past were predominant types into obsolete products

which are swept out from the market.

3. Evolutionary equilibria can be terminal points of technological change where, typically, no marginal

innovation can penetrate the market (Hamilton, 1967; Maynard Smith & Price, 1973; Maynard Smith,

1974, 1982; Nash). However, they can also be branching points, where the new variant can pene-

trate without substituting the old products. This technological branching explains the emergence of

technological variety. Repeated branchings can give rise to rich clusters of products coexisting in the

market.

4. The above processes of disappearance and emergence of specific technologies are largely influenced,

if not dominated, by consumer behaviour and other market conditions which act as the economic

filter for innovations and either pull or suppress the diffusion of new technologies (see e.g. Kelm,

1997; Hodgson, 1997; Brooks, 1980)

The paper is organised as follows. In the next section we present the general framework of AD by

adapting it to the problem of technological change. In particular, we show why the separation between

market and technological innovation timescales is needed to technically derive from AD principles a formal

mathematical machinery, the so-called AD canonical equation. Then, we present the first original application

of AD to a specific problem of technological change. The problem we discuss is intentionally very simple,

in order to obtain the AD equation in closed form and point outfrom it the properties mentioned above.
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Finally, in the conclusion we discuss the limitation and theadvantages of the AD approach and give a short

overview of the wide scope of evolutionary phenomena that ADcould potentially explain in economics and

social sciences.

2 Adaptive Dynamics: An overview

In this section we present the general framework of AD by focusing our attention on a specific market with

N coexisting products (namely entities, artefact’s or services), hereafter calledestablished products. The

starting point of AD is the description of the dynamics of theproduct densities in the market (e.g. the

number of items owned by 1000 persons) through a system of ordinary differential equations (ODEs).

AD is based on four technical assumptions:

a. Each product is identified by acharacteristic trait(simply trait in the following) quantifying its fea-

tures by a positive real number. We assume that products witha higher trait are technologically more

advanced. However, this does not imply that more advanced products are necessarily preferred by con-

sumers, since elasticities of the products as well as budgetary constraints are also important. Simple

examples of characteristic traits are the waterproof characteristic for watches, the internet capabilities

for mobile phones or the graphical user interface features of a software.

b. In the absence of innovations, product densities tend to amarket equilibrium. The timescale on which

product densities vary is calledmarket timescale.

c. Innovation events are rare on the market timescale, i.e. they occur on a longer timescale that we call

innovation timescale. In other words, we assume that market clearing occurs instantaneously on the

innovation timescale. The separation between the market and innovation timescales allows one to

assume that when an innovative product appears the established products are at market equilibrium,

and the market is challenged by one innovation at a time.

d. Innovations are small, i.e. the trait of the innovative product differs only slightly from the trait of one

of the established products. In other words, we consider thecase of “marginal” innovation, where

innovations are new but similar versions of the existing products.

The principles and methods of AD are presented in the founding papers of Metzet al. (1996) and Geritz
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et al. (1997, 1998), and in Dieckmann & Law (1996), Champagnatet al. (2001), Geritzet al. (2002). We

now discuss the core of the theory by adapting it to the context of technological change.

Denote byn1, . . . , nN andx1, . . . , xN the densities and traits of theN established products. For nota-

tional convenience, we often indicate these densities and traits as vectorsn andx. On the market timescale

(fast market dynamics), the traits are constant while the densities vary in accordance withN ODEs of the

form:

ṅj = njFj(n1, . . . , nN , x1, . . . , xN ), j = 1, . . . ,N (1)

whereFj is the relative diffusion rate of thej-th product. For example, ifN = 1, there is a single product in

the market and its diffusion can be modelled through the classical logistic growth equation (see e.g. Fisher

& Pry, 1971):

ṅ1 = r(x1)n1

[

1 −
n1

K(x1)

]

wherer(x1) is the maximum diffusion rate andK(x1) is the market equilibrium density.

In the following, model (1) is assumed to have a stable and strictly positive equilibriumn̄(x), called

market equilibrium, for eachx belonging to a region of the trait space calledstationary coexistence region.

We also assume that̄n(x) is globally stable in the positive orthant. This condition is not necessary, but it

simplifies the discussion (see Dercoleet al. (2002) and Dercole & Rinaldi (2002) for relevant exceptions

and Dercoleet al. (2003) for a case of cyclic coexistence).

We now show why the four stylised facts mentioned in the Introduction can be derived from AD theory.

1. Canonical equation

The dynamics of the traits, hereafter calledinnovation dynamics, should reflect the characteristics of the

innovation and the market selection processes, which, however, are not included in model (1). In order

to describe the competition between the established products and an innovative product, we split thei-th

product into two sub-products (established and innovative) with densitiesni andn′

i and traitsxi andx′

i, so

that the model reads:

ṅj = njfj(n, n′

i, x, x′

i), j = 1, . . . ,N

ṅ′

i = n′

if
′

i(n, n′

i, x, x′

i)

(2)

Obviously, model (2) contains more information than model (1). Indeed, model (1) can be immediately

derived from model (2) by disregarding the equation of the innovative product and lettingn ′

i = 0, thus
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obtaining:

Fj(n, x) = fj(n, 0, x, x′

i), j = 1, . . . ,N

where the functionfj(n, 0, x, x′

i) does not depend onx′

i. The functionsfj andf ′

i , at the right-hand sides of

model (2) enjoy the following structural properties:

fj(n, n′

i, x, xi) = Fj(n1, . . . , ni−1, ni + n′

i, ni+1, . . . , nN , x), j = 1, . . . ,N (3)

f ′

i(n, n′

i, x, xi) = fi(n, n′

i, x, xi) = Fi(n1, . . . , ni−1, ni + n′

i, ni+1, . . . , nN , x) (4)

because, ifx′

i = xi, the established and innovative products do not differ, so that only the total density

(ni + n′

i) matters. Moreover

f ′

i(n, n′

i, x, x′

i) = fi(n
′, ni, x

′, xi) (5)

where

n′=(n1, . . . , ni−1, n
′

i, ni+1, . . . , nN )

and

x′=(x1, . . . , xi−1, x
′

i, xi+1, . . . , xN ) (6)

because any one of the two sub-products can be considered as innovative, provided the other is considered

as established. Notice that property (4) is implied by properties (3) and (5).

We can now derive how the traits vary in time. Since model (1) is, by assumption, at its equilibrium̄n(x)

when an innovation occurs, the initial conditions in model (2) are(n̄(x), n ′

i). Thus,ṅ′

i > 0, i.e. the innova-

tive product penetrates the market, iff ′

i(n̄(x), n′

i, x, x′

i) > 0, which is guaranteed iff ′

i(n̄(x), 0, x, x′

i) > 0

sincen′

i is small (the innovative product is initially present in a few items). The functionf ′

i(n̄(x), 0, x, x′

i),

calledinvasion fitness, is strategically important and is abbreviated, in the following, asf̄ ′

i(x, x′

i), i.e.

f̄ ′

i(x, x′

i) = f ′

i(n̄(x), 0, x, x′

i) (7)

Notice that property (4) implies that the invasion fitness vanishes forx′

i = xi, i.e.

f̄ ′

i(x, xi) = 0
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because the established products are at equilibrium.

The invasion fitness̄f ′

i represents the relative diffusion rate of a few innovative items in the market set

by the established products. Innovations originate by chance but their fate depend on their competitiveness,

i.e. on their capacity to penetrate into the market. Competitiveness is, therefore, a concept relevant on

the market timescale, that necessarily depends on the innovative traitx′

i, as well as on the current market

conditions, which are defined by the established product traits x. In other words, the invasion fitness of the

novel product provides a summary of the underlying market selection process. As we shall see in the rest of

the section, such a summary and a proper stochastic description of the innovation process are necessary and

sufficient to make the step to macro-evolutionary considerations on the innovation timescale.

If f̄ ′

i(x, x′

i) < 0, it follows from model (2) that just after the innovatioṅn′

i < 0, i.e. the innovative

product does not penetrate and actually exits the market. Thus, the final result is still a set ofN established

products with traitsx and densities̄n(x). By contrast, iff̄ ′

i(x, x′

i) > 0, the innovative product initially

penetrates and, under very general conditions, thei-th established product exits the market, being replaced

by its new version. Thus, in this case, the trajectory of model (2) originating at(n̄(x), n ′

i) ends at

n̄(i)(x′) = (n̄1(x
′), . . . , n̄i−1(x

′), 0, n̄i+1(x
′), . . . , n̄N (x′), n̄i(x

′)) (8)

i.e. the final result is a new set ofN established products with traitsx′ and densities̄n(x′) (see (6)). In

other words, each innovation brings a new trait into the market, but competition between established and

innovative products selects the winner, namely the trait that remains in the market.

The conditions under which the innovative product replacesthe established one are known as theinva-

sion implies substitution principle(see Dercole, 2002, for a proof) and require thatn̄(x) is continuous with

respect toxi atx and
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

(x′

i − xi) > 0 (9)

Notice that the equilibrium̄n(i)(x′) (see (8)) exists because, by assumption,n̄(x) is continuous with respect

to xi atx. By developingf̄ ′

i in Taylor series with respect tox′

i, and recalling that innovations are small (i.e.

x′

i differs only slightly fromxi andn′

i(0) is very small), one obtains:

ṅ′

i(0) ≃ n′

i(0)
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

(x′

i − xi) (10)
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wheret = 0 is the time at which the innovation occurs. Thus, condition (9) impliesṅ ′

i(0) > 0, i.e. initial

penetration of the innovative product.

The quantity
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

(11)

is calledselection derivative, and the vector with components (11),i = 1, . . . ,N , is calledselection gra-

dient. Thus, as long as the selection gradient does not vanish, thedynamics of the traits are characterised

by

ẋi



















> 0 if
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

> 0

< 0 if
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

< 0

i = 1, . . . ,N

The selection gradient gives the direction of technological change and describes a continuous feedback

between the innovation and the market selection processes.In fact, technological change, i.e.ẋ i, depends

on consumption patterns which develop on the market timescale in accordance with model (2) and are

summarised by the invasion fitness (7) (through the selection gradient). In turn, consumption patterns are

affected by the current market conditions condensed byx.

The process of innovation and selection can be further specified by making suitable assumptions on the

frequency and distribution of innovations. The speed of innovation is influenced by three primary factors:

how often an innovation occurs; how large a trait change an innovation causes; and how likely it is that

an initially scarce set of new products penetrates. By suitably modelling these three factors, one can prove

that if innovations are sufficiently small, the innovation process proceeds by a large number of subsequent

penetrations and substitutions and can be approximated by the following system of ordinary differential

equations (Dieckmann & Law, 1996; Champagnatet al., 2001):

ẋi =
1

2
µi(x)n̄i(x)σ2

i (x)
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

, i = 1, . . . ,N (12)

called thecanonical equationof AD. With reference to thei-th product,µi is the probability of an innovation

per event of production of a new item,µin̄i is thus proportional to the number of innovations that are put

on the market per unit of time (on the innovation timescale),andσ2
i is the variance of the trait change of

an innovation (with expected change equal to zero). The probability of penetration consists of two factors.

First, if the selection derivative (11) does not vanish, only innovations with trait value either larger or smaller
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than that of the established product can penetrate; in otherwords, half of the innovations are at selective

disadvantage. This leads to the factor1/2 in the canonical equation. Second, innovations at selective

advantage may be accidentally lost in the initial phase of invasion when they are present only in a few items.

The probability of not being lost is proportional to the selective advantage of the innovation as measured by

the selection derivative (11).

In conclusion, we have obtained the following model

ẋi = Gi(x1, . . . , xN ), i = 1, . . . ,N (13)

where

Gi(x) =
1

2
µi(x)n̄i(x)σ2

i (x)
∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

Such a model describes the technological coevolution ofN products coexisting at market equilibrium under

the assumption of rare innovations of small effect.

2. Long term scenarios

In contrast to prevailing economic theories that focus on the properties of the equilibrium, the AD approach

is based on a dynamical framework which accounts for the fulldynamics of technological change and its

concomitant changes in the market, including, for instance, the description of the evolutionary transient.

Notice that the evolutionary model (13) is an autonomous system of ODEs. Thus, economic systems per-

petually reshape themselves, thereby changing their own basis in terms of technologies in use and market

environment, which are both condensed in the trait vectorx.

It is important to remark that the AD canonical equation models a coevolutionary context where in-

novation in one product leads to coevolutionary changes in all other related products in the market under

consideration. The importance of this mutual interactionsis best described by Ziman (2000) who says

“. . . material artefact’s cannot be considered in isolationfrom their cognitive and social correlates. . . as the

artifact changes, so does the cloud of ideas and social activities that surround it”.

Moreover, model (13) is in general nonlinear, which means that the interactions between technology

and its market are capable to give rise to a rich set of scenarios. In the simplest evolutionary scenario one

can imagine (Fig. 1A), technological change converges to a particular combination of the traits, no matter
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what the initial conditions are. A wilder scenario is that ofnever ending ups and downs of the traits like

those recorded in the skirt length of women’s formal eveningdresses reconstructed from the analysis of

fashion magazines over two centuries (Lowe & Lowe, 1990). Inthese cases the traits evolve either toward a

limit cycle (Fig. 1B) or toward a strange attractor as discussed in Khibnik & Kondrashov (1997). Another

case of interest (Fig. 1C) is that of alternative equilibria (or attractors). This means that the long term

implications of the innovation process can depend upon the innovation paths followed in the past. Such

path dependency could for example explain divergence phenomena discussed in development economics,

where some developing countries seem to fall into a technological and economic underdevelopment trap,

while, industrialised countries converge to a high technological level. Finally, it can also happen (Fig. 1D)

that some evolutionary trajectories reach the boundary of the coexistence region where one of the products

cannot be sustained in the market. This is, for example, whathappened to the telex technology and what is

expected to happen in the near future to the fax technology.

3. Emergence of diversity

We callevolutionary equilibriuma constant solution of the canonical equation (12), i.e. a set of traits x̄ at

which all selection derivatives (11) vanish

∂f̄ ′

i

∂x′

i

∣

∣

∣

∣x′

i
=x̄i

x=x̄

= 0, i = 1, . . . ,N

Of course, evolutionary equilibria can be either stable or unstable equilibria of the canonical equation (12).

If innovation dynamics have found a halt at a stable evolutionary equilibriumx̄, where the first order term

of ṅ′

i(0) vanishes (see eq. (10)), in order to establish if an innovation is initially successful or not one can

developf̄ ′

i in Taylor series up to the second order term, thus obtaining:

ṅ′

i(0) ≃ n′

i(0)
∂2f̄ ′

i

∂x′2
i

∣

∣

∣

∣x′

i
=x̄i

x=x̄

(x′

i − xi)
2

The result is that the innovation initially penetrates if

∂2f̄ ′

i

∂x′2
i

∣

∣

∣

∣x′

i
=x̄i

x=x̄

> 0 (14)
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no matter if the trait valuex′

i is larger or smaller than the established traitx̄i. If condition (14) holds with

the opposite inequality sign for alli = 1, . . . ,N , then x̄ is protected against invasion and is, therefore,

a so-calledevolutionarily stable strategy(ESS) as defined in evolutionary game theory (Hamilton, 1967;

Maynard Smith & Price, 1973; Maynard Smith, 1974, 1982; Nash). In other words, technological evolution

by means of small innovations can drive an economic system toa terminal point of the evolutionary process,

a trap from which the system can possibly escape only by exogenously injecting radically different products

into the market.

Understanding the long term consequences of an invasion atx̄ is not an easy problem since we cannot

rely on the invasion implies substitution principle, whichindeed does not hold at an evolutionary equilib-

rium. However, Geritzet al. (2002) have shown that it is not possible that an initially penetrating innovative

product is ruled out from the market in the long term. Thus, only two possibilities remain: either the inno-

vative product substitutes the established product or it coexists with it at a stable and strictly positive market

equilibrium. In accordance with the verbal definition givenat point 3 of Section 1,̄x is a branching point if

- it is a stable evolutionary equilibrium;

- the innovative product coexists with the established product, thus becoming an established product

itself with densitynN+1 and traitxN+1;

- the traitsxi and xN+1 are initially very close but, then, differentiate in accordance with the new

(N+1)-dimensional canonical equation.

Geritzet al. (1997, 1998) have shown that ifn̄(x) is continuous at a stable evolutionary equilibriumx̄, then

x̄ is a branching point if, for somei, condition (14) holds and

∂2f̄ ′

i

∂xi∂x′

i

∣

∣

∣

∣x′

i
=x̄i

x=x̄

< 0 (15)

If the branching conditions (14) and (15) hold for more than one product, it is a matter of chance which

product will branch first.

Technological branching occurs when the selective forces acting on the market first allow the coexistence

of two slightly different types of products and then become repulsive, therefore favouring the diversification

of two technologies originating from the same trait. Think,for example, to mobile and fixed phones: the
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first mobile phones were heavy car phones, different from fixed phones only for the presence of an antenna

instead of a wire.

Notice that there are evolutionary equilibria which are neither ESSs nor branching points. Indeed, it

can be shown (see Dercole, 2002) that an innovative product can penetrate the market and substitute the

corresponding established product, thus leading to a new trait assemblyx close tox̄; but at this new trait

composition the canonical equation (12) holds and, ifx̄ is stable, thenx converges back tōx, which is, then,

a terminal point of the evolutionary process, even if it is not protected against penetration. For this reason we

refer to stable ESSs and to this subset of stable evolutionary equilibria as evolutionarily terminal strategies.

After a branching has occurred in thei-th product, the market is composed of(N + 1) diversified

products. Thus, one can derive the new(N + 1)-dimensional canonical equation and repeat the analysis for

the new market. If, again, technological change will evolvetoward a branching point, the result will be a

market with(N +2) diversified products, an so on. Since no limit exists on the number of possible repeated

branchings there is room for the formation of rich clusters of products. Long sequences of technological

branchings are empirically evident in almost every market segment. Consumers worldwide can witness that

an increasing number of products that match their expectations are available on the market (see e.g. Grübler,

1998; Saviotti, 2001). For example, (Ausubel, 1990) showedthat the average number of items on sale in a

typical large US supermarket has increased from 2000 in 1950to 18000 items in the 1990s.

4. Exogenous factors

The market competition model (2) and the frequency and distribution of mutations depend upon exogenous

factors like consumer preferences, social and political structures, international relationships, availability of

natural resources, and many others. In order to simplify theanalysis, these factors can be left out from the

model, but they can also be explicitly included in the model and measured through some strategic param-

eter, in which case the canonical equation (12) will depend explicitly upon a set of parameters. The role

played by exogenous factors on the dynamics of technological change can then be identified by studying the

canonical equation for all possible values of the exogenousparameters. This naturally calls for numerical

bifurcation analysis (Kuznetsov, 1998), which is the most powerful technique for identifying the long term

consequences of parameter perturbations in ODEs models.

Before presenting an explicit application of AD in economics, it is worth stressing that the analysis
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described until now applies only to marginal innovations. In the case of a radical innovation (e.g. an in-

vention, the establishment of a new import/export protocol,. . . ), namely when the innovative product trait is

remarkably different from all other traits established in the market, the outcome of the competition must be

established by means of model (2). Once the new market equilibrium has been determined, the method of

analysis discussed in this section can be used again to detect the consequences of new marginal innovations.

Thus, the process of technological change, described by AD as a continuous process due to marginal inno-

vations, is punctuated from time to time by major breakthroughs. Moreover, radically innovative products

can penetrate the market without substituting the previousestablished products. Thus, the AD approach

interestingly shows that the emergence of new products can be attributed to both marginal and radical inno-

vation events. While it is rather obvious, as noted already by Schumpeter (1912), that radical innovations

can generate product diversity, it is less obvious that product diversification can emerge through technolog-

ical branching of incremental innovation steps. Thus, technological branching helps explaining increasing

product diversity in a world that is dominated by incremental innovations.

3 A simple example of technological branching

We now present the first application of AD in economics. The problem we consider is intentionally sim-

ple in order to obtain the AD canonical equation in closed form and clearly identify the stylised properties

mentioned in the first section. Although the model is far frombeing empirically testable, it provides some

insights on the market conditions which favour technological branching and the emergence of product clus-

ters.

We assume that different productsj = 1, . . . ,N characterised by a single technological traitxj compete

in the market according to the following model:

ṅj = r(xj)nj

[

1 −
1

K(xj)

N
∑

l=1

α(xj , xl)nl

]

, j = 1, . . . ,N (16)

where the functionsr(xj), K(xj) andα(xj , xl) describe the market environment and have the following

economic interpretation. The functionr(xj) is the maximum diffusion rate of thej-th product, which is

realised only when the product is present in the market in small quantities (nj very small) and there are no

competitors (nl = 0 for all l 6= j). The functionr(xj) is therefore a theoretical measure of the penetration
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power of the product in an empty market. Similarly,K(xj) is the equilibrium density reached by thej-th

product penetrating an empty market, under the normalisation propertyα(xj , xj) = 1. Thus,K(xj) gives a

theoretical measure of the product density absorbable by the market and will be hereafter calledabsorptive

capacityof the market. Finally, thecompetition functionα(xj , xl) measures the reduction of the rate of

diffusion of thej-th product due to the presence in the market of the competitor l-th product.

Model (16) is a special type of bilinear competition model, which has, generically, a unique strictly

positive equilibrium satisfying the following system ofN linear algebraic equations:

N
∑

l=1

α(xj , xl)n̄l(x) = K(xj), j = 1, . . . ,N (17)

Model (16) is quite special because it describes a purely competitive market. However, the analysis per-

formed in the following can certainly be extended to a wide spectrum of behavioural interactions, ranging

from competition to cooperation. Various notions ofHomo reciprocansandHomo economicuscould be

modelled, reflecting certain social mechanisms and institutions that punish anti-social behaviour (Boyd &

Richerson, 1992; Fehr & Gächter, 1998) but also reward image scoring (Nowak & Sigmund, 1998).

Let us assume thatr is independent upon the trait and that the competition and absorptive capacity

functions are given by:

α(xj , xl) = exp

(

ln2 β

2σ2
α

)

exp

[

−
1

2σ2
α

(

ln
xl

βxj

)2
]

(18)

K(xj) = K0 exp

[

−
1

2σ2
K

(

ln
xj

x0

)2
]

(19)

whereβ, σα, K0, x0, σK are constant positive parameters. The competition function (18) satisfies the

normalisation propertyα(xj , xj) = 1, depends only upon the ratioxj/xl of its arguments and tends to zero

when such a ratio tends either to zero or to infinity, reflecting the fact that very diversified products compete

only weakly (e.g. Ferrari and Fiat in the car market). Two parameters, namelyβ andσα, control the shape of

the competition function. Forβ = 1, competition is symmetric, i.e.α(xj , xl) = α(xl, xj) andα(xj , xl) is

maximum (and equal to one) forxj = xl. Forβ 6= 1, competition is asymmetric andα(xj , xl) is maximum

for xl = βxj (see eq. (18) and Fig. 2A). This implies that forβ > 1 products with higher technological

content tend to have a competitive advantage. Analogously,for β < 1 products with less technological
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content are better competitor. The parameterσα controls the sensitivity of the strength of competition with

respect to the ratio of the technological traits of competing products. High sensitivity (i.e. smallσα) means

that only very similar products compete, while ifσα is large competition is high even between quite different

products. Graphically (see Fig. 2A) σα is a measure of the wideness of the bell shaped graph representing

the competition function with respect to the technologicaltrait xl. Three parameters, namelyK0, x0 and

σK , characterise the absorptive capacity function (19), which is bell shaped and peaks at some intermediate

trait, given byx0. The economic interpretation is that in a single product marketx0 is the technology which

is most absorbable by the market, while the equilibrium density of a technologically very poor or very

sophisticated product vanishes with a sensitivity controlled byσK . High or low sensitivity (small and large

values ofσK ) respectively represent market structures where productsconcentrate around the technological

characteristic traitx0 or where consumers are to a large degree indifferent to different products satisfying a

specific need. Graphically (see Fig. 2B) σK is a measure of the wideness of the bell shaped graph of the

absorptive capacity function.

Consider now the case of a market with a single established product and denote byn ′

1 andx′

1 the density

and trait of the innovative product. From eqs. (16) and (17),it follows that the market equilibrium̄n1(x1),

the invasion fitness̄f ′

1(x1, x
′

1) and the selection derivative (see eqs. (7) and (11)) are given by:

n̄1(x1) = K(x1)

f̄ ′

1(x1, x
′

1) = r

[

1 −
α(x′

1, x1)K(x1)

K(x′

1)

]

∂f̄ ′

1

∂x′

1

∣

∣

∣

∣

x′

1
=x1

=
r

x1

(

1

σ2
α

ln β −
1

σ2
K

ln
x1

x0

)

Therefore, the AD canonical equation (see eq. (12)) is

ẋ1 =
1

2
µ1n̄1(x1)σ

2
1

∂f̄ ′

1

∂x′

1

∣

∣

∣

∣x′

1
=

x1

(20)

whereµ1 and σ1 are assumed to be independent upon the trait. Eq. (20) admitsa unique evolutionary

equilibrium

x̄1 = x0β

(

σK

σα

)2

(21)
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which is always an attractor, since its associated eigenvalue is negative, because it has the same sign than

d

dx1

(

∂f̄ ′

1

∂x′

1

∣

∣

∣

∣

x′

1
=x1

)∣

∣

∣

∣

∣x1=x̄1

= −
r

(x̄1σK)2
< 0 (22)

Thus, in a market with a single product, repeated innovations and replacements of old variants with new

ones drive the technological traitx1 toward the equilibrium valuēx1. At x̄1 two selective forces acting on

the market balance: the desire of a producer to be a better competitor by being distinct in technological

content (under asymmetric competition) and the tendency toharvest on the median consumer in order to

maximise the number of product items absorbable by the market (battle for market share). If, for example,

higher technological traits are favoured (β > 1), the economic intuition for reaching an equilibrium of zero

technological change would be that there are cognitive, informational or physical limitations of consumers

to absorb high technology, or simple budget constraints. Such limitations are modelled by the ratioσα/σK

(see eq. (21)). Notice that whenx1 is slightly larger [smaller] thanx0 andβ > 1 [β < 1], a penetrating

innovative product conquers the market, even if this implies a loss in product density.

In order to assess if the evolutionary equilibrium̄x1 marks the end of technological change or is a

branching point, we can use the branching conditions (14) and (15), which in the present case are

∂2f̄ ′

1

∂x′2
1

∣

∣

∣

∣x′

1
=x̄1

x1=x̄1

=
r

x̄2
1

(

1

σ2
α

−
1

σ2
K

)

> 0 (23)

∂2f̄ ′

1

∂x1∂x′

1

∣

∣

∣

∣x′

1
=x̄1

x1=x̄1

=
d

dx1

(

∂f̄ ′

1

∂x′

1

∣

∣

∣

∣

x′

1
=x1

)∣

∣

∣

∣

∣x1=x̄1

−
∂2f̄ ′

1

∂x′2
1

∣

∣

∣

∣x′

1
=x̄1

x1=x̄1

< 0 (24)

Notice that, condition (24) is implied by the stability ofx̄1 (see eq. (22)) and by condition (23). Thus, the

equilibriumx̄1 is a branching point if the sensitivity of the competition functionσα is smaller than the sensi-

tivity σK of the absorptive capacity function; of course, in the opposite case the evolutionary equilibrium is

an ESS. Although the two sensitivities govern the dynamics of product densities on the market timescale (see

eq. (16)), they ultimately manifest themselves on the innovation timescale. Then, the differenceσK − σα is

a measure of the strength of diversification through technological change. Taking into account the geomet-

ric characteristics of the competition and absorptive capacity functions, we can say that our simple model

suggests that technological branching occurs when the absorptive capacity is more flat than the competition

function (see Fig. 2).
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A relatively flat absorptive capacity would arise in situations when consumers are to a large extent

indifferent to products satisfying a specific need. A typical example in a market for meat would be when

consumers are indifferent to various sources of protein be it red meat, white meat, or meat imitations like

soya products. The absorptive capacity function could alsobe interpreted as an aggregated utility function.

In this case, the curvature, i.e. the second derivative of the utility function, is a measure for risk aversion.

Hence a relatively flat absorptive capacity could be interpreted as a more risk taking representative agent (in

this case consumer). Given such an interpretation less riskaversion would, according to our model, lead to

product diversification.

On the other hand, competition functions are narrow when despite of a relatively small difference in the

characteristic traits, the respective products weakly suffer from each other by competition. For example,

the competition between “Breitling” and “Swatch” watches,or between stocks within the NASDAQ index,

could be modelled by narrow competition functions.

A specific example of innovation dynamics under asymmetric competition (β > 1) is shown in Fig. 3

for the particular parameter setting (specified in the caption) for which the equilibrium̄x1 is a branching

point. Starting with a single product with traitx1 smaller thanx̄1, the trait first increases toward̄x1, as

shown in Fig. 3A for 0 < t < t2. On the innovation timescale the equilibrium densityn̄1(x1) declines when

x1 > x0 (see eq. (21)), i.e. for0 < t < t2 except for the very first part of the time interval wherex1 < x0,

as shown in the lower panel of Fig. 3A. In Fig. 3B the transients of the densities due to two particular

successful innovations are shown on the market timescale. The first one (upper panel) corresponds to the

market conditions holding at timet1 in Fig. 3A: the densityn2 of the innovative product is initially very

small, but then grows toward an equilibrium, while the density n1 of the established product declines to

zero, thus revealing that the innovative product has substituted the established product. In the lower panel of

Fig. 3B, corresponding to the branching occurring at timet2, the innovative product penetrates the market

but does not substitute the established product, as shown bythe graph ofn1, which declines but does not

vanish.

After the branching has occurred, the innovation dynamics is given by the competition between a chal-

lenging innovative product and two distinct established products. The analysis of the two-products market

can be performed by analysing the corresponding second order canonical equation. Denoting byn ′

i andx′

i

the density and trait of the innovative product and recalling eqs. (16) and (17), then the two-products market

equilibrium n̄(x1, x2), the invasion fitness̄f ′

i(x, x′

i) and the selection gradient (see eqs. (7) and (11)) are
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given by:

n̄(x) =
1

1 − α(x1, x2)α(x2, x1)







K(x1) − α(x1, x2)K(x2)

−α(x2, x1)K(x1) + K(x2)







f̄ ′

i(x, x′

i) = r

[

1 −
α(x′

i, x1)n̄1(x1, x2) + α(x′

i, x2)n̄2(x1, x2)

K(x′

i)

]

∂f̄ ′

i

∂x′

i

∣

∣

∣

∣

x′

i
=xi

= −
r

K(xi)

[

∂α(x′

i, x1)

∂x′

i

∣

∣

∣

∣

x′

i
=xi

n̄1(x1, x2)+
∂α(x′

i, x2)

∂x′

i

∣

∣

∣

∣

x′

i
=xi

n̄2(x1, x2)

]

+

+
r

k2(xi)

dK(xi)

dxi

[α(xi, x1)n̄1(x1, x2) + α(xi, x2)n̄2(x1, x2)]

i = 1, 2, provided thatx1 6= x2. Therefore, the second order AD canonical equation (see eq.(12)) is

ẋ1 =
1

2
µ1n̄1(x1, x2)σ

2
1

∂f̄ ′

1

∂x′

i

∣

∣

∣

∣

x′

i
=x1

ẋ2 =
1

2
µ2n̄2(x1, x2)σ

2
2

∂f̄ ′

2

∂x′

i

∣

∣

∣

∣

x′

i
=x2

(25)

whereµi andσi, i = 1, 2, are assumed to be independent upon the traits.

The relevant trajectory of model (25) is that originating from point(x̄1, x̄1 + ǫ) (ǫ very small), corre-

sponding to the market condition holding at timet2 in Fig. 3A just after the transient depicted in the lower

panel of Fig. 3B, i.e. just after the branching has occurred. The evolution of the traitsx1 andx2 and that of

the corresponding product densitiesn̄1(x1, x2) andn̄2(x1, x2) along such a trajectory are shown in Figs. 3A

andB, respectively (t > t2). Figure 3A shows that the trait in one branch permanently increases, while in

the other it initially decreases. This was expected becauseat a branching point the old and the new ver-

sion of the product coexist under opposite selection pressures. Notice that the product associated with the

upper branch (away fromx0) has a lower density, i.e. it is present in the market with fewer items, which,

however, have a competitive advantage with respect to thosein the lower branch, which resist competition

being close to the trait (x0) that matches the median consumer. Finally, Fig. 3A shows that the innovation

dynamics drive the traitsx1 andx2 of the two coexisting products toward a stable evolutionaryequilibrium

(x̄1, x̄2). At this equilibrium the branching conditions (14) and (15)have been numerically tested by varying

all the parameters of the model and the result is that again conditions (14) and (15) hold for both products if

σK > σα.

Of course, to understand the evolution of the system after the second branching, the analysis can be
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repeated, starting from the new (third order) canonical equation. By means of a systematic bifurcation

analysis of the third and higher order canonical equations,we checked that the traits ofN coexisting products

always converge toward a unique stable evolutionary equilibrium at which the branching conditions (14)

and (15) hold for all products ifσK > σα (more weakly asN increases). This numerical analysis has been

performed for wide ranges of all the parameters of the model (and variousN ) and has always brought to the

same conclusion, namely thatσK > σα implies the formation of rich clusters of products through along

sequence of technological branchings.

4 Concluding remarks

The purpose of this paper was to show how a recently proposed theory of evolutionary processes called

Adaptive Dynamics (AD), could be used to explain the emergence of technological variety in economic

systems. For this, we have first presented AD by adapting it tofit the properties of economic systems.

Then, we have used AD for studying the evolution of the technological traits of the products present in a

market. Our analysis is based on an abstract model which is intentionally very simple in order to obtain an

analytically tractable problem. It is clear, however, thatthe analysis can be extended to much more realistic

and complex situations, provided analytical tractabilityis not required.

Since some of the assumptions underneath AD are rather extreme, one must be careful in applying it to

real situations. For example, technological change is an economic phenomenon taking place at different lev-

els of temporal aggregation of the economy, involving individual consumers, businesses, markets, science,

technology, formal and informal institutions and culture at wider levels (Nelson, 1995; North, 1997; Hayek,

1967). In real economic systems the market and innovation timescales are sometimes comparable, while AD

requires that they are fully separated. However, quite frequently competition and technological change oc-

cur on contrasting timescales. Technological change slowly proceeds by means of continual replacement of

established entities by novel ones on the micro-level, i.e.as a result of the fast interaction between economic

actors on the market timescale. In consequence, AD providesa reasonable approximation of the process of

technological change with the major promise of elucidatingthe long-term effects of the interplay between

the single entities on a micro-level and the system’s evolutionary fate on a macro-level.

Perhaps, the most relevant advantage of AD with respect to other theories is the possibility of clearly

explaining the emergence of technological diversity and the formation of rich clusters of products. In-
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deed, it is empirically evident that technological diversity is a natural characteristic of industries undergoing

technological change (see e.g. Bernardet al., 1994; Metcalfe, 1988). However, there is little room for

technological diversity in classical economic models: when the best practise is common knowledge it is

instantly adopted and diversity has no theoretical justification (Jonard & Yildizoglu, 1999). Yet diversity

is the basis for consumer choice and a prerequisite for competition. With the advent of evolutionary ap-

proaches and institutional approaches the role of variety,as called by Schumpeter, became a renascent topic.

Stirling (1998) and various papers by Saviotti provide excellent reviews of the literature on the economics

of diversity and shall not be repeated here. There is detailed empirical and theoretical work in areas like

consumer characteristics, production processes and organisational forms, research strategies, competences

and learning processes, technologies and modes of innovation, investor expectations and customer choice

and competition.

Some of the evolutionary approaches to industrial dynamicsexplain the emergence of diversity by in-

cluding uncertainty in the diffusion process, bounded rationality, imperfect information, demand slacks

and endogenously determined market structures (Nelson & Winter, 1982; Dalle, 1998; Saviotti, 2001; Witt,

2001). However, at least in the limit case, in all models the selective pressures and the mechanical nature

of diffusion lead to just one dominant technology. De Palmaet al. (1998) show that in the presence of

network externalities, diversity prevails as long as the effect of consumer heterogeneity overrules the effect

of network externalities. These models, however, have to assume differentiated markets from the begin-

ning and are not explicit on the emergence of diversity. Another popular hypothesis in economic theory is

that local interaction (e.g. localisation of imitation andlocalisation of network externalities) is a condition

for aggregate diversity (see e.g. Jonard & Yildizoglu, 1998a,b; Nelson & Winter, 1982). In these models

diversity is explained through geographically disjoint technological path dependencies leading to localised

positive feedback economies such as agglomeration economies (Matsuyama, 1995; Arthur, 1990; Porter,

1990; Engländer, 1926; Ritschl, 1927; Palander, 1935). Earlier models in spatial economics that can be

associated with the names of von Thünen (1826), Weber (1909), Christaller (1933), Loesch (1941) see lo-

cational patterns as independent of history, inevitable, and thus lead to a unique equilibrium determined by,

among others, geographical endowments, infrastructures and firms’ needs. Geographically disjoint techno-

logical development is, however, in conflict with the empirical observations of spatial clusters, which consist

of a complex of competing and complementary firms (or even branches within firms) involved in produc-

ing similar goods and services (see e.g. Marshall, 1920; Dunning, 2000). By contrast, AD allows for the
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evolution of technological diversity emerging in the same geographic area due to technological branching.

As this paper represents a first attempt to develop a dynamic model of technological change consistent

with AD and compatible with several results from existing economic models, we have also shown that AD

carries the potential to lead to new insights in the analysisof the metabolism and development of traits of

economic systems. Many are, in fact, the evolutionary phenomena one can think to tackle by means of the

AD approach. For example, apart from the increase in numbersof products through technological branching,

we also see increase in product complexity. Illustrative for increasing complexity is the fact that the 1885

Rover safety bicycle consisted of about 500 parts, a modern car involves as many as 30,000 components and

a Boeing 747 roughly 3.5 million (Ayres, 1988). Thus, product complexity could be modelled as trait of a

suitable AD model, in order to investigate the economic conditions that lead to increasing complexity and

their consequence on technological change and economic development.

Another scenario that can be interpreted by the AD approach is the convergence toward an underdevel-

opment trap, an ESS that can only be broken by a radical innovation. Modelling aggregate traits such as the

level of technological development, one could use AD to showthat developing countries are often destined

to reach an ESS at a low level of technological development, from which they can hardly escape. In fact, for

many developing countries, the relevant technological traits are defined more by epigenetic codes such as

formal institutions and tacit social norms, which are more difficult to change radically as they acquire more

and longer-lasting information than individual agents. Onthese lines Greif (1994) argues that “the capacity

of societal organisation to change is a function of history,since institutions are combined of organisations

and cultural beliefs,. . . and past organisations and beliefs influence historically subsequent games, organisa-

tions and equilibria”. The work of Hayek (1967) is more inspired by the idea of spontaneous evolution of

conventions and institutions (Vromen, 1995) explaining radical changes of epigenetic codes.

Finally, outside the economic field, AD can be of great help for understanding various problems in

social sciences. Even if many human behaviours are culturally transmitted, learned, or imitated (Boyd &

Richerson, 1985), they can be treated as heritable traits: if differences in possible behaviours affect some

measure of success, i.e. fitness, then behaviours can evolvethrough an innovation-selection process, where

innovation simply means a behavioural change. Two relevantexamples of behavioural evolution are fashion

and cooperation.

The role of fashion is “identity display”. The tendency to imitate certain stereotypes with desirable char-

acteristics and the opposite tendency to diverge from them in order to proclaim an identity are contrasting
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selective forces. The trade-off between imitation and personalisation might induce complex evolutionary

dynamics of fashion traits, as shortly mentioned in Section2 in the discussion of long term evolutionary

scenarios.

The evolution of cooperation among non-related individuals is one of the fundamental problems in social

sciences. Experimental economists investigate this issueby public goods games, confronting individuals

with the temptation to defect, i.e. to exploit the reward obtained from the public good without contributing

to it. This is known as “The Tragedy of the Commons” (Hardin, 1968). Experimental results (Boyd &

Richerson, 1992; Fehr & Gächter, 2000; Fischbacheret al., 2001; Fehr & Gächter, 2002) show that, without

a mechanism for punishing defectors, groups of cooperatorsdo better than groups of defectors, but defectors

always outperform the cooperators in their group. In a recent theoretical study Hauertet al. (2002) describe

the dynamics of the densities of cooperators, defectors andloners in the population, but do not allow their

characteristic behaviour to evolve. Thus, AD could be used to study the evolution of the propensity to

cooperate, measured through a trait which is positive in thecase of cooperation and negative in the case of

defection.

In conclusion, beyond the intentionally simplified examplepresented in this paper, we believe that the

AD approach is particularly suited to analyse technology-society interactions.
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Geritz, S. A. H., Kisdi, E., Meszéna, G., & Metz, J. A. J. (1998) Evolutionarily singular strategies and the

adaptive growth and branching of the evolutionary tree.Ecology12, 35–57.
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Figure captions

Figure 1

Possible evolutionary scenarios: convergence toward an equilibrium (A) or a limit cycle (B) from any initial

conditions; alternative equilibria (C); evolutionary extinction of a product (D).

Figure 2

(A) The strength of competition exerted by thel-th product on the rate of diffusion of thej-th product

with trait x̄j, as a slice of the competition functionα(xj , xl) along the planexj = x̄j ; straight lines on the

(xj , xl) plane: xl = xj on whichα(xj , xl) = 1; xl = βxj on whichα(xj , xl) is maximum; parameter

valuesx̄j = 0.5, β = 1.2, σα = 0.3. (B) The absorptive capacity function; parameter valuesK0 = 1000,

x0 = .5, σK = .3.

Figure 3

Innovation dynamics. (A) Characteristic traits (first row) and equilibrium densities (second row) obtained

through simulation of models (20) and (25) with the initial condition x1(0) = 0.5. (B) two examples

of market dynamics obtained through simulation of model (16): product substitution (first row,x1 = 2,

x2 = x1 ∗ 1.01, n1(0) = n̄1(x1) = 786.45, andn2(0) = 1); branching (second row,x1 = x̄1=2.0736,

x2 = x̄1 ∗ 1.01, n1(0) = n̄1(x1) = 766.49, andn2(0) = 1); on the innovation timescale, these examples

correspond to the instants denoted byt1 andt2 in (A). Parameter values:µ1 = µ2 = 1, σ1 = σ2 = 1,

r = 1, β = 1.2, σα = 0.5, K0 = 1000, x0 = 1, σK = 1.
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