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ABSTRACT

We reinvestigate the validity of the limiting similarity principle via numerical
simulations of the Lotka-Volterra model. A Gaussian competition kernel is employed to
describe decreasing competition with increasing difference in a one-dimensional
phenotype variable. The simulations are initiated by a large number of species, evenly
distributed along the phenotype axis. Exceptionally, the Gaussian carrying capacity
supports coexistence of all species, initiallggant. In case of any other, distinctly
different, carrying capacity functions, competition resulted in extinction of all, but a few
species. A comprehensive study of classes of fractal-like carrying capacity functions with
different fractal exponents was carried out. The average phenotype differences between
surviving species were found to be roughly&do the competition width. We conclude
that, despite the existence of exceptional cases, the classical picture of limiting similarity

and niche segregation is a good roféhumb for practical purposes.

KEY WORDS: limiting similarity, niche segregation, interspecific competition, Lotka-

Volterra
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INTRODUCTION

Limiting similarity is a central, but cordversial tenet of community ecology. The
seminal paper of MacArthur and Levins (1967) was among the most influential
theoretical papers in ecology. It stated that phenotype difference on the scale of the
competition width is required between coéxig species. Since then, the assertion and
the related figure became an indispensable part of any ecology textbook (Begon et al.
1996, Case 2000, Krebs 2001).

While the empirical relevance of limiting similarity was clearly demonstrated in
several studies (see e.g. Schluter 2000a,b), its wider context, “competition thasry”, h
gradually fallen out of favor since its inception in the sixties. It has become the prevailing
view that importance of competition, and hewc#f of limiting similarity, was originally
overestimated; other types of interaction, like predation and disturbance, has a non-
negligible role in shaping communities (Beggtral. 1996). On the other hand, even more
recently, other researchers stress that the effect of predation is very analogous to resource
limitation; an attempt to revival of niche theory as a “central organizing aspect of
ecology” was made on this basis (Leibold 1995).

Decline of competition theory overshadows the fact that the real prediction of it
has never been made sufficiently clear. Competitive exclusion (Gause 1934, Hardin
1960) is often interpreted in the narrow, but mathematically clear, sense as a statement
that the number of coexisting species cannot be larger than the number of resources, or
“limiting factors” (e.g. Levin 1970, Armstrong and McGehee 1980). Partitioning of a

resource continuum cannot be discussed this way, as the continuum representgen infini
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number of different resources. Then, we either have a limiting similarity type statement,
or competitive exclusion predicts nothing (cf. Rosenzweig 1995).

MacArthur & Levins (1967) used the Lotka-Volterra competition model for
demonstrating limiting similarity in resource partitioning. However, the more detailed
analysis of the model by May and MacArthur (1972) established nololear bound of
similarity. While May (1973) rescued the principle by referring to environrhenta
fluctuation as a necessary ingredient of the limiting similarity argumenvety same
result signaled the end of the road foniting similarity according to Rosenzweig
(1995): “... the result (limiting similarity) was quicksand that trapped the energies of
community ecologists for more than teraygand nearly killed the subdiscipline”.

Surprisingly, the most powerful mathematical counterexample for limiting
similarity is not widely recognized in the ecological literature. Roughgarden (1979)
demonstrated, that evercantinuumof species is able to coexist in the Lotka-Volterra
model. While this effort was intended to describe polymorphism within a species, it can
be interpreted also in a community ecologpteat, as recognized by Maynard Smith and
Szathmary (1995).

Investigations going beyond the Lotka-Volterra model leaded to no firm
conclusion, either (Abrams 1983, 1988). On the one hand, it seems to be clear that some
kind of limit of similarity must exist in any model. On the other hand, no general result of
this type has emerged.

More recently, following the lead by Sasaki and Elner (1995), Gyllenberg and
Meszéna (2004) showed that any model, which allows continuous coexistence, is

necessarily structurally unstable, i.e. an arbitrarily small modification of the model might
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be able to destroy the continuous coexistence. The continuous coexistence in
Roughgarden’'s model will not survive a small perturbation of the carrying capacity curve.
Meszéna et al. (submitted) showed that similarity of coexisting species decreases the
tolerance of the assemblage towards the external environmental parameters. That is,
similarity decreases the chance of coexistence. While these qualitative analytical results
are very general, they do not predict any specific lower bound of similarity

After many pros and cons, the single most important question, i.e. whether
limiting similarity has any practical relevandes remained unsolved. Here we intend to
check the expectation that coexisting species should differ roughly according to their
competition width. More specifically, assuming Gaussian competition functions with a
standard deviatiow, can we generally expect , as a rule of thunsbdi8tances between
coexisting species? We resort to a comparative study to answer this question. We
investigate the cases, which support limiting similarity, and the cases, which defy it, in
the same context. As both the existence and the non-existence of limiting similarity were
originally demonstrated in the Lotka-Volterra model, we use this framework also. We
repeat the same numerical experiment with different choices for the carrying capacity
function. The Gaussian one, corresponding to Roughgarden's counter-exami e with

continuous coexistence, will be considered as the reference case.

MODEL DEFINITION

We start from the familiar Lotka-Volterra competition model for several species,

which we write in the form
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%—T:qni[Ki—qunj], 1)
where L stands for the number of species,{12,...,L} andn denotes the density of
thei™ one. The elements of the competition matrix are denote] by, =1is assumed
forall i. K, is the carrying capacity for speciesAs the constang, is unimportant for
our purposegr, =1 will be chosen for each species.

Each species is characterized by a phenotype vanablknen, K; anda; are

determined by the phenotype and the difference between phenotypes, respectively. Eq.

(1) takes the form
d_n:ni(K(Xi)_ia(Xi’xi)nJ]' (2)

We suppose decreasing competition with increasing phenotype difference, according to

the usual Gaussian form

—(x=y)’
axy)= eXDT . 3)
The twice standard deviatic?o of this Gaussian will be referred to as competition
width. The carrying capacity functiol(x, ) will be specified in each example
separately.

When the number of species is large and the difference between neighboring

phenotypes is small, we use the continuous approximation

00~ ()l (00~ [ dx ynky)ay), @
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where n(x) stands for the density of species with phenotyp@hen the equilibrium

condition reads as

K(Xi):i_la(xiixj)nj , ®)
or
K(x)=[ dx y)n(y)dy. (6)

In equilibrium, these equations should hfdall species present in non-zero density.
For each choice for the carrying capacity functio(x) , we integrated Eq. (2)
numerically with time steps oft = 0.1. Simulations were initiated withO01 species,
evenly distributed withirthe phenotype intervat- 11] with equal densities 09.01. The
outcome of competition was evaluated at10000. At this time point the growth rates
were wery close to zero. The number of coexisting species was assessed by counting
species that were present and exhibited nonnegative growth1&®000. This criteria
was applied to exclude populations which were bound to extinction, but eventually

existed at that time.
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RESULTS
Roughgarden's example for continuous coexistence

Roughgarden's (1979) example employs the Gaussian carrying capacity function
— X2
K (x) = exp_ % ™)
2w
wherew denotes the half-width of this curvEhen the Gaussian species distribution

wlo —x?

n(x) = expz(a)2 ~ 0_2)

\/2ﬂia)2 —o?)

is an equilibriunsolution of Eq. (4)provided thato>c. In this case, infinitely many

(8)

arbitrarily similar species may coexist along the phenotype axis.
We reproduced this analytical result nuioally (Fig. 1). All of the populations,
that were present initially, survived. In agreement with Eq.tii@)equilibrium
distribution of the population densities followed a Gaussian curve. Increased competition
width o led to a narrower distribution of densities. Obviously, wiew, i.e. when the

carrying capacity is narrower than the competition width, only the speeids survives

(not shown).

Other simple carrying capacity functions: no continuous coexistence

The rectangular function

(9)
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which is zero outside an interval, is thexhgimple choice for the carrying capacity
curve. In contrast to Roughgarden's case, most of the populations go. €xtilych very
limited number of species coexist at equilibrium (Fig. 2).

The average phenotype difference between adjacent survivors can be calculated
by dividing the total phenotype interval witiie number of coexisting species. As plotted
on Fig. 3, this difference increased wathinearly with great accuracy. The steepness of
the linear regression line was found to be 1.82. That is, in agreement with the classical
expectation, the coexisting species wapaced roughly by the competition widid. 2

It is easy to interpret thiesult in qualitative terms. The two species, which are
located at the two ends of the livable rarggn advantage from the lack of competitors
on one of their sides. Then, competitiontbgse high-density spies causes extinction
within their range of competition. Two grty ranges emerge which, in turn, give
advantage to two species, located at the inner ends of the empty ranges. And so on, a
discrete distribution emerges.

The perturbation, that renders the coexistence of infinitely many strategies

impossible does not have to be so abrupt. We get similar resl{)fis a sum of two

Gaussian functions as

-x° —(x—pu)
K(x) = exp— +aexp——" (10)
20; 2w,

with w;>0>w, . The first Gaussian, when alone, would maintain a continuous
coexistence. In contrast, the second one supports a single phenotype, xanpely
Fig. 4 demonstrates the emerging species distribution. The second term of Eq. (10) gives

an advantage to species= . The high density of this species causes extinction of each
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species within its range of competition. Then, the empty ranges on both sides of species

X = u give advantage to the two species next to these ranges. And so on, the competitive

advantages and disadvantages build up gradually and a discrete species distributi

emerges.
The realistic case: Fractal-like carrying capacity functions

While the smooth Gaussian function in the role of the carrying capacity curve
leads to continuous coexistence, a functiatin abrupt changeseems to result in
limiting similarity in the usual sense. Thesdrermes cannot tell us, however, what is the
typical situation.

As a representative of a more natural function, we investigate fractal-like

perturbation of the Gaussian carrying capacity. We chose
— X2
K(x)= exp2—2(1+ f(x)) (12)
w
where the perturbation term
L
f (X) = kz B COS(?’iX + ) 12)
i=1

consists of periodic components with random phases. The paraketetgare

constants. The amplitude of tH&periodic component is

B =1 (L3)
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The phaseg, were chosen randomly for each simulation run. The exponent

characterizes the fractal propertigsO for a white noise; Brownian motion is
characterized by=1.

We stress that, singg s remain constant during a single run of the simulation,
the random choice of them does not introduce stochasticity into the dynamics. Instead,
this randomization ensures that each simulation uses a different carrying capacity curve,
characterized by a common fractal exponent. Accordingly, each data point in Figures 5
and 6 represents an average over a class of models.

Fig. 5 shows the results wit{r0, 1, 1.5 respectively. All simulations ended up
with survival of a limited numér of species. The number of species at equilibrium and,
consequently, average phenotype distances changgwiitie number of coexisting
species was averaged over 50 simulations, differing in the random phases, fpaedch
¢ combination (Fig. 6).

Distances increase within all cases and the slope of the fitted line remains in
the rangel.9o — 2.60 . The departure from the linear dependence on Fig. 6 is related to
the fact thats is not small, compared to the total phenotype interval, at the right end of

the horizontal scale.
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DISCUSSION

In this paper we have reconsidered the age-old problem of limiting similarity in a
Lotka-Volterra model context. The need for this re-evaluation came from the fact that in
different investigations the very samedel was used for both the justification and
falsification of this principle. Initiating the simulations with many equally abundant
species, closely packed along the phenotype variable, we observed whether a limiting
similarity type of species distribution shows up. In line with theoretical predictions, a
yes-and-no picture emerged. As the issue seemed to be related to the smooth-or-not
nature of the carrying capacity function, imgestigated “natural”, i.e. fractal-like,
functions with different fractal exponents. We conclude that, in spite of the existence of
exceptional cases, the classical picturemofting similarity prevails, by and large.
Especially, as a rule of thumb, the typicatdnce between coexisting species is near to
the competition width & . This result seems to be quite robust: We tested very different
carrying capacity functions, including families of fractal-like ones.

Nevertheless, the details of the final distribution of the species in a specific
simulation do not seem to be very regulehe surviving species are not exactly
equidistant. Their abundances appareddgend on the exact shape of the carrying
capacity curve as well as on which spesias/ived. In most of the cases, the initial
distribution is so far from the final one, that there is no reason to suppose that the
limiting-similarity-type outcome depends on the initial distribution. On the other hand, in
a specific simulation there is no reason to expect the exactly same final distribution for a

different initial one.
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In a specific simulation run, any species either equilibrates with a finite
abundance, or dies out. Its growth rate converges to zero in the first case, but remains
negative in the second one. That is, infthal state the growth rates of all extinct
phenotypes are negative. Consequently, the resulting species assemblage is stable against
invasion when any phenotype, which is not present, is (re)introduced in smél defins
Jansen and Mulder 1999, Bonsall et al. 2004). On the other hand, the evolutionarily stable
community/assemblage needs not be unique, i.e. it may depend on the initial canditions

Obviously, our initial condition is far from being realistic. In the real life, there is
no such supply of an almost continuous set of species. Our point exactly is that limiting
similarity emerges even from starting so irrealistically far from that outcome.

Our simulation results are consistent with the empirical findings. On the one hand,
character displacement studies (Schluter 2@)@emonstrated segregation of coexisting
species in resource related traits. Note, that similarity in the environmental requirements
is also necessary for coexistence (cf. Leibold 1995, Chase and Leibold 2003), so
investigations based of phylogenetic relationships (e.g. Webb 2000) will not negessaril
demonstrate any correlation between coeristeand dissimilarity. On the other hand,
the specific arrangement of species of a community is influenced by many factors,
including the initial conditions, and ot predictable via simple rules.

Limiting similarity is not without exceptions. In some sense the non-existence of
an absolute and model-independent lower bafraimilarity is trivial; in a parameter-
rich model one can always adjust the partanseto equalize the growth rates of the

species. Consequently, any set of strategiesbmaple to coexist, irrespective of their
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similarity. The real issue of coexistence starts when one refuses to fine-tune parameters.
That is, the real question is whether the coexistence is robust against parameter changes.

This triviality was noted first by May and MacArthur (1972), May (1973). They
varied the carrying capacities of two, or three, species. The smaller the interspecific
competition, the wider the range of the cargycapacities, which enabled coexistence,
was. As interpecific competition is suppody related to the ecological difference
between species, this result means tthatcoexistence becomes more robust with
increasing difference. That is, limiting sinmily is a quantitative issue. Similarity does
not exclude coexistence, but makes it lesslyikThis conclusion has been generalized
beyond the Lotka-Voltarra context by Meszéna et al. (submitted).

Decreased competition between dissimilar species has a regulating effect on their
coexistence. Suppose that a perturbation affects speeaidsersely, but ndd. Then the
population size oA starts to decline. If the intraspecific competition is larger than the
interspecific one, the decreased population sizZeiofproves the living conditions &
in a larger extent, than that Bf This, in turn, conpensates speciésfor the relative
disadvantage it has gained by the original perturbation. Large niche overlapsréusc
regulatory effect as both species gain roughly the same advantage from the declene of on
of them.

The problem of continuous coeteace is a related issue. Faory given form of

the competition kerneb(x, y) and forany prescribed species distributiox), the
equilibrium condition (Equ. (6)) determines a carrying capacity fundtifx), which
allows the coexistence with this specific species distribution. However, as coexistence of

similar strategies is possible only for a narrow range of parameters, one may reasonably



Szab6 and Meszéna, page 15

presume that coexistence of@tinuum of species should bensitive to an arbitrarily
small perturbation. In fact, this is the case.

Structural instability of Roughgarden's example for continuous coexistence was
essentially noted already by Sasaki and Ellner (1995). Their context was$yent
different; they considered mixed strategiea fluctuating environment. Nevertheless,
their criterion for an ESS mixing distribution was identical to the equilibrium condition
for coexisting strategies in the Lotka-Volterra model. Consequently, their proof of the
structural instability of any ESS, which m&a continuum of pure strategies, translates
to the structural instability of any Roughgarden’s type of continuous coexistence. Geritz
(1995, 1999) and Meszéna and Szathméary (2001) provided additional nmogkish
continuous coexistence appears, but emigler structurally unstable circumstances.
Gyllenberg and Meszéna (2004) generalized these results be proving the structural
instability ofany model, which allows continuous coexistence.

Haccou and lwasa (1995, 1998) demonstrated a kind of smoothness in the abrupt
loss of the continuous solution for the mixed strategy problem of Sasaki and Ellner
(1995). For small perturbations, the emerging discrete distribution follows closely the
original continuous one. No similar general analysis is available for the coexistence
problem. Still, it is sensible to suspect tha transition from@ntinuous to discrete
coexistence is smooth, again. That is, small perturbation of Roughgarden's model
probably allows coexistence of discrete, but very similar, strategies. One may conjecture
that the minimal distance between coexisting species grows up from zero continuously
with the increasing departure from the strictly Gaussian carrying capacity function. We

did not attempt to follow this transition. Instead, we compared the strictly Gaussian case
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with the distinctly different ones and studied, what determines the lower bound of
similarity. In all cases we tried, we found that the minimal phenotype difference is of the
order ofthe competition width.

The mechanism leading to limiting similyris transparent in the simple cases
we presented. Local maxima of the carrying capacity curve gives advantage to some
phenotypes. In turn, these favored phenotypes impose competitive burden on th
neighboring types along the phenotype axis via competition. That is, the not-very-smooth
nature of the carrying capacity curve is esiséfor limiting similarity. In this context, it
was essential to study choices somewhere in between the very smooth and the sharply
changing: the fractals.

We employed fractal functions to mitigate a serious problem of mathematical
ecology. In the “strategic” level of modeling (cf. Czaran 1998) the modeldiggns are
chosen according to their simplicity, instead of their empirical fidelity. The expectation
here is, that the simpler the choice is, ldsser the danger of introducing artefactual
details. Unfortunately, the ingredient functions, which are the simplest choices from
mathematical point of view, are often vexificial. For instance, they are either
unnaturally smooth, like a Gaussian function, or unnaturally discontinuous, like a step
function.

Fractals and fractal-like functions are ubiquitous in nature (Mandelbrot 1983). If a
shape is influenced by many processes, probably the system will not be dominated by
single, or a few, characteristic scales @eR004). A scale-independent, self-similar
pattern may emerge as a result. Such shape is represented by an autocorrelation function,

which decays according to a power law. The “fractal” exponent of the power law
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characterizes the relative strength of therger and longer correlations. Self-similar
patterns have been reported in many biological systems at all level of the organization
(Burrough 1981, Liebovitch and Sullivan 19&hlesinger and West 1991, Gunnarsson
1992, Harte et al. 1999). The carrying capacity function is a result of a complicated
interplay between the ecological interactions and the physiological constraints, i.e. the
genotype-phenotype map. The process is likely to involve many random components
acting on multiple time scales, leading to multiscaled randomness (Hau€figjf As

there is no reason to expect any characteristic scale in such a carrying capacity function,
it is reasonable to elow it with fractal-like properties, instead.

The fractal exponent characterizes the relative contributions of the different
scales. The larger the exponent is, the smaller the amplitude of small scale perturbations.
That is, a smaller represents a more rugged carrying capacity curve, while a larger one
represents a smoother one. Varying the fractal exponent and choosingntdgfeses in
Eq. (12) allows us to sweep through a representative variety of possible carrying capacity
functions. It is remarkable that our findings were essentially independent of the fractal
exponent; fractal-like carrying capacity functions with different exponents have
uniformly led to limiting similarity with roughly (2.30.3)c distance between coexisting
species, i.e. slightly higher than competition width.

The Lotka-Volterra model is often criticized as “phenomenological”, as opposed
to the mechanistic models. Nathstanding the success of mechanistic level of modeling
(cf. Tilman 1982), it did not lead any consistent understanding on the issue of limited
similarity. In particular, investigations hinted mechanism-dependence neithiee fo

validity of the limiting similarity principlenor for the specific lower bound of similarity.
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In the contrary, the universality acrosfelient mechanisms (e.g. competition and
predation) was stressed by Leibold (199%ase and Leibold (2003). Moreover, no
principal difference between the phenomenmalgand mechanistic model is expected
because the Lotka-Volterra model can be derived from a mechanistic underpinning
(Yodzis 1989). Moreover, in any model one can locally linearize the deregigadence,
which leads to a Lotka-Volterra model. Consequently, any issue,figar|stability and
robustness, which can be studied via small perturbations, should be the same in the
original model and in its Lotka-Volterra approximation.

While Abrams (1983), Yodzis (1989) stress the model dependence of limiting
similarity, analytic investigations (Gyllenberg and Meszéna 2005, Meszéna et al.
submitted) testify for the generality of solmasic issues. First, simple counter-examples
for limiting similarity exist already in the vg model, which was used to demonstrate the
principle. Second, both structural instalyilitf continuous coexistence and decreasing
robustness of coexistence for increasinglanity is proven generally. This is the
context, in which detailed numerical investigas make sense: We have reasons to hope
for the general relevance of our conclusions.

In particular, competition kernels, other than the Gaussian, are not expected to
lead to essentially different results. It is clear, that the carrying capacity curve, which
allows continuous coexistence, can be constructed for any competition function via the
equilibrium equation (Eq. (6)). An infinitesirperturbation of this carrying capacity will
destroy the continuous coexistence, again (Gyllenberg and Meszéna 2004). Note that the
standard deviation is not necessarily a good measure of the competition width for

competition functions other than the Gaussian (Yodzis 1989).
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The misleading exceptionality of Roughgarden's model exhibits a serious
methodological problem of ecological modeling. Nevertheless, the careful investigation
of the Lotka-Volterra model in the context of analytical investigations provides a strong

case for the practical relevance of the principle of limiting similarity.
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FIGURE LEGENDS:

FIGURE 1. Species distribution with Gaussian carrying capacity function ferefitf
competition widths & On each plot, dashed line depicts the shape of the carrying
capacity curve, normalized to a given height. Black region denotes the population
distribution. Variance of the bell-shaped species distribution decreases with increasing
competition width. Parameter®=0.3;5=0.04, 0.08, 0.16 in sub-figures a, b, c,

respectively.

FIGURE 2. Species distribution with rectangular carrying capacity functiatifferent
competition widths &. Only a finite number of species coexist. The number of
coexisting species decreases with increasirgarameters: b=0.6, c=6+0.04, 0.08,

0.16 in sub-figures a, b, ¢ respectively.

FIGURE 3. Phenotype difference between adjacent survivors as a funati@ndfthe
fitted linear regression line (solid line) for rectangular carrying capacity. Phenotype
difference values are calculated as the number of species at equilibrium divided by the

length of the phenotype interval. The steegsnef the linear regression line is 1.82.

FIGURE 4. Species distributionrfdifferent competition widths® when the carrying
capacity function is composed from two Gaussians. Competition width increases from
left to right;5=0.04, 0.08, 0.16 in subfigures a, b, c respectively. Other parameters:

®1=0.3,®,=0.03,0=0.1,u=-0.3.
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FIGURE 5. Species distribution with fractal-like carrying capacity function for different
fractal dimensiong and competition widths® Then value increases from the top
down: (a-cn=0, (d-f)n=1.0, (g-i)n=1.5.c increases from left to right for eaghvalue;

(a, d, 9)0=0.02, (b, e, h$y=0.04, (c, f, )0=0.08.0=0.3 in all cases.

FIGURE 6. Average phenotype differences between adjacent survivors p as a function of
o with fractal-like K (x). Difference values were averaged over 50 simulations with
different random choices for the phases. Other parameteds3, (ajn=0, (b)n=1.0, (c)

n=1.5. A linear regression line (solid line) was calculated for gaclata points, denoted

by empty circles, were ignored). Slopes of regression lines are 2.64, 1.97, 1.99,

respectively.
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Figure 2.
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Figure 3.
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Figure 5.
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Figure 6
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