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Abstract 

The work is devoted to the problem of the stochastic stable mutual tracking of motions 

of the real dynamical x-object and some virtual computer z-model under the dynamical 

and informational disturbances. The elaborated algorithms are applied to some typical 

differential games on minimax and maximin for the positional quality index of the 

control process. Results of computer simulation of model problems are presented. 
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Stochastic Stable Mutual Tracking Block for a Real Dynamical 
Object and a Virtual Model-Leader 

Andrew N. Krasovskii 

1. Introduction 

This report is devoted to a problem of stochastic stable mutual tracking of motions of a 

real dynamical x-object and some virtual computer simulated z-model-leader under 

dynamical and informational disturbances. It will be sown how the elaborated block of 

mutual tracking can be applied to some control problems, namely, to solving optimal 

control problems with ensured results. 

 The investigation is based on approaches, methods and constructions from the 

theory of optimal control, the theory of tracking and observation and the theory of 

stochastic processes. 

 The statements of the problems considered here and methods for their solution 

are based on the mathematical formalization developed in Ekaterinburg at the Ural State 

University (USU) and the Institute of Mathematics and Mechanics (IMM) of the Ural 

Branch of the Russian Academy of Science, first of all in works by Academicians 

N.N.Krasovskii and A.I.Subbotin, and their collaborators. 

 The main problem considered here consists in the development of a control block of 

mutual stable stochastic tracking of motions of a real x-object and some computer 

(virtual) z-model-leader. The control dynamical system (the x-object) is described by 

the ordinary differential equation:  

 x
�

 =  A ( t ) x   + f ( t ,u , v) + dinh ( t ) ,  0 ≤ t ≤ T , (1) 

here x  is an n-dimensional phase vector, u  is a vector of control, and v is a vector of 

disturbances satisfying the constraints 

 u ∈P ,  v∈Q . (2) 

P and Q are fixed sets, 

 P = { [1]
u ,…, [ ]M

u }, | [ ]i
u |≤ M% , 

 Q = { [1]
v ,.…, [ ]N

v }, | [ ]i
v | ≤ N% . (3) 

In (1) 0 0t =  and T  are given instants (the beginning and the end of the control 

process), A ( t ) and f ( t , u , v) are functions piecewise continuous in time t , dinh  ( t ) is 

an arbitrary random bounded dynamical disturbance, E { dinh ( t )} ≤  dinδ , E {…} 

stands for the mathematical expectation. 
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We consider the case where the so-called saddle point condition [2] 

 max
v Q∈

min
u P∈

< l , f ( t , u , v)  > =  min
u P∈

max
v Q∈

< l , f ( t , u , v)  > , ∀  l  ∈  nR  (4) 

is not valid for the function f ( t , u , v). So, in the considered case for function 

f ( t , u , v) in (1) there exists a vector * n
l R∈  (or a point [0, ]t T∈ ) such that  

 max
v Q∈

min
u P∈

< *
l , f ( t , u , v)  > ≠  min

u P∈
max

v Q∈
< *

l , f ( t , u , v)  >. (5) 

Here < l
* , f ( t ,u , v)  > denotes the scalar product. 

 It is known that in this case it is effective to use stochastic algorithms of control for 

the construction of the control actions for the x-object and to form the motion of the x-

object coupled with a suitable z-model-leader. 

 We use the well-known  discrete feedback control scheme. Namely, on the time 

interval [0,T] we fix an arbitrary partition 

 ∆{ kt } = { 0 1 10, , , , ,k k K Tt t t t t+= < =K K }, (6) 

and below consider the x-object described by the finite difference equation: 

 x ( 1kt + ) = x ( kt )+( A ( kt ) x ( kt )+ f ( kt , u , v) + dinh ( kt )) t∆ , (7) 

where t∆  = 1kt +  – kt ,  kt ∈∆{ kt } (6). The actions u  = u [ t ]∈  P, v  = v[ t ]∈  Q, 

t ∈[ kt , 1kt + ) are defined through random tests described below. 

 For the  x-object (7) we consider the z-model-leader : 

 z ( 1kt + ) = z ( kt )+( A ( kt ) z ( kt )+
pq

f% ( kt )) t∆ , (8) 

where  

 
pq

f% ( kt ) = 
1

M

i=

∑ [ ] [ ]

1

( , , )
N

i j
k i j

j

f u v p qt
=

∑ . (9) 

In (8), (9)  ][i
u ∈P ,  

][ j
v ∈Q   and the numbers ip  and jq  satisfy the conditions 

 
1

M

i

i

p
=

∑ = 1, ip  ≥  0,       
1

N

j

j

q
=

∑ = 1, jq  ≥  0 . (10) 

The numbers ip  and jq  are connected with the probabilities that define the random 

choice of the actions u and v  for the x-object (7). 

 The main problem discussed in this report is to construct and to justify a control 

algorithm (using some stochastic mechanism) that provides the stable mutual tracking 

of the motions of the x-object (7) and z-model-leader (8). 

 Note that we will also consider the case where position of the x-object (7) is 

estimated with some informational error inf∆  such that at each time moment 

kt ∈∆{ tk } (6), 0, ...,k K= , we know only the distorted position { kt , *[ ]kx t }, where 

 *
inf[ ] [ ] [ ]k k kx t x t t= +∆ , (11) 

and ][inf kt∆  is a random restricted vector. 

We use the following well-known positional feedback scheme of control: 
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Let us note that these two values: the dynamical disturbance dinh  in the system (1) and 

the informational error inf∆  in the scheme are the original elements of this work. 

2. Construction of the control actions for x-object and z-model 

At first let us describe probability tests that define the random choice of the action u  = 

u [ kt ]∈  P, t ∈[ kt , 1kt + ) for x-object. 

 As the ideal case, we accept that at the moment tk  one can make an instant 

probability test on choosing a vector u [ t ]∈  P. 

 This test is defined by the suitable probabilities { p
i

0
}, i.e. 

 P ( u [ kt ] = [ ]i
u ) = 

0

ip ,      1, ...,i M= , (12) 

where the symbol P(…) denotes the probability. 

Let us choose the probabilities 0

ip ;  0

ip  ≥  0 , 0

ip∑ = 1, from the following extremal 

minimax shift [3] condition: 

 
p

min
q

max < *
l [ kt ], 

1

M

i=

∑ [ ] [ ]

1

( , , )
N

i j

k i j

j

f t u v p q
=

∑ > =  

= < *
l [ kt ], ∑

=

M

i 1

*[ ] [ ] 0

1

( , , )
N

i j

k i j

j

f t u v p q
=

∑  (13) 

under the conditions 

1

M

i

i

p
=

∑ = 1, ip  ≥  0,       
1

N

j

j

q
=

∑ = 1, jq  ≥  0. 

In (13) we have 

 *
l [ kt ] = *

x [ kt ] – z [ kt ] (14) 

x - object 

*
inf[ ] [ ] [ ]k k kx t x t t= +∆  - informational image 

x [ t ] 

*[ ]kx t
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Secondly, let the “control action” q
0
[ kt ] for z-model (this model is formed by 

including into the control loop of the computer simulations) is chosen from the extremal 

maximin shift condition 

 max
q

min
p

< *
l [ kt ], 

1

M

i=

∑ [ ] [ ]

1

( , , )
N

i j

k i j

j

f t u v p q
=

∑ > =  

 = < *
l [ kt ], 

1

M

i=

∑ 0[ ] [ ] *

1

( , , )
N

i j

k i j

j

f t u v p q
=

∑ . (15) 

Probabilities { jq } that define the stochastic actions (disturbances) v [ kt ] on x-object, 

and “actions” { ip } for z-model can be arbitrary: 
1

N

j

j

q
=

∑ = 1, jq  ≥  0, 
1

M

i

i

p
=

∑ = 1,  

ip  ≥  0. 

3. Mutual tracking in the combined process {x-object, z-model-
leader} 

The following Theorem holds: 

Theorem. Under the described above choice of the random actions 0
u [ kt ] for x-

object and “actions” 0q [ kt ] for the z-model, for any chosen beforehand numbers * 0V >  

and 0 1β< <  there exist sufficiently small numbers 0 0δ > , inf 0δ > , 0dinδ > , and 

0δ>  such that the following inequality holds: 

 P (V ( ,t l [ t ]) *
V≤ , t∀ ∈ [ 0, T ]) 1 β≥ − , (16) 

if l [0] 0δ≤ , E {| l [ t ] – *
l [ t ]| | l [ t ]} ≤ infδ  for any admissible l [ t ] = x [ t ] – z [ t ], 

E {| dinh ( t )|} ≤ infδ , ∈t [ 0, T ], and  t∆  = 1kt + – kt δ≤ . Here 

 V ( t , x [ t ], z [ t ]) = 
2

[ ] [ ]x t z t−  2 t
e

λ− . (17) 

This Theorem has the following informal sense: 

 If we choose at each time moment kt , 0, ...,k K=  the control action u [ kt ] ∈ P  (3) 

as a result of random test with the probability { 0p } from (13), i.e. 

 ( u [ kt ] = [ ]i
u ∈ P ) = 0

ip , (18) 

and choose for the z -model the collection { 0

jq } (15), then for each admissible v [ t ] 

∈Q , kt ≤ t ≤ 1kt +  for the x -object and collection { ip } for the z -model the motions of 

the x -object :    x [ t ],  0≤ t ≤T    and of the z -model leader:  z [ t ],  0≤ t ≤T will be 

close to each other in the sense (17) on the whole time interval [0,T] with the 

probability arbitrarily close to one. 
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4. Proof of the main result 

Lemma. For the random actions 0
u [ kt ] of the x -object and “actions” 0q [ kt ] of the z -

model the following estimation is valid:  

 1, 1{ ( [ ]) | [ ]} ( , [ ])k k k k kE V t l t l t V t l t+ + ≤ +  

 1 2 inf 3( )dinC t C C tδ δ+ ∆ + + ∆ ,    0,..., 1k K= − , (19) 

in particular,  

 1, 1{ ( [ ])} { ( , [ ])}k k k kE V t l t E V t l t+ + ≤ +  

 1 2 inf 3( )dinC t C C tδ δ+ ∆ + + ∆ ,    0,..., 1k K= − , (20) 

where 1C , 2C , 3C  are positive constants, and 1k kt t t+∆ = − , infδ , dinδ  are sufficiently 

small positive numbers. 

Proof of Lemma. Let at the time moment kt  the admissible random vectors 

[ ] [ ] [ ]k k kl t x t z t= −  and * *[ ] [ ] [ ]k k kl t x t z t= −  be realized. Then according to dynamics 

of ][tx  and ][tz  we have 

 1[ ] [ ]k kx t x t+ = +  

 0( ( ) [ ] ( , [ ], [ ]) ( ))k k k k k din kA t x t f t u t v t h t t+ + + ∆ ,  (21) 

 01[ ] [ ] ( ( ) [ ] ( ))k k k k kpq
z t z t A t z t f t t+ = + + ∆% , (22) 

where, as is described above, 0[ ]ku t  is the result of random choice with probabilities 
0 0{ }ip p=  that satisfy the minimax condition (13), i.e.  

 0 [ ] 0( [ ] }i

k iP u t u P p= ∈ = 1,...,i M= ; (23) 

uzx,  

0t  kt  1+kt  T

][ ktx  
][ 1+ktx  

][ ktz  
][ 1+ktz  

t  
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[ ]kv t  is the result of random choice with some admissible probabilities { }jq q= , i.e. 

 [ ]( [ ] }j

k jP v t v Q q= ∈ = ,    1,...,j N= ; (24) 

)( kdin th  is a random dynamic disturbance independent from ][ ktl  and ][*

ktl ; )(
~

kpq tf  is 

defined in (9);  p  is some admissible "action" for the z-model; 0q  is the "action" that 

satisfies the maximin condition (15). 

From (21), (22) for 1 1 1[ ] [ ] [ ]k k kl t x t z t+ + += −  we deduce 

 1

1 1( , [ ]) ( , [ ])k

k

t

t k k k kV V t l t V t l t+

+ +∆ = − =  

 1
2 22 2

1[ ] [ ]k kt t

k ke l t e l t
λ λ+− −

+= − =  

1
2 22 2

1( [ ] [ ] )kt t

k ke l t e l t
λ λ+− ∆

+= − =  

12 2(| [ ] | 2 [ ], ( ) [ ]kt

k k k ke l t l t A t l t t
λ +−= + 〈 〉∆ +  

2 22 2( ) [ ] [ ]t

k k kA t l t t e l t
λ∆+ ∆ − +  

2 22 2( ) ( )k din kf t t h t t+∆ ∆ + ∆ +  

22 [ ], ( ) 2 ( ), ( )k din k k din kl t h t t f t h t t+ 〈 〉∆ + 〈∆ 〉∆ +  

2 22 ( ) [ ], ( ) 2 ( ) ( ), ( )k k k k k din kA t l t f t t A t l t h t t+ 〈 ∆ 〉∆ + 〈 〉∆ +  

2 [ ], ( ) )k kl t f t t+ 〈 ∆ 〉∆ , (25) 

where 

0

0( ) ( , [ ], [ ]) ( )k k k k kpq
f t f t u t v t f t∆ = − % . (26) 

Now note that 2 2 2 21 2 2 ( )te t t o tλ λ λ∆ = + ∆ + ∆ + ∆ , where 2( ) 0o t∆ > . Remind also 

that ( )A tλ> , [0, ]t T∈ . So, the following relations are valid: 

 
2

( ) 2 [ ], ( ) [ ]k k k kl t l t A t l t t+ 〈 〉∆ +  

2 22 2( ) [ ] ( )t

k k kA t l t t e l t
λ∆+ ∆ − ≤  

2 2 2 2 2( ) 2 ( ) ( ) ( ) ( )k k k k kl t l t A t t l t A t t≤ + ∆ + ∆ −  

2 2 2 2 2[ ] 2 [ ] [ ]k k kl t l t t l t tλ λ− − ∆ − ∆ =  

2 2 2 2[ ] [2( ( ) ) ( ( ) 2 ) ] 0k k kl t A t t A t tλ λ= − ∆ + − ∆ ≤ . (27) 
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Because of the given above properties of the function ( , , )f t u v , there exists a number 

0R> , such that ( , , )f t u v R≤ , [0, ]t T∈ , u P∈ , v Q∈ . Thus, the following 

inequality holds: 

( ) 2kf t R∆ ≤ . (28) 

Remind also that the considered random values )( kdin th  and ][ ktl  satisfy the conditions: 

 ( )dinh t H≤ ,       { }( )din dinE h t δ≤ ,       [0, ]t T∈ , (29) 

 [ ]kl t L≤ ,       0,...,k K= . (30) 

So, from (25) due to (27)-(30) we deduce 

 1 2

1
k

k

t

tV C t+∆ ≤ ∆ +  

 12
(2 ( ) 2 [ ], ( ) )kt

din k k ke L h t t l t f t t
λ +−+ ∆ + 〈 ∆ 〉∆ , (31) 

where 2 2

1 4 4 4 2C R H RH LR LHλ λ= + + + + . 

The estimation (31) is valid for any realizations of the dynamic disturbances )( kdin th  

and for any results of the random trial for the choice of actions ][0

ktu  and ][ ktv . Thus, 

from (31), taking into account the stochastic independence of )( kdin th  from ][ ktl  and 

][*

ktl , we obtain the estimation: 

 { }1 * 2

1 3| [ ], [ ]k

k

t

t k k dinE V l t l t C t C tδ+∆ ≤ ∆ + ∆ +  

 { }12 *2 [ ], ( ) | [ ], [ ]kt

k k k ke l t E f t l t l t t
λ +−+ 〈 ∆ 〉∆ , (32) 

where 3 2C L= . Due to (23), (24) and (26) we have 

 { }*( ) | [ ], [ ]k k kE f t l t l t∆ =  

 { }0

0 *( , [ ], [ ]) ( ) | [ ], [ ]k k k k k kpq
E f t u t v t f t l t l t= − =%  

 0 0( ) ( )k kp q pq
f t f t= −% % . (33) 

Now, according to the choice of probabilities 0p  (see (13)), "actions" 0q (see (15)), and 

because of (28), (33), we deduce 

 { }*[ ], ( ) | [ ], [ ]k k k kl t E f t l t l t t∆ ∆ =  

 0 0

*[ ] [ ], ( ) ( )k k k kp q pq
l t l t f t f t t= − − ∆ +% %  

 ( )0 0

*[ ], ( ) [ ], ( )k k k kp q pq
l t f t l t f t t+ − ∆ ≤% %  

 *2 [ ] [ ]k kR l t l t t≤ − ∆ . (34) 
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Remind that the random vector *[ ]kl t  satisfies the condition: 

{ }*

inf[ ] [ ] | [ ]k k kE l t l t l t δ− ≤ . Using this and the formula of iterated mathematical 

expectations, from (22) and (24) we obtain 

 { } { }{ }1 1 *| [ ] | [ ], [ ] | [ ]k k

k k

t t

t k t k k kE V l t E E V l t l t l t+ +∆ = ∆ ≤  

 2

1 3 2 infdinC t C t C tδ δ≤ ∆ + ∆ + ∆ , (35) 

where 4 4C R= . From (35) we conclude 

 { } { }1

1 1( , [ ]) | [ ] ( , [ ]) | [ ]k

k

t

k k k k k t kE V t l t l t E V t l t V l t+

+ + = +∆ =  

 { }1( , [ ]) | [ ]k

k

t

k k t kV t l t E V l t+= + ∆ ≤  

 1 2 inf 3( , [ ]) ( )k k dinV t l t C t C C tδ δ≤ + ∆ + + ∆ . 

The proof of Lemma is complete. 

Proof of Theorem. Take the numbers *

*0 V V< < , such that for any possible 

realization [ , ] [ , ] [ , ]l t x t z tω ω ω= −  the variation of the vector 4 4C R=  satisfies the 

inequality 

 * * *

* * *( , [ , ]) ( , [ , ])V l V l V Vτ τ ω τ τ ω− < −  (36) 

for all * 1[ , ]k kt tτ +∈ , *

* 1( , ]ktτ τ +∈ , 0,...,k K= . 

Consider the induction on kt  from 0k =  to k K= . 

For the first step from 0 0t =   to 1t t=∆  according to results of Lemma and because of    

relations 
2

(0, [0, ]) [0]V l lω = , 0[0]l δ≤ , t δ∆ ≤ , we have the estimation: 

 { } 2

1 1 0 1 2 inf 3( , [ , ]) ( )dinE V t l t C C C tω δ δ δ δΩ ≤ + + + ∆ . (37) 

Here { }...EΩ  is the mathematical expectation, i.e. averaging, with respect to all possible 

elementary events ω∈Ω . Select a subset 1Ω ⊂Ω  for which the following inequality is 

valid: 

 1 1 *( , [ , ])V t l t Vω ≤ ,       1ω∈Ω . (38) 

Then, using Chebyshev's inequality and according to (37), we deduce 

 2

1 1 0 1 2 inf 3 *( ) ( ) ( ( ) ) /dinP P P C C C t Vδ δ δ δ= Ω − Ω ≤ + + + ∆ . (39) 

Inequalities (38) and (39), if we take into account (36), means that the probability of all 

realizations [ , ]l t ω  that for all 0 1[ , ]t t t∈  remain in the domain *( , )V t l V≤ , satisfies the 

inequality  

 ( )*

0 1 1( , [ , ]) , [ , ] 1P V t l t V t t t Pω ≤ ∀ ∈ ≥ − ≥  

 2

0 1 2 inf 3 1 *1 ( ( ) ) /dinC C C t Vδ δ δ δ≥ − + + + . (40) 
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Now by induction, suppose that for the time moment kt T<  we have the inequality: 

 ( )*

0( , [ , ]) , [ , ]kP V t l t V t t tω ≤ ∀ ∈ ≥  

 2

0 1 2 inf 3 *1 ( ( ) ) /din kC C C t Vδ δ δ δ≥ − + + + . (41) 

Let kΩ  be the set of all elementary events ω  for which inequality (41) and the 

following inequality hold 

 *( , [ , ])k kV t l t Vω ≤ ,       kω∈Ω . (42) 

Note that here, by analogy with Lemma, we can use the estimation 

 { } { }1 1( , [ , ]) ( , [ , ])
k kk k k kE V t l t E V t l tω ωΩ + + Ω≤ +  

 1 2 inf 3( )dinC t C C tδ δ+ ∆ + + ∆ . (43) 

Select the subset 1k k+Ω ⊂Ω  such that the following inequality holds: 

 1 1 *( , [ , ])k kV t l t Vω+ + ≤ ,       1kω +∈Ω . (44) 

From (41)-(44), using again the Chebyshev's inequality and (36), we obtain the 

inequality 

 ( )*

0 1( , [ , ]) , [ , ]kP V t l t V t t tω +≤ ∀ ∈ ≥  

 2

0 1 2 inf 3 1 *1 ( ( ) ) /din kC C C t Vδ δ δ δ +≥ − + + + . (45) 

According to the method of mathematical induction we conclude that the inequality (41) 

holds for any Kk ,...,0= . 

From (41) for Kk =  we obtain 

 ( )*

0( , [ , ]) , [ , ]P V t l t V t t Tω ≤ ∀ ∈ ≥  

 2

0 1 2 inf 3 *1 ( ( ) ) /dinC C C T Vδ δ δ δ≥ − + + +  . (46) 

The inequality (16) follows from (46) if we take 0δ , δ , infδ , and dinδ , such that 
2

0 1 2 inf 3 *( )dinC C C T Vδ δ δ δ β+ + + ≤ . 

The proof of Theorem is complete. 
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5. Model problem - 1 

The following example illustrates the considered algorithm of mutual tracking of x and 

z-motions. 

The controlled system has the form 

 1x
�

= 2x     

 2x
�

= f ( t , u , v) + dinh  

 0t =0≤ t≤T=4 

 u ∈P= { [1]
u  = -1,  [2]

u = 1} 

 ∈Q= { [1]
v  = -1,  [2]

v  = 1} 

                                    0.5 u  + 2( )u v+  + v , t ∈  [ 0t ,
4

T
], t ∈[

2

4

T
,
3

4

T
] 

 f ( t , u , v) =   u + 2)( vu +  + 0.5 v , t ∈[
4

T
,
2

4

T
], t ∈[

3

4

t
,T ]. 

Using the considered stochastic algorithm of control under the values of parameters of 

x-object and z-model 1x (0)=-1.0, 2x (0)=1.0, 1z (0)=-0.95, 2z (0)=1.05,  

 

1 0.01k kt t t δ+∆ = − = = , 01.0}{ infinf =≤∆ δE , 01.0})({ =≤ dindin thE δ  we 

obtain the results of computer simulation for the motions of x-object (solid line) and z-

model (dashed line) presented at figure 1. At this figure the phase portrait of the motion 

of x-object and z-model is depicted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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6. Optimal control problem 

Of course these constructed above methods of tracking will not be so important if we 

consider them alone without some informal problem. 

 So, in the next section we apply the elaborated universal algorithm (or block) of 

control that was constructed in the first section for solution of some specific problems. 

At first, we apply the elaborated block of mutual tracking to the solution of some simple 

problems – tracking along the arbitrary curves, then for the solutions of problem with 

optimal ensured results for the given positional quality indexγ . Then we apply it to the 

solution of antagonistic differential games of two players, using the formalizations of 

the theory of differential games developed at USU and IMM in Ekaterinburg.  

 The following model problems and its simulations illustrate the connections of the 

constructed block of mutual tracking with solutions of these concrete problems. In this 

case we use some sub-program that calculate the control actions for z-models-leaders. 

For example, we use the well studied now method of extremal shift on the 

accompanying points [3], designed in Ekaterinburg. 

 In [5] there were prepared a programming toolbox in the MATLAB system. In the 

toolbox we can change the components of the controlled system (1) A ( t ), f ( t ,u , v), 

∆inf , hdin . 

7. Model problem - 2 

We consider the model problems for the following 2-dimensional controlled system: 

 
.

1x  = 2x                                            

 
.

2x  = a( t )u  + b( t ) 2)( vu +  + c( t ) v  + hdin   

where 

 0t =0≤ t≤T=4 

 u ∈P= { ]1[
u  = -1,  ]2[

u = 1}             

 v∈Q= { ]1[
v  = -1,  ]2[

v  = 1} 

 4,    0 ≤  t  ≤  2 

 a( t ) =     0,    2 ≤  t  ≤  4  

 b( t ) = 
2

1
  

               0,    0 ≤  t  ≤  3 

 c( t ) =    2,    3 ≤  t  ≤  4 . 

The quality index is defined by the formula 

 γ  = max  {| 1x [ ]1[
t =1]| , | 1x [ ]2[

t =T=4]|}. 
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 Using the considered stochastic algorithm of control for the x-object and z-model 

with the values of parameters 1x (0)=1.0, 2x (0)=2.0, 1z (0)=0.95, 2z (0)=2.05, 

1 0.01k kt t t δ+∆ = − = = , 01.0}{ infinf =≤∆ δE , 01.0})({ =≤ dindin thE δ , we 

obtain the results of computer simulation for the motions of x-object (solid line) and z-

model (dashed line) presented at Figure 2. At this figure the phase portrait of the motion 

of x-object and z-model is depicted. The optimal guaranteed result defined in [3] for the 

initial position { 10 ,0 xt = (0)=1.0, 2x (0)=2.0} is equal 0ρ (0, x[0])=2.0. The value of the 

quality index .67.1)40],[( =≤≤ ttxγ  

8. Summary 

In this report the following results are obtained: 

1. The block of the mutual stable stochastic tracking for the nonlinear real x-object and 

its suitable computer (virtual) z-model-leader is constructed in the discrete in time t 

feedback positional control scheme. This stable stochastic tracking is based on the 

extremal minimax and maximin conditions. The dynamical system has a random 

dynamical disturbance in the right hand side of the differential equation. In the 

positional feedback control scheme the information image has a random information 

error. It is shown that the closeness between the motions of the object and the model 

is ensured with the probability that is arbitrary close to one. The corresponding 

lemmas and theorems are proved. 

2. Using the constructed block of mutual tracking some concrete optimal control and 

game-control problems are solved.  
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