
Limiting Similarity Revisited

Szabo, P. and Meszena, G.

IIASA Interim Report
September 2005

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33899257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Szabo, P. and Meszena, G. (2005) Limiting Similarity Revisited. IIASA Interim Report. Copyright © 2005 by the author(s). 

http://pure.iiasa.ac.at/7788/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


 

 

 

International Institute for 
Applied Systems Analysis 
Schlossplatz 1 
A-2361 Laxenburg, Austria 

Tel: +43 2236 807 342 
Fax: +43 2236 71313 

E-mail: publications@iiasa.ac.at 
Web: www.iiasa.ac.at 

  

Interim Reports on work of the International Institute for Applied Systems Analysis receive only 
limited review. Views or opinions expressed herein do not necessarily represent those of the 
Institute, its National Member Organizations, or other organizations supporting the work. 

Interim Report IR-05-050

Limiting Similarity Revisited 
Péter Szabó (pszabo@angel.elte.hu) 
Géza Meszéna (geza@angel.elte.hu) 
 

Approved by 

Ulf Dieckmann 
Program Leader, ADN 

September 2005 

 
 



IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 102

���

The Adaptive Dynamics Network at IIASA fosters the develop-
ment of new mathematical and conceptual techniques for under-
standing the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Adaptive Dynamics Network
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.

No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van
Heerwaarden JS:Adaptive Dynamics: A Geometrical Study
of the Consequences of Nearly Faithful Reproduction.IIASA
Working Paper WP-95-099 (1995). van Strien SJ, Verduyn
Lunel SM (eds): Stochastic and Spatial Structures of Dynami-
cal Systems, Proceedings of the Royal Dutch Academy of Sci-
ence (KNAW Verhandelingen), North Holland, Amsterdam,
pp. 183-231 (1996).

No. 2 Dieckmann U, Law R:The Dynamical Theory of Co-
evolution: A Derivation from Stochastic Ecological Processes.
IIASA Working Paper WP-96-001 (1996). Journal of Mathe-
matical Biology 34:579-612 (1996).

No. 3 Dieckmann U, Marrow P, Law R:Evolutionary Cy-
cling of Predator-PreyInteractions: Population Dynamicsand
the Red Queen.IIASA Preprint (1995). Journal of Theoreti-
cal Biology 176:91-102 (1995).

No. 4 Marrow P, Dieckmann U, Law R:Evolutionary Dy-
namics of Predator-Prey Systems: An Ecological Perspective.
IIASA Working Paper WP-96-002 (1996). Journal of Mathe-
matical Biology 34:556-578 (1996).

No. 5 Law R, Marrow P, Dieckmann U:On Evolution under
Asymmetric Competition.IIASA Working Paper WP-96-003
(1996). Evolutionary Ecology 11:485-501 (1997).

No. 6 Metz JAJ, Mylius SD, Diekmann O:When Does Evo-
lution Optimize? On the Relation Between Types of Density
Dependence and Evolutionarily Stable Life History Parame-
ters. IIASA Working Paper WP-96-004 (1996).

No. 7 Ferrière R, Gatto M: Lyapunov Exponents and the
Mathematics of Invasion in Oscillatory or Chaotic Popula-
tions. Theoretical Population Biology 48:126-171 (1995).

No. 8 Ferrière R, Fox GA:Chaos and Evolution. IIASA
Preprint (1996). Trends in Ecology and Evolution 10:480-
485 (1995).

No. 9 Ferrière R, Michod RE:The Evolution of Cooperation
in Spatially Heterogeneous Populations.IIASA Working Pa-
per WP-96-029 (1996). The American Naturalist 147:692-
717 (1996).

No. 10 van Dooren TJM, Metz JAJ:Delayed Maturation in
Temporally Structured Populations with Non-Equilibrium Dy-
namics. IIASA Working Paper WP-96-070 (1996). Journal
of Evolutionary Biology 11:41-62 (1998).

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G:The Dy-
namics of Adaptation and Evolutionary Branching.IIASA
Working Paper WP-96-077 (1996). Physical Review Letters
78:2024-2027 (1997).

No. 12 Geritz SAH, Kisdi É, Meszéna G, Metz JAJ:Evo-
lutionary Singular Strategies and the Adaptive Growth and
Branching of the Evolutionary Tree.IIASA Working Paper
WP-96-114 (1996). Evolutionary Ecology 12:35-57 (1998).

No. 13 Heino M, Metz JAJ, Kaitala V:Evolution of Mixed
Maturation Strategies in Semelparous Life-Histories: The
Crucial Role of Dimensionality of Feedback Environment.
IIASA Working Paper WP-96-126 (1996). Philosophi-
cal Transactions of the Royal Society of London Series B
352:1647-1655 (1997).

No. 14 Dieckmann U: Can Adaptive Dynamics Invade?
IIASA Working Paper WP-96-152 (1996). Trends in Ecol-
ogy and Evolution 12:128-131 (1997).

No. 15 Meszéna G, Czibula I, Geritz SAH:Adaptive Dynam-
ics in a 2-Patch Environment: A Simple Model for Allopatric
and Parapatric Speciation.IIASA Interim Report IR-97-001
(1997). Journal of Biological Systems 5:265-284 (1997).

No. 16 Heino M, Metz JAJ, Kaitala V: The Enigma of
Frequency-Dependent Selection.IIASA Interim Report IR-
97-061 (1997). Trends in Ecology and Evolution 13:367-370
(1998).

No. 17 Heino M: Management of Evolving Fish Stocks.
IIASA Interim Report IR-97-062 (1997). Canadian Journal
of Fisheries and Aquatic Sciences 55:1971-1982 (1998).

No. 18 Heino M:Evolution of Mixed Reproductive Strategies
in Simple Life-History Models.IIASA Interim Report IR-97-
063 (1997).

No. 19 Geritz SAH, van der Meijden E, Metz JAJ:Evolution-
ary Dynamics of Seed Size and Seedling Competitive Ability.
IIASA Interim Report IR-97-071 (1997). Theoretical Popu-
lation Biology 55:324-343 (1999).

No. 20 Galis F, Metz JAJ:Why Are There So Many Cichlid
Species? On the Interplay of Speciation and Adaptive Radi-
ation. IIASA Interim Report IR-97-072 (1997). Trends in
Ecology and Evolution 13:1-2 (1998).



No. 21 Boerlijst MC, Nowak MA, Sigmund K:Equal Pay
for all Prisoners/ The Logic of Contrition. IIASA Interim
Report IR-97-073 (1997). American Mathematical Society
Monthly 104:303-307 (1997). Journal of Theoretical Biology
185:281-293 (1997).

No. 22 Law R, Dieckmann U:Symbiosis Without Mutualism
and the Merger of Lineages in Evolution.IIASA Interim Re-
port IR-97-074 (1997). Proceedings of the Royal Society of
London Series B 265:1245-1253 (1998).

No. 23 Klinkhamer PGL, de Jong TJ, Metz JAJ:Sex and Size
in Cosexual Plants.IIASA Interim Report IR-97-078 (1997).
Trends in Ecology and Evolution 12:260-265 (1997).

No. 24 Fontana W, Schuster P:Shaping Space: The Possi-
ble and the Attainable in RNA Genotype-Phenotype Mapping.
IIASA Interim Report IR-98-004 (1998). Journal of Theoret-
ical Biology 194:491-515 (1998).

No. 25 Kisdi É, Geritz SAH: Adaptive Dynamics in Allele
Space: Evolution of Genetic Polymorphism by Small Muta-
tions in a HeterogeneousEnvironment.IIASA Interim Report
IR-98-038 (1998). Evolution 53:993-1008 (1999).

No. 26 Fontana W, Schuster P:Continuity in Evolution: On
the Nature of Transitions. IIASA Interim Report IR-98-039
(1998). Science 280:1451-1455 (1998).

No. 27 Nowak MA, Sigmund K:Evolution of Indirect Reci-
procity by Image Scoring/ The Dynamics of Indirect Reci-
procity. IIASA Interim Report IR-98-040 (1998). Nature
393:573-577 (1998). Journal of Theoretical Biology 194:561-
574 (1998).

No. 28 Kisdi É: Evolutionary Branching Under Asymmetric
Competition. IIASA Interim Report IR-98-045 (1998). Jour-
nal of Theoretical Biology 197:149-162 (1999).

No. 29 Berger U:Best ResponseAdaptation for Role Games.
IIASA Interim Report IR-98-086 (1998).

No. 30 van Dooren TJM: The Evolutionary Ecology of
Dominance-Recessivity. IIASA Interim Report IR-98-096
(1998). Journal of Theoretical Biology 198:519-532 (1999).

No. 31 Dieckmann U, O’Hara B, Weisser W:The Evolution-
ary Ecology of Dispersal. IIASA Interim Report IR-98-108
(1998). Trends in Ecology and Evolution 14:88-90 (1999).

No. 32 Sigmund K:Complex Adaptive Systems and the Evo-
lution of Reciprocation. IIASA Interim Report IR-98-100
(1998). Ecosystems 1:444-448 (1998).

No. 33 Posch M, Pichler A, Sigmund K:The Efficiency of
Adapting Aspiration Levels. IIASA Interim Report IR-98-
103 (1998). Proceedings of the Royal Society London Series
B 266:1427-1435 (1999).

No. 34 Mathias A, Kisdi É:Evolutionary Branching and Co-
existence of Germination Strategies.IIASA Interim Report
IR-99-014 (1999).

No. 35 Dieckmann U, Doebeli M:On the Origin of Species
by Sympatric Speciation. IIASA Interim Report IR-99-013
(1999). Nature 400:354-357 (1999).

No. 36 Metz JAJ, Gyllenberg M:How Should We Define Fit-
ness in Structured Metapopulation Models? Including an Ap-
plication to the Calculation of Evolutionarily Stable Dispersal
Strategies. IIASA Interim Report IR-99-019 (1999). Pro-
ceedings of the Royal Society of London Series B 268:499-
508 (2001).

No. 37 Gyllenberg M, Metz JAJ:On Fitness in Structured
Metapopulations. IIASA Interim Report IR-99-037 (1999).
Journal of Mathematical Biology 43:545-560 (2001).

No. 38 Meszéna G, Metz JAJ:Species Diversity and Popula-
tion Regulation: The Importance of Environmental Feedback
Dimensionality. IIASA Interim Report IR-99-045 (1999).

No. 39 Kisdi É, Geritz SAH: Evolutionary Branching and
Sympatric Speciation in Diploid Populations.IIASA Interim
Report IR-99-048 (1999).

No. 40 Ylikarjula J, Heino M, Dieckmann U:Ecology and
Adaptation of Stunted Growth in Fish.IIASA Interim Report
IR-99-050 (1999). Evolutionary Ecology 13:433-453 (1999).

No. 41 Nowak MA, Sigmund K:Games on Grids. IIASA
Interim Report IR-99-038 (1999). Dieckmann U, Law R,
Metz JAJ (eds): The Geometry of Ecological Interactions:
Simplifying Spatial Complexity, Cambridge University Press,
Cambridge, UK, pp. 135-150 (2000).

No. 42 Ferrière R, Michod RE:Wave Patterns in Spatial
Games and the Evolution of Cooperation.IIASA Interim
Report IR-99-041 (1999). Dieckmann U, Law R, Metz JAJ
(eds): The Geometry of Ecological Interactions: Simplifying
Spatial Complexity, Cambridge University Press, Cambridge,
UK, pp. 318-332 (2000).

No. 43 Kisdi É, Jacobs FJA, Geritz SAH:Red Queen Evo-
lution by Cycles of Evolutionary Branching and Extinction.
IIASA Interim Report IR-00-030 (2000). Selection 2:161-
176 (2001).

No. 44 MeszénaG, Kisdi É, DieckmannU, Geritz SAH, Metz
JAJ: Evolutionary Optimisation Models and Matrix Games in
the Unified Perspectiveof Adaptive Dynamics.IIASA Interim
Report IR-00-039 (2000). Selection 2:193-210 (2001).

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:
Evolution of Dispersal in Metapopulations with Local Density
Dependence and Demographic Stochasticity.IIASA Interim
Report IR-00-035 (2000). Journal of Evolutionary Biology
16:143-153 (2003).

No. 46 Doebeli M, Dieckmann U: Evolutionary Branch-
ing and Sympatric Speciation Caused by Different Types of
Ecological Interactions. IIASA Interim Report IR-00-040
(2000). The American Naturalist 156:S77-S101 (2000).

No. 47 Heino M, Hanski I: Evolution of Migration Rate in
a Spatially Realistic Metapopulation Model.IIASA Interim
Report IR-00-044 (2000). The American Naturalist 157:495-
511 (2001).

No. 48 Gyllenberg M, Parvinen K, Dieckmann U:Evolution-
ary Suicide and Evolution of Dispersal in StructuredMetapop-
ulations. IIASA Interim Report IR-00-056 (2000). Journal
of Mathematical Biology 45:79-105 (2002).

No. 49 van Dooren TJM:The Evolutionary Dynamics of Di-
rect Phenotypic Overdominance: Emergence Possible, Loss
Probable. IIASA Interim Report IR-00-048 (2000). Evolu-
tion 54:1899-1914 (2000).

No. 50 Nowak MA, Page KM, Sigmund K:Fairness Versus
Reason in the Ultimatum Game.IIASA Interim Report IR-
00-57 (2000). Science 289:1773-1775 (2000).

No. 51 de Feo O, Ferrière R:Bifurcation Analysis of Pop-
ulation Invasion: On-Off Intermittency and Basin Riddling.
IIASA Interim Report IR-00-074 (2000). International Jour-
nal of Bifurcation and Chaos 10:443-452 (2000).



No. 52 Heino M, Laaka-Lindberg S:Clonal Dynamics and
Evolution of Dormancy in the Leafy Hepatic Lophozia Sil-
vicola. IIASA Interim Report IR-01-018 (2001). Oikos
94:525-532 (2001).

No. 53 Sigmund K, Hauert C, Nowak MA:Reward and Pun-
ishment in Minigames. IIASA Interim Report IR-01-031
(2001). Proceedings of the National Academy of Sciences
of the USA 98:10757-10762 (2001).

No. 54 Hauert C, De Monte S, Sigmund K, Hofbauer J:Os-
cillations in Optional Public Good Games.IIASA Interim
Report IR-01-036 (2001).

No. 55 Ferrière R, Le Galliard J:Invasion Fitness and Adap-
tive Dynamics in Spatial Population Models.IIASA Interim
Report IR-01-043 (2001). Clobert J, Dhondt A, Danchin E,
Nichols J (eds): Dispersal, Oxford University Press, pp. 57-79
(2001).

No. 56 de Mazancourt C, Loreau M, Dieckmann U:Can the
Evolution of Plant Defense Lead to Plant-Herbivore Mutual-
ism. IIASA Interim Report IR-01-053 (2001). The American
Naturalist 158:109-123 (2001).

No. 57 Claessen D, Dieckmann U:Ontogenetic Niche Shifts
and Evolutionary Branching in Size-Structured Populations.
IIASA Interim Report IR-01-056 (2001). Evolutionary Ecol-
ogy Research 4:189-217 (2002).

No. 58 Brandt H: Correlation Analysis of Fitness Land-
scapes.IIASA Interim Report IR-01-058 (2001).

No. 59 Dieckmann U:Adaptive Dynamics of Pathogen-Host
Interacations. IIASA Interim Report IR-02-007 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 39-59 (2002).

No. 60 Nowak MA, Sigmund K: Super- and Coinfection:
The Two Extremes.IIASA Interim Report IR-02-008 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 124-137 (2002).

No. 61 Sabelis MW, Metz JAJ:Taking Stock: Relating The-
ory to Experiment. IIASA Interim Report IR-02-009 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 379-398 (2002).

No. 62 Cheptou P, Dieckmann U:The Evolution of Self-
Fertilization in Density-Regulated Populations .IIASA In-
terim Report IR-02-024 (2002). Proceedings of the Royal
Society of London Series B 269:1177-1186 (2002).

No. 63 Bürger R:Additive Genetic Variation Under Intraspe-
cific Competition and Stabilizing Selection: A Two-Locus
Study. IIASA Interim Report IR-02-013 (2002). Theoret-
ical Population Biology 61:197-213 (2002).

No. 64 Hauert C, De Monte S, Hofbauer J, Sigmund K:Vol-
unteering as Red Queen Mechanism for Co-operation in Pub-
lic Goods Games. IIASA Interim Report IR-02-041 (2002).
Science 296:1129-1132 (2002).

No. 65 Dercole F, Ferrière R, Rinaldi S:Ecological Bistabil-
ity and Evolutionary Reversals under Asymmetrical Competi-
tion. IIASA Interim Report IR-02-053 (2002). Evolution
56:1081-1090 (2002).

No. 66 Dercole F, Rinaldi S: Evolution of Cannibalistic
Traits: Scenarios Derived from Adaptive Dynamics.IIASA
Interim Report IR-02-054 (2002). Theoretical Population Bi-
ology 62:365-374 (2002).

No. 67 Bürger R, Gimelfarb A: Fluctuating Environments
and the Role of Mutation in Maintaining Quantitative Genetic
Variation. IIASA Interim Report IR-02-058 (2002). Geneti-
cal Research 80:31-46 (2002).

No. 68 Bürger R:On a Genetic Model of Intraspecific Com-
petition and Stabilizing Selection.IIASA Interim Report IR-
02-062 (2002). Amer. Natur. 160:661-682 (2002).

No. 69 Doebeli M, Dieckmann U:Speciation Along Environ-
mental Gradients. IIASA Interim Report IR-02-079 (2002).
Nature 421:259-264 (2003).

No. 70 Dercole F, Irisson J, Rinaldi S:Bifurcation Analysis of
a Prey-Predator Coevolution Model.IIASA Interim Report
IR-02-078 (2002). SIAM Journal on Applied Mathematics
63:1378-1391 (2003).

No. 71 Le Galliard J, Ferrière R, DieckmannU:The Adaptive
Dynamics of Altruism in Spatially HeterogeneousPopulations.
IIASA Interim Report IR-03-006 (2003). Evolution 57:1-17
(2003).

No. 72 Taborsky B, Dieckmann U, Heino M: Unex-
pected Discontinuities in Life-History Evolution under Size-
Dependent Mortality. IIASA Interim Report IR-03-004
(2003). Proceedings of the Royal Society of London Series B
270:713-721 (2003).

No. 73 Gardmark A, Dieckmann U, Lundberg P:Life-
History Evolution in Harvested Populations: The Role of Nat-
ural Predation. IIASA Interim Report IR-03-008 (2003).
Evolutionary Ecology Research 5:239-257 (2003).

No. 74 Mizera F, Meszéna G:Spatial Niche Packing, Char-
acter Displacement and Adaptive Speciation Along an En-
vironmental Gradient. IIASA Interim Report IR-03-062
(2003). Evolutionary Ecology Research 5:363-382 (2003).

No. 75 Dercole F:Remarks on Branching-Extinction Evolu-
tionary Cycles. IIASA Interim Report IR-03-077 (2003).
Journal of Mathematical Biology 47:569-580 (2003).

No. 76 Hofbauer J, Sigmund K:Evolutionary Game Dynam-
ics. IIASA Interim Report IR-03-078 (2003). Bulletin of the
American Mathematical Society 40:479-519 (2003).

No. 77 Ernande B, Dieckmann U, Heino M:Adaptive
Changes in Harvested Populations: Plasticity and Evolution
of Age and Size at Maturation. IIASA Interim Report IR-
03-058 (2003). Proceedings of the Royal Society of London
Series B-Biological Sciences 271:415-423 (2004).

No. 78 Hanski I, Heino M:Metapopulation-Level Adaptation
of Insect Host Plant Preference and Extinction-Colonization
Dynamics in Heterogeneous Landscapes.IIASA Interim
Report IR-03-028 (2003). Theoretical Population Biology
63:309-338 (2003).

No. 79 van Doorn G, Dieckmann U, Weissing FJ:Sympatric
Speciation by Sexual Selection: A Critical Re-Evaluation.
IIASA Interim Report IR-04-003 (2004). American Natu-
ralist 163:709-725 (2004).

No. 80 Egas M, Dieckmann U, Sabelis MW:Evolution Re-
stricts the Coexistence of Specialists and Generalists - the
Role of Trade-off Structure.IIASA Interim Report IR-04-004
(2004). American Naturalist 163:518-531 (2004).



No. 81 Ernande B, Dieckmann U:The Evolution of Pheno-
typic Plasticity in Spatially StructuredEnvironments: Implica-
tions of Intraspecific Competition, Plasticity Costs, and Envi-
ronmental Characteristics.IIASA Interim Report IR-04-006
(2004). Journal of Evolutionary Biology 17:613-628 (2004).

No. 82 Cressman R, Hofbauer J:Measure Dynamics on a
One-Dimensional Continuous Trait Space: Theoretical Foun-
dations for Adaptive Dynamics. IIASA Interim Report IR-
04-016 (2004).

No. 83 Cressman R: Dynamic Stability of the Replicator
Equation with Continuous Strategy Space.IIASA Interim
Report IR-04-017 (2004).

No. 84 Ravigné V, Olivieri I, Dieckmann U:Implications of
Habitat Choice for Protected Polymorphisms.IIASA Interim
Report IR-04-005 (2004). Evolutionary Ecology Research
6:125-145 (2004).

No. 85 Nowak MA, Sigmund K:Evolutionary Dynamics of
Biological Games. IIASA Interim Report IR-04-013 (2004).
Science 303:793-799 (2004).

No. 86 Vukics A, Asbóth J, Meszéna G:Speciation in Mul-
tidimensional Evolutionary Space. IIASA Interim Report
IR-04-028 (2004). Physical Review 68:041-903 (2003).

No. 87 de Mazancourt C, Dieckmann U:Trade-off Geome-
tries and Frequency-dependent Selection.IIASA Interim Re-
port IR-04-039 (2004). American Naturalist 164:765-778
(2004).

No. 88 Cadet CR, Metz JAJ, Klinkhamer PGL:Size and the
Not-So-Single Sex: disentangling the effects of size on sex al-
location. IIASA Interim Report IR-04-084 (2004). Ameri-
can Naturalist 164:779-792 (2004).

No. 89 Rueffler C, van Dooren TJM, Metz JAJ:Adaptive
Walks on Changing Landscapes: Levins’ Approach Extended.
IIASA Interim Report IR-04-083 (2004). Theoretical Popu-
lation Biology 65:165-178 (2004).

No. 90 de Mazancourt C, Loreau M, Dieckmann U:Under-
standing Mutualism When There is Adaptation to the Partner.
IIASA Interim Report IR-05-016 (2005). Journal of Ecology
93:305-314 (2005).

No. 91 Dieckmann U, Doebeli M:Pluralism in Evolutionary
Theory. IIASA Interim Report IR-05-017 (2005). Journal of
Evolutionary Biology 18:1209-1213 (2005).

No. 92 Doebeli M, Dieckmann U, Metz JAJ, Tautz D:What
We Have Also Learned. IIASA Interim Report IR-05-018
(2005). Evolution 59:691-695 (2005).

No. 93 Egas M, Sabelis MW, Dieckmann U:Evolution of
Specialization and Ecological Character Displacement of
HerbivoresAlong a Gradient of Plant Quality.IIASA Interim
Report IR-05-019 (2005). Evolution 59:507-520 (2005).

No. 94 Le Galliard J, Ferrière R, Dieckmann U:Adaptive
Evolution of Social Traits: Origin, Trajectories, and Corre-
lations of Altruism and Mobility. IIASA Interim Report IR-
05-020 (2005). American Naturalist 165:206-224 (2005).

No. 95 Doebeli M, Dieckmann U:Adaptive Dynamics as
a Mathematical Tool for Studying the Ecology of Speciation
Processes.IIASA Interim Report IR-05-022 (2005). Journal
of Evolutionary Biology 18:1194-1200 (2005).

No. 96 Brandt H, Sigmund K:The Logic of Reprobation: As-
sessment and Action Rules for Indirect Reciprocity.IIASA
Interim Report IR-04-085 (2004). Journal of Theoretical Bi-
ology 231:475-486 (2004).

No. 97 Hauert C, Haiden N, Sigmund K:The Dynamics of
Public Goods.IIASA Interim Report IR-04-086 (2004). Dis-
crete and Continuous Dynamical Systems - Series B 4:575-
587 (2004).

No. 98 Meszéna G, Gyllenberg M, Jacobs FJA, Metz JAJ:
Link Between Population Dynamics and Dynamics of Dar-
winian Evolution. IIASA Interim Report IR-05-026 (2005).
Physical Review Letters 95:Article 078105 (2005).

No. 99 Meszéna G:Adaptive Dynamics: The Continuity Ar-
gument. IIASA Interim Report IR-05-032 (2005). Journal of
Evolutionary Biology 18:1182-1185 (2005).

No. 100 Brännström NA, Dieckmann U:Evolutionary Dy-
namics of Altruism and Cheating Among Social Amoebas.
IIASA Interim Report IR-05-039 (2005). Proceedings of the
Royal Society London Series B 272:1609-1616 (2005).

No. 101 Meszéna G, Gyllenberg M, Pasztor L, Metz JAJ:
Competitive Exclusion and Limiting Similarity: A Unified
Theory. IIASA Interim Report IR-05-040 (2005).

No. 102 Szabo P, Meszéna G:Limiting Similarity Revisited.
IIASA Interim Report IR-05-050 (2005).

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained at www.iiasa.ac.at/Research/ADN/Series.html or by
writing to adn@iiasa.ac.at.



 

 

Contents 

Abstract............................................................................................................................. 2 

Introduction ...................................................................................................................... 3 

Model definition ...............................................................................................................5 

Results .............................................................................................................................. 8 

Discussion....................................................................................................................... 12 

Acknowledgements ........................................................................................................ 19 

Bibliography ................................................................................................................... 20 

Figure Legends ............................................................................................................... 26 

Figures ............................................................................................................................ 28 



 

Limiting similarity revisited 

 

Péter Szabó 1* and Géza Meszéna 2 

 

1,2 Department of Biological Physics, Eötvös University, Pázmány Péter stny. 1/A, H-1117, Budapest, 

Hungary. 

 

 

 

 

E-mail addresses: 

1 pszabo@angel.elte.hu 

2 geza@angel.elte.hu 

 

                                                 
* Corresponding author. Phone: +36 1 372 27 86, Fax: +36 1 372 27 57 



                                                                                               Szabó and Meszéna, page 2 

ABSTRACT 

 

We reinvestigate the validity of the limiting similarity principle via numerical 

simulations of the Lotka-Volterra model. A Gaussian competition kernel is employed to 

describe decreasing competition with increasing difference in a one-dimensional 

phenotype variable. The simulations are initiated by a large number of species, evenly 

distributed along the phenotype axis. Exceptionally, the Gaussian carrying capacity 

supports coexistence of all species, initially present. In case of any other, distinctly 

different, carrying capacity functions, competition resulted in extinction of all, but a few 

species. A comprehensive study of classes of fractal-like carrying capacity functions with 

different fractal exponents was carried out. The average phenotype differences between 

surviving species were found to be roughly equal to the competition width. We conclude 

that, despite the existence of exceptional cases, the classical picture of limiting similarity 

and niche segregation is a good rule of thumb for practical purposes. 

 

KEY WORDS: limiting similarity, niche segregation, interspecific competition, Lotka-

Volterra 



                                                                                               Szabó and Meszéna, page 3 

INTRODUCTION 

 

Limiting similarity is a central, but controversial tenet of community ecology. The 

seminal paper of MacArthur and Levins (1967) was among the most influential 

theoretical papers in ecology. It stated that phenotype difference on the scale of the 

competition width is required between coexisting species. Since then, the assertion and 

the related figure became an indispensable part of any ecology textbook (Begon et al. 

1996, Case 2000, Krebs 2001).  

While the empirical relevance of limiting similarity was clearly demonstrated in 

several studies (see e.g. Schluter 2000a,b), its wider context, “competition theory”, has 

gradually fallen out of favor since its inception in the sixties. It has become the prevailing 

view that importance of competition, and henceforth of limiting similarity, was originally 

overestimated; other types of interaction, like predation and disturbance, has a non-

negligible role in shaping communities (Begon et al. 1996). On the other hand, even more 

recently, other researchers stress that the effect of predation is very analogous to resource 

limitation; an attempt to revival of niche theory as a “central organizing aspect of 

ecology” was made on this basis (Leibold 1995). 

Decline of competition theory overshadows the fact that the real prediction of it 

has never been made sufficiently clear. Competitive exclusion (Gause 1934, Hardin 

1960) is often interpreted in the narrow, but mathematically clear, sense as a statement 

that the number of coexisting species cannot be larger than the number of resources, or 

“limiting factors” (e.g. Levin 1970, Armstrong and McGehee 1980). Partitioning of a 

resource continuum cannot be discussed this way, as the continuum represents an infinite 
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number of different resources. Then, we either have a limiting similarity type statement, 

or competitive exclusion predicts nothing (cf. Rosenzweig 1995).  

MacArthur & Levins (1967) used the Lotka-Volterra competition model for 

demonstrating limiting similarity in resource partitioning. However, the more detailed 

analysis of the model by May and MacArthur (1972) established no clear lower bound of 

similarity. While May (1973) rescued the principle by referring to environmental 

fluctuation as a necessary ingredient of the limiting similarity argument, the very same 

result signaled the end of the road for limiting similarity according to Rosenzweig 

(1995): “… the result (limiting similarity) was quicksand that trapped the energies of 

community ecologists for more than ten years and nearly killed the subdiscipline”. 

Surprisingly, the most powerful mathematical counterexample for limiting 

similarity is not widely recognized in the ecological literature. Roughgarden (1979) 

demonstrated, that even a continuum of species is able to coexist in the Lotka-Volterra 

model. While this effort was intended to describe polymorphism within a species, it can 

be interpreted also in a community ecology context, as recognized by Maynard Smith and 

Szathmáry (1995).  

Investigations going beyond the Lotka-Volterra model leaded to no firm 

conclusion, either (Abrams 1983, 1988). On the one hand, it seems to be clear that some 

kind of limit of similarity must exist in any model. On the other hand, no general result of 

this type has emerged. 

More recently, following the lead by Sasaki and Elner (1995), Gyllenberg and 

Meszéna (2004) showed that any model, which allows continuous coexistence, is 

necessarily structurally unstable, i.e. an arbitrarily small modification of the model might 
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be able to destroy the continuous coexistence. The continuous coexistence in 

Roughgarden's model will not survive a small perturbation of the carrying capacity curve. 

Meszéna et al. (submitted) showed that similarity of coexisting species decreases the 

tolerance of the assemblage towards the external environmental parameters. That is, 

similarity decreases the chance of coexistence. While these qualitative analytical results 

are very general, they do not predict any specific lower bound of similarity. 

After many pros and cons, the single most important question, i.e. whether 

limiting similarity has any practical relevance, has remained unsolved. Here we intend to 

check the expectation that coexisting species should differ roughly according to their 

competition width. More specifically, assuming Gaussian competition functions with a 

standard deviation σ, can we generally expect , as a rule of thumb, 2σ distances between 

coexisting species? We resort to a comparative study to answer this question. We 

investigate the cases, which support limiting similarity, and the cases, which defy it, in 

the same context. As both the existence and the non-existence of limiting similarity were 

originally demonstrated in the Lotka-Volterra model, we use this framework also. We 

repeat the same numerical experiment with different choices for the carrying capacity 

function. The Gaussian one, corresponding to Roughgarden's counter-example with the 

continuous coexistence, will be considered as the reference case. 

 

MODEL DEFINITION 

 

We start from the familiar Lotka-Volterra competition model for several species, 

which we write in the form 
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where L  stands for the number of species, { }Li ,,2,1 …∈  and in  denotes the density of 

the ith one. The elements of the competition matrix are denoted by ija ; 1=iia  is assumed 

for all i . iK  is the carrying capacity for species i . As the constant iα  is unimportant for 

our purpose, 1=iα  will be chosen for each species. 

Each species is characterized by a phenotype variable ix . Then, iK  and ija  are 

determined by the phenotype and the difference between phenotypes, respectively. Eq. 

(1) takes the form 
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We suppose decreasing competition with increasing phenotype difference, according to 

the usual Gaussian form 
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The twice standard deviation σ2  of this Gaussian will be referred to as competition 

width. The carrying capacity function ( )ixK  will be specified in each example 

separately. 

When the number of species is large and the difference between neighboring 

phenotypes is small, we use the continuous approximation  

( ) ( ) ( ) ( ) ( )( )∫−= dyynyxaxKxn
dt

xdn
, ,    (4) 
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where ( )xn  stands for the density of species with phenotype x . Then the equilibrium 

condition reads as 

( ) ( )∑
=

=
L

j
jjii nxxaxK

1

, ,    (5) 

or 

( ) ( ) ( )∫= dyynyxaxK , .    (6) 

In equilibrium, these equations should hold for all species present in non-zero density. 

For each choice for the carrying capacity function )(xK , we integrated Eq. (2) 

numerically with time steps of 1.0=Δt . Simulations were initiated with 1001 species, 

evenly distributed within the phenotype interval [ ]1,1−  with equal densities of 01.0 . The 

outcome of competition was evaluated at 10000=t . At this time point the growth rates 

were wery close to zero. The number of coexisting species was assessed by counting 

species that were present and exhibited nonnegative growth at 10000=t . This criteria 

was applied to exclude populations which were bound to extinction, but eventually 

existed at that time. 
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RESULTS 

 

Roughgarden's example for continuous coexistence 

 

Roughgarden's (1979) example employs the Gaussian carrying capacity function 
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where ω denotes the half-width of this curve. Then the Gaussian species distribution 
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is an equilibrium solution of Eq. (4), provided that ω>σ. In this case, infinitely many 

arbitrarily similar species may coexist along the phenotype axis. 

We reproduced this analytical result numerically (Fig. 1). All of the populations, 

that were present initially, survived. In agreement with Eq. (8), the equilibrium 

distribution of the population densities followed a Gaussian curve. Increased competition 

width σ led to a narrower distribution of densities. Obviously, when ω<σ, i.e. when the 

carrying capacity is narrower than the competition width, only the species 0=x  survives 

(not shown). 

 

Other simple carrying capacity functions: no continuous coexistence 

 

The rectangular function 
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which is zero outside an interval, is the next simple choice for the carrying capacity 

curve. In contrast to Roughgarden's case, most of the populations go extinct. Only a very 

limited number of species coexist at equilibrium (Fig. 2).  

The average phenotype difference between adjacent survivors can be calculated 

by dividing the total phenotype interval with the number of coexisting species. As plotted 

on Fig. 3, this difference increased with σ linearly with great accuracy. The steepness of 

the linear regression line was found to be 1.82. That is, in agreement with the classical 

expectation, the coexisting species were spaced roughly by the competition width 2σ. 

It is easy to interpret this result in qualitative terms. The two species, which are 

located at the two ends of the livable range, gain advantage from the lack of competitors 

on one of their sides. Then, competition by these high-density species causes extinction 

within their range of competition. Two empty ranges emerge which, in turn, give 

advantage to two species, located at the inner ends of the empty ranges. And so on, a 

discrete distribution emerges. 

The perturbation, that renders the coexistence of infinitely many strategies 

impossible does not have to be so abrupt. We get similar results if ( )xK  is a sum of two 

Gaussian functions as 
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with ω1>σ>ω2 . The first Gaussian, when alone, would maintain a continuous 

coexistence. In contrast, the second one supports a single phenotype, namely µ=x . 

Fig. 4 demonstrates the emerging species distribution. The second term of Eq. (10) gives 

an advantage to species µ=x . The high density of this species causes extinction of each 
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species within its range of competition. Then, the empty ranges on both sides of species 

µ=x  give advantage to the two species next to these ranges. And so on, the competitive 

advantages and disadvantages build up gradually and a discrete species distribution 

emerges. 

 

The realistic case: Fractal-like carrying capacity functions 

 

While the smooth Gaussian function in the role of the carrying capacity curve 

leads to continuous coexistence, a function with abrupt changes seems to result in 

limiting similarity in the usual sense. These extremes cannot tell us, however, what is the 

typical situation. 

As a representative of a more natural function, we investigate fractal-like 

perturbation of the Gaussian carrying capacity. We chose 
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where the perturbation term 
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consists of periodic components with random phases. The parameters k and γ are 

constants. The amplitude of the i th periodic component is 

νβ ii 1= .     (13) 
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The phases iϕ  were chosen randomly for each simulation run. The exponent η 

characterizes the fractal properties. η=0 for a white noise; Brownian motion is 

characterized by η=1.  

We stress that, since iϕ s remain constant during a single run of the simulation, 

the random choice of them does not introduce stochasticity into the dynamics. Instead, 

this randomization ensures that each simulation uses a different carrying capacity curve, 

characterized by a common fractal exponent. Accordingly, each data point in Figures 5 

and 6 represents an average over a class of models. 

Fig. 5 shows the results with η=0, 1, 1.5 respectively. All simulations ended up 

with survival of a limited number of species. The number of species at equilibrium and, 

consequently, average phenotype distances change with η. The number of coexisting 

species was averaged over 50 simulations, differing in the random phases, for each η and 

σ combination (Fig. 6). 

Distances increase with σ in all cases and the slope of the fitted line remains in 

the range σσ 6.29.1 − . The departure from the linear dependence on Fig. 6 is related to 

the fact that σ is not small, compared to the total phenotype interval, at the right end of 

the horizontal scale. 
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DISCUSSION 

 

In this paper we have reconsidered the age-old problem of limiting similarity in a 

Lotka-Volterra model context. The need for this re-evaluation came from the fact that in 

different investigations the very same model was used for both the justification and 

falsification of this principle. Initiating the simulations with many equally abundant 

species, closely packed along the phenotype variable, we observed whether a limiting 

similarity type of species distribution shows up. In line with theoretical predictions, a 

yes-and-no picture emerged. As the issue seemed to be related to the smooth-or-not 

nature of the carrying capacity function, we investigated “natural”, i.e. fractal-like, 

functions with different fractal exponents. We conclude that, in spite of the existence of 

exceptional cases, the classical picture of limiting similarity prevails, by and large. 

Especially, as a rule of thumb, the typical distance between coexisting species is near to 

the competition width 2σ . This result seems to be quite robust: We tested very different 

carrying capacity functions, including families of fractal-like ones.  

Nevertheless, the details of the final distribution of the species in a specific 

simulation do not seem to be very regular. The surviving species are not exactly 

equidistant. Their abundances apparently depend on the exact shape of the carrying 

capacity curve as well as on which species survived. In most of the cases, the initial 

distribution is so far from the final one, that there is no reason to suppose that the 

limiting-similarity-type outcome depends on the initial distribution. On the other hand, in 

a specific simulation there is no reason to expect the exactly same final distribution for a 

different initial one. 
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In a specific simulation run, any species either equilibrates with a finite 

abundance, or dies out. Its growth rate converges to zero in the first case, but remains 

negative in the second one. That is, in the final state the growth rates of all extinct 

phenotypes are negative. Consequently, the resulting species assemblage is stable against 

invasion when any phenotype, which is not present, is (re)introduced in small density (cf. 

Jansen and Mulder 1999, Bonsall et al. 2004). On the other hand, the evolutionarily stable 

community/assemblage needs not be unique, i.e. it may depend on the initial conditions. 

Obviously, our initial condition is far from being realistic. In the real life, there is 

no such supply of an almost continuous set of species. Our point exactly is that limiting 

similarity emerges even from starting so irrealistically far from that outcome. 

Our simulation results are consistent with the empirical findings. On the one hand, 

character displacement studies (Schluter 2000a,b) demonstrated segregation of coexisting 

species in resource related traits. Note, that similarity in the environmental requirements 

is also necessary for coexistence (cf. Leibold 1995, Chase and Leibold 2003), so 

investigations based of phylogenetic relationships (e.g. Webb 2000) will not necessarily 

demonstrate any correlation between coexistence and dissimilarity. On the other hand, 

the specific arrangement of species of a community is influenced by many factors, 

including the initial conditions, and is not predictable via simple rules. 

Limiting similarity is not without exceptions. In some sense the non-existence of 

an absolute and model-independent lower bound of similarity is trivial; in a parameter-

rich model one can always adjust the parameters to equalize the growth rates of the 

species. Consequently, any set of strategies may be able to coexist, irrespective of their 
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similarity. The real issue of coexistence starts when one refuses to fine-tune parameters. 

That is, the real question is whether the coexistence is robust against parameter changes. 

This triviality was noted first by May and MacArthur (1972), May (1973). They 

varied the carrying capacities of two, or three, species. The smaller the interspecific 

competition, the wider the range of the carrying capacities, which enabled coexistence, 

was. As interpecific competition is supposedly related to the ecological difference 

between species, this result means that the coexistence becomes more robust with 

increasing difference. That is, limiting similarity is a quantitative issue. Similarity does 

not exclude coexistence, but makes it less likely. This conclusion has been generalized 

beyond the Lotka-Voltarra context by Meszéna et al. (submitted).  

 Decreased competition between dissimilar species has a regulating effect on their 

coexistence. Suppose that a perturbation affects species A adversely, but not B. Then the 

population size of A starts to decline. If the intraspecific competition is larger than the 

interspecific one, the decreased population size of A improves the living conditions of A 

in a larger extent, than that of B. This, in turn, compensates species A for the relative 

disadvantage it has gained by the original perturbation. Large niche overlap reduces this 

regulatory effect as both species gain roughly the same advantage from the decline of one 

of them.  

The problem of continuous coexistence is a related issue. For any given form of 

the competition kernel ( )yxa ,  and for any prescribed species distribution ( )xn , the 

equilibrium condition (Equ. (6)) determines a carrying capacity function ( )xK , which 

allows the coexistence with this specific species distribution. However, as coexistence of 

similar strategies is possible only for a narrow range of parameters, one may reasonably 
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presume that coexistence of a continuum of species should be sensitive to an arbitrarily 

small perturbation. In fact, this is the case.  

Structural instability of Roughgarden's example for continuous coexistence was 

essentially noted already by Sasaki and Ellner (1995). Their context was entirely 

different; they considered mixed strategies in a fluctuating environment. Nevertheless, 

their criterion for an ESS mixing distribution was identical to the equilibrium condition 

for coexisting strategies in the Lotka-Volterra model. Consequently, their proof of the 

structural instability of any ESS, which mixes a continuum of pure strategies, translates 

to the structural instability of any Roughgarden’s type of continuous coexistence. Geritz 

(1995, 1999) and Meszéna and Szathmáry (2001) provided additional models in which 

continuous coexistence appears, but only under structurally unstable circumstances. 

Gyllenberg and Meszéna (2004) generalized these results be proving the structural 

instability of any model, which allows continuous coexistence. 

Haccou and Iwasa (1995, 1998) demonstrated a kind of smoothness in the abrupt 

loss of the continuous solution for the mixed strategy problem of Sasaki and Ellner 

(1995). For small perturbations, the emerging discrete distribution follows closely the 

original continuous one. No similar general analysis is available for the coexistence 

problem. Still, it is sensible to suspect that the transition from continuous to discrete 

coexistence is smooth, again. That is, small perturbation of Roughgarden's model 

probably allows coexistence of discrete, but very similar, strategies. One may conjecture 

that the minimal distance between coexisting species grows up from zero continuously 

with the increasing departure from the strictly Gaussian carrying capacity function. We 

did not attempt to follow this transition. Instead, we compared the strictly Gaussian case 
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with the distinctly different ones and studied, what determines the lower bound of 

similarity. In all cases we tried, we found that the minimal phenotype difference is of the 

order of the competition width. 

 The mechanism leading to limiting similarity is transparent in the simple cases 

we presented. Local maxima of the carrying capacity curve gives advantage to some 

phenotypes. In turn, these favored phenotypes impose competitive burden on the 

neighboring types along the phenotype axis via competition. That is, the not-very-smooth 

nature of the carrying capacity curve is essential for limiting similarity. In this context, it 

was essential to study choices somewhere in between the very smooth and the sharply 

changing: the fractals.  

We employed fractal functions to mitigate a serious problem of mathematical 

ecology. In the “strategic” level of modeling (cf. Czárán 1998) the model ingredients are 

chosen according to their simplicity, instead of their empirical fidelity. The expectation 

here is, that the simpler the choice is, the lesser the danger of introducing artefactual 

details. Unfortunately, the ingredient functions, which are the simplest choices from 

mathematical point of view, are often very artificial. For instance, they are either 

unnaturally smooth, like a Gaussian function, or unnaturally discontinuous, like a step 

function.   

Fractals and fractal-like functions are ubiquitous in nature (Mandelbrot 1983). If a 

shape is influenced by many processes, probably the system will not be dominated by a 

single, or a few, characteristic scales (Beran 2004). A scale-independent, self-similar 

pattern may emerge as a result. Such shape is represented by an autocorrelation function, 

which decays according to a power law. The “fractal” exponent of the power law 
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characterizes the relative strength of the shorter and longer correlations. Self-similar 

patterns have been reported in many biological systems at all level of the organization 

(Burrough 1981, Liebovitch and Sullivan 1987, Shlesinger and West 1991, Gunnarsson 

1992, Harte et al. 1999). The carrying capacity function is a result of a complicated 

interplay between the ecological interactions and the physiological constraints, i.e. the 

genotype-phenotype map. The process is likely to involve many random components 

acting on multiple time scales, leading to multiscaled randomness (Hausdorff 1996). As 

there is no reason to expect any characteristic scale in such a carrying capacity function, 

it is reasonable to endow it with fractal-like properties, instead.  

The fractal exponent ν  characterizes the relative contributions of the different 

scales. The larger the exponent is, the smaller the amplitude of small scale perturbations. 

That is, a smaller ν  represents a more rugged carrying capacity curve, while a larger one 

represents a smoother one. Varying the fractal exponent and choosing different phases in 

Eq. (12) allows us to sweep through a representative variety of possible carrying capacity 

functions. It is remarkable that our findings were essentially independent of the fractal 

exponent; fractal-like carrying capacity functions with different exponents have 

uniformly led to limiting similarity with roughly (2.3 ±0.3)σ distance between coexisting 

species, i.e. slightly higher than competition width. 

The Lotka-Volterra model is often criticized as “phenomenological”, as opposed 

to the mechanistic models. Notwithstanding the success of mechanistic level of modeling 

(cf. Tilman 1982), it did not lead any consistent understanding on the issue of limited 

similarity. In particular, investigations hinted mechanism-dependence neither for the 

validity of the limiting similarity principle nor for the specific lower bound of similarity. 
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In the contrary, the universality across different mechanisms (e.g. competition and 

predation) was stressed by Leibold (1995), Chase and Leibold (2003). Moreover, no 

principal difference between the phenomenological and mechanistic model is expected 

because the Lotka-Volterra model can be derived from a mechanistic underpinning 

(Yodzis 1989). Moreover, in any model one can locally linearize the density-dependence, 

which leads to a Lotka-Volterra model. Consequently, any issue, like linear stability and 

robustness, which can be studied via small perturbations, should be the same in the 

original model and in its Lotka-Volterra approximation. 

While Abrams (1983), Yodzis (1989) stress the model dependence of limiting 

similarity, analytic investigations (Gyllenberg and Meszéna 2005, Meszéna et al. 

submitted) testify for the generality of some basic issues. First, simple counter-examples 

for limiting similarity exist already in the very model, which was used to demonstrate the 

principle. Second, both structural instability of continuous coexistence and decreasing 

robustness of coexistence for increasing similarity is proven generally. This is the 

context, in which detailed numerical investigations make sense: We have reasons to hope 

for the general relevance of our conclusions. 

In particular, competition kernels, other than the Gaussian, are not expected to 

lead to essentially different results. It is clear, that the carrying capacity curve, which 

allows continuous coexistence, can be constructed for any competition function via the 

equilibrium equation (Eq. (6)). An infinitesimal perturbation of this carrying capacity will 

destroy the continuous coexistence, again (Gyllenberg and Meszéna 2004). Note that the 

standard deviation is not necessarily a good measure of the competition width for 

competition functions other than the Gaussian (Yodzis 1989). 
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The misleading exceptionality of Roughgarden's model exhibits a serious 

methodological problem of ecological modeling. Nevertheless, the careful investigation 

of the Lotka-Volterra model in the context of analytical investigations provides a strong 

case for the practical relevance of the principle of limiting similarity. 
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FIGURE LEGENDS:  

 

FIGURE 1. Species distribution with Gaussian carrying capacity function for different 

competition widths 2σ. On each plot, dashed line depicts the shape of the carrying 

capacity curve, normalized to a given height. Black region denotes the population 

distribution. Variance of the bell-shaped species distribution decreases with increasing 

competition width. Parameters: ω=0.3; σ=0.04, 0.08, 0.16 in sub-figures a, b, c, 

respectively. 

 

FIGURE 2. Species distribution with rectangular carrying capacity function for different 

competition widths 2σ. Only a finite number of species coexist. The number of 

coexisting species decreases with increasing σ. Parameters: b=0.6, c=5, σ=0.04, 0.08, 

0.16 in sub-figures a, b, c respectively. 

 

FIGURE 3. Phenotype difference between adjacent survivors as a function of σ and the 

fitted linear regression line (solid line) for rectangular carrying capacity. Phenotype 

difference values are calculated as the number of species at equilibrium divided by the 

length of the phenotype interval. The steepness of the linear regression line is 1.82. 

 

FIGURE 4. Species distribution for different competition widths 2σ, when the carrying 

capacity function is composed from two Gaussians. Competition width increases from 

left to right; σ=0.04, 0.08, 0.16 in subfigures a, b, c respectively. Other parameters: 

ω1=0.3, ω2=0.03, α=0.1, µ=-0.3. 
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FIGURE 5. Species distribution with fractal-like carrying capacity function for different 

fractal dimensions η and competition widths 2σ. The η value increases from the top 

down: (a-c) η=0, (d-f) η=1.0, (g-i) η=1.5. σ increases from left to right for each η value; 

(a, d, g) σ=0.02, (b, e, h) σ=0.04, (c, f, i) σ=0.08. ω=0.3 in all cases. 

 

FIGURE 6. Average phenotype differences between adjacent survivors p as a function of 

σ with fractal-like ( )xK . Difference values were averaged over 50 simulations with 

different random choices for the phases. Other parameters: ω=0.3, (a) η=0, (b) η=1.0, (c) 

η=1.5. A linear regression line (solid line) was calculated for each η (data points, denoted 

by empty circles, were ignored).  Slopes of regression lines are 2.64, 1.97, 1.99, 

respectively.  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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