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Abstract

The paper proves existence theorems for the common Lyapunov function of a family of
asymptotically stable dynamical systems. The theorems generalize and develop the results
announced in [1].
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On the Stability of Families of Dynamical Systems

Nikolay A. Bobylev
Alexander V. Il’in (iline@cs.msu.su)
Sergey K. Korovin (korovin@cs.msu.su)
Vasily V. Fomichev (fomichev@cs.msu.su)

1 Statement of the Problem

In some branches of the control theory, the problem of constructing a common Lyapunov
function for a family of dynamical systems turns up. Such a problem occurs in studies of
the stability of systems with variable structures, in absolute stability problems, in a number
of problems of robust stability, in some problems of fractal compression of information,
and so on [2–9].
This paper describes conditions that guarantee the existence of a common Lyapunov

function for a family of asymptotically stable dynamical systems governed by autonomous
differential equations.
Consider a set of dynamical systems governed by the differential equations:

dx/dt = f(x; µ)
(

x ∈ B ⊂ EN , µ ∈M
)

. (1)

Here x = {x1, . . . , xN} is a point of the N -dimensional Euclidean space E
N ,

B =
{

x ∈ EN : ‖x‖ ≤ 1
}

is the unit ball in EN , µ is a parameter lying in the set M , and

f(x; µ) =
{

f1 (x1, . . . , xN ; µ) , . . . , fN (x1, . . . , xN ; µ)
}

is a vector function assumed to be continuous with respect to x ∈ B for each fixed value
of µ ∈M .
Suppose that, for each µ ∈M , the origin x = 0 is a point of equilibrium for system (1),

and for each µ ∈ M , system (1) has a stationary Lyapunov function V (x; µ) (x ∈ B,
µ ∈ M) defined on B, i.e., a function continuously differentiable with respect to x and
such that V (0; µ) ≡ 0 (µ ∈M); the point x = 0 is a local minimum of the function V (· ; µ),
and

(∇V (x; µ), f(x; µ))< 0 (x ∈ U, x �= 0, µ ∈M) (2)

in some neighborhood U of the origin (here ∇ denotes the gradient operator with respect

to the variable x : ∇ = {∂/∂x1, . . . , ∂/∂xN}). In that follows, we assume for simplicity
that B ⊂ U , i.e.,

(∇V (x; µ), f(x; µ))< 0 (x ∈ B, x �= 0, µ ∈M), (3)

*The work was supported by the Russian Foundation for Basic Research (projects No. 00-01-00641 and
Grant of Scientific School NSH-1986.2003.1), the program Universities of Russia and Integration, and the
program Intellectual Computer Technologies sponsored by the Presidium of Russian Academy of Sciences.
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and x = 0 is a point of strict minimum of the function V (· ; µ) on B. Therefore, for
each µ ∈ M , there exist continuous functions α(· ; µ), β(· ;µ) : [0, 1] → R such that
α(0; µ) = β(0; µ) = 0, α(s; µ) > 0, β(s; µ) > 0 if 0 < s ≤ 1, and

(∇V (x; µ), f(x; µ))≤ −α(‖x‖; µ) (x ∈ B, µ ∈M), (4)

V (x; µ) ≥ β(‖x‖; µ) (x ∈ B, µ ∈M). (5)

Suppose that there exist continuous functions α(·), β(·) : [0, 1] → R and a constant
C > 0 such that α(0) = β(0) = 0 and

α(s, µ) ≥ α(s) > 0, β(s, µ) ≥ β(s) > 0 (0 < s ≤ 1, µ ∈M), (6)

|∇V (x; µ)| ≤ C (x ∈ B, µ ∈M). (7)

By V(µ) (µ ∈ M) we denote the class of continuous functions v : B → R, which satisfy
the conditions

v(0) = 0, (8)

v(x) ≥ β(‖x‖) (x ∈ B), (9)

|v (x1)− v (x2)| ≤ C ‖x1 − x2‖ (x1, x2 ∈ B) , (10)

do not decrease on trajectories of system (1), and whose level surfaces lying in B do not
contain entire trajectories of system (1). The class V(µ) consists of Lyapunov functions
of system with index µ (1) with the Lipschitz property.
It follows from (4)–(10) that V (· ; µ) ∈ V(µ) for each µ ∈ M . For each µ ∈ M , the

class V(µ) is a nonempty closed set in the space C(B) of functions v : B → R continuous
on B. By (10), the class V(µ) is a compact set in C(B).
Since elements of the class V(µ) are Lyapunov functions of system (1), it follows from

the condition

⋂

µ∈M

V(µ) �= � (11)

that the set (1) has a common Lyapunov function.
The forthcoming sections of the paper are devoted to conditions that the meet (11) be

nonempty.

2 Main Theorem

Theorem 1 Suppose that for an arbitrary set of finite parameters µ1, . . . , µk ∈ M and
for arbitrary numbers λ1, . . . , λk ≥ 0 such that λ1 + · · ·+ λk = 1, there exists at least one
number µj ∈ {µ1, . . . , µk} such that

(

k
∑

i=1

λi∇V (x; µi) , f (x; µj)

)

≤ −α(‖x‖) (x ∈ B). (12)

Then the set of dynamical systems (1) has a common Lyapunov function V∗(·) : B → R
satisfying the Lipschitz condition and the inequalities

|V∗(x)| ≥ β(‖x‖) (x ∈ B), (13)

|V∗ (x1)− V∗ (x2)| ≤ C ‖x1 − x2‖ (x1, x2 ∈ B) . (14)
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Proof. Our proof of Theorem 1 is performed by generalizing the well-known Knaster–
Kuratowski–Mazurkiewicz lemma [10]. In view of this, let us recall some definitions.
A topological space X is said to be regular if closed neighborhoods of each point x ∈ X

form a basis of neighborhoods for that point.
A topological space X is said to be paracompact if it is regular, and in each of its open

coverings, one can inscribe a locally finite open covering, i.e., a covering {Ai} such that

each point x ∈ X has a neighborhood U that meets with only a finite number of sets Ai
(in general, the number of sets depends on x and U).

Lemma 1 (the generalized Knaster–Kuratowski–Mazurkiewicz lemma). Let K(α)
(α ∈ A) be a set of nonempty compact sets in a paracompact linear topological space X .
Suppose that there exists a point system xα ∈ K(α) (α ∈ A) with the following property :
for each finite set of parameters α1, . . . , αk ∈ A, the convex hull conv {xα1, . . . , xαk}
belongs to the join of compact sets K (α1) , . . . , K (αk) , i.e.,

conv {xα1 , . . . , xαk} ⊂
k
⋃

i=1

K (αi) . (15)

Then
⋂

α∈A

K(α) �= �. (16)

Proof. Since K(α) (α ∈ A) are compact sets, it suffices to show that the meet of an
arbitrary number of sets of the class K(α) (α ∈ A) is nonempty. Suppose the contrary.
Then

k
⋂

i=1

K (αi) = � (17)

for some set α1, . . . , αk. We set Ai = X\K (αi) (i = 1, . . . , k). By (17),

k
⋃

i=1

Ai = X. (18)

Since X is paracompact (e.g., see [11]), it follows that the covering (18) corresponds

to the partition of the unity coordinated with this covering, i.e., there exist nonnegative
continuous functions ρ1(x), . . . , ρk(x) such that

k
∑

i=1

ρi(x) ≡ 1, supp {ρi(·)} ⊂ Ai.

Consider the mapping φ(x) =
∑k
i=1 ρi(x)xαi. It is continuous and maps the convex

hull conv
{

xα1, . . . , xαk
}

into itself. By the Brauer theorem, it has an immobile point x∗.
Let ρi (x∗) > 0 for i from some index subset I ⊂ {1, . . . , k}, and ρi (x∗) = 0 for i �∈ I . But
then

x∗ =
∑

i∈I

ρi (x∗)xαi ∈ conv {xαi : i ∈ I} ⊂
⋃

i∈I

K (αi) .

Consequently, by (15), x∗ ∈ K (αj) for some j ∈ I , i.e., x∗ �∈ Aj, whence ρj (x∗) = 0.
We have a contradiction, whence follows Eq. (16). The proof of the lemma is complete.
Let us proceed to the proof of Theorem 1. In the space C(B), we consider a family

of compact sets V(µ) (µ ∈ M). Let us show that this family satisfies all conditions of

Lemma 1. By the Stone theorem [11], C(B) is a paracompact space. Consider an arbitrary
set of parameters µ1, . . . , µk ∈M and numbers λ1 > 0, . . . , λk > 0,

∑k
i=1 λi = 1.
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We set

v(x) =
k
∑

i=1

λiV (x; µi) . (19)

Then

v(x) ≥
k
∑

i=1

λiβ(‖x‖) = β(‖x‖) (20)

and

|v (x1)− v (x2)| =

∣

∣

∣

∣

∣

k
∑

i=1

λi (V (x1; µi)− V (x2; µi))

∣

∣

∣

∣

∣

≤ C ‖x1 − x2‖ . (21)

It follows from (20), (21), and (12) that the function v(·) given by (19) belongs to the
class V (µj) for a positive integer j ∈ {1, . . . , k}, i.e.,

conv {V (· , µ1) , . . . , V (· , µk)} ⊂
k
⋃

i=1

V (µi) .

By Lemma 1, condition (11) is satisfied. Therefore, any function V∗(·) ∈
⋂

µ∈M V(µ)
is a common Lyapunov function for the family of dynamic systems (1) and satisfies con-
ditions (13) and (14). The proof of the theorem is complete.

3 Lyapunov Functions in Parametric Classes

In applications, Lyapunov functions for specific dynamic systems are often constructed
so that the resulting functions should belong to definite classes (for example, classes of
quadratic or semilinear forms, linear combinations of spherical harmonics, etc.). This
section contains assertions concerning the existence of a common Lyapunov function for
finite families of dynamic systems lying in a parametric class.
Consider n dynamic systems governed by the equations

dx/dt = fi(x)
(

x ∈ B ⊂ RN , i = 1, . . . , n
)

. (22)

As in the previous sections, fi =
(

f1i (x), . . . , f
N
i (x)

)

(i = 1, . . . , n) is a jointly contin-

uous vector function defined on B. Let each of systems (22) have an asymptotically stable
zero equilibrium and a Lyapunov function Vi : B → R.
Suppose that the Lyapunov functions Vi (i = 1, . . . , n) of systems (22) lie in a para-

metric class V(c) [c = (c1, . . . , cm)] whose elements are Lipschitz functions V : B → R
such that V (0) = 0, and x = 0 is an isolated critical point of the function V corresponding
to its local minimum. The set C ⊂ Rm of values of the parameter c, which defines the
class V(c), is assumed to be convex. We are interested in conditions under which, in the
class V(c), there exists a common Lyapunov function for all systems (22).
ByVi (i = 1, . . . , n) we denote the subclass of the parametric classV(c) (c ∈ C ⊂ R

m)
consisting of Lyapunov functions of the ith system of the set (22). The set of values
of the parameter c ∈ C corresponding to functions from Vi is denoted by Ci. Since
we assume that Vi ∈ Vi, each set Ci (i = 1, . . . , n) is nonempty. Suppose that Ci
(i = 1, . . . , n) are open sets. Points of these sets corresponding to functions Vi are denoted
by ci (i = 1, . . . , n).

Theorem 2 Suppose that, for each parameter subset I ⊂ {1, . . . , n} and all λi ≥ 0 (i ∈ I)
such that

∑

i∈I

λi = 1, (23)
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the function

V

(

∑

i∈I

λici

)

(24)

is a Lyapunov function for at least one system of the subset

dx/dt = fi(x) (i ∈ I). (25)

Then in the parametric class V(c), there exists a common Lyapunov function for all sys-
tems of the family (22).

Proof. Theorem 2 is proved following the scheme of the proof of Theorem 1 and is
based on the following modification of the Knaster–Kuratowski–Mazurkiewicz lemma.

Lemma 2 Let M be an arbitrary finite set in Rm, and F : M → Rm be a multimapping
with bounded open images. Let the convex hull conv {x1, . . . , xk} lie in the join

⋃k
i=1 F (xi)

for any finite set of points x1, . . . , xk ∈M . Then
⋂

x∈M F (x) �= �.

To prove Theorem 2, we have to set M = {c1, . . . , cn}, F (ci) = Vi and use Lemma 2.
In applications, the subclasses Vi of the parametric class V(c) (c ∈ C ⊂ R

m) corre-
spond, as a rule, to convex sets Ci in the parametric space R

m. In this case, Theorem 2
can be refined in the following version.

Theorem 3 Let n > m, and, for each i = 1, . . . , m, the subclass Vi correspond to a
convex open set Ci in the parametric space R

m. Suppose that, for each index subset
I ⊂ {1, . . . , n} such that card I ≤ m + 1 and for any λi ≥ 0 (i ∈ I) that satisfies
condition (23), the function (24) is a Lyapunov function of at least one of the systems
from subset (25). Then, in the parametric class V(c), there exists a common Lyapunov
function for all systems of family (22).

The proof of Theorem 3 is based on Theorem 2 and Helly’s classical theorem about
meets of convex sets (e.g., see [12]).

4 The Lyapunov Function for Families of Linear Systems

Consider a family of n linear stationary asymptotically stable systems governed by the
equations

dx/dt = Aix
(

x ∈ RN , i = 1, . . . , n
)

. (26)

Here Ai =
[

aij,k

]N

j,k=1
are constant matrices with real entries aijk (i = 1, . . . , n; j, k =

1, . . . , N). For each system (26), there exists a Lyapunov function Vi that is a quadratic
form

Vi(x) = (1/2) (Hix, x) (i = 1, . . . , n).

Here Hi =
[

hij,k

]N

j,k=1
is a positive definite symmetrical matrix with real entries hij,k

(i = 1, . . . , n; j, k = 1, . . . , N). As was done previously, we determine whether there exists
a common quadratic Lyapunov function for linear systems of family (26). Obviously, this
problem is equivalent to the solvability of the system of matrix inequalitiesHAi+A

∗
iH < 0

(i = 1, . . . , n) in the classM+N of symmetric positive definite N ×N matrices H . For each
i = 1, . . . , n, the set

Hi =
{

H ∈M+N : HAi +A
∗
iH < 0

}

is a nonempty open convex cone in the space M+N of symmetric N × N matrices. From
Theorem 3 derives the following assertion.
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Theorem 4 Let n > N (N + 1)/2. Suppose that, for each index subset I ⊂ {1, . . . , n}
such that card I ≤ N (N +1)/2 and for all λi ≥ 0 (i ∈ I,

∑

i∈I λi = 1), the quadratic form

V (x) = (1/2)
∑

i∈I

λi (Hix, x)

is a Lyapunov function of at least one of the systems

dx/dt = Aix (i ∈ I).

Then for all systems of the set (26), there exists a common quadratic Lyapunov function.

If we have additional information about spectra of the matrices HiAj + A
∗
jHi (i, j =

1, . . . , n), the existence conditions for a common Lyapunov function for the set of linear
systems (26) can be obtained in a constructive form.
By µij (i, j = 1, . . . , n) we denote the maximal eigenvalue of the symmetric matrix

HiAj +A
∗
jHi (i, j = 1, . . . , n). The following assertion is valid.

Theorem 5 Let

min λ1+···+λn=1max 1≤j≤n

n
∑

i=1

λiµij < 0 (27)

for nonnegative numbers λ1, . . . , λn. Then for the family of systems (26), there exists a
common quadratic Lyapunov function.

Proof.We construct a common quadratic Lyapunov function V for the family of linear
systems (26) in the form of a convex combination of the quadratic forms (1/2) (Hix, x),
i.e.,

V (x) =
1

2

n
∑

i=1

λi (Hix, x)

(

λi ≥ 0,
n
∑

i=1

λi = 1

)

. (28)

Since Hi are positive definite matrices, the matrixH∗ =
∑n
i=1 λiHi is also positive definite

for any set λ1, . . . , λn ≥ 0 such that
∑n
i=1 λi = 1.

The quadratic form (28) is a Lyapunov function of the family of systems (26) if and
only if

(∇V (x), Ajx) =
n
∑

i=1

λi (Hix, Ajx) =
1

2

n
∑

i=1

λi
((

A∗jHi +HiAj
)

x, x
)

< 0 (x �= 0) (29)

for all j = 1, . . . , n. Since

((

A∗jHi +HiAj
)

x, x
)

< µij(x, x), (30)

it follows from (29) that

(∇V (x), Ajx) ≤

(

1

2

n
∑

i=1

λiµij

)

(x, x). (31)

It follows from inequality (27) that for some λ1 = λ
∗
1, . . . , λn = λ

∗
n and for all

j = 1, . . . , n,
n
∑

i=1

λ∗iµij < 0. (32)
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Then from (29)–(32), we derive the conclusion that the quadratic form

V (x) =
1

2

n
∑

i=1

λ∗i (Hix, x)

is a common Lyapunov function for the set of systems (26). The proof of the theorem is
complete.
Consider the matrix

M = [µij]
n
i,j=1 . (33)

Since each system (26) is asymptotically stable, we find that the diagonal entries of the
matrixM are negative. Theorem 5 leads to the following assertion.

Corollary. If matrix (33) is a matrix with a dominating leading diagonal, then the
family of linear systems (26) has a common quadratic Lyapunov function.

The theorems on the existence of a common Lyapunov function for sets of stable
dynamic systems given in this paper are of qualitative nature. Even so, one can eas-
ily construct numerical algorithms for calculating common Lyapunov functions in broad
parametric classes [13].
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