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 9 
The review by Waxman and Gavrilets (Waxman and Gavrilets 2005) illustrates the collision 10 
of different mindsets in evolutionary theory. These differences originate from the awe-11 
inspiring complexity of the evolutionary process itself: evolutionary understanding critically 12 
depends on processes at many biological levels. Starting out with base pairs and their se-13 
quences, scholars of evolution have to consider – in the order of ascending biological 14 
complexity – alleles, quantitative allelic traits, physiological and morphological traits, life-15 
history traits, demographic rates, fitness, changes in genotype frequencies, population dynam-16 
ics, trait substitution sequences, and population bifurcations, to eventually arrive at the levels 17 
of ecological communities and the biosphere. It would appear that no other field of contempo-18 
rary science sports comparable ambitions. 19 

A plea for interfaced pluralism in evolutionary theory 20 

As history abundantly illustrates, science successfully tackles challenges such as those en-21 
countered in the understanding of evolution by devising chains of theories that, step by step, 22 
traverse otherwise intractable ranges of complexity. Theories not appreciating the virtue of 23 
such level-based division of labor are bound to fail: nobody would seriously insist, for exam-24 
ple, that phenomena in organic chemistry be explained in terms of quantum electrodynamics. 25 

Yet, at times, one gets the impression that things are different in evolutionary theory: 26 
since quantitative evolutionary theory came into being by describing the dynamics of geno-27 
types, there is a tendency to insist that all meaningful evolutionary models should be 28 
explicitly based at the level of genotypes and their dynamics. In practice this particular brand 29 
of ‘level centrism’ works best when attention is restricted to simplistic genotype-to-phenotype 30 
maps with simplistic phenotype-to-fitness maps. There certainly exist cases where genetic de-31 
tails are simple enough, and sufficiently well studied empirically, for genotype-to-phenotype 32 
maps to become thoroughly understood. Also phenotype-to-fitness maps may occasionally be 33 
straightforward: in animal and plant breeding, for example, complex ecological feedbacks on 34 
the evolutionary process may sometimes be tempered successfully through a breeder’s tight 35 
control of the breeding environment. By contrast, in most natural settings – and certainly 36 
when it comes to long-term evolution – genetic detail is largely unknown and ecological 37 
complexity is mostly high. To insist, under such circumstances, on all evolutionary models 38 
being based on genotype dynamics would appear to be counterproductive. 39 

Adaptive dynamics theory challenges such prescriptive stances by extending evolutionary 40 
game theory towards a dynamical theory of long-term evolution. This extension involves (a) 41 
accounting for all types of frequency- and density-dependent selection; (b) allowing for the 42 
stochastic and nonlinear dynamics of unstructured and structured populations; (c) considering 43 
continuous (not just mixed) strategies, metric characters, or quantitative traits; (d) describing 44 
dynamics driven by evolutionary innovations, as well as identifying and classifying the result-45 
ing evolutionary outcomes; and, perhaps most importantly, (e) deriving fitness from the 46 
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underlying population dynamics. By contrast, more than 70 years after the Modern Synthesis, 47 
population genetics is still struggling to extend its gene-frequency-based models to incorpo-48 
rate the degrees of ecological complexity that are necessary for doing justice to long-term 49 
evolution and coevolution. (A cursory glance at how established textbooks of genetics treat 50 
frequency-dependent selection – increasingly recognized as being ubiquitous in nature – will 51 
help to appreciate the point.) In this constellation, adaptive dynamics theory may be perceived 52 
as playing down the relevance of population genetics. We think this perception would be un-53 
fortunate. Instead, it seems to be more productive to us to recognize that a diverse swath of 54 
complementary and mutually enhancing approaches is required for making progress with the 55 
diverse challenges posed by evolutionary theory. 56 

To contribute to such progress, adaptive dynamics theory trades genetic for ecological de-57 
tail. Since for questions of long-term evolution the former is almost always unknown, while 58 
the latter is essential, accepting this trade-off, and the associated focus at the phenotypic level 59 
of evolution, would appear to be a rational choice. New perspectives can thus be developed to 60 
complement previous theory and to foster a healthily diverse scientific discourse. It is because 61 
of its stance regarding this trade-off that adaptive dynamics theory at times jars with a more 62 
classical outlook, which had relegated these aspects to the fringes. At the same time, many 63 
evolutionary ecologists are thrilled by the innovative possibilities adaptive dynamics theory 64 
readily offers to them, thus underscoring the theory’s innovative potential. 65 

Having experienced the vigor that occasionally creeps into this debate, we suggest that 66 
evolutionary theory has a lot to gain from explicitly embracing a pluralism of approaches that 67 
are based, alternatively, on population genetics, quantitative genetics, adaptive dynamics, and 68 
evolutionary games. Along the astonishing spectrum from molecules to ecosystems, each of 69 
these approaches plays out its forte at different levels and for addressing different questions: 70 
population genetics is strongest in bringing out the evolutionary intricacies caused by specific 71 
genetic architectures, quantitative genetics excels at examining short-term responses to selec-72 
tion and breeding experiments, adaptive dynamics facilitates understanding the impacts of 73 
ecology on life-history evolution, and evolutionary games are most useful for exploring be-74 
havioral adaptations. 75 

Pluralism, of course, must not inspire isolation. While separate traditions may be instru-76 
mental in nurturing diversity – occasionally defining temporary ‘intellectual sandboxes’ for 77 
innovative research – it is crucial that sufficient efforts be devoted to strengthening the inter-78 
faces. These are located, in general, where complexity steps up from one level to the next. A 79 
classical example is the science of the hydrogen molecule, which is poised right at the inter-80 
face between (quantum) physics and (inorganic) chemistry. Clearly, connections must be 81 
forged from across both sides of such a disciplinary boundary if areas of fruitful overlap are to 82 
become as wide and as well understood as possible. 83 

We now proceed to examine aspects of Waxman and Gavrilets’ review (written by au-84 
thors who have not contributed to the field they strive to portray) with this commendation of 85 
interfaced pluralism in mind. In fact, the tensions at the interface between complementary ap-86 
proaches to describing evolution are fully apparent in Waxman and Gavrilets’ writing with 87 
regard to two fundamental aspects of evolutionary theory: the origin and maintenance of ge-88 
netic diversity, and the definition of fitness and its dynamic consequences. Naturally, 89 
complementary approaches deal with these issues in different ways, and disciplinary biases 90 
can easily lead to misunderstandings and misinterpretations. 91 
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Origin and maintenance of genetic variation 92 

Perhaps due their unfamiliarity with adaptive dynamics, Waxman and Gavrilets make a num-93 
ber of claims that require qualification. For example, their assertion that “Adaptive Dynamics 94 
methodology, based on using Eq. (1), predicts that polymorphism cannot be maintained when 95 
the singular point is locally stable” is fallacious. In fact, adaptive dynamics theory offers de-96 
tailed methods for identifying and analyzing dimorphisms of this sort, at three different levels. 97 
(1) All ecologically stable dimorphisms are identified by reflecting a pairwise invasibility plot 98 
about its main diagonal and superimposing the resulting sign structure of invasion fitness onto 99 
the original one. All areas of dimorphic trait space in which the mutual invasion fitness of the 100 
two morphs is positive are thus readily identified geometrically. (2) To find out where gradual 101 
evolution in dimorphic trait space is expected to end up, i.e., to analyze dimorphic conver-102 
gence stability, evolutionary isoclines (curves along which the local fitness gradient of one 103 
trait vanishes) are added to these plots (e.g., Geritz et al. 1998, 1999). (3) Finally, evolution-104 
ary stability at a dimorphic evolutionary attractor is ascertained by considering the sign of 105 
invasion fitness in its vicinity. Corresponding analytical techniques for higher-dimensional 106 
analysis are readily available (Meszéna et al. 2000; Leimar 2001). Also the fact that a “popu-107 
lation does not necessarily approach a convergence stable equilibrium but can ‘get stuck’ at a 108 
polymorphic equilibrium away from the singular point” is, of course, recognized in adaptive 109 
dynamics theory (e.g., Geritz et al. 1999). 110 

With regard to the origin of new genetic variation through mutation, the characterization 111 
of adaptive dynamics as being “based on the assumption that mutations occur rarely, and 112 
cause very small changes in existing phenotypic values” is not accurate. If the latter part of 113 
this claim were true, why would adaptive dynamics theory include pairwise invasibility plots 114 
as an important tool of analysis? Indeed, invasion fitness and pairwise invasibility plots are 115 
devised to assess the effects of mutational steps of arbitrary size. Also the assertion that “The 116 
phenotype of a mutation can take on any possible value and thus can range from ∞ > x > –∞” 117 
is clearly false for all phenotypic traits that are, by definition, restricted to finite intervals 118 
(e.g., Doebeli and Ruxton 1997; Parvinen et al. 2003). Furthermore, Waxman and Gavrilets 119 
claim that “In the Adaptive Dynamics literature to date, it has been implicitly assumed that 120 
beneficial mutations, i.e., those with a positive selection coefficient, will always initially in-121 
crease in frequency, irrespective of the size of the selection coefficient, and irrespective of the 122 
copy number at which they occur.” This is dramatically wrong. In actual fact, the dynamical 123 
description of trait substitution sequences in adaptive dynamics (e.g., Dieckmann et al. 1995; 124 
Dieckmann and Law 1996; Metz et al. 1996) is crucially based on recognizing and quantify-125 
ing the fact that the typical fate of an advantageous mutant is to go extinct (Kimura 1983). 126 
This fact is also consistently emphasized in many other adaptive dynamics studies, e.g., 127 
Geritz et al. (1998, 1999). Similarly, the claim that “it is either implicitly or explicitly as-128 
sumed that the distribution of the deviation of the mutant from the parental phenotype is 129 
independent of the parental phenotype” is erroneous, as a look at Dieckmann and Law (1996) 130 
will illustrate. Waxman and Gavrilets also overlooked that their observation that “once ge-131 
netic drift is taken into account, the most significant mutations, as far as adaptation is 132 
concerned, may be those with intermediately sized effects” is accounted for in the description 133 
of evolutionary random walks by adaptive dynamics theory – with this very insight, in fact, 134 
serving as the basis of Equation (3.6) in Dieckmann and Law (1996). 135 
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Definition of fitness and resulting evolutionary dynamics 136 

The notion of invasion fitness lies at the core of adaptive dynamics theory. Contrary to Wax-137 
man and Gavrilets’ writing, invasion fitness s is defined as the long-term per capita growth 138 
rate of a rare variant in the environment determined by one or more residents (Metz et al. 139 
1992). For any resident phenotype x this implies s(x, x) = 0, rather than s(x, x) = 1. While the 140 
discrete-time convention adopted by the authors is of course also valid (if more cumbersome), 141 
their unfaithful characterization of the existing literature might confuse some readers. Also the 142 
statement “The function s(y, x) governs the dynamics of the frequency of the mutants” is in-143 
correct, since what s is governing directly is the dynamics of mutant density (or abundance), 144 
not its frequency. Similar sloppiness is apparent when, at various places in their review, 145 
Waxman and Gavrilets use the inaccurate term “locally stable” when they mean ’locally evo-146 
lutionarily stable‘. This fosters confusion when, as in adaptive dynamics theory, several 147 
stability notions have to be considered in parallel. 148 

In this context, the authors’ admonition that practitioners of adaptive dynamics “should be 149 
more careful in inventing new terms for old concepts” sounds a bit overblown. The only un-150 
derpinning for this claim comes from the authors’ advice to refer to an evolutionarily singular 151 
strategy, one of the key concepts of adaptive dynamics theory, as a “stationary point”, an 152 
“equilibrium point”, or a “saddle point”. The mere fact that Waxman and Gavrilets cannot 153 
decide themselves which of these three alternatives they actually mean to recommend already 154 
makes it obvious that the alternatives are not without problems either. In fact, this termino-155 
logical misgiving touches on a key feature of adaptive dynamics. The criteria for evolutionary 156 
branching (Geritz et al. 1997) and the canonical equation of adaptive dynamics (Dieckmann 157 
and Law 1996) together result in the coupling of dynamical systems of different dimensions: a 158 
trait combination that happens to be a stable (or stationary) equilibrium point of n-159 
dimensional adaptive dynamics is a saddle point of the corresponding (n+1)-dimensional 160 
adaptive dynamics, if and only if that combination is an evolutionary branching point. Using 161 
the notions ‘stationary point’ or ‘equilibrium point’ would also be inaccurate for another rea-162 
son: evolutionarily singular strategies can be identified based on the geometry of pairwise 163 
invasibility plots alone, without considering any dynamical system. It is important to appreci-164 
ate these subtleties before recommending a particular terminology. 165 

One reason why Waxman and Gavrilets can give a relatively simple account of adaptive 166 
dynamics theory is that their review glosses over some of the more complex issues arising in 167 
realistic models. In particular, evolution often involves multiple traits: in such situations, the 168 
appealing geometric tools of one-dimensional adaptive dynamics must be complemented by 169 
suitable analytical consideration. This has led to two important lines of theory. First, the evo-170 
lutionary outcomes in higher-dimensional trait spaces need to be classified according to a 171 
scheme that goes beyond what the review describes in its Table 1 (Meszéna et al. 2000; Lei-172 
mar 2001). Second, the transients and outcomes of multi-dimensional adaptive dynamics are 173 
described by the canonical equation of adaptive dynamics (Dieckmann and Law 1996), which 174 
is derived as a deterministic approximation of the stochastic process resulting from trait sub-175 
stitution sequences (see also Leimar 2001; Champagnat et al. 2001; Durinx and Metz 2005). 176 
Only through this derivation can we understand (i) why, in mutation-limited adaptive dynam-177 
ics, the rate of evolutionary change happens to be proportional to the local fitness gradient and 178 
the resident population size, and (ii) under which conditions the rate of mutation-limited evo-179 
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lution is independent of the partitioning of growth rates into birth and death rates – two in-180 
sights that are far from obvious. 181 

The entire review also glosses over the notion of ecological equilibria, or of more general 182 
ecological attractors, which lies at the very heart of an understanding of invasion fitness (e.g., 183 
Metz et al. 1992; Rand et al. 1993; Dieckmann and Law 1996; Jacobs and Metz 2003; 184 
Gyllenberg et al. 2003). The consequences of this omission become particularly evident in 185 
statements like “The movement downhill does not imply that the population experiences any 186 
fitness loss but rather reflects the resetting of fitnesses so that new resident population has a 187 
fitness of unity”. The authors’ cryptical allusion to the “resetting of fitnesses” is rooted in the 188 
traditional perspective of fitness as being defined independently of a population’s resident 189 
traits and its currently attained ecological equilibrium. In actual fact, this “resetting” is noth-190 
ing else than the inevitable and perfectly natural consequence of frequency- and/or density-191 
dependent ecological interactions. 192 

Waxman and Gavrilets suggest that when “fitness functions are not continuous functions 193 
of mutant frequency, the frequency of mutant phenotypes cannot be neglected – even initially 194 
– and may have a significant influence on the dynamics of the population. We know, how-195 
ever, of no concrete examples of this and it might be interesting to see this pursued further.” 196 
This consideration is not well informed, for two reasons. First, the continuity of fitness func-197 
tions is irrelevant here (since invasion fitness is always defined in the limit of mutant density 198 
approaching zero). Second, it should be noted that spatial ecological settings with limited dis-199 
persal provide natural examples of the type the authors refer to as being outside their 200 
knowledge: in such settings mutant individuals tend to interact strongly even while they are 201 
globally still rare. In fact, any form of group selection relies on this very principle, as a suite 202 
of studies based on adaptive dynamics theory have illustrated (e.g., van Baalen and Rand 203 
1998; Metz and Gyllenberg 2001; Le Galliard et al. 2003). 204 

The evolutionary dynamics resulting for a particular invasion fitness are primarily gov-205 
erned by the fitness gradient, xyy

xys
=∂

∂ |),( . In this context, the statements “gradient type 206 
dynamics has been well established in population genetics […] yet it is treated as a new de-207 
velopment in Adaptive Dynamics” and “Such gradient-type dynamics are analogous to those 208 
studied in standard population genetics”, referring to the canonical equation of adaptive dy-209 
namics (Dieckmann and Law 1996), are about as meaningful as saying that the plus signs 210 
used by economists are analogous to those used by physicists. Gradient dynamics are merely 211 
a generic type of dynamical system, whereas the biological mechanisms underlying such dy-212 
namics in population genetics and adaptive dynamics fundamentally differ. Similarly, a 213 
statement like “quantities such as fitness – a primarily population genetics concept” reflects 214 
an attitude that is perhaps akin to that of Richard Lewontin (1982), who, more than 20 years 215 
ago, decided to bestow his approval on evolutionary game theory because it “lies totally 216 
within the standard genetic structure of population genetics”. Since fitness is realized by ecol-217 
ogy in action, the need for an ecologically informed approach towards its definition seems 218 
incontrovertible. 219 

Conclusions 220 

In our view, many of the inaccuracies and omissions in Waxman and Gavrilets’ review can be 221 
attributed to not acknowledging the necessity for pluralism in evolutionary theory. With less 222 
favoritism towards population genetics theory, and a more open mind to theoretical innova-223 
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tion, it would have been possible to provide a more accurate review of adaptive dynamics. For 224 
example, if Waxman and Gavrilets write that “It would be especially interesting to see a com-225 
prehensive comparison of empirical data and the corresponding predictions of Adaptive 226 
Dynamics”, they are of course correct, since such a statement holds for all good science. Yet, 227 
such proclamations should be made with care so as not to denigrate the development of inte-228 
grative and flexible theoretical frameworks, an ambition reflected also in Waxman’s and 229 
Gavrilets’ own publication records. In a similar vein, complaints about allegedly “hidden 230 
limitations and unconscious or implicit assumptions” and about the authors’ impression that 231 
“quite a lot of the work in the literature on Adaptive Dynamics relies on numerical simula-232 
tion” are questionable, especially since adaptive dynamics theory is the source of analytical 233 
tools, underpinned by explicit assumptions, that enabled a degree of generality that precursor 234 
theories could not achieve. Also, the sweeping allegation that “practitioners should be more 235 
open to referencing relevant recent work on evolutionary dynamics” cannot but be interpreted 236 
as patronizing. Waxman and Gavrilets refer to only one instance to back up their indiscrimi-237 
nate censure: the fact that previous work on parapatric speciation (Endler 1977; Caisse and 238 
Antonovics 1978; Moore 1981) “apparently was missed” by Doebeli and Dieckmann (2003). 239 
This is not very convincing since the article in question is a Nature paper with well-known 240 
restrictions on citation numbers and since Endler’s work was actually quoted in that article. 241 

Despite our reservations, and following the spirit of the discussions at the beginning of 242 
this commentary, we believe that Waxman and Gavrilets ought to be congratulated for their 243 
courage of serving as intermediaries, helping to bolster communication between the fields of 244 
population genetics and adaptive dynamics. There clearly is a need for strengthening the inter-245 
face between these disciplines. It is certainly not a coincidence that Waxman and Gavrilets’ 246 
article devotes much attention to speciation processes. We think that, in fact, speciation could 247 
assume a prominent role as the ‘hydrogen molecule of evolutionary theory’: genetic and eco-248 
logical considerations are so inexorably intertwined at this interface that the necessary bridge-249 
building is a genuinely rewarding challenge from both ends. It is therefore deplorable that 250 
Waxman and Gavrilets forewent backing up any of the criticisms voiced in the belligerent 251 
Section 5 of their review with results. An accompanying commentary (Doebeli and Dieck-252 
mann, this issue) refutes these unsubstantiated allegations. 253 

If one is optimistic, one might take the article by Waxman and Gavrilets as a signal that 254 
population genetics is gradually opening itself to the promises of ecologically informed evolu-255 
tionary theory. A quarter of a century ago, evolutionary game theory, notwithstanding its 256 
admirable achievements, did not quite succeed in perturbing traditional population genetics 257 
enough in the direction of ecological realism. Our hope is that, perhaps, adaptive dynamics 258 
theory will be luckier. 259 
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