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1. INTRODUCTION 
The range of possible long-term developments of the global energy system is indeed 
rather extensive. Since the first oil price hike of 1973 at the latest, research groups all over 
the world have begun to systematically explore this range by developing global scenarios 
that were intended as guidelines for energy policy making. Quite understandably, the 
main concern of scenario building in the 1970s was the perceived scarcity of primary 
energy resources, and many scenarios portrayed a rather gloomy picture of a global 
economy running out of vital energy. As it turned out, the initially projected gap between 
energy demand and energy supply was not only closed analytically, today's scenarios also 
include a wide range of different primary energy mixes. The limiting factor of 
unrestrained expansion of the energy system is thus no longer the physical availability but 
rather believed to be the carrying capacity of the global environment. 

The most visible global environmental problem is the threat of catastrophic climate 
change due to the consequences of ever-increasing atmospheric concentrations of 
greenhouse gases (GHGs). The Kyoto Protocol of the Framework Convention on 
Climate Change (UNFCCC) was designed as a first significant step to tackle this 
problem. It remains to be seen whether the outstanding issues will be resolved in a way 
that will lead to the ratification of the Protocol. Nonetheless, whether it will be ratified 
or not, the threat of adverse climate change remains. 

The problem is very long-term, however, and it is not so obvious how short-term 
goals such as the targets of the Kyoto Protocol contribute to the long-term solution. 
The answer to this question is open because the Kyoto targets are neither sufficient nor 
necessary for stabilizing atmospheric concentrations of GHGs at safe levels. 

In this paper, we take a long-term view and follow up on the optimistic part of our 
argument by assuming that reaching the Kyoto targets is not necessary to avoid a 
global climate catastrophe, provided of course, that the overall target of an 
environmentally compatible development of the global energy system is actively 
pursued. Consistent with this assumption, we first analyse a comprehensive set of 
global energy scenarios with respect to an even more general concept of 
environmentally benign strategy sustainable development (SD). We then identify key 
features of SD scenarios and characterize in general terms policies that may actually 
contribute to the realization of such scenarios. 
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The general concept of sustainable development has given rise to many qualitative 
and some quantitative definitions, some of them ideal and some of them more 
practical. In the absence of a universally agreed definition of sustainable development 
and aiming at criteria that can be applied to an existing set of global energy-economy
environmental (E3) scenarios, we have come up with a working definition of 
sustainable development that will serve as a basis for our scenario classification. 

The conclusions of our scenario analysis are mainly in the technology area, the 
main result of this analysis being an example of technologies that seem particularly 
promising to achieve sustainable development. Nevertheless, technological progress is 
crucial not only on the supply side but also on the end-use side of the energy system. 
Having thus identified technology as the key to sustainable development in fact to any 
kind of development we then describe dynamics of technological progress that, in our 
view, could be deployed by policy makers to actually reach the aspired target. In 
conclusion, we report on first steps to quantify the effect of research and development 
on technological progress. 

2. GLOBAL ENERGY ECONOMIC ENVIRONMENT SCENARIOS 
In recent years, the main albeit not the only driving force behind the formulation of 
global energy-economic-environment (E3) scenarios was the increasing political and 
research interest in global warming. Most of the recent scenarios therefore cover a 
time horizon of a century or more. A comprehensive effort to collect as many 
representative scenarios as possible was made during the work to produce the Special 
Report on Emissions Scenarios (SRES) for the Intergovernmental Panel on Climate 
Change (IPCC, Nakicenovic et al., 2000). One result of this effort is a database that 
includes more than 400 scenarios from more than 170 literature sources, also known 
as the SRES database (Morita and Lee, 1998). 
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Figure 1: Global population, development from 1900 to 1990 and in 46 scenarios 
from the SRES database (1990 to 2100). Source of historical data: Durand, 1967; 

Demeny, 1990; UN, 1996; Database: Morita and Lee, 1998. 



Technological Progress Towards Sustainable Development 555 

The purpose of the SRES database was to serve as a basis for a better understanding 
of the main forces driving the development of the global E3 system. In this section this 
exercise is repeated in a very abridged means. We present distributions of key 
variables of the SRES database scenarios, mainly population, economic development, 
primary energy, and carbon emissions. Our overview does not attempt to explain the 
differences between different scenarios, just documenting them. 

2.1. Population 
Just a limited number of SRES database scenarios report on population. Figure 1 
illustrates the global population trajectories of the 46 SRES database scenarios that report 
their population projections. The range for all scenarios is from less than 7 to about 18 
billion (109) people in 2100 with the median estimate in the range of about 11 billion. 
Despite this large variability, the range of change of this variable relative to the base year 
is the smallest of all driving forces included in this summary. Relative to 1990, global 
population in 2100 varies by factors of between less than one and approximately four. 

The average long-term historical population growth rate has been in the order of 
one percent per year during the last two centuries and about 1.3 percent per year since 
1900. Currently, the worlds population is increasing at about two percent per year. All 
SRES database scenarios and other global population projections envision a slowing 
population growth in the future. The lowest average population growth rate across all 
projections is 0.1 percent per year, the highest is 1.2 percent per year, and the median 
is approximately 0.7 percent per year. 

2.2. Economic development 
Figure 2 shows the future development of gross domestic product (GDP) per capita in 
the scenarios of the SRES database together with the past development of this 
variable. 1 Since 1950, GDP per capita has grown at an average annual growth rate 
(AAGR) of approximately two percent; in the database scenarios the AAGRs between 
1990 and 2100 range from 0.4 to 2.2 percent per year, with the median value of 1.6 
percent. Relative to 1990, GDP per capita in 2100 increases by factors between 1.5 and 
more than 12. Combining these per-capita values with the population projections, we 
arrive at a range with a low end at approximately US$65 and a high end of more than 
US$700 trillion (10 12 ) by 2100 (with the median GDP of US$250 trillion). 2 90 
percent of the SRES database scenarios project global GDP values in 2100 that are 
between US$180 and 380 trillion. The insert of Figure 2 illustrates some of the 
relationships between population and GDP per capita in the scenarios. Generally, 
higher GDP per capita goes along with lower global population projections. 

2.3. Primary energy 
Figure 3a shows primary energy consumption projections of the SRES database 
scenarios and the development between 1900 and 1990. On average, global primary 

1 Note in this paper GDP refers to global gross domestic product. 

2 All monetary values in this report are expressed in US dollars at 1990 prices unless otherwise indicated. 
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energy consumption has increased at more than two percent per year (consumption of 
fossil energy has risen at almost three percent per year) since 1900. In the database 
scenarios, the average annual growth rates between 1990 and 2100 range from 0.1 
percent to 2.1 percent with a median value of 1.3 percent. This means that with the 
exception of a few noticeable outliers, energy consumption growth projected in the 
database scenarios is significantly lower than the historical trend. Most scenarios 
project primary energy consumption levels between 500 and 3,000 exajoules (EJ) with 
a median near 1,500 EJ in 2100. 

More so than the absolute levels of primary energy, primary-energy intensity of 
GDP is an indicator of technological progress in the energy system. In all scenarios, 
economic growth outpaces the increase in energy consumption, often leading to 
substantial reductions in the ratio of primary energy consumption of GDP. Typically, 
higher GDP growth rates correspond to a steeper decline of energy intensity because 
in a situation of faster economic growth, inefficient technologies can be replaced faster 
by more efficient ones. Also, at faster economic growth, the structure of the energy 
system and patterns of energy services change faster, which has the same effect on 
primary-energy intensity (Roehrl and Riahi, 2000). 

The relationship between energy intensity and GDP per capita has been quite 
regular in the past. It is therefore instructive to present projections of global energy 
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Figure 2: Global gross domestic product (GDP) per capita, development from 1950 
to 1990 and in 28 scenarios from the SRES database from 1990 to 2100. The insert 
shows global population versus GDP per capita. The gray lines in the insert depict 

the SRES database scenarios, the green lines show the IIASA sustainable 
development scenarios, and the blue lines show other IIASA scenarios. Historical 

data: UN, 1950 through 1995; Database: Morita and Lee, 1998. 
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Figure 3: (a) Global primary energy consumption, development from 1900 to 1990 
and in 193 SRES database scenarios (from 1990 to 2100). Historical data: Morita 
and Lee, 1998; Database: Morita and Lee, 1998. (b) Primary energy and GDP per 

capita, world-regional actual developments (1971 to 1990), USA (1800 to 1990), and 
in global database scenarios; energy intensity in megajoules (MJ) per US dollar at 
1990 prices and per capita in US dollars. Abbreviations: AFR, Sub-Saharan Africa; 
CPA, Centrally Planned Asia and China; EEU, Eastern Europe; FSU, Former Soviet 

Union; LAM, Latin America and the Caribbean; MEA, Middle East and North 
Africa; NAM, North America; PAO, Pacific OECD; PAS, Other Pacific Asia; SAS, 
South Asia; WEU, Western Europe. Data sources: IEA, 1993; World Bank, 1993; 

Morita and Lee, 1998; Nakicenovic et al., 1998. 

intensity as a function of GDP per capita (Figure 3b ). Energy intensity improvement 
rates from the database range from 0.4 to 1.8 percent per year between 1990 and 2100, 
with a median value of 0.8 percent per year, which is in good agreement with the long
term historical rate. 

2.4. Carbon emissions 
The range of projected C02 emissions across all SRES database scenarios is indeed 
large, ranging, in 2100, from ten times the current emissions all the way to negative 
net emissions (i.e., a preponderance of carbon sinks, assumed in some scenarios). 
Figure 4 shows the global C02 emission paths from 1990 to 2100 for the scenarios and 
the actual emissions from 1900 to 1990. Global C02 emissions have increased at an 
average annual rate of about 1.7 percent since 1900. If this trend would continue, 
global emissions would double by the year 2030. The median global emissions just 
exceed 15 gigatonnes of carbon (GtC) in 2100 (a three-fold increase relative to 1990), 
which can be expected to lead to atmospheric C02 concentrations of approximately 
750 parts per million by volume (ppmv) by 2100. 3 A number of scenarios in the low 
range are consistent with stabilizing concentrations at levels of 450 ppmv. 

3 We used the cumulative carbon emissions of the scenarios as a proxy for the estimation of the atmospheric 
carbon concentrations. 
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Figure 4: Global carbon dioxide emissions, actual development from 1900 to 1990 
and in 256 SRES database scenarios (from 1990 to 2100). Historical data: Marland, 

1994; Database: Morita and Lee, 1998. 

2.5. All driving forces together 
A particularly suggestive way of summarising ranges of variables is by drawing 
percentiles of the samples together with their minimum and maximum values in a 
polygon. We use this form of presentation in Figure 5, which shows C02 emissions as 
well as six other indicators related to the four main driving forces: population, world 
GDP (absolute level and growth rate), primary energy consumption (absolute level 
and energy intensity), and carbon intensity of energy. Note that the iso-percentile lines 
do not necessarily connect values of one and the same scenario. The graphics should 
therefore be understood as a way of classifying a sample of scenarios and not as a 
characterization of typical scenarios because the latter ignores the logical connections 
between the variables. 

The range for population projections is the smallest (about three in 2100) among 
the database scenarios. In contrast, the ranges for both GDP and primary energy 
consumption vary by a factor of 10 by 2100. Carbon intensity of energy portrays the 
highest variation by 2100 compared to other major scenario characteristics in Figure 
5. It varies by nearly two orders of magnitude by 2100. Thus, it multiplies the 
differences across primary energy consumption by 2100 by a large factor across the 
scenarios leading to the enormous span of future C02 emissions. 

3. WHAT IS SUSTAINABLE DEVELOPMENT? 
Despite a strong consensus on the importance of sustainable development a generally 
accepted definition remains to be a controversial issue. The notion of sustainable 
development was introduced to a wider public in 1987 by the report from the World 
Commission on Environment and Development, which is also known as the 
Brundtland Report. That report defined sustainable development (SD) as one that 
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Figure 5: Global carbon emissions from the SRES database and their main driving 
forces. The minimum, maximum, median and percentile values are shown on seven 

axes of the heptagon and connected. The axes show the ranges across the scenarios in 
2100 of C02 emissions in GtC, population in billions, gross world product in trillion 

US dollars at 1990 prices, gross world product growth rates in percent per year, 
energy intensity in MJ per US dollar at 1990 prices, primary energy use in zetajoules 

(ZJ - 1021 Joule) and carbon intensity in tonne of carbon (tC) per terajoule (TJ). 

meets the needs of the present without compromising the ability of future generations 
to meet their own needs (WCED, 1987). This definition has been widely accepted as 
the least controversial definition, but it is still much more a strategic goal than a 
concrete guideline for any practical application. It is therefore not surprising that many 
authors have come up with different definitions in attempts to find a more policy
oriented definition. 

One literature survey (Morita and Kawashima, 1993) produced 41 different definitions 
of sustainable development, while another (Pezzey, 1992) found 61. The issues covered 
by the various definitions include preservation of biodiversity, environmental carrying 
capacity, preservation of natural resources, balance between economic activity and 
environment, sustained economic growth, intergenerational equity, interregional equity, 
quality of life, as well as social and cultural values (Morita and Kawashima 1993). In our 
view, which we think is consistent with both surveys, each of these emphasises one of the 
following three aspects, depending on what is to be sustained. 

The first aspect underscores the sustainability of the economic benefit from natural 
assets. The rationale behind this idea contends that the economic benefit of natural 
assets should be preserved because it should be shared between the current and future 
generations. This idea upholds the possibility of a substitution between man-made 
assets and natural assets. A typical argument along this line can be found in El Serafy 
(1989), who states that not all revenues from selling natural resources should be 
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treated as current income that is available for consumption. 
The second aspect emphasises the maintenance of the physical property of the 

environment. This view puts an absolute value on the preservation of the ecological 
function of the environment, and the level of the preservation is given in terms of 
scientific knowledge on ecological property of natural assets. 

The third aspect emphasizes non-declining utility, which includes quality of life in 
the widest sense, and man-made assets in the narrowest sense. This may come on top 
of sustained economic benefit or sustained physical environment. This is where 
different values of different people come in, and this sometimes leads to the inclusion 
of interregional equity, reduction of poverty, human capital or historical monuments in 
the definition of SD. 

Many authors felt that the concept of sustainable development should be translated 
into a more concrete quantitative definition so as to make this concept operational for 
policy making. Many of the existing attempts aim at defining some kind of sustainability 
indicator. Hicks (1946) provided a basis for the economic analysis of sustainable 
development by defining sustainable income as the maximum value that a country can 
consume during a period without becoming worse off at the end of the period. However, 
the Hicksian income concept is fuzzy regarding whether or not it means to keep wealth 
intact. The definition might mean maintaining its original physical properties or 
maintaining its value (Peskin, 1998). This disagreement led to the distinction between 
strong and weak sustainability, the former referring to maintenance of the physical 
property, the latter to the maintenance of its value (United Nations, 1993a). The strong 
version of the concept is considered to be extreme, since it prioritises the ecological 
value to the other values that a human being may have. This observation gave rise to an 
intermediate view of sustainability, which retains the focus of the weak sustainability 
definition on preserving the value (rather than a physical condition of the environment), 
but emphasises preserving the value of natural (instead of total) assets, thus not 
permitting substitution between natural and man-made assets (Tietenberg, 2000)4. 

Another well-known starting point for the quantification of sustainable development 
is a discipline that deals with the analysis of the utility function based on conventional 
neo-classical economic theory. Variables such as inter-regional equity (Pezzey, 1992) 
and quality of environmental media (Maler, 1991; Hamilton, 1996) all fit into the 
analysis of whether they ensure non-declining utility, i.e., inter-generation equity. All 
these quantifiable variables are used as proxies of components in the utility function. 

Many contributions to the quantification of the sustainability concept follow a 
procedure that first sets the objective (what is to be sustained) and then establishes a 
unit that will produce an indicator of sustainability. One of the popular units is simply 
monetary, and the study of this indicator has developed as Environmental Economics 
progresses, and different methods of valuing the environment have been experimented 
with. However, it is still obvious that none of the attempts to define sustainable 
development in quantitative terms have received a broad acceptance. The major reason 
for this failure comes from the fact that such attempts focus on establishing sustainable 
development as a single-dimensional objective. 

4 Tietenberg refers to this concept as strong sustainability. 
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For the purposes of this paper, quantitative criteria that permit a classification of 
existing scenarios as sustainable or non-sustainable were needed. We chose a multiple
criteria approach, which is likely to be less controversial than a single-dimensional 
criterion, and thus propose the following: 

Working definition: All scenarios that satisfy the following four criteria are termed 
sustainable-development scenarios: 
(1) Economic growth (GDP per capita) sustains throughout the whole time horizon. 
(2) Socio-economic inequity among regions is reduced significantly over the 21st 

century, in the sense that by 2100, the per-capita income ratios between all world 
regions are reduced to ratios close to those prevailing between OECD countries 
today (interregional equity). 

(3) The reserves-to-production (RIP) ratios of exhaustible primary energy carriers 
do not decrease substantially from today's values (intergenerational equity). 

(4) Long-term environmental stress is mitigated successfully. In particular, carbon 
emissions at the end of the 21st century are near or below today's emissions 
level. Other GHG emissions may rise, but total radiative forcing (due to all direct 
or non-direct GHGs) should be on a path to stabilization on the very long-term 
(on the order of 100 years). Short- to medium-term environmental stress (e.g., 
acidification) is reduced towards meeting critical. 

The advantage of having a multi-criteria approach is its flexibility with respect to 
emphasizing one view or the other. Although here the selection of the criteria for the 
working definition was primarily guided by the applicability to the model variables 
(either parameter or outputs of the models), the possibility of applying different 
criteria to define a sustainable development scenario was left open. 

4. SUSTAINABLE-DEVELOPMENT SCENARIOS 
The SRES database does not include sufficiently detailed information to allow the 
evaluation of its scenarios by our four sustainability criteria. In this section, we 
therefore restrict our analysis to a set of 34 IIASA scenarios. 5 The IIASA scenarios 
include those developed together with the World Energy Council (WEC, Nakicenovic 
et al., 1998), and scenarios developed for the IPCC Special Report on Emissions 
Scenarios (SRES, Nakicenovic et al., 2000), as well as scenarios developed for the 
IPCC Third Assessment Report (TAR). Although we focus our description on 
sustainable-development scenarios, we sometimes use other scenarios in particular 
other, non-SD IIASA scenarios for comparison. We distinguish three subgroups: 
• seven sustainable-development scenarios according to our working definition. 
• eight non-sustainable, non-intervention scenarios;6 

• nineteen GHG mitigation scenarios. In these scenarios, global atmospheric C02 

concentrations are stabilized at various levels (Riahi and Roehrl 2000a). 

5 For a description of the IIASA modeling framework and the data sets used to develop the 34 IIASA 
scenarios see Riahi and Roehrl (2000a,b ). 

6 As non-intervention scenarios we refer to scenarios that depict future developments in which no climate
related policies are assumed to be implemented. As a consequence, these scenarios generally tend to 
describe future worlds with high GHG emissions . 
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It seems worth noting that the main driving variables in this group of IIASA 
scenarios cover the entire ranges or at least a major part of them generated by all SRES 
database scenarios. This section first analyses the characteristics of the IIASA 
sustainable-development scenarios, in particular elaborating on those dynamics in the 
SD scenarios that lead to closing the North-South income gap (economic catch-up). 
Next, ranges for SD scenarios with respect to primary energy intensity improvement 
are shown. In particular, the depletion of (exhaustible) energy resources, such as gas, 
oil and coal are analysed. Finally, emissions ranges for SD scenarios and key 
technologies to accomplish sustainable development are presented. 

4.1. Sustainable demographic and economic growth 
Figure 6 shows ranges for global population (left side) and GDP per capita growth 
(right side) of the SRES database scenarios compared to the range of the 34 IIASA 
scenarios. The 34 IIASA scenarios cover most of the range of population projections 
by all database scenarios. Looking at SD scenarios only, we find that their highest 
population growth (11.7 billion in 2100) is roughly the same as the median from all 
the scenarios in the SRES database. The entire range of population projections in SD 
scenarios is clearly in the lower part of the other scenarios. From this observation we 
conclude that slow population growth at or below median levels is a characteristic of 
sustainable development. 
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Figure 6: (a) Global population, development from 1900 to 1990 and projections by 
the SRES database scenarios (from 1990 to 2100). Source of historical data: Durand, 

1967; Demeny, 1990; UN, 1996; Database: Morita and Lee, 1998. (b) Global 
economic product (GDP) per capita, development from 1950 to 1990 and in the 

database scenarios (from 1990 to 2100). The insert shows global population versus 
GDP per capita. The grey lines in the insert depict the database scenarios, the green 
lines show the IIASA sustainable-development scenarios, and the blue lines show 

other IIASA scenarios. Historical data: UN, 1993b and 1993c; Database: Morita and 
Lee, 1998. 
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Economic development is a fundamental prerequisite for the eradication of poverty 
in the world. As shown in the Figure 6b, the 34 IIASA scenarios cover almost the 
whole range of GDP per capita projections of all SRES database scenarios (excluding 
a few but noticeable outliers on both ends). The range for the SD scenarios is 
practically identical to the range for all IIASA scenarios. This illustrates that future 
GDP levels per se are less critical for a sustainable future pathway than the income 
distribution among regions. 

The decreasing income differences between the world regions in the IIASA SD 
scenarios are illustrated in Figure 7. The reduction in inequity may be measured as the 
ratio of GDP per capita between today's developing countries and the OECD. At 
present, this ratio is approximately six percent, compared to the long-term ratios in the 
IIASA scenarios, which range from 21 to 64 percent in 2100. 

The insert in Figure 6b illustrates some of the relationships between population and 
GDP per capita in the scenarios. Generally, higher GDP per capita goes along with 
lower global population projections. In all SD scenarios, global population transition 
is achieved during the next century and stabilization occurs at population levels of 
around (or below) 11 billion people. Generally, this is associated with relatively high 
levels of economic development in the range from US$20,000 to US$80,000 per 
capita. 

4.2. Sustainable resource consumption and energy use 
To be effective, sustainable-development strategies must, in addition to mitigating the 
negative consequences of energy, also reduce primary energy use per unit of GDP. 
Consequently, energy intensity reduction is particularly steep in the SD scenarios 
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(Figure 8). The range for the SRES database scenarios is almost equal to the range 
spanned by the 34 IIASA scenarios (0.7 to 1.8 percent per year). The median 
improvement rate in the SRES database is about one percent per year, corresponding 
to the long-term historical trend, and all SD scenarios are at or below the median. 

It is often argued that oil, gas and coal are utilized in a non-sustainable way. During 
the 1970s and 1980s in particular, it was frequently feared that the world could quickly 
run out of fossil energy. The long-term historical evidence, however, suggests that the 
situation is less drastic than feared, mainly due to the common failure to appreciate the 
difference between reserves and resources (see, e.g., Rogner, 1997). Since reserves are 
defined as only that part of the resources that it is technically and economically 
feasible to extract, these amounts are a function of the available technologies and 
market conditions at a given point in time. Hence, for the IIASA runs, the assumed 
quantities of reserves depend strongly on the assumptions of the then techno-economic 
situation assumed to prevail in a scenario. 

The preceding discussion was the motivation for us to include the reserve-to
production (RIP) in our working definition of sustainable development. As a 
consequence of technological progress and changing market conditions, this ratio has 
most notably for crude oil and natural gas recently remained fairly constant on the 
global level (BP Amoco, 1999). The long-term development of RIP ratios (for gas and 
oil for the year 2100) for the SD scenarios from SRES are illustrated in Table 1. 

Table 1: Reserve-to-production-ratios and global production of 
natural gas and oil in sustainable-development scenarios 

Natural gas Oil 

Global RIP ratio Global RIP ratio 

production (years) production (years) 

(EJlyr) (EJlyr) 

SD scenario estimates for 2100* 

SRES-AlT 196 127 77 178 
SRES-Bl 215 49 45 55 
SRES-BlG 244 40 53 44 

SRES-BlT 166 81 48 54 

1990 value 72 58 139 43 

*Note that the RIP ratios for the three WEC SD scenarios are not available. 

The biggest decline of RIP ratios in Table 1 is reported for the SRES-B 1 G scenario, 
in which the RIP ratio for gas drops from 58 years in 1990 to 40 years in 2100. Table 
1 also shows the relative abundance of natural gas compared to oil in the SD scenarios 
in the 21st century. This abundance is based mainly on the assumption of rapid 
technological progress that will allow the extraction of vast amounts of non
conventional gas in a cost- effective way (Rogner, 1997). 
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4.3. Carbon emissions and key technologies in SD scenarios 
The range of carbon emissions projections by the IIASA scenarios in 2100 (2.3 GtC 
to 32.7 GtC) covers the emission trajectories of more than 95 percent of all scenarios 
from the SRES database (Figure 9). Only a few outliers of the database fall outside the 
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Figure 8: Global primary energy intensity in relation to GDP per capita, 
development from 1960 to 1990 and in the database and IIASA scenarios (from 

1990 to 2100). Historical data: IEA, 1993; World Bank, 1993. Database: Morita and 
Lee, 1998. 
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and in the scenarios (140 of which from the SRES database) from 1990 to 2100. 

Historical data: Marland et al., 1994; Database: Morita and Lee, 1998. 
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projections by IIASA scenarios. Among the IIASA scenarios, carbon emissions are of 
course lowest for SD scenarios and mitigation scenarios, which aim to stabilize 
atmospheric concentrations at 450 ppmv by 2100. 

Carbon emissions projected by SD scenarios range from 2.9 GtC to 8 GtC in 2100. 
This corresponds to carbon intensities of primary energy that decline much faster (one 
to two percent per year) than the historical trend of 0.3 percent per year (Nakicenovic 
et al., 1993). This overall tendency towards significantly lower carbon intensities can 
only be achieved by the rapid and continuous replacement of carbon-intensive 
technologies with new, advanced and particularly cleaner ones. But which are the most 
promising technologies in the energy sector that can accomplish an efficient transition 
from the present energy system to sustainability? 

This question was addressed by Riahi et al. (2001), who use the same IIASA 
scenarios as described here to identify key technologies of the global power sector. In 
that analysis, solar photovoltaic and hydrogen fuel cell technologies were identified as 
the most promising long-run options to pursue sustainable development. There is also 
a strong agreement across all SD scenarios that natural-gas technologies, in particular 
fuel cells and the combined cycle, could accomplish a smooth and efficient transition 
to eventual sustainability. 
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Figure 10: Global carbon emissions and their main driving forces. The minimum and 
maximum, values for the SRES database and the SD scenarios are shown on seven 

axes of the heptagon and connected. The seven axes show the ranges across the 
scenarios in 2100 of C02 emissions in GtC, population in billions, gross world 

product in trillion US dollars at 1990 prices, gross world product growth rates in 
percent per year, energy intensity in MJ per US dollar at 1990 prices, primary energy 

in ZJ (1021 Joule) and carbon intensity in tC per TJ. 
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4.4. Conclusions for SD scenarios 
The ranges of scenario indicators for SD scenarios compared to the SRES database 
ranges are summarised in Figure 10. The figure shows carbon dioxide emissions as 
well as six other indicators related to the four main driving forces: population, world 
GDP (absolute level and growth rate), primary energy consumption (absolute level 
and energy intensity), and carbon intensity of energy. 

• 

• 

• 

The main findings of the assessment of SD scenarios are that: 
Slow population growth respectively stabilization of global population appears 
to be a prerequisite for sustainable development. 
Following the "working definition" of sustainability, global future economic 
growth alone does not guarantee a sustainable future. More important in this 
respect is whether the economic and environmental inequity (gap) among 
regions is reduced or not. 
In a sustainable future, energy intensity must improve at least as fast as the 
historic trend (one percent per year), and carbon intensities must decrease much 
faster than the historic trend (0.3 percent per year). 

• To achieve sustainable development, strategies for fossil resource consumption 
must aim at non- decreasing reserve-to-production (RIP) ratios by making sure 
that technological progress keeps converting sub-economic resources into 
economically recoverable reserves as long as fossil fuels are produced. 

• Carbon emissions may increase in the short run, but have to be near or below 
today's level at the end of this century. 

• Consistently high market shares of solar photovoltaic and hydrogen fuel cell 
technologies in SD scenarios suggest that these technologies could be the most 
promising long-run options to pursue sustainable development. Natural-gas 
technologies, in particular fuel cells and the combined cycle, could accomplish 
a smooth and efficient transition to eventual sustainability. 

5. TOWARDS AN EFFECTIVE POLICY FOR TECHNOLOGICAL 
PROGRESS 
The previous sections have shown how long-term energy-economy-environmental (E3) 
scenarios can be analysed to determine which technology clusters are likely to have a high 
market share in a sustainable future. The question now becomes which policies can 
promote these technologies. We begin by summarising the concept of technological 
learning and its consequences for policy making. In a nutshell, technological learning as 
used here describes regular technological progress, expressed as specific technology cost, 
as a function of cumulative installed capacity of the technology in question. Following 
this simple concept, policies could support technological progress by promoting its 
diffusion. The main examples for such policies are subsidizing the technologies market 
price or by direct procurement. In this simple model, it appears somewhat unsatisfactory 
that technological progress cannot be enhanced more directly, such as by allocating 
resources to R&D. To heed this shortcoming, a modified, two-factor learning curve has 
been developed, in which R&D expenditures are added as a second factor (in addition to 
cumulative capacity) enhancing technological progress. Policies based on such a concept 
would deploy the obvious instrument of supporting R&D of energy technologies. 
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5.1. Learning-by-doing and procurement 
The well-known concept of learning curves is based on the observation that cost 
improvements for many energy technologies are better explained as functions of 
cumulative experience than as functions of time. A learning curve postulates that the 
unit production cost of a manufactured item decreases with the cumulative production 
of that item. In a more general formulation of the concept, any performance indicator 
can play the role of production costs, and other experience indicators can be used in 
lieu of cumulative production. For energy technologies, the most common way to 
express technological learning is to postulate a constant relative reduction of 
technology costs for each doubling of total installed capacity. With this definition, a 
learning rate of 20 percent means that capital costs per unit of newly installed capacity 
of a given technology decreases by 20 percent for each doubling of total installed 
capacity. 

A systematic collection and estimation of learning curves and learning rates for 
energy technologies was initiated at IIASA in 1999. The catalogue of learning rates 
comprises 42 energy technologies. The distribution of all 42 learning rates is shown in 
Figure 11. Learning rates vary between 14 and 42 percent with a low peak around 2 to 
6 percent and a high peak around 18 percent. 

The overall pattern shown in the figure is quite irregular. The distribution has holes 
that cannot be plausibly explained and three apparent modes. One possible reason is 
that our sample size is still too small and that as more learning rate estimates are added 
to the distribution, it will become more regular. Another reason could be that in those 
cases where we could not estimate learning rates ourselves, different methods or 
conventions were used. With the exception of the 10 percent hole, the distribution of 
these learning rates is very similar to the survey of learning rates in the whole 
manufacturing sector as published by Dutton and Thomas ( 1984 ). 

18% r 
16% -

14% ~~ 
12% 

1~~ 1 

~~h 
I p 

...... 
J>,. 

I p ..... 
0 

I I 0 0 0 0 0 0 "' (J) "' 

- - I 
! 
i 

-i 
0 p p p 0 0 0 0 0 0 
0 N N w ~ w ~ ...... ...... ...... 
(J) 0 J>,. (X) I\..) O'> 0 co I\..) 

Learning rate 

Figure 11: Learning rates of 42 energy technologies. Source: McDonald and 
Schrattenholzer, 2001. 
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A typical situation in which technological learning of an energy technology is 
relevant, is the case of a learning technology, which is not competitive at a given point 
in time, but can be expected to be competitive as learning keeps progressing at a given 
rate. In such a situation, higher costs in the near term would be compensated by cost 
savings later, but since the costs and benefits would not incur to the same economic 
agents, public policy is called upon to balance this asymmetry by carrying the extra 
costs by subsidies by procurement programmes, or through technical mandates. 

One such programme in support of a learning technology is the well-known 
Japanese Sunshine project, which helps finance the installation of solar photovoltaic 
(PV) rooftop systems. Technological progress in the manufacturing of solar 
photovoltaic modules has been studied extensively not only to estimate pure learning 
effects, but also to assess the effectiveness of private and public R&D expenditures 
(Watanabe and Griffy-Brown, 1999). 

The learning concept has also been used in formulating a new German law 
(Erneuerbare-Energien-Gesetz) on renewable energy. The new law requires utilities to 
buy electricity from renewable energy at a certain minimum rate. These guaranteed 
rates are technology-specific and are reduced every year. For solar PV, the reduction 
is 5 percent per year from an initial level of 0.505 Euro per kilowatt-hour (kWh). In 
addition, for PV the law set up a checkpoint at a cumulative capacity of 350 megawatt 
(MW). At this level, the German Parliament will need to make a new decision on a 
guaranteed rate for PV, taking into consideration the cost reduction that has been 
achieved since the law was enacted. In other words, the law will be amended in a way 
that depends on how well technological progress, in the field of PV, will follow the 
past learning curve. 

The concept of technological learning can also be used to analyse the impacts of 
subsidy schemes on cost-reductions. We examined the impact of (procurement) 
subsidies and R&D support on cost of wind energy in three countries. In Denmark, R&D 
support and other instruments (investment subsidies and fiscal incentives) have been 
used to promote wind energy. From the mid-1980s, the subsidy consisted of a guaranteed 
tariff paid by the energy supply companies to wind farm operators. In addition, the 
government subsidised wind electricity production from the levied energy and 
environmental taxes. In Germany, the major government instruments were the 100/250-
MW programmes, the feed-in law, tax breaks, as well as, the provision of low-interest 
loans. The feed-in law requires public energy supply companies to pay wind turbine 
operators at least 90 percent of the average electricity price normally paid to consumers. 
In the United Kingdom (UK), R&D efforts were complemented by a guaranteed 
premium price per kWh generated. A typical element of the UK system is that the 
contracts awarded and the price paid for the wind electricity generation result from a 
repeated process of competitive bidding within a (renewable energy) technology band. 

When estimating the one-factor learning with cumulative subsidies as the only 
factor, we find that investment costs are highly correlated with the cumulative 
subsidies in all three countries analysed. It appears that subsidies led to the steepest 
investment cost reduction in the UK, followed by Denmark and Germany (see Figure 
12). In our view, this sharp reduction was related to the competitive nature of the 
bidding procedure for subsidies in the UK. 
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Figure 12: Investment costs and cumulative subsidies for wind farms in Denmark, 
Germany and the UK, displayed in a learning-curve format. 

5.2. Two-factor learning curves 
Following the positive results of more aggregated studies of R&D effectiveness 
(Griliches, 1975 and 1998; Nordhaus, 1999; Watanabe, 2000), Kouvaritakis et al. 
(2000) presented the concept of the two-factor learning curves of energy technologies. 
In this concept, cumulative expenditures on research and development of energy 
technologies are added as a second factor explaining cost reductions. Several problems 
and open questions still exist in connection with this extended concept, but we think 
that first general conclusions can be drawn in a way that does not depend on the 
resolution of all open issues. 

To arrive at these conclusions we have used a modified version of the Energy 
Research and Investment Strategy (ERIS) model developed by Barreto and Kypreos 
(2000). In the version used for the analysis presented here, ERIS describes the global 
electricity generation sector during the 21st century. ERIS is an optimisation model 
that minimizes the total costs, including R&D expenditures, of generating a given 
trajectory of electricity demand. The effect of R&D expenditures on costs is captured 
by a so-called two-factor learning curve (2FLC). A 2FLC follows the same concept as 
conventional (one-factor) learning curves, just adding R&D expenditures as a second 
factor (in addition to cumulative capacity) enhancing technological progress. The 
single learning rate in conventional learning curves is now replaced by two rates, now 
referred to as learning-by-doing rate (LDR) and learning-by-searching rate (LSR). 

Our analysis addressed the following questions: (1) What are the optimal R&D 
levels ? This question was of interest because in the real world, constraints on R&D 
expenditures appear to be determined by constrained budgets rather than by 
optimisation. (2) Can the ERIS model describe crowding out situations? By crowding 
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out we refer to the often-quoted possibility that investments into R&D of one 
technology can exclude the support of another energy technology at the same time. (3) 
Can the ERIS model describe the lock-in of one learning technology? Lock-in here 
refers to a situation, in which one technology becomes so cheap that no other new 
technology is developed. As a concept, lock-in is value-free, but being locked into a 
bad technology is obviously bad. 

We have analysed these questions in a stylised way by choosing two learning 
technologies, wind and solar PV, and reference values for the two parameters of each 
2FLCs that we found to be the most plausible within a given range of estimates (see 
Table 2). 7 

Table 2: Learning parameters determining two-factor learning curves (2FLCs) 
for solar PV and wind power 

Solar PV Wind 

Learning-by-doing rate (LDR), percent 

Learning-by-searching rate (LSR), percent 

17.5 

10 

10 

10 

Using these learning rates, we have made two runs with the ERIS model, each 
including a 2FLC for one of the two technologies. (The other one and all other 
technologies were assumed to have constant costs over time.) The resulting optimised 
R&D expenditures are shown in Figure 13. 
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Figure 13: R&D expenditures for wind and solar PV power generation (Reference 
Case), optimised separately by ERIS, and actual past R&D expenditures. 

7 The estimated values of the parameters depend on assumptions such as on initial values. 
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The figure suggests that optimised R&D support begins to exceed today's levels 
after the year 2050, having declined earlier. The emerging picture suggests that 
perhaps the time has not come yet for these two renewable energy technologies. In 
light of the experimental nature of the input numbers used in the analysis and given 
that no carbon constraints were included, this conclusion can be taken only with a 
grain of salt at best. More important in our view is the observation that the optimised 
levels of R&D are of the same order of magnitude as actual levels of the past in spite 
of the absence of R&D budget constraints. 

We addressed the questions of lock-in and crowding out with a series of ERIS runs, 
in which we included 2FLCs for solar PV and wind power generation, varying the 
learning parameters for both technologies in the neighbourhood of their reference 
values. The model results, in terms of optimised R&D levels, are shown in Figure 14. 

The main message of the figure is that the two learning technologies, solar PV and 
wind power, can develop and receive R&D support at the same time. This remains true 
over a range of learning rates (LSR and LDR) for the two technologies. Only if we 
assume particularly high learning-by-doing rates for one of the two renewable 
technologies (wind power), optimised R&D support of the other one (PV) is reduced 
to zero. 

In conclusion, we would like to stress again that we have presented here stylised 
results, which we consider to be mainly of methodological interest. The road to more 
policy-relevant results leads through improvements of both the empirical basis (data) 
and refinement of the concept. At the end of our next round of efforts to improve our 
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solar photovoltaic (SPV) energy technology; learning parameters for WIN are fixed at 
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analysis along both lines we hope to be able quantify costs and benefits of R&D spent 
on energy technologies more reliably. 

6. SUMMARY AND CONCLUSIONS 
The intensity with which the Kyoto Protocol and its possible implementation is 
discussed could easily distract the international community from the fact that meeting 
the Kyoto targets is neither necessary nor sufficient to achieve climate stabilization 
below dangerous levels. In this report, we take it from the not necessary by analysing 
an existing set of global energy-economy-environmental (E3) scenarios from the point 
of view of an environmentally compatible development of the global energy system. 
To do this, we refer to an even more general concept of environmentally conscious 
strategies sustainable development. We then proceed by identifying energy 
technologies that in the analysed scenarios play a key role in achieving sustainable 
development. In conclusion, we describe how policy makers could make use of 
insights in the dynamics of technological progress to promote the development of 
promising technologies. 

Our overview of the scenario literature considers more than 400 scenarios 
summarised in the SRES (Special Report on Emissions Scenarios) database. Our 
analysis focuses on quantifying the ranges of GHG emissions and their main driving 
forces as projected by the database scenarios. Population projections envision a 
slowing growth of future global population. The range for population is the smallest 
(a factor of three in 2100). In contrast, the ranges for GDP and primary energy 
consumption vary by a factor of 10 by 2100. Carbon intensity of energy portrays the 
highest variation by 2100. It varies by nearly two orders of magnitude by 2100. 
Together with the differences between primary energy projections, this leads to the 
enormous span of future C02 emissions ranging, in 2100, from ten times the current 
emissions all the way to negative net emissions. 

Despite a strong consensus on the importance of sustainable development (SD), the 
exact definition of the concept remains to be a controversial issue. Existing surveys 
suggest that at least 40 to 60 definitions exist. For the purpose of analysing the 
sustainability of the IIASA scenarios, we adopted the following criteria for sustainable 
development: (1) Economic growth sustains throughout the whole time horizon; (2) 
socio-economic inequity among world regions is reduced significantly during this 
century; (3) reserves-to-production (R/P) ratios of exhaustible primary energy carriers 
do not decrease substantially from today's values; and (4) short- to medium-term 
environmental impacts (e.g., acidification) do not exceed critical loads and carbon 
emissions at the end of the century are close to or below today's levels. We think that 
this working definition might be a step towards a more generally accepted definition 
of SD. If it is, their flexible formulation may leave room for several directions to move 
into. 

By applying these criteria to a set of IIASA scenarios we identify SD scenarios and 
compare their main indicators with the ranges from the SRES database. We conclude 
that slow population growth leading to at least stabilisation of global population (at 
median levels) is a prerequisite for sustainable development. Energy intensity must 
improve at least as fast as the historic trend (one percent per year), and carbon 
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intensities must decrease much faster than the historic trend (0.3 percent per year). 
Strategies for fossil resource consumption must aim at non-decreasing reserve-to
production ratios by making sure that technological progress keeps converting sub
economic resources into economically recoverable reserves as long as fossil fuels are 
produced. In terms of individual technologies, solar photovoltaic and hydrogen fuel 
cell technologies appear as the most promising long-run options. Natural-gas 
technologies, in particular fuel cells and the combined cycle, could accomplish a 
smooth and efficient transition to eventual sustainability. 

The question then becomes which policies can promote the development of these 
technologies. In our opinion, an important tool to tackle this question is provided by 
an improved concept of technological learning. According to that concept, 
technological progress, expressed as specific technology cost, is a regular function of 
not only cumulative installed capacity but also of R&D support (two-factor learning 
curves 2FLCs). This implies that both procurement (which increases capacity) as well 
as R&D are important policy tools. With respect to procurement we find that the 
concept of technological learning rests on a sufficiently sound empirical basis to 
derive expected costs reductions from expected capacity expansions. We also find that 
competitive bidding schemes for allocating subsidies might be more effective in 
reducing costs than fixed subsidies. 

Regarding optimal R&D levels for technologies the technological progress of 
which is described by 2FLCs, preliminary results of model analyses for two renewable 
energy technologies (wind and solar PV) suggest that optimised R&D support comes 
out to be of the same order of magnitude as actual R&D expenditures observed in the 
past. Analysing the familiar concepts of crowding out and lock-in, we also find the two 
learning technologies can develop and receive R&D support at the same time. This 
remains true over a range of learning rates for the two technologies. 

We would like to emphasize again that our results based on the use of 2FLCs are 
stylised as far as policy relevance is concerned, being at this point in time mainly of 
methodological interest. The road to more policy-relevant results leads through 
improvements of both the empirical basis (data) and refinement of the concept. At the 
end of our next round of efforts to improve our analysis along both lines we hope to 
find quantitative answers on our quest for the optimal allocation of expenditures on 
both procurement and R&D over the various energy technologies. 
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