
Dynamic Stability of the Replicator 
Equation with Continuous Strategy 
Space

Cressman, R.

IIASA Interim Report
March 2004

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33898898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Cressman, R. (2004) Dynamic Stability of the Replicator Equation with Continuous Strategy Space. IIASA Interim Report. 

Copyright © 2004 by the author(s). http://pure.iiasa.ac.at/7429/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


International Institute for Tel: 43 2236 807 342

Applied Systems Analysis Fax: 43 2236 71313

Schlossplatz 1 E-mail: publications@iiasa.ac.at

A-2361 Laxenburg, Austria Web: www.iiasa.ac.at

Interim Report IR-04-017

Dynamic Stability of the Replicator Equation with
Continuous Strategy Space

Ross Cressman (rcressma@wlu.ca)

Approved by

Ulf Dieckmann (dieckmann@iiasa.ac.at)

Project Leader, Adaptive Dynamics Network

March 2004

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited

review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National

Member Organizations, or other organizations supporting the work.



IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 83

���

The Adaptive Dynamics Network at IIASA fosters the develop-
ment of new mathematical and conceptual techniques for under-
standing the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Adaptive Dynamics Network
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.

No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van
Heerwaarden JS: Adaptive Dynamics: A Geometrical Study

of the Consequences of Nearly Faithful Reproduction. IIASA
Working Paper WP-95-099 (1995). van Strien SJ, Verduyn
Lunel SM (eds): Stochastic and Spatial Structures of Dynami-
cal Systems, Proceedings of the Royal Dutch Academy of Sci-
ence (KNAW Verhandelingen), North Holland, Amsterdam,
pp. 183-231 (1996).

No. 2 Dieckmann U, Law R: The Dynamical Theory of Co-

evolution: A Derivation from Stochastic Ecological Processes.

IIASA Working Paper WP-96-001 (1996). Journal of Mathe-
matical Biology 34:579-612 (1996).

No. 3 Dieckmann U, Marrow P, Law R: Evolutionary Cy-

cling of Predator-PreyInteractions: Population Dynamics and

the Red Queen. IIASA Preprint (1995). Journal of Theoreti-
cal Biology 176:91-102 (1995).

No. 4 Marrow P, Dieckmann U, Law R: Evolutionary Dy-

namics of Predator-Prey Systems: An Ecological Perspective.

IIASA Working Paper WP-96-002 (1996). Journal of Mathe-
matical Biology 34:556-578 (1996).

No. 5 Law R, Marrow P, Dieckmann U: On Evolution under

Asymmetric Competition. IIASA Working Paper WP-96-003
(1996). Evolutionary Ecology 11:485-501 (1997).

No. 6 Metz JAJ, Mylius SD, Diekmann O: When Does Evo-

lution Optimize? On the Relation Between Types of Density

Dependence and Evolutionarily Stable Life History Parame-

ters. IIASA Working Paper WP-96-004 (1996).

No. 7 Ferrière R, Gatto M: Lyapunov Exponents and the

Mathematics of Invasion in Oscillatory or Chaotic Popula-

tions. Theoretical Population Biology 48:126-171 (1995).

No. 8 Ferrière R, Fox GA: Chaos and Evolution. IIASA
Preprint (1996). Trends in Ecology and Evolution 10:480-
485 (1995).

No. 9 Ferrière R, Michod RE: The Evolution of Cooperation

in Spatially Heterogeneous Populations. IIASA Working Pa-
per WP-96-029 (1996). The American Naturalist 147:692-
717 (1996).

No. 10 van Dooren TJM, Metz JAJ: Delayed Maturation in

Temporally Structured Populations with Non-Equilibrium Dy-

namics. IIASA Working Paper WP-96-070 (1996). Journal
of Evolutionary Biology 11:41-62 (1998).

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: The Dy-

namics of Adaptation and Evolutionary Branching. IIASA
Working Paper WP-96-077 (1996). Physical Review Letters
78:2024-2027 (1997).

No. 12 Geritz SAH, Kisdi É, Meszéna G, Metz JAJ: Evo-

lutionary Singular Strategies and the Adaptive Growth and

Branching of the Evolutionary Tree. IIASA Working Paper
WP-96-114 (1996). Evolutionary Ecology 12:35-57 (1998).

No. 13 Heino M, Metz JAJ, Kaitala V: Evolution of Mixed

Maturation Strategies in Semelparous Life-Histories: The

Crucial Role of Dimensionality of Feedback Environment.

IIASA Working Paper WP-96-126 (1996). Philosophi-
cal Transactions of the Royal Society of London Series B
352:1647-1655 (1997).

No. 14 Dieckmann U: Can Adaptive Dynamics Invade?

IIASA Working Paper WP-96-152 (1996). Trends in Ecol-
ogy and Evolution 12:128-131 (1997).

No. 15 Meszéna G, Czibula I, Geritz SAH: Adaptive Dynam-

ics in a 2-Patch Environment: A Simple Model for Allopatric

and Parapatric Speciation. IIASA Interim Report IR-97-001
(1997). Journal of Biological Systems 5:265-284 (1997).

No. 16 Heino M, Metz JAJ, Kaitala V: The Enigma of

Frequency-Dependent Selection. IIASA Interim Report IR-
97-061 (1997). Trends in Ecology and Evolution 13:367-370
(1998).

No. 17 Heino M: Management of Evolving Fish Stocks.

IIASA Interim Report IR-97-062 (1997). Canadian Journal
of Fisheries and Aquatic Sciences 55:1971-1982 (1998).

No. 18 Heino M: Evolution of Mixed Reproductive Strategies

in Simple Life-History Models. IIASA Interim Report IR-97-
063 (1997).

No. 19 Geritz SAH, van der Meijden E, Metz JAJ: Evolution-

ary Dynamics of Seed Size and Seedling Competitive Ability.

IIASA Interim Report IR-97-071 (1997). Theoretical Popu-
lation Biology 55:324-343 (1999).

No. 20 Galis F, Metz JAJ: Why Are There So Many Cichlid

Species? On the Interplay of Speciation and Adaptive Radi-

ation. IIASA Interim Report IR-97-072 (1997). Trends in
Ecology and Evolution 13:1-2 (1998).



No. 21 Boerlijst MC, Nowak MA, Sigmund K: Equal Pay

for all Prisoners/ The Logic of Contrition. IIASA Interim
Report IR-97-073 (1997). American Mathematical Society
Monthly 104:303-307 (1997). Journal of Theoretical Biology
185:281-293 (1997).

No. 22 Law R, Dieckmann U: Symbiosis Without Mutualism

and the Merger of Lineages in Evolution. IIASA Interim Re-
port IR-97-074 (1997). Proceedings of the Royal Society of
London Series B 265:1245-1253 (1998).

No. 23 Klinkhamer PGL, de Jong TJ, Metz JAJ: Sex and Size

in Cosexual Plants. IIASA Interim Report IR-97-078 (1997).
Trends in Ecology and Evolution 12:260-265 (1997).

No. 24 Fontana W, Schuster P: Shaping Space: The Possi-

ble and the Attainable in RNA Genotype-Phenotype Mapping.

IIASA Interim Report IR-98-004 (1998). Journal of Theoret-
ical Biology 194:491-515 (1998).

No. 25 Kisdi É, Geritz SAH: Adaptive Dynamics in Allele

Space: Evolution of Genetic Polymorphism by Small Muta-

tions in a HeterogeneousEnvironment. IIASA Interim Report
IR-98-038 (1998). Evolution 53:993-1008 (1999).

No. 26 Fontana W, Schuster P: Continuity in Evolution: On

the Nature of Transitions. IIASA Interim Report IR-98-039
(1998). Science 280:1451-1455 (1998).

No. 27 Nowak MA, Sigmund K: Evolution of Indirect Reci-

procity by Image Scoring/ The Dynamics of Indirect Reci-

procity. IIASA Interim Report IR-98-040 (1998). Nature
393:573-577 (1998). Journal of Theoretical Biology 194:561-
574 (1998).

No. 28 Kisdi É: Evolutionary Branching Under Asymmetric

Competition. IIASA Interim Report IR-98-045 (1998). Jour-
nal of Theoretical Biology 197:149-162 (1999).

No. 29 Berger U: Best Response Adaptation for Role Games.

IIASA Interim Report IR-98-086 (1998).

No. 30 van Dooren TJM: The Evolutionary Ecology of

Dominance-Recessivity. IIASA Interim Report IR-98-096
(1998). Journal of Theoretical Biology 198:519-532 (1999).

No. 31 Dieckmann U, O’Hara B, Weisser W: The Evolution-

ary Ecology of Dispersal. IIASA Interim Report IR-98-108
(1998). Trends in Ecology and Evolution 14:88-90 (1999).

No. 32 Sigmund K: Complex Adaptive Systems and the Evo-

lution of Reciprocation. IIASA Interim Report IR-98-100
(1998). Ecosystems 1:444-448 (1998).

No. 33 Posch M, Pichler A, Sigmund K: The Efficiency of

Adapting Aspiration Levels. IIASA Interim Report IR-98-
103 (1998). Proceedings of the Royal Society London Series
B 266:1427-1435 (1999).

No. 34 Mathias A, Kisdi É: Evolutionary Branching and Co-

existence of Germination Strategies. IIASA Interim Report
IR-99-014 (1999).

No. 35 Dieckmann U, Doebeli M: On the Origin of Species

by Sympatric Speciation. IIASA Interim Report IR-99-013
(1999). Nature 400:354-357 (1999).

No. 36 Metz JAJ, Gyllenberg M: How Should We Define Fit-

ness in Structured Metapopulation Models? Including an Ap-

plication to the Calculation of Evolutionarily Stable Dispersal

Strategies. IIASA Interim Report IR-99-019 (1999). Pro-
ceedings of the Royal Society of London Series B 268:499-
508 (2001).

No. 37 Gyllenberg M, Metz JAJ: On Fitness in Structured

Metapopulations. IIASA Interim Report IR-99-037 (1999).
Journal of Mathematical Biology 43:545-560 (2001).

No. 38 Meszéna G, Metz JAJ: Species Diversity and Popula-

tion Regulation: The Importance of Environmental Feedback

Dimensionality. IIASA Interim Report IR-99-045 (1999).

No. 39 Kisdi É, Geritz SAH: Evolutionary Branching and

Sympatric Speciation in Diploid Populations. IIASA Interim
Report IR-99-048 (1999).

No. 40 Ylikarjula J, Heino M, Dieckmann U: Ecology and

Adaptation of Stunted Growth in Fish. IIASA Interim Report
IR-99-050 (1999). Evolutionary Ecology 13:433-453 (1999).

No. 41 Nowak MA, Sigmund K: Games on Grids. IIASA
Interim Report IR-99-038 (1999). Dieckmann U, Law R,
Metz JAJ (eds): The Geometry of Ecological Interactions:
Simplifying Spatial Complexity, Cambridge University Press,
Cambridge, UK, pp. 135-150 (2000).

No. 42 Ferrière R, Michod RE: Wave Patterns in Spatial

Games and the Evolution of Cooperation. IIASA Interim
Report IR-99-041 (1999). Dieckmann U, Law R, Metz JAJ
(eds): The Geometry of Ecological Interactions: Simplifying
Spatial Complexity, Cambridge University Press, Cambridge,
UK, pp. 318-332 (2000).

No. 43 Kisdi É, Jacobs FJA, Geritz SAH: Red Queen Evo-

lution by Cycles of Evolutionary Branching and Extinction.

IIASA Interim Report IR-00-030 (2000). Selection 2:161-
176 (2001).

No. 44 Meszéna G, Kisdi É, Dieckmann U, Geritz SAH, Metz
JAJ: Evolutionary Optimisation Models and Matrix Games in

the Unified Perspectiveof Adaptive Dynamics. IIASA Interim
Report IR-00-039 (2000). Selection 2:193-210 (2001).

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:
Evolution of Dispersal in Metapopulations with Local Density

Dependence and Demographic Stochasticity. IIASA Interim
Report IR-00-035 (2000). Journal of Evolutionary Biology
16:143-153 (2003).

No. 46 Doebeli M, Dieckmann U: Evolutionary Branch-

ing and Sympatric Speciation Caused by Different Types of

Ecological Interactions. IIASA Interim Report IR-00-040
(2000). The American Naturalist 156:S77-S101 (2000).

No. 47 Heino M, Hanski I: Evolution of Migration Rate in

a Spatially Realistic Metapopulation Model. IIASA Interim
Report IR-00-044 (2000). The American Naturalist 157:495-
511 (2001).

No. 48 Gyllenberg M, Parvinen K, Dieckmann U: Evolution-

ary Suicide and Evolution of Dispersal in Structured Metapop-

ulations. IIASA Interim Report IR-00-056 (2000). Journal
of Mathematical Biology 45:79-105 (2002).

No. 49 van Dooren TJM: The Evolutionary Dynamics of Di-

rect Phenotypic Overdominance: Emergence Possible, Loss

Probable. IIASA Interim Report IR-00-048 (2000). Evolu-
tion 54: 1899-1914 (2000).

No. 50 Nowak MA, Page KM, Sigmund K: Fairness Versus

Reason in the Ultimatum Game. IIASA Interim Report IR-
00-57 (2000). Science 289:1773-1775 (2000).

No. 51 de Feo O, Ferrière R: Bifurcation Analysis of Pop-

ulation Invasion: On-Off Intermittency and Basin Riddling.

IIASA Interim Report IR-00-074 (2000). International Jour-
nal of Bifurcation and Chaos 10:443-452 (2000).



No. 52 Heino M, Laaka-Lindberg S: Clonal Dynamics and

Evolution of Dormancy in the Leafy Hepatic Lophozia Sil-

vicola. IIASA Interim Report IR-01-018 (2001). Oikos
94:525-532 (2001).

No. 53 Sigmund K, Hauert C, Nowak MA: Reward and Pun-

ishment in Minigames. IIASA Interim Report IR-01-031
(2001). Proceedings of the National Academy of Sciences
of the USA 98:10757-10762 (2001).

No. 54 Hauert C, De Monte S, Sigmund K, Hofbauer J: Os-

cillations in Optional Public Good Games. IIASA Interim
Report IR-01-036 (2001).

No. 55 Ferrière R, Le Galliard J: Invasion Fitness and Adap-

tive Dynamics in Spatial Population Models. IIASA Interim
Report IR-01-043 (2001). Clobert J, Dhondt A, Danchin E,
Nichols J (eds): Dispersal, Oxford University Press, pp. 57-79
(2001).

No. 56 de Mazancourt C, Loreau M, Dieckmann U: Can the

Evolution of Plant Defense Lead to Plant-Herbivore Mutual-

ism. IIASA Interim Report IR-01-053 (2001). The American
Naturalist 158: 109-123 (2001).

No. 57 Claessen D, Dieckmann U: Ontogenetic Niche Shifts

and Evolutionary Branching in Size-Structured Populations.

IIASA Interim Report IR-01-056 (2001). Evolutionary Ecol-
ogy Research 4:189-217 (2002).

No. 58 Brandt H: Correlation Analysis of Fitness Land-

scapes. IIASA Interim Report IR-01-058 (2001).

No. 59 Dieckmann U: Adaptive Dynamics of Pathogen-Host

Interacations. IIASA Interim Report IR-02-007 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 39-59 (2002).

No. 60 Nowak MA, Sigmund K: Super- and Coinfection:

The Two Extremes. IIASA Interim Report IR-02-008 (2002).
Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
lence Management, Cambridge University Press, Cambridge,
UK, pp. 124-137 (2002).

No. 61 Sabelis MW, Metz JAJ: Perspectives for Virulence

Management: Relating Theory to Experiment. IIASA Interim
Report IR-02-009 (2002). Dieckmann U, Metz JAJ, Sabelis
MW, Sigmund K (eds): Adaptive Dynamics of Infectious Dis-
eases: In Pursuit of Virulence Management, Cambridge Uni-
versity Press, Cambridge, UK, pp. 379-398 (2002).

No. 62 Cheptou P, Dieckmann U: The Evolution of Self-

Fertilization in Density-Regulated Populations . IIASA In-
terim Report IR-02-024 (2002). Proceedings of the Royal
Society of London Series B 269:1177-1186 (2002).

No. 63 Bürger R: Additive Genetic Variation Under Intraspe-

cific Competition and Stabilizing Selection: A Two-Locus

Study. IIASA Interim Report IR-02-013 (2002). Theoret-
ical Population Biology 61:197-213 (2002).

No. 64 Hauert C, De Monte S, Hofbauer J, Sigmund K: Vol-

unteering as Red Queen Mechanism for Co-operation in Pub-

lic Goods Games. IIASA Interim Report IR-02-041 (2002).
Science 296:1129-1132 (2002).

No. 65 Dercole F, Ferrière R, Rinaldi S: Ecological Bistabil-

ity and Evolutionary Reversals under Asymmetrical Competi-

tion. IIASA Interim Report IR-02-053 (2002). Evolution
56:1081-1090 (2002).

No. 66 Dercole F, Rinaldi S: Evolution of Cannibalistic

Traits: Scenarios Derived from Adaptive Dynamics. IIASA
Interim Report IR-02-054 (2002). Theoretical Population Bi-
ology 62:365-374 (2002).

No. 67 Bürger R, Gimelfarb A: Fluctuating Environments

and the Role of Mutation in Maintaining Quantitative Genetic

Variation. IIASA Interim Report IR-02-058 (2002). Geneti-
cal Research 80:31-46 (2002).

No. 68 Bürger R: On a Genetic Model of Intraspecific Com-

petition and Stabilizing Selection. IIASA Interim Report IR-
02-062 (2002). Amer. Natur. 160:661-682 (2002).

No. 69 Doebeli M, Dieckmann U: Speciation Along Environ-

mental Gradients. IIASA Interim Report IR-02-079 (2002).
Nature 421:259-264 (2003).

No. 70 Dercole F, Irisson J, Rinaldi S: Bifurcation Analysis of

a Prey-Predator Coevolution Model. IIASA Interim Report
IR-02-078 (2002). SIAM Journal on Applied Mathematics
63:1378-1391 (2003).

No. 71 Le Galliard J, Ferrière R, Dieckmann U: The Adaptive

Dynamics of Altruism in Spatially HeterogeneousPopulations.

IIASA Interim Report IR-03-006 (2003). Evolution 57:1-17
(2003).

No. 72 Taborsky B, Dieckmann U, Heino M: Unex-

pected Discontinuities in Life-History Evolution under Size-

Dependent Mortality. IIASA Interim Report IR-03-004
(2003). Proceedings of the Royal Society of London Series B
270:713-721 (2003).

No. 73 Gardmark A, Dieckmann U, Lundberg P: Life-

History Evolution in Harvested Populations: The Role of Nat-

ural Predation. IIASA Interim Report IR-03-008 (2003).
Evolutionary Ecology Research 5:239-257 (2003).

No. 74 Mizera F, Meszéna G: Spatial Niche Packing, Char-

acter Displacement and Adaptive Speciation Along an En-

vironmental Gradient. IIASA Interim Report IR-03-062
(2003). Evolutionary Ecology Research 5: 363-382 (2003).

No. 75 Dercole F: Remarks on Branching-Extinction Evolu-

tionary Cycles. IIASA Interim Report IR-03-075 (2003).
Journal of Mathematical Biology 47: 569-580 (2003).

No. 76 Hofbauer J, Sigmund K: Evolutionary Game Dynam-

ics. IIASA Interim Report IR-03-078 (2003). Bulletin of the
American Mathematical Society 40: 479-519 (2003).

No. 77 Ernande B, Dieckmann U, Heino M: Adaptive

Changes in Harvested Populations: Plasticity and Evolution

of Age and Size at Maturation. IIASA Interim Report IR-03-
058 (2003).

No. 78 Hanski I, Heino M: Metapopulation-Level Adaptation

of Insect Host Plant Preference and Extinction-Colonization

Dynamics in Heterogeneous Landscapes. IIASA Interim
Report IR-03-028 (2003). Theoretical Population Biology
63:309-338 (2003).

No. 79 van Doorn G, Dieckmann U, Weissing FJ: Sympatric

Speciation by Sexual Selection: A Critical Re-Evaluation.

IIASA Interim Report IR-04-003 (2004).

No. 80 Egas M, Dieckmann U, Sabelis MW: Evolution Re-

stricts the Coexistence of Specialists and Generalists - the

Role of Trade-off Structure. IIASA Interim Report IR-04-004
(2004).



No. 81 Ernande B, Dieckmann U: The Evolution of Pheno-

typic Plasticity in Spatially Structured Environments: Implica-

tions of Intraspecific Competition, Plasticity Costs, and Envi-

ronmental Characteristics. IIASA Interim Report IR-04-006
(2004). Journal of Evolutionary Biology (2004).

No. 82 Cressman R, Hofbauer J: Measure Dynamics on a

One-Dimensional Continuous Trait Space: Theoretical Foun-

dations for Adaptive Dynamics. IIASA Interim Report IR-
04-016 (2004).

No. 83 Cressman R: Dynamic Stability of the Replicator

Equation with Continuous Strategy Space. IIASA Interim
Report IR-04-017 (2004).

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained at www.iiasa.ac.at/Research/ADN/Series.html or by
writing to adn@iiasa.ac.at.



Contents

1 Introduction 1

2 The Model 2

2.1 Matrix Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Stability of Monomorphic Populations 4

4 Stability of Dimorphic Populations 8

5 Conclusion 11

6 Appendix 12



Abstract

We extend previous work that analyzes the stability of dynamics on probability distri-
butions over continuous strategy spaces. The stability concept considered is that of con-
vergence to the equilibrium distribution in the strong topology for all initial distributions
whose support is close to this equilibrium. Stability criteria involving strategy domination
and local superiority are developed for equilibrium distributions that are monomorphic
(i.e. the equilibrium consists of a single strategy) and for equilibrium distributions that
have finite support.
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Dynamic Stability of the Replicator Equation

with

Continuous Strategy Space

Ross Cressman

1 Introduction

Evolutionary dynamics for continuous strategy spaces have received considerable recent
attention both among theoretical biologists who are interested in the coevolution of species
traits and among economists who concentrate instead on predicting rational behavior of in-
dividuals whose payoffs are given through game interactions. Most theoretical research on
dynamic stability for coevolutionary models (e.g. Abrams, 2001; Doebeli and Dieckmann,
2000; Marrow et al., 1996 and the references therein) make the simplifying assumption each
species is monomorphic (or homogeneous) and remains so during the course of evolution
(i.e. all individuals present in a given species exhibit the same behavior).1 This leads to
the stability analysis of what are known as adaptive or strategy dynamics. Although there
has been much less research in this area from the economic or game-theoretic perspective
(e.g. Bomze, 1990, 1991; Seymour, 2000; Oechssler and Riedel, 2001, 2002), this literature
typically considers the full dynamical system where aggregate behavior is described by a
distribution on the space S of individual strategy choices and assume individual payoffs
are defined in terms of a function f on S × S.
In this paper, we follow the latter approach applied to a symmetric game with a

continuous strategy space.2 These references in the economic literature spend a great deal
of time developing the evolutionary dynamic on the set of probability distributions (e.g.
the replicator dynamic), proving its solutions are well-defined, and relating its properties
to static equilibrium conditions (that generalize those for the case where there are a finite
set of strategies that may be used by the population as in the matrix games of Section 2.1).
We benefit from their work by briefly summarizing this development at the beginning of
Section 2 and devoting the remainder of the paper to analyzing the dynamic stability of
equilibrium distributions for the replicator dynamic.
Immediate issues that arise in this dynamic analysis are what constitutes closeness

and/or convergence for probability distributions and for what initial distributions we ex-
pect this convergence. The main problem is that there are several ways to define these
topological concepts that generalize the accepted approach when there are a finite set of
strategies. Moreover, as clearly demonstrated by Oechssler and Riedel (2002), the conclu-
sions related to dynamic stability depend critically on which definitions are taken. These
issues are clarified in Section 2.1 by referring to well-known dynamic stability results for
matrix games and, in the process, motivate our dynamic stability concept (at the beginning
of Section 3).

1Notable exceptions are Vincent et al. (1996) and Cressman and Garay (2003) where the effects of
varying population size are also taken into account.

2In biological terms, we are then studying single-species coevolutionary models.
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Our main goal is to derive conditions on f that predict dynamic stability. Section 3 then
completely characterizes (Theorems 1 and 2) dynamic stability of equilibrium distributions
concentrated at a single strategy and relates these results to the coevolutionary literature
for monomorphic populations (Remark 1). Section 4 extends these results to equilibrium
distributions with finite support, giving sufficient conditions for dynamic stability (The-
orems 3 and 4). Section 5 summarizes the methods and discusses their application from
the economic perspective.

2 The Model

Evolutionary games with an arbitrary strategy space and their corresponding replicator
dynamics have been developed by a number of researchers over the past fifteen years. Here
we briefly summarize this development as it applies to our model. In general, individuals
are assumed to play a strategy in the set S and the population state is given by a prob-
ability measure P with respect to a measure space (S,B). If B ∈ B, P (B) is interpreted
as the proportion of individuals in the population who are using strategies in the set B.
For a given s ∈ S, δs denotes the Dirac delta measure that assigns unit mass to {s}. Let
π(s, P ) = π(δs, P ) denote the expected payoff to an individual using strategy s when the
population is in state P . The mean payoff to a random individual in the population with

state P is then π(P, P ) ≡

∫

S

π(δs, P )P (ds).

For us, S will be a nonempty compact subset of Rn and B will be the Borel subsets
of S (i.e. the σ−algebra of the Borel sets of Rn intersected with S and so P is a Borel
measure). Let ∆(S) denote the set of Borel probability measures with respect to (S,B).
Since P is a Borel measure, there is a unique closed subset of S, called the support of
P , such that the measure of its complement is 0 but every open set that intersects it has
positive measure (Royden, 1988). We will be most interested in the situation where the
payoff function π(s, P ) is given through a continuous real-valued function f : S×S −→ R
by π(s, P ) =

∫

S f(s, y)P (dy). Unless otherwise stated, we will assume the existence of
such an f for the remainder of the paper. In particular, standard symmetric evolutionary
games that assume random pairwise interactions may be put in this form.3

We assume the replicator dynamic (1) describes how the population state evolves (i.e.
its solutions define trajectories P (t) in ∆(S)).

dP

dt
(B) =

∫

B

(π(δs, P )− π(P, P ))P (ds) (1)

Heuristically, this dynamic increases the probability of those sets of strategies B that have
a higher expected payoff than the mean payoff to a random individual in the population. It
has been shown (Oechssler and Riedel, 2001) that there is a unique solution that satisfies
this dynamic for all positive t given any initial probability measure P (0) with compact
support when f is continuous. Here B is a Borel subset of S and dPdt (B) at time t is

defined to be limh→0
P (t+h)−P (t)

h (B) with respect to the variational norm (see (4) below).
Furthermore, the support of P (t) is the same as P (0) for all t ≥ 0. A population state P ∗

is an equilibrium of (1) if and only if π(δs, P
∗)− π(P ∗, P ∗) = 0 for all s ∈supp(P ∗).

3In fact, Bomze and Pötscher (1989) argue that the existence of such an f means the evolutionary game
can be interpreted as being based on pairwise interactions. It is only the form of π(s, P ) that is important
to us, not whether players are competing pairwise.

2



The main purpose of this paper is to analyze the dynamic stability of an equilibrium
state P ∗. Heuristically, dynamic stability of P ∗ refers to the question of whether P (t)
stays close and/or evolves to P ∗ if the initial P (0) is chosen appropriately in ∆(S). From
Oechssler and Riedel (2002), it is clear that the answers to the stability question depend
critically on the concept of closeness of probability measures (i.e. on the topology used
for the space of Borel probability measures), especially when the strategy space is not a
discrete subset of Rn. We will return to this issue after the following section that begins
with a finite strategy space.

2.1 Matrix Games

Standard matrix games emerge when there are a finite number of possible strategies in-
dividuals may use. If there are m such strategies, they are often thought of as “pure
strategies” and then identified with the unit coordinate vectors ei = (0, ..., 0, 1, 0, ..., 0) in
Rm that have 1 in the ith component and 0 everywhere else. In our notation, P (0) then
has finite support contained in {e1, ..., em} = S where S is now a subset of R

m. Then
P (t) =

∑m
i=1 pi(t)δei where pi(t) is the proportion (or frequency) of individuals in the

population using strategy ei at time t. From (1), the replicator equation becomes

ṗi = pi

⎛

⎝

m
∑

k=1

f(ei, ek)pk −
m
∑

j,k=1

f(ej, ek)pjpk

⎞

⎠ .

This dynamic can be rewritten in matrix form where A is the m ×m payoff matrix
with entries Aij = f(ei, ej) as

ṗi = pi (ei − p) ·Ap. (2)

Here u · Av is the standard inner product of column vectors u and Av in Rm (i.e. u ·
Av =

∑m
j,k=1 ujAjkvk) and p is the frequency vector in the m − 1 dimensional simplex

∆m = {(p1, ..., pm) |
∑

pi = 1, pi ≥ 0}. Since there is a 1 − 1 correspondence between
∆(S) and ∆m, dynamic stability of P ∗ becomes the stability of p∗ ∈ ∆m with respect
to the dynamical system (2) on ∆m. It is well known that a “matrix” ESS4 is a locally
asymptotically stable equilibrium of (2) and that the converse is not true for all matrix
games when there are more than two pure strategies (i.e. m ≥ 2).
The matrix ESS concept may be developed through conditions of dynamic stability of a

strategy p∗ when invaded by a mutant strategy q. This involves the extension of the above
“pure-strategy” matrix game to the so-called “mixed strategy” model with a continuous
strategy space. For a matrix game with m pure strategies and m×m payoff matrix A, an
individual is now allowed to play a mixed strategy q ∈ ∆m where qi is then interpreted as
the probability this individual will play strategy ei in a given contest. Thus S becomes
all of ∆m and P is a Borel probability measure on this continuous strategy space. Let
p ∈ ∆m be the mean strategy

∫

∆m qP (dq) of the population state P . In this mixed
strategy model, it is assumed that π(ei, P ) =

∑

k Aikpk and that π(q, P ) =
∑

i qiπ(ei, P ).

4Since the term ESS is overused in the literature, it may have several meanings for some readers. We
restrict its use in this paper to that of an evolutionarily stable strategy p∗ ∈ ∆m of an m×m payoff matrix
A (hence a “matrix” ESS) as developed by Maynard Smith (1982) where there is one universally accepted
meaning. Such a p∗ is defined to be a Nash equilibrium (i.e. it satisfies p ·Ap∗ ≤ p∗ ·Ap∗ for all p ∈ ∆m)
that also fulfills the stability condition p ·Ap < p∗ ·Ap whenever p ·Ap∗ = p∗ ·Ap∗ and p �= p∗. This ESS
concept is then equvalent to the requirement that p ·Ap < p∗ ·Ap for all p ∈ ∆m sufficiently close (but not
equal) to p∗ (Hofbauer and Sigmund, 1998; Cressman, 2003).
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In particular, individual payoffs depend linearly on both the mean population state and
on the components of the individual’s mean strategy.
To analyze stability in our nonlinear models, it is instructive to consider it first in this

mixed strategy model when p∗ is invaded by a mutant strategy q. To this end, suppose
that p∗ is an ESS of the payoff matrix A and q is some other mixed strategy sufficiently
close to p∗. If supp(P (0)) = {p∗, q} then the mixed strategy replicator dynamic that
results from (1) is

dP

dt
({p∗}) = P ({p∗}) (p∗ − p) · Ap

where p = P ({p∗})p∗+P ({q})q. Since p is on the line segment from q to p∗ (in particular,
p is closer to p∗ than q is) and p∗ is a matrix ESS, dPdt ({p

∗}) > 0 for all 0 < P ({p∗}) < 1.
Thus p∗ is globally asymptotically stable.5

In fact, p∗ is a matrix ESS if and only if p∗ is globally asymptotically stable for all these
two-strategy dynamics with supp(P (0)) = {p∗, q} and q sufficiently close (but not equal)
to p∗ (Cressman, 1992). It is the generalization of this result to non-matrix symmetric
games that motivates our dynamic stability concept introduced in the following section.
We will also need to refer to the general mixed-strategy matrix game model with

arbitrary P (0). Here, the replicator dynamic (1) becomes

dP

dt
(B) =

∫

B

(q − p) · ApP (dq). (3)

Akin (1982) shows that the evolution of the strategy distribution P (t) is completely de-
termined by the initial distribution P (0) and the evolution of the mean strategy p(t). In
particular, p converges to an ESS p∗ whenever p∗ is in the convex hull of supp(P (0)) and
supp(P (0)) is sufficiently close to p∗.

3 Stability of Monomorphic Populations

Our concept of dynamic stability requires a topological notion of closeness on the set of
probability measures. There are several topologies on ∆(S) that are all equivalent to the
Euclidean topology on ∆m when S is a finite set with m strategies. The most important
for us is the strong topology based on the variational norm (Bomze, 1990, 1991; Oechssler
and Riedel, 2001) defined by

‖ P −Q ‖≡ 2 sup
B∈B
| P (B) −Q(B) | (4)

for P,Q ∈ ∆(S). That is, an open set in the strong topology is one for which every P in
it contains a ball of positive radius with respect to this norm centred at P .
If Q in (4) is the monomorphic population δs where all individuals in the population

use the same strategy s, then

‖ P − δs ‖≡ 2max

{

sup
s∈B
| P (B)− 1 |, sup

s/∈B
P (B)

}

= 2max{| P ({s})− 1 |, P (S\{s})}

= 2(1− P ({s})).

5This is a slight abuse of notation that should not cause the readers undue confusion. Formally, in
terms of the measure P , P ({p∗}) monotonically increases to 1 (as P ({q}) decreases to 0) and so P (t)
evolves to δp∗ in the strong topology (see Section 3) under (1).
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Thus, P (t) evolves to δs in the strong topology if and only if P ({s}) converges to 1. By
default, every δs is an equilibrium of (1). The question in this section then becomes which,
if any, s∗ ∈ S corresponds to a dynamically stable equilibrium δs∗ of (1).
Generalizing the result for the matrix game model of Section 2.1 when p∗ is invaded

by a mutant strategy q, our dynamic stability concept requires P (t) to converge to δs∗ in
the strong topology if supp(P (0)) = {s∗, s} for all s sufficiently close (but not equal) to
s∗. In biological terms, the monomorphic population δs∗ resists invasion by any mutant
strategy s sufficiently close to s∗ (whether this mutant is rare or not). From Section 2,
π(δs∗ , P ) = f(s

∗, s∗)P ({s∗}) + f(s∗, s)P ({s}), π(δs, P ) = f(s, s
∗)P ({s∗}) + f(s, s)P ({s})

and π(P, P ) = P ({s∗})π(δs∗, P ) + P ({s})π(δs, P ). Thus

dP

dt
({s∗}) = P ({s∗})P ({s}) [(f(s∗, s∗)− f(s, s∗))P ({s∗}) + (f(s∗, s)− f(s, s))P ({s})]

and so dPdt ({s
∗}) > 0 for all 0 < P ({s∗}) < 1 if and only if

f(s∗, s∗) ≥ f(s, s∗) and f(s∗, s) ≥ f(s, s) (5)

with strict inequality in at least one of these for all s sufficiently close (but not equal) to
s∗. These inequalities state that, for all s sufficiently close (but not equal) to s∗, s∗ weakly
dominates s in the two-strategy game between s∗ and s with payoff matrix

A =

[

f(s∗, s∗) f(s∗, s)
f(s, s∗) f(s, s)

]

.

The above discussion proves the result summarized in the following statement.
Suppose s∗ weakly dominates s in the two-strategy game between s∗ and s for all s

sufficiently close (but not equal) to s∗. Then, for all such s, P (t) converges to δs∗ in the
strong topology if supp(P (0)) = {s∗, s}. The converse is also true.
Theorem 3 is the analogue of the matrix ESS concept developed as a strategy that

resists invasion by a mutant. As noted at the end of Section 2.1, a matrix ESS p∗ is also
related to dynamic stability in the mixed-strategy matrix game model. The corresponding
question here becomes how the conditions of Theorem 1 relate to dynamic stability of the
measure-theoretic replicator equation (1). In the remainder of this section, we consider
dynamic stability of a homogeneous population s∗ in the interior of the strategy space S.
To begin with, we require any initial P (0), with supp(P (0)) sufficiently close to s∗ and

P ({s∗}) > 0 initially, to converge to δs∗ in the strong topology.
6 Weak domination is no

longer sufficient in general (although it remains a necessary condition since the converse
of Theorem 3 must still hold). To see this, consider the mixed-strategy matrix model
with supp(P (0)) = {p∗, p∗ + ǫ(p − p∗), p∗ − ǫ(p − p∗)} and p∗ an ESS of A. Then p = p∗

whenever P ({p∗ + ǫ(p − p∗)}) = P ({p∗ − ǫ(p − p∗)})̇ and ǫ is a small nonzero number
with p∗ ± ǫ(p − p∗) ∈ ∆m. Thus, every such state with ǫ small is a rest point of the
replicator dynamic and so P (t) does not converge to δp∗ . At best δp∗ may be neutrally
stable; although, in this mixed strategy model the population mean strategy does converge
to p∗ (see (3)).
To avoid this type of neutral stability, let us assume that, for all s sufficiently close

(but not equal) to s∗, s∗ strongly dominates s in the two-strategy game between s∗ and
s. That is, for all such s,

f(s∗, s∗) > f(s, s∗)
f(s∗, s) > f(s, s).

(6)

6In measure theory, a measure P is absolutely continuous with respect to Q if, for all B ∈ B, P (B) > 0
implies Q(B) > 0. Thus, the assumption P ({s∗}) > 0 states that δs∗ is absolutely continuous with respect
to P as a measure.
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In particular, from the first inequality, s∗ is locally a strict NE. For technical reasons (see
Remark 1 below), we will also assume that this domination is determined by the second
order Taylor expansion of f(x, y) and that s∗ is in the interior of S. In particular, the
function f(x, y) has continuous partial derivatives up to second order. For example, when
S is a subset of R, the Taylor expansion is

f(s, y) = f(s∗, s∗) + f1 (s− s
∗) + f2 (y − s

∗) (7)

+
1

2

[

f11 (s− s
∗)2 + 2f12 (s− s

∗) (y − s∗) + f22 (y − s
∗)2 + h.o.t.

]

where f1 is the first order partial derivative of f(x, y) evaluated at (s
∗, s∗) with respect to

the first variable, etc. Since s∗ is in the interior of S, f1 = 0. By ignoring the higher order
terms, the two inequalities in (6) become

f11 < 0 and f11 + 2f12 < 0 (8)

respectively.
With these assumptions, we then have the following result.
Suppose s∗ is in the interior of S ⊂ Rn and that domination in the two-strategy game

between s∗ and s for all s sufficiently close (but not equal) to s∗ is determined by the
second order Taylor expansion of f(x, y) about x = y = s∗. If P ({s∗}) > 0 initially,
supp(P (0)) is sufficiently close to s∗ and s∗ satisfies (6) for all s in a neighborhood of s∗,
then P (t) converges to δs∗ in the strong topology.
Proof. We restrict the proof here to the case of a one dimensional strategy space (i.e. S
is a compact subset of R). The general proof is in the Appendix. From (1),

dP

dt
({s∗}) = P ({s∗}) (π(δs∗, P )− π(P, P ))

= P ({s∗})

(∫

S

f(s∗, y)P (dy)−

∫

S

∫

S

f(s, y)P (dy)P (ds)

)

= P ({s∗})

∫

S

∫

S
(f(s∗, y)− f(s, y))P (dy)P (ds).

From (7),

f(s∗, y)− f(s, y) = −
1

2
f11 (s− s

∗)2 − f12 (s− s
∗) (y − s∗) + h.o.t.

∼= −
1

2

[

f11
(

(s− s∗)2 − (s− s∗) (y − s∗)
)

+ (f11 + 2f12) (s− s
∗) (y − s∗)

]

.

Now
∫

S

∫

S

(

(s− s∗)2 − (s− s∗) (y − s∗)
)

P (dy)P (ds) =
∫

S(s − s)
2P (ds) where s =

∫

S sP (ds) is the mean strategy of the population and
∫

S

∫

S (s− s
∗) (y − s∗)P (dy)P (ds) = (s− s∗)2. Thus, from (8),

∫

S

∫

S
(f(s∗, y)− f(s, y))P (dy)P (ds) ∼= −

1

2

[

f11

(∫

S
(s− s)2P (ds)

)

+ (f11 + 2f12) (s− s
∗)2
]

≥ 0

with strict inequality whenever supp(P ) is sufficiently close to s∗, unless s = s∗ and P = δs.
Since P ({s∗}) > 0, dPdt ({s

∗}) > 0 unless P = δs∗ if supp(P (0)) is sufficiently close to s
∗.

Thus P ({s∗}) converges to 1.
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By Theorem 3, if P (t) converges to δs∗ in the strong topology for all initial P (0) with
support sufficiently close to s∗ and P ({s∗}) > 0, then s∗ weakly dominates in the two-
strategy game between s∗ and s for all s sufficiently close (but not equal) to s∗. This gives
a partial converse of Theorem 3. In the special case when there are no terms higher than
quadratic in the Taylor expansion of f(x, y), the proof of Theorem 3 immediately shows
the following result on global convergence.
If f(x, y) is a quadratic polynomial and s∗ strongly dominates s in the two-strategy

game between s∗ and s for all s sufficiently close (but not equal) to s∗, then P (t) converges
to δs∗ in the strong topology whenever s

∗ is in the interior of S ⊂ Rn and P ({s∗}) > 0.

The negativity conditions on f11 and f11 + 2f12 in (8), that follow from the Taylor
expansion of (6) when S is one dimensional, have received considerable attention in the
coevolutionary literature. The first is often called the ESS criterion for s∗ when the payoff
function is nonlinear in its first variable since it implies that a monomorphic population
s∗ cannot be invaded by a rare mutant strategy s, paralleling the intuition developed by
Maynard Smith (1982). However, as remarked earlier, this term is potentially ambiguous
and so the phrase “local strict NE” is preferred.
The second negativity condition is that s∗ is a NIS (neighborhood invader strategy)

(McKelvey and Apaloo, 1995; Apaloo, 1997). It is interesting to note that together these
two inequalities imply that f11 + f12 < 0, which is one of the early criteria (Eshel, 1983)
for stability of homogeneous populations called CSS (continuously stable strategy).
Situations where the Taylor expansion is not valid have also been considered. For

example, Seymour (2000) has strengthened the strictness concept to that of a super-strict
NE whereby, for some ε > 0, f(s∗, s∗) > f(s, s∗) + ε whenever s �= s∗. In particular, f
is not continuous in its first variable. However, if f is still continuous in its second first
variable, f(s∗, y) − f(s, y) > 0 for all (s, y) sufficiently close (but not equal) to (s∗, s∗)
with s different than s∗. The above method of proof then shows Theorem 3 remains valid
in these circumstances, a result that also follows from Seymour’s analysis.
Theorems 3 and 3 cannot be extended to initial P (0) that have most of their support

near s∗. To see this, consider the following example taken from Oechssler and Riedel (2002)
who considered only one dimensional continuous strategy spaces. Let f(x, y) = −x2+x2y2.
It is straightforward to confirm that s∗ = 0 strongly dominates s in the two-strategy game
between s∗ and s for all 0 <| s |< 1. However, dPdt ({s

∗}) < 0 if supp(P (0)) = {s∗, s}
and P ({s})s4 − s2 > 0, and so P (t) does not converge to δs∗ in the strong topology for
all initial P (0) if | s |> 1. The problem here is that initial states can be close to δs∗ in
the strong topology without the Hausdorff distance (see Section 4 below) between their
compact supports being small.
This problem led Oechssler and Riedel (2002) to consider other topologies7 on the set of

probability measures and introduce other stronger static conditions that potentially imply
dynamic stability with respect to this topology. Their most promising static concept (see
evolutionary robustness at the end of Section 4) is based on intuitive dynamic stability
for initial P (0) that allow for “both a large change of strategic play by a small fraction of
players as well as a small change of strategic play by a large fraction of the population”
(which is an informal description of the weak topology). Unfortunately, they were unable
to prove a general dynamic stability result which gives a main impetus for the approach
adopted in this paper.

7Specifically, they consider the weak topology whereby P (t) converges to P in the weak topology if∫
S
g(s)dP (t)(s) converges to

∫
S
g(s)dP (s) for all continuous functions g on S. Then P (t) converging to P

in the strong topology implies weak convergence but not conversely.
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Oechssler and Riedel (2002) also provide an example to show that the local strict NE
condition, f11 < 0, is not sufficient for even “local” dynamic stability with respect to
the weak topology when there is a continuous strategy space. Specifically, with f(x, y)
the quadratic polynomial −x2 + 4xy, δs∗ with s

∗ = 0 is a local strict NE but nearby
(with respect to the weak topology) initial distributions P (0) do not converge to δs∗ . This
contrasts to the situation for finite strategy spaces where the local asymptotic stability of
a (local) strict NE is one of the main results of the Folk Theorem of Evolutionary Game
Theory (Hofbauer and Sigmund, 1998; Cressman, 2003).

4 Stability of Dimorphic Populations

In contrast to the study of stability for monomorphic populations P ∗ = δs∗ , very little
research has been done that analyzes the dynamic stability of a general equilibrium of
the replicator dynamic. Although the main result (Theorem 4 below) applies to all P ∗

with finite support, we concentrate here on the most elementary extension; namely, when
supp(P ∗) has two strategies {s∗, r∗} (hence, a dimorphism). To generalize Theorem 3, we
want conditions for which P (t) converges to P ∗ in the strong topology if P ({s∗})P ({r∗}) >
0 initially and supp(P (0)) is sufficiently close to {s∗, r∗}.8

In particular, when supp(P (0)) = {s∗, r∗}, P ∗ must be globally asymptotically stable
for the one-dimensional replicator dynamic which is

dP

dt
({s∗}) = P ({s∗})P ({r∗}) [(f(s∗, s∗)− f(s∗, r∗))P ({s∗}) + (f(r∗, s∗)− f(r∗, r∗))P ({r∗})] .

from (1). This is the replicator dynamic for the two-strategy matrix game with payoff
matrix

A =

[

f(s∗, s∗) f(s∗, r∗)
f(r∗, s∗) f(r∗, r∗)

]

.

It is well-known there is an interior equilibrium (p∗1, p
∗
2) = (P ({s

∗}), P ({t∗})) given by

p∗1 =
f(s∗, r∗)− f(r∗, r∗)

f(s∗, r∗)− f(r∗, r∗) + f(r∗, s∗)− f(s∗, s∗)

p∗2 =
f(r∗, s∗)− f(s∗, s∗)

f(s∗, r∗)− f(r∗, r∗) + f(r∗, s∗)− f(s∗, s∗)

if and only if (f(s∗, r∗)− f(r∗, r∗)) (f(r∗, s∗)− f(s∗, s∗)) > 0. Moreover, (p∗1, p
∗
2) is globally

asymptotically stable if and only if f(s∗, r∗) > f(r∗, r∗) and f(r∗, s∗) > f(s∗, s∗). These
inequalities, which we assume are valid throughout the remainder of this section, assert
(p∗1, p

∗
2) is the unique ESS of the 2× 2 payoff matrix A.
Suppose this dimorphism is invaded by a mutant strategy s near s∗ or r∗. The replicator

dynamic is now with respect to the 3× 3 payoff matrix
⎡

⎣

f(s∗, s∗) f(s∗, r∗) f(s∗, s)
f(r∗, s∗) f(r∗, r∗) f(r∗, s)
f(s, s∗) f(s, r∗) f(s, s)

⎤

⎦ . (9)

8We take the Hausdorff distance (Gulick, 1992) as a measure of closeness between two com-
pact sets. Since {s∗, r∗} is contained in supp(P (0)), the Hausdorff distance between these sets is
maxs∈supp(P(0)) (min{| s − s

∗ |, | s− r∗ |}). For the homogeneous equilibria of Section 3, the Hausdorff
distance between the supports of P (0) and δs∗ is maxs∈supp(P(0)){| s− s

∗ |}.
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Conditions for local asymptotic stability of (p∗1, p
∗
2, 0) are reasonably well understood. For

example, we need that the invading strategy has no higher payoff than the two resi-
dent strategies at equilibrium (i.e. p∗1f(s, s

∗) + p∗2f(s, r
∗) ≤ p∗1f(s

∗, s∗) + p∗2f(s
∗, r∗) =

p∗1f(r
∗, s∗) + p∗2f(r

∗, r∗)). We will in fact assume p∗1f(s, s
∗) + p∗2f(s, r

∗) �= p∗1f(s
∗, s∗) +

p∗2f(s
∗, r∗) if s /∈ {s∗, r∗} to avoid technical complications.9 Then, (p∗1, p

∗
2, 0) is locally

asymptotically stable if and only if

p∗1f(s, s
∗) + p∗2f(s, r

∗) < p∗1f(s
∗, s∗) + p∗2f(s

∗, r∗) = p∗1f(r
∗, s∗) + p∗2f(r

∗, r∗). (10)

These conditions state that (p∗1, p
∗
2, 0) is a local quasi-strict NE (i.e. a quasi-strict NE of

(9) for all s near s∗ or r∗) and correspond to the first inequality in (6)
The inequality condition in (10) is also the frequency version (Vincent and Cressman,

2000) of the ESS maximum principle for a coalition of two developed for coevolutionary
population dynamics by Vincent and co-workers (see, for example, Vincent et al. (1996)
and the references therein). We do not use this designation to avoid possible confusion
with the matrix ESS concept. Heuristically, the maximum principle states that the “fit-
ness generating function” as a function of s, p∗1f(s, s

∗) + p∗2f(s, r
∗), corresponding to this

dynamic attains its local maximum value at precisely s∗ or r∗.
Conditions for global asymptotic stability of (p∗1, p

∗
2, 0) are not so precise. Here, we

concentrate on the following concept which implies global asymptotic stability of (p∗1, p
∗
2, 0)

by applying Theorem 4 below to the dimorphic case. At this point, it should also be
emphasized again that the following theory (especially Theorem 4) is developed for any
P ∗ with finite support and not only for the dimorphic (or monomorphic) model.
The probability measure P ∗ ∈ ∆(S) is locally superior if, for all other P with support

sufficiently close to the support of P ∗, π(P ∗, P ) > π(P, P ).
Weibull (1995) defined the concept of locally superior for matrix game models and

showed a p∗ ∈ ∆m is locally superior if and only if p∗ is a matrix ESS. His definition
(that π(p∗, p) > π(p, p) for all p sufficiently close (but not equal) to p∗) is equivalent to
Definition 4 in the mixed strategy matrix model if we only consider those P for which the
mean strategy p is different from that of P ∗ since π(P,Q) = π(p, q).
By appropriate choices of P , Definition 4 includes our development so far of stability

in the dimorphic model with supp(P ∗) = {s∗, r∗}. First, by taking supp(P ) = {s∗, r∗},
we find local superiority implies that f(s∗, r∗) > f(r∗, r∗) and f(r∗, s∗) > f(s∗, s∗) (i.e.
(p∗1, p

∗
2) is globally asymptotically stable for the two-strategy game between s

∗ and r∗).
Also, if P is of the form (1 − ε)P ∗ + εδs for some 0 < ε < 1, local superiority implies
that P ∗ is a locally quasi-strict NE for the three-strategy game with payoff matrix given
by (9). Moreover, when Definition 4 is applied to a monomorphic P ∗ = δs∗ , P

∗ is locally
superior if and only if s∗ strictly dominates s in the two person game between s and s∗

whenever s is sufficiently close to s∗ and domination is determined by the second order
Taylor expansion of f(x, y). This is essentially what is proven in Theorem 3.
Suppose P ∗ is a locally superior probability measure with finite support. If supp(P (0))

is sufficiently close to supp(P ∗) and P ({s∗}) > 0 initially for all s∗ ∈supp(P ∗), then P (t)
converges to P ∗ in the strong topology.
Proof. We only provide the proof for the case where supp(P ∗) = {s∗, r∗}. The gen-
eral proof follows analogously. Consider the function V : ∆(S) → R given by V (P ) ≡
P ({s∗})p

∗

1P ({r∗})p
∗

2. A straightforward calculation shows that, under the assumptions
in the statement of the theorem, 1V V̇ = π(P

∗, P ) − π(P, P ) > 0 if P �= P ∗. Thus

9This assumption has the unfortunate consequence that our method is not directly applicable to the
mixed strategy matrix model of Section 2.1 since payoff linearity there implies p∗1f(s, s

∗) + p∗2f(s, t
∗) =

p∗1f(s
∗, s∗) + p∗2f(s

∗, t∗) if s is on the line segment from s∗ to t∗.

9



V (P ) is strictly increasing toward its unique maximum attained when P ({s∗}) = p∗1 and
P ({r∗}) = p∗2 (i.e. when P = P

∗). Since ‖ P − P ∗ ‖≡ 2max{1− P ({s∗, r∗}), P ∗({s∗})−
P ({s∗}), P ∗({r∗})− P ({r∗})} from (4), P converges to P ∗ in the strong topology.

Domination conditions may be used in place of local superiority to show P (t) converges
to P ∗ in the strong topology. However, we can no longer expect s∗ to dominate all
strategies in supp(P (0)) as in Theorems 3 and 3 since it does not dominate r∗ in the two-
strategy game between s∗ and r∗.10 Instead, we look for dominance of nearby strategies
as follows. Suppose supp(P ∗) = {s∗, r∗} and, in the game with strategy set supp(P (0)),
s∗ strictly dominates s for all other s near s∗ (i.e. f(s∗, y) > f(s, y) for all y ∈supp(P (0)))
and r∗ strictly dominates r for all other r near r∗. Then, if B is a compact set sufficiently
close to and disjoint from s∗ with P (B) > 0,

d

dt

(

P (B)

P ({s∗})

)

=
P ({s∗})

∫

B (π(s, P )− π(P, P ))P (ds)− P ({s
∗}) (π(s∗, P )− π(P, P ))P (B)

(P ({s∗}))2

=
1

(P ({s∗}))2

∫

B
(π(s, P )− π(s∗, P ))P (ds)

=
1

(P ({s∗}))2

∫

B

∫

S
(f(s, y)− f(s∗, y))P (ds)P (dy)

< 0.

Thus
P (B)
P ({s∗}) is monotone decreasing and so P (B) must converge to 0. Similarly, P (C) con-

verges to 0 for all compact sets sufficiently close to and disjoint from r∗. Thus P ({s∗, r∗})
converges to 1 and we already know that, for this two strategy game, we have convergence
to P ∗ in the strong topology. That is, we have shown the following result.
Suppose there are m strategies in the support of P ∗ and P ∗ is a globally asymptot-

ically stable equilibrium in the corresponding m−strategy game. Furthermore, suppose
supp(P ∗) is covered bym disjoint open sets each containing one element s∗ of this support
and s∗ strictly dominates every other nearby s in this cover (in the game whose strategy
set is the entire cover). If supp(P (0)) is sufficiently close to supp(P ∗) and P ({s∗}) > 0
initially for all s∗ ∈supp(P ∗), then P (t) converges to P ∗ in the strong topology.
Theorem 4 demonstrates how difficult it is to get dynamic stability results for monomor-

phic δs∗ if the supp(P (0)) is not restricted to be close to s
∗. In particular, by Theo-

rems 3 and 3, the assumptions of Theorem 4 also imply that each monomorphic δs∗ with
s∗ ∈supp(P ∗) is dynamically stable for all initial P (0) with support sufficiently close to
s∗ and P ({s∗}) > 0. That is, a small perturbation far away from a dynamically stable δs∗

has the potential to destabilize the monomorphism. This led Oechssler and Riedel (2002)
to generalize Definition 4 by calling P ∗ evolutionarily robust if π(P ∗, P ) > π(P, P ) for all
other P sufficiently close to P ∗ in the weak topology. They then proved an analogous
result to Theorem 4. However, as we have just argued, evolutionary robustness is a very
strong assumption that will be difficult to satisfy for most interesting payoff functions
(besides those that are linear as in the matrix game model).

10Furthermore, p∗1s
∗ + p∗2r

∗ does not dominate s∗ or r∗ either, so there is no elementary method to
confirm
π(P ∗, P )− π(P,P ) =

∫
S

∫
S
(p∗1f(s

∗, y) + p∗2f(r
∗, y) − f(s, y))P (dy)P (ds)

is positive (i.e. P ∗ is locally superior).
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5 Conclusion

Predicting the behaviors of rational individuals involved in game interactions through
analyzing stable equilibria of evolutionary dynamics is a well-accepted approach (Weibull,
1995; Hofbauer and Sigmund, 1998; Cressman, 2003), especially when the game has a
finite number of strategies. When there is a continuous strategy space, conditions on the
game’s payoffs for dynamic stability are not so well known, perhaps because there is no
general consensus on what constitutes such stability. In this paper, we have taken the
concept to mean that all distributions (with respect to which P ∗ is absolutely continuous
in the sense of measure theory) with support close to the equilibrium distribution P ∗

converge to P ∗ in the strong topology.
From this perspective, Section 2 demonstrates that our concept is a natural extension of

the finite strategy model. Sections 3 and 4 then develop the stability conditions. Here it is
seen that conditions on f(x, y) for stability in terms of strategy domination (Theorems 3, 3
and 4) emerge naturally by considering finite strategy games contained in the continuous
model. These domination conditions (e.g.(8)) are relatively elementary inequalities to
confirm for a given function f . On the other hand, the intuitive local superiority condition
of Theorem 4 is not as easy to verify but does have the potential to predict rational behavior
when the equilibrium does not have finite (or even discrete) support. For instance, the
candidate stable equilibrium P ∗ for the standard War of Attrition Game (Oechssler and
Riedel, 2001; Cressman, 2003) with continuous strategy space a compact interval has the
entire first half of this interval contained in its support. Oechssler and Riedel [16] show
that this P ∗ is locally superior11 and are able to prove this implies convergence in the
weak topology.
The techniques developed in this paper are more directly applicable to an equilibrium

P ∗ with finite support. They are particularly relevant for the stability analysis of homo-
geneous populations, a topic closely connected to recent work on coevolutionary models
among theoretical biologists. This suggests that the emerging theory of evolutionary dy-
namics on continuous strategy spaces will continue the tradition of evolutionary game
theory that fosters corresponding models and methods in predicting behavior both of
human and of other species.

11They actually show global superiority.
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6 Appendix

Proof of the remainder of Theorem 3. From the assumptions that s∗ is in the
interior of S ⊂ Rn and that domination in the two-strategy game between s∗ and s for
all s sufficiently close (but not equal) to s∗ is determined by the second order Taylor
expansion of f(x, y) about x = y = s∗, we have that the inequalities in (8) must hold
where the second-order partial derivatives are now in the direction from s∗ to s. The first
inequality implies that

∑

i,j

∂2f(x, y)

∂xi∂xj
(si − s

∗
i )
(

sj − s
∗
j

)

< 0

for all s in a neighborhood of s∗ (here the second-order partial derivatives are evaluated

at (s∗, s∗)). That is, the n × n matrix with ij entry ∂2f
∂xi∂xj

≡ fxixj (i.e. the matrix
[

∂2f
∂xi∂xj

]

) is negative definite. Similarly, from the second inequality in (8), the n × n

matrix
[

∂2f
∂xi∂xj

+ ∂2f
∂xi∂yj

+ ∂2f
∂yi∂xj

]

is also negative definite.12

From the second order Taylor expansion,
∫

S

∫

S (f(s
∗, y)− f(s, y))P (dy)P (ds) is now

given by

−
1

2

⎡

⎣

∫

S

∫

S

∑

i,j fxixj

(

(si − s
∗
i )
(

sj − s
∗
j

)

− (si − s
∗
i )
(

yj − s
∗
j

))

P (dy)P (ds)

+
∫

S

∫

S

∑

i,j

(

fxixj + 2fxiyj
)

(si − s
∗
i )
(

yj − s
∗
j

)

P (dy)P (ds)

⎤

⎦

= −
1

2

⎡

⎣

∫

S

∑

i,j

fxixj (si − si) (sj − sj)P (ds) +
∑

i,j

(

fxixj + fxiyj + fyixj
)

(si − s
∗
i )
(

sj − s
∗
j

)

⎤

⎦ .

Since
[

fxixj
]

is negative definite,
∫

S

∑

i,j fxixj (si − si) (sj − sj)P (ds) is negative unless

si = si for all i whenever si ∈supp(P ). Similarly, the negative definiteness of
[

fxixj + fxiyj + fyixj
]

implies
∑

i,j

(

fxixj + fxiyj + fyixj
)

(si − s
∗
i )
(

sj − s
∗
j

)

is negative unless si = s
∗
i for all i.

The remainder of the proof follows as in the main text.

12The use of negative definiteness in the proof is similar to the method used by Meszéna et al. 2001 (see
also Bomze, 1990; Apaloo, 1997). where

∫
S
(si − si) (sj − sj)P (ds) give entries of the covariance of the

population mean strategy.
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